JP2001233936A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2001233936A
JP2001233936A JP2000045987A JP2000045987A JP2001233936A JP 2001233936 A JP2001233936 A JP 2001233936A JP 2000045987 A JP2000045987 A JP 2000045987A JP 2000045987 A JP2000045987 A JP 2000045987A JP 2001233936 A JP2001233936 A JP 2001233936A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
curing agent
weight
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000045987A
Other languages
Japanese (ja)
Other versions
JP4560871B2 (en
Inventor
Daisuke Oka
大祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000045987A priority Critical patent/JP4560871B2/en
Publication of JP2001233936A publication Critical patent/JP2001233936A/en
Application granted granted Critical
Publication of JP4560871B2 publication Critical patent/JP4560871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition which has a reduced warpage and excellent solder cracking resistance after molding in an area mounting type semiconductor device and upon a soldering treatment. SOLUTION: The epoxy resin composition comprises (A) an epoxy resin comprising 30-100 wt.% of a glycidyl etherified epoxy resin contained in the whole epoxy resin, the etherified epoxy resin being made by mixing bisphenol F (a) and a biphenyl (b) which is a precursor of a crystalline epoxy resin, (B) a resin curing agent containing 30-100 wt.% of a naphthol aralkyl resin curing agent in the whole resin curing agent, (C) an inorganic filler and (D) a curing accelerator as essential components, and the weight ratio of the bisphenol F (a)/the biphenyl (b) being 0.1-19, the equivalent ratio of an epoxy group in the whole epoxy resin/a phenolic hydroxyl group in the whole resin curing resin agent being 0.5-2, a content of the inorganic filler (C) being 250-1400 pts.wt. per 100 pts.wt. of the sum of the whole epoxy resin and the whole resin curing agent, and a content of the curing accelerator being 0.4-20 pts.wt. per 100 pts.wt. of the sum of the whole epoxy resin and the whole resin curing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エリア実装型半導
体装置での成形後や半田処理時の反りが小さく、耐半田
クラック性に優れる半導体封止用エポキシ樹脂組成物、
及び半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation, which has a small warpage after molding and soldering in an area mounting type semiconductor device and has excellent solder crack resistance.
And a semiconductor device.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高機
能化の市場動向において、半導体の高集積化が年々進
み、又半導体装置の表面実装化が促進されるなかで、新
規にエリア実装型の半導体装置が開発され、従来構造の
半導体装置から移行し始めている。エリア実装型半導体
装置としてはボールグリッドアレイ(以下、BGAとい
う)、あるいは更に小型化を追求したチップサイズパッ
ケージ(以下、CSPという)が代表的であるが、これ
らは、従来のQFP、SOPに代表される表面実装型半
導体装置では限界に近づいている多ピン化・高速化への
要求に対応するために開発されたものである。構造とし
ては、ビスマレイミド・トリアジン(以下、BTとい
う)樹脂/銅箔回路基板に代表される硬質回路基板、あ
るいはポリイミド樹脂フィルム/銅箔回路基板に代表さ
れるフレキシブル回路基板の片面上に半導体素子を搭載
し、その半導体素子搭載面、即ち基板の片面のみがエポ
キシ樹脂組成物等で成形・封止されている。又基板の半
導体素子搭載面の反対面には半田ボールを2次元的に並
列して形成し、半導体装置を実装する回路基板との接合
を行う特徴を有している。更に、半導体素子を搭載する
基板としては、上記有機回路基板以外にもリードフレー
ム等の金属基板を用いる構造も考案されている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction and high functionality of electronic equipment, high integration of semiconductors has been progressing year by year and surface mounting of semiconductor devices has been promoted. A mounting type semiconductor device has been developed, and has begun to shift from a semiconductor device having a conventional structure. A ball grid array (hereinafter, referred to as BGA) or a chip size package (hereinafter, referred to as CSP) pursuing further miniaturization is representative of the area mounting type semiconductor device, and these are typically represented by conventional QFP and SOP. The surface mount type semiconductor device has been developed in order to meet the demand for higher pin count and higher speed, which is approaching the limit. As a structure, a semiconductor element is mounted on one side of a rigid circuit board represented by a bismaleimide / triazine (hereinafter referred to as BT) resin / copper circuit board or a flexible circuit board represented by a polyimide resin film / copper circuit board. And only the semiconductor element mounting surface, that is, one surface of the substrate is molded and sealed with an epoxy resin composition or the like. Also, on the surface opposite to the semiconductor element mounting surface of the substrate, solder balls are formed two-dimensionally in parallel and joined to a circuit board on which a semiconductor device is mounted. Further, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.

【0003】これらエリア実装型半導体装置の構造は基
板の半導体素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板等で
は、半田ボール形成面でも数十μm程度の封止樹脂層が
存在することもあるが、半導体素子搭載面では数百μm
から数mm程度の封止樹脂層が形成されるため、実質的
に片面封止となっている。このため、有機基板や金属基
板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不
整合、あるいは樹脂組成物の成形・硬化時の硬化収縮に
よる影響により、これらの半導体装置では成形直後から
反りが発生しやすい。又これらの半導体装置を実装する
回路基板上に半田接合を行う場合、200℃以上の加熱
工程を経るが、この際に半導体装置の反りが発生し、多
数の半田ボールが平坦とならず、半導体装置を実装する
回路基板から浮き上がってしまい、電気的接合信頼性が
低下する問題も起こる。
[0003] The structure of these area mounting type semiconductor devices adopts a single-sided sealing configuration in which only the semiconductor element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may be present even on a surface on which a solder ball is formed, but on a semiconductor element mounting surface, several hundred μm
Since a sealing resin layer having a thickness of about several mm is formed, substantially single-sided sealing is achieved. Therefore, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or the metal substrate and the cured product of the resin composition, or the influence of the curing shrinkage at the time of molding and curing the resin composition, these semiconductor devices are used. Warpage tends to occur immediately after molding. When soldering is performed on a circuit board on which these semiconductor devices are mounted, a heating step of 200 ° C. or more is performed. At this time, the semiconductor device is warped, and a large number of solder balls are not flattened. There is also a problem that the semiconductor device floats up from the circuit board on which the device is mounted, and the electrical connection reliability is reduced.

