JPH1160687A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH1160687A
JPH1160687A JP21172797A JP21172797A JPH1160687A JP H1160687 A JPH1160687 A JP H1160687A JP 21172797 A JP21172797 A JP 21172797A JP 21172797 A JP21172797 A JP 21172797A JP H1160687 A JPH1160687 A JP H1160687A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
resin composition
formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21172797A
Other languages
Japanese (ja)
Other versions
JP3649554B2 (en
Inventor
Nobutaka Takasu
信孝 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP21172797A priority Critical patent/JP3649554B2/en
Publication of JPH1160687A publication Critical patent/JPH1160687A/en
Application granted granted Critical
Publication of JP3649554B2 publication Critical patent/JP3649554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compsn. which exhibits a high flowability in molding by compounding an epoxy resin contg. a specified amt. of a crystalline epoxy resin having a specified m.p. with a phenol resin curative contg. a specified amt. of a triphenolmethane-type phenol resin, a cure accelerator and a specified amt. of a fused silica powder. SOLUTION: This compsn. comprises an epoxy resin contg. at least 30 wt.% at least one crystalline epoxy resin represented by formulas I to IV and having an m.p. of 50-150 deg.C, a phenol resin cuative contg. at least 30 wt.% phenol resin represented by formula V, a cure accelerator (e.g. triphenylphosphine) and a fused silica powder in an amt. of 80-90 wt.% of the compsn. In formulas I to III, R is H, a halogen, or a 1-12C alkyl; (l) is 1-10; (m) is 0-3; and (n) is 0-4. This compsn. warps little after molding or during soldering in area mounting packages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた樹脂封止型半導体装置に関し、更に詳述す
ればプリント配線板や金属リードフレームの片面に半導
体素子を搭載し、その搭載面側の実質的に片面のみを樹
脂封止されたいわゆるエリア実装型半導体装置におい
て、樹脂封止後の反りや基板実装時の半田付け工程での
反りが小さく、また温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ成形性に優れる半導体封止用エ
ポキシ樹脂組成物及び該半導体封止用エポキシ樹脂組成
物で封止された半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one of its mounting surfaces is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. Epoxy resin composition for semiconductor encapsulation which has excellent package crack resistance and package crack resistance and exfoliation resistance in a soldering process, and is excellent in moldability, and a semiconductor encapsulated with the epoxy resin composition for semiconductor encapsulation It concerns the device.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップサイズパッケー
ジ)が代表的であるが、これらは従来QFP、SOPに
代表される表面実装パッケージでは限界に近づいている
多ピン化・高速化への要求に対応するために開発された
ものである。構造としては、BT樹脂/銅箔回路基板
(ビスマレイミド・トリアジン/ガラスクロス基板)に
代表される硬質回路基板、あるいはポリイミド樹脂フィ
ルム/銅箔回路基板に代表されるフレキシブル回路基板
の片面上に半導体素子を搭載し、その素子搭載面、即ち
基板の片面のみがエポキシ樹脂組成物などで成形・封止
されている。また、基板の素子搭載面の反対面には半田
ボールを2次元的に並列して形成し、パッケージを実装
する回路基板との接合を行う特徴を有している。更に、
素子を搭載する基板としては、上記有機回路基板以外に
もリードフレーム等の金属基板を用いる構造も考案され
ている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. Typical area mounting packages are BGA (ball grid array) or CSP (chip size package) pursuing further miniaturization, but these are approaching the limit in conventional surface mounting packages such as QFP and SOP. It has been developed to meet the demand for higher pin counts and higher speeds. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Furthermore,
As a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.

【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物との間での熱膨張・熱収縮の不整合、あるい
は樹脂組成物の成形・硬化時の硬化収縮による影響によ
り、これらのパッケージでは成形直後から反りが発生し
やすい。また、これらのパッケージを実装する回路基板
上に半田接合を行う場合、200℃以上の加熱工程を経
るが、この際にパッケージの反りが発生し、多数の半田
ボールが平坦とならず、パッケージを実装する回路基板
から浮き上がってしまい、電気的接合信頼性が低下する
問題も起こる。
[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, these packages warp immediately after molding due to inconsistency in thermal expansion and thermal shrinkage between the organic or metal substrate and the resin composition, or due to cure shrinkage during molding and curing of the resin composition. Is easy to occur. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, warpage of the package occurs, and a large number of solder balls do not become flat, and the package is mounted. There is also a problem that the semiconductor device floats from the circuit board to be mounted and lowers the reliability of electrical connection.