【0004】基板上の実質的に片面のみを樹脂組成物で
封止した半導体装置において、反りを低減するには、基
板の線膨張係数と樹脂組成物の硬化物の線膨張係数を近
づけること、及び樹脂組成物の硬化収縮を小さくする二
つの方法が重要である。基板としては有機基板では、B
T樹脂やポリイミド樹脂のような高いガラス転移温度
(以下、Tgという)の樹脂が広く用いられており、こ
れらは樹脂組成物の成形温度である170℃近辺よりも
高いTgを有する。従って、成形温度から室温までの冷
却過程では有機基板のα1の領域のみで収縮するので、
樹脂組成物もTgが高く、かつα1が回路基板と同じで
あり、更に硬化収縮がゼロであれば反りはほぼゼロであ
ると考えられる。このため、トリフェノールメタン型エ
ポキシ樹脂とトリフェノールメタン型フェノール樹脂と
の組合せによりTgを高くし、無機充填材の配合量でα
1を合わせる手法が既に提案されている。
In a semiconductor device in which substantially only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of a cured product of the resin composition are made close to each other; In addition, two methods for reducing the curing shrinkage of the resin composition are important. As an organic substrate, B
Resins having a high glass transition temperature (hereinafter, referred to as Tg) such as T resins and polyimide resins are widely used, and have a Tg higher than around 170 ° C., which is the molding temperature of the resin composition. Therefore, in the cooling process from the molding temperature to room temperature, since the shrinkage occurs only in the α1 region of the organic substrate,
If the resin composition also has a high Tg, and α1 is the same as that of the circuit board, and if the curing shrinkage is zero, the warpage is considered to be almost zero. Therefore, Tg is increased by a combination of a triphenolmethane-type epoxy resin and a triphenolmethane-type phenol resin, and α is determined by the amount of the inorganic filler.
A method of combining 1 has already been proposed.

【0005】又赤外線リフロー、ベーパーフェイズソル
ダリング、半田浸漬等の手段での半田処理による半田接
合を行う場合、樹脂組成物の硬化物並びに有機基板から
の吸湿により半導体装置内部に存在する水分が高温で急
激に気化することによる応力で半導体装置にクラックが
発生したり、基板の半導体素子搭載面と樹脂組成物の硬
化物との界面で剥離が発生することもあり、硬化物の高
強度化、低応力化、低吸湿化とともに、基板との高密着
も求められる。従来のBGAやCSP等のエリア実装型
半導体装置には、反りの低減のためにトリフェノールメ
タン型エポキシ樹脂とトリフェノールメタン型フェノー
ル樹脂を樹脂成分とする樹脂組成物が用いられてきた。
この樹脂組成物の硬化物は、Tgが高く、硬化性、熱時
曲げ強度に優れた特性を有しているが、硬化物の吸水率
が高く、又樹脂組成物の溶融粘度が比較的高く、無機充
填材の高充填化には限界があり、低吸湿化が不十分で、
耐半田クラック性には問題があった。
When soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, the moisture present inside the semiconductor device due to the cured product of the resin composition and the moisture absorbed from the organic substrate is heated to a high temperature. Cracks may occur in the semiconductor device due to stress caused by rapid vaporization in the semiconductor device, or peeling may occur at the interface between the semiconductor element mounting surface of the substrate and the cured product of the resin composition. Along with low stress and low moisture absorption, high adhesion to the substrate is also required. A resin composition containing a triphenolmethane-type epoxy resin and a triphenolmethane-type phenol resin as resin components has been used in conventional area-mounted semiconductor devices such as BGA and CSP to reduce warpage.
The cured product of this resin composition has a high Tg, curability, and properties having excellent flexural strength when heated. However, the water absorption of the cured product is high, and the melt viscosity of the resin composition is relatively high. , There is a limit to high filling of inorganic filler, insufficient moisture absorption,
There was a problem in solder crack resistance.

【0006】一方、従来のQFPやSOP等の表面実装
型半導体装置では、半田実装時のクラックや各素材界面
での剥離防止のために、ビフェニル型エポキシ樹脂に代
表されるような結晶性エポキシ樹脂を使用しているが、
トリフェノールメタン型エポキシ樹脂を用いた樹脂組成
物の硬化物と比較して熱時曲げ強度が低く、かつ硬化が
遅いのが問題であった。そこで、反りが小さく、硬化
性、熱時曲げ強度に優れ、かつ低吸湿、耐半田クラック
性に優れる樹脂組成物を得るため、トリフェノールメタ
ン型エポキシ樹脂と結晶性エポキシ樹脂の特徴を生かす
べく、樹脂組成物の製造時に両方のエポキシ樹脂を適正
量併用したり、予め両方のエポキシ樹脂を溶融混合した
ものを用いても、トリフェノールメタン型エポキシ樹脂
を用いた時の反りが小さく、硬化性、熱時曲げ強度に優
れるという特徴と、結晶性エポキシ樹脂を用いた時の低
吸湿、耐半田クラック性に優れるという特徴を両立する
ことはできておらず、不十分であった。
On the other hand, in a conventional surface mount type semiconductor device such as QFP or SOP, a crystalline epoxy resin such as a biphenyl type epoxy resin is used in order to prevent cracks at the time of solder mounting and peeling at interfaces between materials. Using
There were problems that the flexural strength at the time of heating was low and curing was slow as compared with a cured product of a resin composition using a triphenolmethane-type epoxy resin. Therefore, in order to obtain a resin composition with a small warpage, excellent curability, excellent bending strength when heated, and low moisture absorption and excellent solder crack resistance, in order to take advantage of the characteristics of the triphenolmethane epoxy resin and the crystalline epoxy resin, When using an appropriate amount of both epoxy resins at the time of manufacturing the resin composition, or using a pre-melted mixture of both epoxy resins, the warpage when using a triphenolmethane type epoxy resin is small, curability, The feature of being excellent in bending strength under heat and the feature of being excellent in low moisture absorption and solder crack resistance when using a crystalline epoxy resin could not be achieved at the same time, which was insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は、エリア実装
型半導体装置での成形後や半田処理時の反りが小さく、
耐半田クラック性に優れる半導体封止用エポキシ樹脂組
成物、及び半導体装置を提供するものである。
SUMMARY OF THE INVENTION The present invention has a small warpage after molding or soldering in an area mounting type semiconductor device.
An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation excellent in solder crack resistance and a semiconductor device.

【0008】[0008]

【課題を解決するための手段】本発明は、[1] (A)
一般式(1)で示されるビスフェノールF類(a)と、
結晶性エポキシ樹脂の前駆体であるフェノール類(b)
とを混合しグリシジルエーテル化したエポキシ樹脂を総
エポキシ樹脂中に30〜100重量%含むエポキシ樹
脂、(B)一般式(2)で示される樹脂硬化剤を総樹脂
硬化剤中に30〜100重量%含む樹脂硬化剤、(C)
無機充填材、及び(D)硬化促進剤を必須成分とし、か
つ(a)と(b)との重量比(a/b)が0.1〜1
9、総エポキシ樹脂のエポキシ基と総樹脂硬化剤のフェ
ノール性水酸基の当量比が0.5〜2であり、無機充填
材(C)の含有量が、総エポキシ樹脂と総樹脂硬化剤の合
計量100重量部当たり250〜1400重量部で、硬
化促進剤の含有量が、総エポキシ樹脂と総樹脂硬化剤の
合計量100重量部当たり0.4〜20重量部であるこ
とを特徴とする半導体用エポキシ樹脂組成物、
Means for Solving the Problems The present invention provides [1] (A)
Bisphenol Fs (a) represented by the general formula (1),
Phenols (b) which are precursors of crystalline epoxy resins
(B) an epoxy resin containing 30 to 100% by weight of glycidyl etherified epoxy resin in the total epoxy resin, and (B) a resin curing agent represented by the general formula (2) in an amount of 30 to 100% by weight in the total resin curing agent. % Of resin curing agent, (C)
An inorganic filler and (D) a curing accelerator are essential components, and the weight ratio (a / b) between (a) and (b) is 0.1 to 1
9. The equivalent ratio of the epoxy group of the total epoxy resin to the phenolic hydroxyl group of the total resin curing agent is 0.5 to 2, and the content of the inorganic filler (C) is the sum of the total epoxy resin and the total resin curing agent. Semiconductor, wherein the content of the curing accelerator is 0.4 to 20 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent at 250 to 1,400 parts by weight per 100 parts by weight. Epoxy resin composition for

【化3】 (ただし、式中のR1は炭素数1〜6のアルキル基を表
し、それらは互いに同一であっても異なってもよい。n
は0〜4の整数)
Embedded image (However, R 1 in the formula represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different.
Is an integer from 0 to 4)

【0009】[0009]

【化4】 (ただし、nは平均値で、1〜10の正数) [2] 基板の片面に半導体素子が搭載され、この半導
体素子が搭載された基板面側の実質的に片面のみが第
[1]項記載のエポキシ樹脂組成物を用いて封止されて
なることを特徴とする半導体装置、を提供するものであ
り、エリア実装型半導体素子での成形後や半田処理時の
反りが小さく、耐半田クラック性に優れる。
Embedded image (Where n is an average value and a positive number of 1 to 10) [2] A semiconductor element is mounted on one surface of the substrate, and substantially only one surface on the substrate surface side on which the semiconductor element is mounted is [1]. A semiconductor device characterized by being sealed using the epoxy resin composition according to the above item, which has a small warpage after molding or soldering in an area-mounted semiconductor element, Excellent cracking properties.

【0010】[0010]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、低粘度・低分子量のビスフェノールF類(a)と結
晶性エポキシ樹脂の前駆体であるフェノール類(b)と
の重量比(a/b)を0.1〜19とした混合物(以
下、混合フェノールという)をグリシジルエーテル化し
た樹脂で、ビスフェノールF型エポキシ樹脂に由来する
低粘度化が図られており、従来のビフェニル型エポキシ
樹脂より、更に加熱時の溶融粘度の低い樹脂となるた
め、ビフェニル型エポキシ樹脂を主として用いた樹脂組
成物よりも流動性が向上し、無機充填材をより高充填化
することができ、ひいてはエポキシ樹脂組成物の低吸湿
化が可能となるため、耐半田クラック性の向上に寄与す
る。又高い結晶性を持つエポキシ樹脂の前駆体であるフ
ェノール類と共にグリシジルエーテル化させることによ
って、常温で固体として取り扱うことができるようにな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention comprises a low-viscosity, low-molecular-weight bisphenol F (a) and a phenol (b), which is a precursor of a crystalline epoxy resin, in a weight ratio (a / A resin obtained by glycidyl etherification of a mixture in which b) is 0.1 to 19 (hereinafter, referred to as a mixed phenol), which has a low viscosity derived from a bisphenol F type epoxy resin, and is lower than a conventional biphenyl type epoxy resin. Further, since the resin has a lower melt viscosity when heated, the fluidity is improved as compared with the resin composition mainly using a biphenyl type epoxy resin, and the inorganic filler can be more highly filled. Since the material can be made to absorb less moisture, it contributes to improving the solder crack resistance. Glycidyl etherification with a phenol, which is a precursor of an epoxy resin having high crystallinity, can be handled as a solid at room temperature.

【0011】一般式(1)で示されるビスフェノールF
類(a)としては、特に分子量、粘度を制限するものは
ないが、できるだけ低分子量であることが望ましく、よ
り好ましいのは一般式(1)において無置換で、2つの
水酸基がp−配向である4、4’−ジヒドロキシビスフ
ェノールである。これにより低粘度化への寄与が大きく
なり、かつ無置換ゆえにグリシジルエーテル化した場
合、高い反応性を有するエポキシ樹脂を得ることができ
る。結晶性エポキシ樹脂の前駆体であるフェノール類
(b)としては、例えば、一般式(3)のビフェニル型
フェノール類、一般式(4)のスチルベン型フェノール
類等が挙げられる。
Bisphenol F represented by the general formula (1)
As the class (a), there is no particular limitation on the molecular weight and viscosity, but it is preferable that the molecular weight is as low as possible. More preferably, it is unsubstituted in the general formula (1) and the two hydroxyl groups are p-oriented. Certain 4,4'-dihydroxybisphenols. This greatly contributes to lowering the viscosity, and when glycidyl etherification is used because of no substitution, an epoxy resin having high reactivity can be obtained. Examples of the phenols (b) that are precursors of the crystalline epoxy resin include biphenyl-type phenols of the general formula (3) and stilbene-type phenols of the general formula (4).

【化5】 (ただし、式中のR2は炭素数1〜6のアルキル基で、
それらは互いに同一であっても異なっていてもよい。m
は0〜4の整数。)
Embedded image (Where R 2 in the formula is an alkyl group having 1 to 6 carbon atoms,
They may be the same or different from each other. m
Is an integer of 0 to 4. )

【0012】[0012]

【化6】 (ただし、式中のR3は水素原子、炭素数1〜6のアル
キル基で、それらは互いに同一であっても異なっていて
もよい。R4は炭素数1〜6のアルキル基で、それらは
互いに同一であっても異なっていてもよい。mは0〜4
の整数。)
Embedded image (However, R 3 in the formula is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. R 4 is an alkyl group having 1 to 6 carbon atoms, and May be the same or different, and m is 0 to 4
Integer. )

【0013】一般式(3)のビフェニル型フェノール類
としては、例えば、4,4’−ジヒドロキシビフェニ
ル、4,4’−ジヒドロキシ−3,3’,5,5’−テ
トラメチルビフェニル、4,4’−ジヒドロキシ−3,
3’−ジターシャリブチル−6,6’−ジメチルビフェ
ニル、2,2’−ジヒドロキシ−3,3’−ジターシャ
リブチル−6,6’−ジメチルビフェニル、4,4’−
ジヒドロキシ−3,3’−ジターシャリブチル−5,
5’−ジメチルビフェニル、4,4’−ジヒドロキシ−
3,3’,5,5’−テトラターシャリブチルビフェニ
ル等(置換位置の異なる異性体を含む)が挙げられる。
The biphenyl-type phenols of the general formula (3) include, for example, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3 ', 5,5'-tetramethylbiphenyl, 4,4 '-Dihydroxy-3,
3′-ditert-butyl-6,6′-dimethylbiphenyl, 2,2′-dihydroxy-3,3′-ditert-butyl-6,6′-dimethylbiphenyl, 4,4′-
Dihydroxy-3,3'-ditert-butyl-5,
5'-dimethylbiphenyl, 4,4'-dihydroxy-
3,3 ′, 5,5′-tetratert-butylbiphenyl and the like (including isomers having different substitution positions).