【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、樹脂組成物の硬化物並びに有機基
板からの吸湿によりパッケージ内部に存在する水分が高
温で急激に気化することによる応力でパッケージにクラ
ックが発生したり、基板の素子搭載面と硬化物との界面
で剥離が発生することもあり、硬化物の低応力化・低吸
湿化とともに、基板との密着性も求められる。さらに、
基板と硬化物の線膨張係数の不整合により、信頼性テス
トの代表例である温度サイクル試験でも、基板/硬化物
界面の剥離やパッケージクラックが発生する。従来のQ
FPやSOPなどの表面実装パッケージでは、半田実装
時のクラックや各素材界面での剥離の防止のために、ビ
フェニル型エポキシ樹脂に代表されるような結晶性エポ
キシ樹脂と可撓性骨格を有するフェノール樹脂硬化剤と
を組み合わせて用い、かつ無機質充填材の配合量を増加
することにより、低ガラス転移温度化かつ低吸湿化を行
う対策がとられてきた。しかし、この手法では、片面封
止パッケージにおける反りの問題は解決できないのが現
状であった。
Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured product of the resin composition and the organic substrate is high. Cracks may occur in the package due to stress caused by rapid vaporization in the package, and peeling may occur at the interface between the device mounting surface of the substrate and the cured product. Is also required. further,
Due to the mismatch between the coefficient of linear expansion of the substrate and the cured product, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. Conventional Q
For surface mount packages such as FP and SOP, to prevent cracks at the time of solder mounting and peeling at the interface of each material, crystalline epoxy resin represented by biphenyl type epoxy resin and phenol having a flexible skeleton Measures have been taken to reduce the glass transition temperature and the moisture absorption by using a resin curing agent in combination and increasing the blending amount of the inorganic filler. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.

【0005】基板上の実質的に片面のみを樹脂組成物で
封止したパッケージにおいて、反りを低減するには、基
板の線膨張係数と樹脂組成物硬化物の線膨張係数を近付
けること、及び樹脂組成物の硬化収縮を小さくする二つ
の方法が重要である。基板としては有機基板ではBT樹
脂やポリイミド樹脂のような高ガラス転移温度の樹脂が
広く用いられており、これらはエポキシ樹脂組成物の成
形温度である170℃近辺よりも高いガラス転移温度を
有する。従って、成形温度から室温までの冷却過程では
有機基板のα1 の領域のみで収縮する。従って、樹脂組
成物もガラス転移温度が高くかつα1 が回路基板と同じ
であり、さらに硬化収縮がゼロであれば反りはほぼゼロ
であると考えられる。このため、多官能型エポキシ樹脂
と多官能型フェノール樹脂との組み合わせによりガラス
転移温度を高くし、無機質充填材の配合量でα1 を合わ
せる手法が既に提案されている。
In a package in which substantially only one surface of a substrate is sealed with a resin composition, to reduce the warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition must be close to each other. Two methods of reducing the cure shrinkage of the composition are important. As the substrate, in the case of an organic substrate, a resin having a high glass transition temperature such as a BT resin or a polyimide resin is widely used, and these have a glass transition temperature higher than around 170 ° C. which is a molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.

【0006】ところが、一分子中に3個以上のエポキシ
基を有する多官能型エポキシ樹脂と一分子中に3個以上
のフェノール性水酸基を有する多官能型フェノール樹脂
との組み合わせ系は吸湿率が大きいこと、各々の樹脂粘
度が高いため無機質充填材を高充填することができず低
吸湿化が困難なこと、半田処理温度でも高弾性を示し、
発生応力が高いことなどから、半田処理時のパッケージ
クラック発生や界面剥離の発生が解決されていない。ま
た、素子と基板との電気的接続に用いられる金線は数十
μmと細いうえに、エリア実装パッケージではその長さ
も従来構造パッケージに比較して長く、更に多ピン化に
より金線の配線が高密度化しているため、成形時に低粘
度の樹脂組成物で封止しないと金線が変形し、金線同士
が接触して電気的不良を生じることになる。特にCSP
のような薄型のパッケージでは充填性が良好で、金線変
形の少ない樹脂組成物による封止が必須の条件であっ
た。
However, a combination system of a polyfunctional epoxy resin having three or more epoxy groups in one molecule and a polyfunctional phenol resin having three or more phenolic hydroxyl groups in one molecule has a large moisture absorption. That, because each resin viscosity is high, it is not possible to highly fill the inorganic filler and it is difficult to reduce moisture absorption, showing high elasticity even at solder processing temperature,
Due to the high generated stress and the like, the occurrence of package cracks and the occurrence of interface peeling during the soldering process has not been solved. In addition, the gold wire used for electrical connection between the element and the substrate is as thin as tens of μm, and the length of the area mount package is longer than that of the conventional structure package. Due to the high density, the gold wires are deformed unless sealed with a low-viscosity resin composition at the time of molding, and the gold wires come into contact with each other to cause electrical failure. Especially CSP
In such a thin package as described above, it is an essential condition to seal with a resin composition having good filling properties and little deformation of the gold wire.