【0014】一般式(4)のスチルベン型フェノール類
としては、例えば、3−ターシャリブチル−4,4’−
ジヒドロキシ−5,3’−ジメチルスチルベン、3−タ
ーシャリブチル−4,4’−ジヒドロキシ−3’,6−
ジメチルスチルベン、3−ターシャリブチル−2,4’
−ジヒドロキシ−3’,5’,6−トリメチルスチルベ
ン、3−ターシャリブチル−4,4’−ジヒドロキシ−
3’,5’,6−トリメチルスチルベン、3−ターシャ
リブチル−4,4’−ジヒドロキシ−3’,5,5’−
トリメチルスチルベン、4,4’−ジヒドロキシ−3,
3’−ジメチルスチルベン、4,4’−ジヒドロキシ−
3,3’,5,5’−テトラメチルスチルベン、4,
4’−ジヒドロキシ−3,3’−ジターシャリブチルス
チルベン、4,4’−ジヒドロキシ−3,3’−ジター
シャリブチル−6,6’−ジメチルスチルベン、2,
2’−ジヒドロキシ−3,3’−ジターシャリブチル−
6,6’−ジメチルスチルベン、2,4’−ジヒドロキ
シ−3,3’−ジターシャリブチル−6,6’−ジメチ
ルスチルベン、2,2’−ジヒドロキシ−3,3’,
5,5’−テトラメチルスチルベン、4,4’−ジヒド
ロキシ−3,3’−ジターシャリブチル−5,5’−ジ
メチルスチルベン、4,4’−ジヒドロキシ−3,
3’,5,5’−テトラターシャリブチルスチルベン等
(置換位置の異なる異性体を含む)が挙げられる。
The stilbene type phenols of the general formula (4) include, for example, 3-tert-butyl-4,4'-
Dihydroxy-5,3'-dimethylstilbene, 3-tert-butyl-4,4'-dihydroxy-3 ', 6-
Dimethyl stilbene, 3-tert-butyl-2,4 '
-Dihydroxy-3 ', 5', 6-trimethylstilbene, 3-tert-butyl-4,4'-dihydroxy-
3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-
Trimethylstilbene, 4,4'-dihydroxy-3,
3'-dimethylstilbene, 4,4'-dihydroxy-
3,3 ′, 5,5′-tetramethylstilbene, 4,
4'-dihydroxy-3,3'-ditertiarybutylstilbene, 4,4'-dihydroxy-3,3'-ditertiarybutyl-6,6'-dimethylstilbene, 2,
2'-dihydroxy-3,3'-ditert-butyl-
6,6′-dimethylstilbene, 2,4′-dihydroxy-3,3′-ditert-butyl-6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3 ′,
5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditert-butyl-5,5′-dimethylstilbene, 4,4′-dihydroxy-3,
3 ', 5,5'-tetratert-butylstilbene and the like (including isomers having different substitution positions).

【0015】これらの内では、入手のし易さ、性能、原
料価格等の点から、4,4’−ジヒドロキシビフェニ
ル、4,4’−ジヒドロキシ−3,3’,5,5’−テ
トラメチルビフェニル、(以上2種のフェノール類を、
以下a群という)、3−ターシャリブチル−2,4’−
ジヒドロキシ−3’,5’,6−トリメチルスチルベ
ン、3−ターシャリブチル−4,4’−ジヒドロキシ−
3’,5’,6−トリメチルスチルベン、3−ターシャ
リブチル−4,4’−ジヒドロキシ−3’,5,5’−
トリメチルスチルベン(以上3種のフェノール類を、以
下b群という)、4,4’−ジヒドロキシ−3,3’,
5,5’−テトラメチルスチルベン、4,4’−ジヒド
ロキシ−3,3’−ジターシャリブチル−6,6’−ジ
メチルスチルベン、2,2’−ジヒドロキシ−3,3’
−ジターシャリブチル−6,6’−ジメチルスチルベ
ン、2,4’−ジヒドロキシ−3,3’−ジターシャリ
ブチル−6,6’−ジメチルスチルベン、2,2’−ジ
ヒドロキシ−3,3’,5,5’−テトラメチルスチル
ベン、又は4,4’−ジヒドロキシ−3,3’−ジター
シャリブチル−5,5’−ジメチルスチルベン(以上6
種のフェノール類を、以下c群という)から選択される
1種以上が好ましい。特にビフェニル型フェノール類で
は、低粘度化効果が大きく、かつ反応性に富む4,4’
−ジヒドロキシビフェニルが含まれていることが好まし
い。又スチルベン型フェノール類では、b群、c群それ
ぞれ単独ではその結晶性の高さから融点が高くなる傾向
にあるが、それぞれから選択される1種以上の混合物に
することにより、グリシジルエーテル化物の融点を低下
させる効果があるので混合物にすることが好ましい。こ
れらの混合比、混合方法は限定しない。
Among them, 4,4'-dihydroxybiphenyl and 4,4'-dihydroxy-3,3 ', 5,5'-tetramethyl are preferred in view of availability, performance, raw material price and the like. Biphenyl, (the above two phenols,
Hereinafter referred to as group a), 3-tert-butyl-2,4'-
Dihydroxy-3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-
3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-
Trimethylstilbene (the above three phenols are hereinafter referred to as group b), 4,4′-dihydroxy-3,3 ′,
5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-ditert-butyl-6,6'-dimethylstilbene, 2,2'-dihydroxy-3,3 '
-Ditertiarybutyl-6,6'-dimethylstilbene, 2,4'-dihydroxy-3,3'-ditertiarybutyl-6,6'-dimethylstilbene, 2,2'-dihydroxy-3,3 ', 5 , 5'-tetramethylstilbene or 4,4'-dihydroxy-3,3'-ditert-butyl-5,5'-dimethylstilbene (6 or more
The phenols are preferably one or more selected from group c). In particular, biphenyl-type phenols have a large viscosity lowering effect and are highly reactive 4,4 ′.
It preferably contains -dihydroxybiphenyl. In the case of stilbene-type phenols, the melting point tends to be higher due to the high crystallinity of each of the groups b and c alone. However, by forming a mixture of one or more kinds selected from each, the glycidyl ether compound It is preferable to use a mixture since it has the effect of lowering the melting point. The mixing ratio and the mixing method are not limited.

【0016】一般式(1)で示されるビスフェノールF
類(a)と結晶性エポキシ樹脂の前駆体であるフェノー
ル類(b)との混合方法は特に限定しないが、溶剤によ
る溶解や加熱による溶融混合等の方法により、均一に混
合することが好ましい。これは、不均一に混合されたも
のをグリシジルエーテル化しても、それぞれ単独にグリ
シジルエーテル化したものの混合物と同様の性状になる
ため、期待する低粘度化や常温での固形化がはかれない
ためである。一般式(1)で示されるビスフェノールF
類(a)と結晶性エポキシ樹脂の前駆体であるフェノー
ル類(b)との混合比は、重量比(a/b)で0.1〜
19が好ましく、より好ましくは0.5〜9である。
0.1未満だと、一般式(1)で示されるビスフェノー
ルF類に由来する低粘度化効果が薄いため好ましくな
い。又、19を越えると、結晶性エポキシ樹脂による作
業性の向上が見られないので好ましくない。
Bisphenol F represented by the general formula (1)
The method of mixing the compound (a) with the phenol (b), which is a precursor of the crystalline epoxy resin, is not particularly limited, but it is preferable to uniformly mix them by a method such as dissolution with a solvent or melt mixing by heating. This is because even if heterogeneously mixed ones are glycidyl-etherified, they have the same properties as the mixture of glycidyl-etherified ones alone, so the expected low viscosity and solidification at room temperature are not expected. It is. Bisphenol F represented by the general formula (1)
The mixing ratio of the compound (a) and the phenol (b) which is a precursor of the crystalline epoxy resin is from 0.1 to 0.1 by weight (a / b).
19 is preferred, and more preferably 0.5-9.
If it is less than 0.1, the effect of lowering the viscosity derived from the bisphenol F represented by the general formula (1) is undesirably small. On the other hand, if it exceeds 19, the workability is not improved by the crystalline epoxy resin, so that it is not preferable.

【0017】本発明のエポキシ樹脂の合成方法について
は特に限定しないが、例えば、混合フェノールを過剰の
エピクロルヒドリンに溶解した後、水酸化ナトリウム、
水酸化カリウム等のアルカリ金属水酸化物の存在下で5
0〜150℃、好ましくは60〜120℃で1〜10時
間反応させる方法が挙げられる。反応終了後、過剰のエ
ピクロルヒドリンを留去し、残留物をトルエン、メチル
イソブチルケトン等の溶剤に溶解し、濾過し、水洗して
無機塩を除去し、次いで溶剤を留去することにより目的
のエポキシ樹脂を得ることができる。生成したエポキシ
樹脂の塩素イオン、ナトリウムイオン、その他フリーの
イオンは極力少ないことが望ましい。
The method for synthesizing the epoxy resin of the present invention is not particularly limited. For example, after dissolving a mixed phenol in an excess of epichlorohydrin, sodium hydroxide,
5 in the presence of an alkali metal hydroxide such as potassium hydroxide
A method in which the reaction is performed at 0 to 150 ° C, preferably 60 to 120 ° C for 1 to 10 hours, may be mentioned. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to remove the desired epoxy compound. A resin can be obtained. It is desirable that chlorine ions, sodium ions and other free ions of the produced epoxy resin be as small as possible.

【0018】本発明に用いられるエポキシ樹脂は、その
配合量を調整することによりその特性を最大限引き出す
ことができる。配合量としては、総エポキシ樹脂中に3
0〜100重量%で、30重量%未満では半田処理時に
反りが大きくなり、又流動性が低下するため好ましくな
い。併用できるエポキシ樹脂としては、特には限定しな
いが、例えば、オルソクレゾールノボラック型エポキシ
樹脂、ビスフェノールA型エポキシ樹脂、ジシクロペン
タジエン変性フェノール型エポキシ樹脂等が挙げられ、
これらは単独でも混合して用いてもよい。
The properties of the epoxy resin used in the present invention can be maximized by adjusting the amount thereof. The mixing amount is 3% in the total epoxy resin.
When the amount is 0 to 100% by weight and less than 30% by weight, the warpage increases during the soldering process, and the fluidity decreases. The epoxy resin that can be used in combination is not particularly limited, and includes, for example, ortho-cresol novolak type epoxy resin, bisphenol A type epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, and the like.
These may be used alone or as a mixture.

【0019】本発明に用いられる一般式(2)で示され
る樹脂硬化剤は、剛直なナフトール骨格を1分子中少な
くとも2個以上有するため、樹脂組成物の硬化物の吸水
率が低いという特性を有している。更に、β−ナフトー
ル骨格の樹脂硬化剤と比較して、硬化時の樹脂組成物の
成形収縮率が小さく、硬化物のTgの低下等が生じにく
い特徴を有しているため樹脂組成物の硬化物の反りが小
さい。更に疎水性の芳香族環を有しているため吸水率が
比較的低く、従って本発明の樹脂組成物を用いた半導体
装置は、実装時の半田処理下でも高い信頼性を得ること
ができる。本発明に用いられる一般式(2)の樹脂硬化
剤は、その配合量を調整することによりその特性を最大
限引き出すことができる。配合量としては、総樹脂硬化
剤中に30〜100重量%で、30%未満だと半田処理
時に反りが大きくなり、耐湿信頼性が低下するため好ま
しくない。併用できる樹脂硬化剤としては、特には限定
しないが、例えば、フェノールノボラック樹脂、クレゾ
ールノボラック樹脂、ジシクロペンタジエン変性フェノ
ール樹脂、フェノールアラルキル樹脂、テルペン変性フ
ェノール樹脂、トリフェノールメタン化合物等が挙げら
れ、これらは単独でも混合して用いてもよい。更に、エ
ポキシ樹脂のエポキシ基と樹脂硬化剤のフェノール性水
酸基の当量比が0.5〜2であり、当量比が0.5未満
であっても、2を越えても、樹脂組成物の硬化性、耐湿
信頼性あるいは硬化物のTgの低下等が生じるので好ま
しくない。
Since the resin curing agent represented by the general formula (2) used in the present invention has at least two rigid naphthol skeletons in one molecule, it has a characteristic that the cured product of the resin composition has a low water absorption. Have. Furthermore, as compared with a resin curing agent having a β-naphthol skeleton, the resin composition has a smaller molding shrinkage ratio at the time of curing and has a characteristic that the Tg of the cured product is less likely to be reduced. The warpage of the object is small. Further, since the resin composition has a hydrophobic aromatic ring, the water absorption is relatively low. Therefore, a semiconductor device using the resin composition of the present invention can have high reliability even under soldering during mounting. The characteristics of the resin curing agent of the general formula (2) used in the present invention can be maximized by adjusting the amount of the resin curing agent. The compounding amount is 30 to 100% by weight in the total resin curing agent, and if it is less than 30%, the warpage increases during soldering, and the moisture resistance reliability is undesirably reduced. The resin curing agent that can be used in combination is not particularly limited, but includes, for example, a phenol novolak resin, a cresol novolak resin, a dicyclopentadiene-modified phenol resin, a phenol aralkyl resin, a terpene-modified phenol resin, a triphenolmethane compound, and the like. May be used alone or as a mixture. Furthermore, even if the equivalent ratio of the epoxy group of the epoxy resin to the phenolic hydroxyl group of the resin curing agent is 0.5 to 2, and the equivalent ratio is less than 0.5 or greater than 2, It is not preferable because the properties, the moisture resistance reliability and the Tg of the cured product decrease.