【0007】[0007]

【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た温度サイクル試験や半田処理時などの信頼性に優れ、
かつ充填性が良好で金線変形の少ない、即ち、成形時に
高流動性の特徴を有する半導体封止用エポキシ樹脂組成
物及びそれにより封止された半導体装置の開発を目的と
してなされたものである。
SUMMARY OF THE INVENTION The present invention has a small warpage after molding in an area mounting package or during soldering, and has excellent reliability in a temperature cycle test or soldering.
The object of the present invention is to develop an epoxy resin composition for semiconductor encapsulation having a good filling property and a small deformation of a gold wire, that is, a high fluidity characteristic at the time of molding, and a semiconductor device sealed thereby. .

【0008】[0008]

【課題を解決するための手段】本発明者は鋭意検討した
結果、特殊な結晶性エポキシ樹脂と多官能型フェノール
樹脂硬化剤との組み合わせで、ガラス転移温度の低下を
少なくしたまま低吸湿化が図れること、低粘度化が達成
できるため無機質充填材の充填量の増量が可能となり、
低吸湿化やα1 の調整が可能となること、また、成形時
の充填性向上やワイヤー変形量の低減ができること、半
田処理温度での熱時弾性率が低減できるため発生応力が
減少し、回路基板との密着性が向上することなどを明ら
かにしたものである。
Means for Solving the Problems As a result of intensive studies, the present inventor has found that a combination of a special crystalline epoxy resin and a polyfunctional phenol resin curing agent can reduce the moisture absorption while keeping the glass transition temperature from decreasing. It is possible to increase the filling amount of the inorganic filler because it is possible to achieve a low viscosity,
It is possible to lower moisture absorption and alpha 1 adjustment, also be possible to reduce the filling improvement and wire deformation amount at the time of molding, the generated stress because it thermal time elastic modulus reduction at soldering temperature decreases, It is clarified that the adhesion to a circuit board is improved.

【0009】即ち本発明は、(A)一般式(1)〜
(4)で示され、かつ融点が50〜150℃のエポキシ
樹脂からなる群から選択される少なくとも一つのエポキ
シ樹脂を総エポキシ樹脂中に30重量%以上含むエポキ
シ樹脂、(B)一般式(5)で示されるフェノール樹脂
を総フェノール樹脂中に30重量%以上含むフェノール
樹脂硬化剤、(C)硬化促進剤、及び(D)総エポキシ
樹脂組成物中に80〜90重量%含まれる溶融シリカ粉
末からなることを特徴とする半導体封止用エポキシ樹脂
組成物、及びこの半導体封止用エポキシ樹脂組成物によ
って封止された半導体装置である。
That is, the present invention relates to (A) a compound represented by the general formula (1):
An epoxy resin represented by (4) and containing at least 30% by weight or more in the total epoxy resin of at least one epoxy resin selected from the group consisting of epoxy resins having a melting point of 50 to 150 ° C .; A) a phenolic resin curing agent containing 30% by weight or more of the phenolic resin in the total phenolic resin, (C) a curing accelerator, and (D) a fused silica powder contained in the total epoxy resin composition in an amount of 80 to 90% by weight. An epoxy resin composition for semiconductor encapsulation, and a semiconductor device encapsulated with the epoxy resin composition for semiconductor encapsulation.

【0010】[0010]

【化3】 Embedded image

【化4】 式(1)〜(3)中のRは水素原子、ハロゲン原子又は
炭素数1〜12のアルキル基を示し、互いに同一であっ
ても、異なっていてもよい。式(5)、(6)中のRは
ハロゲン原子又は炭素数1〜12のアルキル基を示し、
互いに同一であっても、異なっていてもよく、lは1〜
10の正の整数、mは0もしくは1〜3の正の整数、及
びnは0もしくは1〜4の正の整数である。
Embedded image R in the formulas (1) to (3) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different. R in the formulas (5) and (6) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms;
They may be the same or different, and l is 1 to
A positive integer of 10, m is 0 or a positive integer of 1 to 3, and n is 0 or a positive integer of 1 to 4.