【0020】本発明に用いられる無機充填材の種類につ
いては特に制限はなく、一般に封止材料に用いられてい
るものを使用することができる。例えば、溶融破砕シリ
カ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝
集シリカ粉末、アルミナ、チタンホワイト、水酸化アル
ミニウム等が挙げられ、特に溶融球状シリカが好まし
い。球状シリカの形状としては、流動性改善のために限
りなく真球状であり、かつ粒度分布がブロードであるこ
とが好ましい。無機充填材の含有量としては、成形性と
信頼性のバランスから、総エポキシ樹脂と総樹脂硬化剤
の合計量100重量部当たり250〜1400重量部が
好ましい。250重量部未満だと難燃性が得られず、1
400重量部を越えると成形性の問題が生じ好ましくな
い。本発明で用いる無機充填材は、予め十分に混合して
おくことが好ましい。又必要に応じて無機充填材をカッ
プリング剤やエポキシ樹脂あるいはフェノール樹脂で予
め処理して用いてもよく、処理の方法としては、溶剤を
用いて混合した後に溶媒を除去する方法や直接無機充填
材に添加し、混合機を用いて処理する方法等がある。
The type of the inorganic filler used in the present invention is not particularly limited, and those generally used for a sealing material can be used. For example, fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary aggregated silica powder, alumina, titanium white, aluminum hydroxide and the like are mentioned, and fused spherical silica is particularly preferred. As the shape of the spherical silica, it is preferable that the spherical silica be infinitely spherical and the particle size distribution be broad in order to improve fluidity. The content of the inorganic filler is preferably 250 to 1400 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent in view of the balance between moldability and reliability. If the amount is less than 250 parts by weight, flame retardancy cannot be obtained and 1
If the amount exceeds 400 parts by weight, a problem of moldability occurs, which is not preferable. It is preferable that the inorganic filler used in the present invention is sufficiently mixed in advance. If necessary, the inorganic filler may be treated with a coupling agent, an epoxy resin or a phenol resin in advance, and used as a treatment method. There is a method of adding to a material and treating using a mixer.

【0021】本発明で用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料に用いられているも
のを広く用いることができる。例えば、1,8−ジアザ
ビシクロ(5,4,0)ウンデセン−7、トリフェニル
ホスフィン、ベンジルジメチルアミン、2−メチルイミ
ダゾール等を単独でも混合して用いてもよい。本発明の
エポキシ樹脂組成物は、硬化促進剤を総エポキシ樹脂と
総樹脂硬化剤の合計量100重量部あたり0.4〜20
重量部含有する。0.4重量部未満であると、加熱成形
時において十分な硬化性が得られないおそれがある。一
方、20重量部を越えると、硬化が速すぎて成形時に流
動性の低下により充填不良などが生ずるおそれがある。
As the curing accelerator used in the present invention, any one can be used as long as it promotes the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for a sealing material can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like may be used alone or in combination. The epoxy resin composition of the present invention comprises a curing accelerator in an amount of 0.4 to 20 per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent.
Contains parts by weight. If the amount is less than 0.4 parts by weight, sufficient curability may not be obtained during heat molding. On the other hand, when the amount exceeds 20 parts by weight, curing may be too fast, and poor filling may occur due to a decrease in fluidity during molding.

【0022】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分の他、必要に応じて酸化ビスマス水和物等の
無機イオン交換体、γ-グリシドキシプロピルトリメト
キシシラン等のカップリング剤、カーボンブラック、ベ
ンガラ等の着色剤、シリコーンオイル、シリコーンゴム
等の低応力化成分、天然ワックス、合成ワックス、高級
脂肪酸及びその金属塩類もしくはパラフィン等の離型
剤、酸化防止剤等の各種添加剤を適宜配合しても差し支
えない。本発明のエポキシ樹脂組成物は、(A)〜
(D)成分、及びその他の添加剤等をミキサーを用いて
常温混合し、ロール、ニーダー、押出機等の混練機で溶
融混練し、冷却後粉砕して得られる。 本発明の樹脂組
成物を用いて、半導体素子等の電子部品を封止し、半導
体装置を製造するには、トランスファーモールド、コン
プレッションモールド、インジェクションモールド等の
成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises (A)
In addition to the component (D), if necessary, an inorganic ion exchanger such as bismuth oxide hydrate, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a coloring agent such as carbon black and red iron, silicone oil, A low stress component such as silicone rubber, a natural wax, a synthetic wax, a higher fatty acid and a metal salt thereof, or a mold release agent such as paraffin, and various additives such as an antioxidant may be appropriately compounded. The epoxy resin composition of the present invention comprises (A)
(D) A component, other additives, etc. are mixed at normal temperature using a mixer, melt-kneaded with a kneader such as a roll, kneader, extruder or the like, cooled, and pulverized. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0023】[0023]

【実施例】以下に、実施例で本発明を更に詳細に説明す
るが、本発明はこれらの実施例によりなんら限定される
ものではない。実施例及び比較例で用いたエポキシ樹
脂、樹脂硬化剤の略号及び構造を、まとめて以下に示
す。実施例及び比較例のエポキシ樹脂A〜Dの合成に使
用したビスフェノールFの構造式(5)、及び結晶性エ
ポキシ樹脂前駆体であるフェノールの構造式(6)を示
す。式(5)と式(6)を表1の配合割合で常法により
グリシジルエーテル化して得た。その特性を表1に示
す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. The abbreviations and structures of the epoxy resin and the resin curing agent used in Examples and Comparative Examples are collectively shown below. The structural formula (5) of bisphenol F used for synthesizing the epoxy resins A to D of Examples and Comparative Examples and the structural formula (6) of phenol which is a crystalline epoxy resin precursor are shown. Formulas (5) and (6) were obtained by glycidyl etherification in the usual manner at the mixing ratios shown in Table 1. The characteristics are shown in Table 1.

【化7】 Embedded image

【0024】[0024]

【化8】 Embedded image

【0025】[0025]

【表1】 [Table 1]

【0026】・エポキシ樹脂1:式(7)を主成分とす
るエポキシ樹脂(融点:105℃、エポキシ当量:19
1g/eq) ・エポキシ樹脂2:式(8)のエポキシ樹脂(軟化点:
59℃、エポキシ当量:171g/eq) ・フェノール樹脂1:式(9)のフェノール樹脂(軟化
点:87℃、水酸基当量:210g/eq) ・フェノール樹脂2:式(10)のフェノール樹脂(軟化
点:110℃、水酸基当量:98g/eq) ・フェノール樹脂3:式(11)のフェノール樹脂(軟
化点:70℃、水酸基当量:170g/eq)
Epoxy resin 1: an epoxy resin having the formula (7) as a main component (melting point: 105 ° C., epoxy equivalent: 19)
1 g / eq) Epoxy resin 2: epoxy resin of formula (8) (softening point:
59 ° C, epoxy equivalent: 171 g / eq) ・ Phenol resin 1: phenolic resin of formula (9) (softening point: 87 ° C, hydroxyl equivalent: 210 g / eq) ・ Phenolic resin 2: phenolic resin of formula (10) (softening) Point: 110 ° C., hydroxyl equivalent: 98 g / eq) Phenolic resin 3: phenolic resin of formula (11) (softening point: 70 ° C., hydroxyl equivalent: 170 g / eq)

【化9】 Embedded image

【0027】[0027]

【化10】 Embedded image

【0028】 実施例1 エポキシ樹脂1 4.88重量部 フェノール樹脂1 6.32重量部 溶融球状シリカ(平均粒径15μm、比表面積2.2m2/g) 86.00重量部 トリフェニルホスフィン 0.19重量部 カーボンブラック 0.28重量部 カルナバワックス 0.47重量部 臭素化フェノールノボラック型エポキシ樹脂(エポキシ基当量275g/eq ) 0.93重量部 三酸化アンチモン 0.93重量部 を常温においてミキサーで混合し、90℃と45℃の2
本のロールを用いて混練し、冷却後粉砕して樹脂組成物
を得た。得られた樹脂組成物を以下の方法で評価した。
Example 1 Epoxy resin 1 4.88 parts by weight Phenol resin 1 6.32 parts by weight Fused spherical silica (average particle size 15 μm, specific surface area 2.2 m 2 / g) 86.00 parts by weight Triphenylphosphine 0. 19 parts by weight Carbon black 0.28 parts by weight Carnauba wax 0.47 parts by weight Brominated phenol novolak type epoxy resin (epoxy group equivalent 275 g / eq) 0.93 parts by weight Antimony trioxide 0.93 parts by weight at room temperature using a mixer Mix, 90 ° C and 45 ° C
The mixture was kneaded using a roll, cooled and pulverized to obtain a resin composition. The obtained resin composition was evaluated by the following method.

【0029】・スパイラルフロー:EMMI−1−66
に準じたスパイラルフロー測定用の金型を用い、金型温
度175℃、注入圧力70kg/cm2、硬化時間2分
で測定した。単位はcm。・吸水率:トランスファー成
形機を用いて、金型温度175℃、注入圧力75kg/
cm2、硬化時間2分で直径50mm、厚さ3mmの成
形品を成形し、175℃、8時間で後硬化し、得られた
成形品を85℃、相対湿度60%の環境下で168時間
放置し、重量変化を測定して吸水率を求めた。単位は重
量%。・パッケージ反り量:トランスファー成形機を用
いて、金型温度180℃、注入圧力75kg/cm2
硬化時間2分で225pBGA(基板は厚さ0.36m
m、ビスマレイミド・トリアジン樹脂/ガラスクロス基
板、パッケージサイズは24×24mm、厚さ1.17
mm、シリコンチップはサイズ9×9mm、厚さ0.3
5mm、チップと回路基板のボンディングパッドとを2
5μm径の金線でボンディングしている。)を成形し
た。更に175℃、8時間で後硬化した。室温に冷却後
パッケージのゲートから対角線方向に、表面粗さ計を用
いて高さ方向の変位を測定し、変位差の最も大きい値を
反り量とした。単位はμm。・ 耐半田クラック性:ト
ランスファー成形機を用いて、金型温度180℃、注入
圧力75kg/cm2、硬化時間2分で225pBGA
(基板は厚さ0.36mm、ビスマレイミド・トリアジ
ン樹脂/ガラスクロス基板、パッケージサイズは24×
24mm、厚さ1.17mm、シリコンチップはサイズ
9×9mm、厚さ0.35mm、チップと回路基板のボ
ンディングパッドとを25μm径の金線でボンディング
している。)を成形した。更に175℃、8時間で後硬
化したパッケージ10個を、60℃、相対湿度60%で
120時間、及び85℃、相対湿度60%で168時間
処理した後、IRリフロー処理(240℃)を別々に行
った。処理後の内部の剥離、及びクラックの有無を超音
波探傷機で観察し、不良パッケージの個数を数えた。不
良パッケージの個数がn個であるとき、n/10と表示
する。
Spiral flow: EMMI-1-66
The measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes using a mold for spiral flow measurement according to the above. The unit is cm. Water absorption: Using a transfer molding machine, mold temperature 175 ° C, injection pressure 75 kg /
A molded product having a diameter of 50 mm and a thickness of 3 mm was formed in 2 cm 2 and a curing time of 2 minutes, and post-cured at 175 ° C. for 8 hours. The obtained molded product was subjected to 168 hours in an environment of 85 ° C. and 60% relative humidity. The sample was allowed to stand, the weight change was measured, and the water absorption was determined. The unit is% by weight. Package warpage: using a transfer molding machine, mold temperature 180 ° C., injection pressure 75 kg / cm 2 ,
225pBGA in 2 minutes curing time (substrate is 0.36m thick)
m, bismaleimide / triazine resin / glass cloth substrate, package size 24 × 24 mm, thickness 1.17
mm, silicon chip size 9 × 9mm, thickness 0.3
5mm, the chip and the bonding pad of the circuit board are 2
Bonding is performed with a gold wire having a diameter of 5 μm. ) Was molded. Further post-curing was performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the largest value of the displacement difference was defined as the amount of warpage. The unit is μm. Solder crack resistance: 225 pBGA using a transfer molding machine at a mold temperature of 180 ° C., an injection pressure of 75 kg / cm 2 , and a curing time of 2 minutes.
(The substrate is 0.36mm thick, bismaleimide / triazine resin / glass cloth substrate, package size is 24 ×
The silicon chip is 24 mm in thickness, 1.17 mm in thickness, and the size of the silicon chip is 9 × 9 mm, and the thickness is 0.35 mm. ) Was molded. Further, the 10 packages that were post-cured at 175 ° C. for 8 hours were treated at 60 ° C. and a relative humidity of 60% for 120 hours and at 85 ° C. and a relative humidity of 60% for 168 hours, and then subjected to IR reflow treatment (240 ° C.) separately. I went to. After the treatment, the presence of peeling and cracks in the inside was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.