【0011】[0011]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる(A)成分のエポキシ樹脂のうち一
般式(1)〜(4)で表されるエポキシ樹脂はそれぞ
れ、ハイドロキノン型エポキシ化合物[式(1)]、ス
チルベン型エポキシ化合物[式(2)]、ビスフェノー
ルF型エポキシ化合物[式(3)]、アラルキル変性ビ
フェニル型エポキシ樹脂[式(4)]と呼ばれ、その内
融点が50〜150℃の結晶性エポキシ樹脂である。こ
れらの具体例を以下に示すがこれらに限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Among the epoxy resins of the component (A) used in the present invention, the epoxy resins represented by the general formulas (1) to (4) are respectively a hydroquinone type epoxy compound [formula (1)] and a stilbene type epoxy compound [formula (1). 2)], a bisphenol F type epoxy compound [formula (3)], and an aralkyl-modified biphenyl type epoxy resin [formula (4)], a crystalline epoxy resin having an internal melting point of 50 to 150 ° C. Specific examples thereof are shown below, but the present invention is not limited thereto.

【0012】[0012]

【化5】 Embedded image

【0013】[0013]

【化6】 Embedded image

【0014】[0014]

【化7】 Embedded image

【0015】[0015]

【化8】 Embedded image

【0016】これらのエポキシ樹脂はいずれも結晶性を
示すため、融点未満の温度では固体であるが、融点以上
の温度で低粘度の液状物質となる。このため50℃未満
の融点の結晶性エポキシ樹脂では、エポキシ樹脂組成物
の製造工程において融着を起こしやすく、作業性が著し
く低下する。また、150℃を越える融点を示す結晶性
エポキシ樹脂では、エポキシ樹脂組成物を加熱混練する
製造工程で充分に溶融しないため、材料の均一性に劣る
といった問題点を有する。融点の測定方法としては示差
走査熱量計[セイコー電子(株)製SSC/5200]に
よる吸熱ピーク温度(昇温速度5℃/分)から求められ
る。
Since all of these epoxy resins exhibit crystallinity, they are solid at a temperature lower than the melting point, but become a low-viscosity liquid substance at a temperature higher than the melting point. For this reason, in the case of a crystalline epoxy resin having a melting point of less than 50 ° C., fusion tends to occur in the production process of the epoxy resin composition, and workability is significantly reduced. In addition, a crystalline epoxy resin having a melting point exceeding 150 ° C. has a problem that the uniformity of the material is poor because the epoxy resin composition is not sufficiently melted in a manufacturing process of kneading under heating. The melting point can be determined from the endothermic peak temperature (heating rate 5 ° C./min) with a differential scanning calorimeter [SSC / 5200 manufactured by Seiko Denshi Co., Ltd.].

【0017】これらの結晶性エポキシ樹脂は1分子中の
エポキシ基の数が2個と少なく、フェノールノボラック
樹脂や可撓性骨格を導入したフェノール樹脂硬化剤との
組み合わせでは架橋密度が低く、耐熱性の低い硬化物し
か得られない。しかし構造として剛直な平面ないし棒状
骨格を有しており、かつ結晶化する性質、即ち分子同士
が配向しやすいという特徴を有するため、一般式(5)
で示される多官能型フェノール樹脂硬化剤を併用した場
合、硬化後の多官能型フェノール樹脂による架橋構造の
架橋密度は低下させても、ガラス転移温度などの耐熱性
を低下させ難い。一方、通常の2官能非結晶性エポキシ
樹脂と多官能型フェノール樹脂との組み合わせでは架橋
密度が低下すると共に、ガラス転移温度の大幅な低下も
起こる。更に、結晶性エポキシ樹脂と多官能型フェノー
ル樹脂とを組み合わせた場合、一旦ガラス転移温度を越
えた温度領域では低官能基数樹脂の特徴である低弾性率
を示すため、半田処理温度での低応力化に効果的であ
る。このため、半田処理でのパッケージクラック発生や
基板と樹脂組成物の硬化物界面の剥離発生を防止する効
果がある。また、