【0030】実施例2〜5、比較例1〜6 実施例1と同様にして、表2、表3の組成に従って配合
して得られた樹脂組成物について評価した。評価結果を
表2、表3に示す。なお、実施例4に用いるオルソクレ
ゾールノボラック型エポキシ樹脂のエポキシ当量は19
6g/eq、実施例5に用いるフェノールノボラック樹
脂の水酸基当量は104g/eqである。
Examples 2 to 5 and Comparative Examples 1 to 6 In the same manner as in Example 1, the resin compositions obtained by blending according to the compositions shown in Tables 2 and 3 were evaluated. The evaluation results are shown in Tables 2 and 3. The ortho-cresol novolak type epoxy resin used in Example 4 had an epoxy equivalent of 19
The hydroxyl equivalent of the phenol novolak resin used in Example 5 was 104 g / eq.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【発明の効果】本発明のエポキシ樹脂組成物は、成形後
及び半田処理時の反りが小さく、耐半田クラック性に優
れる特性を有しており、これで封止された半導体装置は
信頼性に優れている。
The epoxy resin composition of the present invention has a small warpage after molding and at the time of soldering, and has a property of being excellent in solder crack resistance. Are better.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)で示されるビスフェ
ノールF類(a)と、結晶性エポキシ樹脂の前駆体であ
るフェノール類(b)とを混合しグリシジルエーテル化
したエポキシ樹脂を総エポキシ樹脂中に30〜100重
量%含むエポキシ樹脂、(B)一般式(2)で示される
樹脂硬化剤を総樹脂硬化剤中に30〜100重量%含む
樹脂硬化剤、(C)無機充填材、及び(D)硬化促進剤
を必須成分とし、かつ(a)と(b)との重量比(a/
b)が0.1〜19、総エポキシ樹脂のエポキシ基と総
樹脂硬化剤のフェノール性水酸基の当量比が0.5〜2
であり、無機充填材(C)の含有量が、総エポキシ樹脂と
総樹脂硬化剤の合計量100重量部当たり250〜14
00重量部で、硬化促進剤の含有量が、総エポキシ樹脂
と総樹脂硬化剤の合計量100重量部当たり0.4〜2
0重量部であることを特徴とする半導体用エポキシ樹脂
組成物。 【化1】 (ただし、式中のR1は炭素数1〜6のアルキル基を表
し、それらは互いに同一であっても異なってもよい。n
は0〜4の整数) 【化2】 (ただし、nは平均値で、1〜10の正数)
(A) A glycidyl etherified epoxy resin obtained by mixing a bisphenol F (a) represented by the general formula (1) and a phenol (b) which is a precursor of a crystalline epoxy resin is used in total. Epoxy resin containing 30 to 100% by weight in epoxy resin, (B) resin curing agent containing 30 to 100% by weight of resin curing agent represented by general formula (2) in total resin curing agent, (C) inorganic filler , And (D) a curing accelerator as an essential component, and the weight ratio of (a) to (b) (a /
b) is 0.1 to 19, and the equivalent ratio of the epoxy group of the total epoxy resin to the phenolic hydroxyl group of the total resin curing agent is 0.5 to 2
The content of the inorganic filler (C) is from 250 to 14 per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent.
At 00 parts by weight, the content of the curing accelerator is 0.4 to 2 per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent.
An epoxy resin composition for semiconductors, which is 0 parts by weight. Embedded image (However, R 1 in the formula represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different.
Is an integer of 0 to 4) (However, n is an average value and a positive number of 1 to 10)
【請求項2】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1記載のエポキシ樹脂組成物を用いて封止され
てなることを特徴とする半導体装置。
2. A semiconductor device is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor device is mounted is sealed with the epoxy resin composition according to claim 1. A semiconductor device characterized by the above-mentioned.
JP2000045987A 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device Expired - Fee Related JP4560871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045987A JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045987A JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001233936A true JP2001233936A (en) 2001-08-28
JP4560871B2 JP4560871B2 (en) 2010-10-13

Family

ID=18568483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045987A Expired - Fee Related JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4560871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956136B2 (en) 2004-07-22 2011-06-07 Sumitomo Bakelite Company, Ltd. Resin composition for semiconductor encapsulation and semiconductor device
US8008410B2 (en) 2006-11-15 2011-08-30 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206331A (en) * 1992-01-30 1993-08-13 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor
JPH10324795A (en) * 1997-05-27 1998-12-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JPH10330600A (en) * 1997-05-29 1998-12-15 Yuka Shell Epoxy Kk Epoxy resin composition and epoxy resin composition for semiconductor sealing
JPH1180316A (en) * 1997-08-29 1999-03-26 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and its cured product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206331A (en) * 1992-01-30 1993-08-13 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor
JPH10324795A (en) * 1997-05-27 1998-12-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JPH10330600A (en) * 1997-05-29 1998-12-15 Yuka Shell Epoxy Kk Epoxy resin composition and epoxy resin composition for semiconductor sealing
JPH1180316A (en) * 1997-08-29 1999-03-26 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and its cured product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956136B2 (en) 2004-07-22 2011-06-07 Sumitomo Bakelite Company, Ltd. Resin composition for semiconductor encapsulation and semiconductor device
US8124695B2 (en) 2004-07-22 2012-02-28 Sumitomo Bakelite Company, Ltd. Resin composition for semiconductor encapsulation and semiconductor device
US8008410B2 (en) 2006-11-15 2011-08-30 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor and semiconductor device

Also Published As

Publication number Publication date
JP4560871B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4395923B2 (en) Epoxy resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JPH1167982A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP4560871B2 (en) Epoxy resin composition and semiconductor device
JP4568945B2 (en) Epoxy resin composition and semiconductor device
JP4379973B2 (en) Epoxy resin composition and semiconductor device
JP2001040180A (en) Epoxy resin composition and semiconductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP2000273147A (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition
JP4517433B2 (en) Epoxy resin composition and semiconductor device
JP2000344858A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2001146511A (en) Epoxy resin composition and semiconductor device
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JPH1160687A (en) Epoxy resin composition and semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JP2002020460A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees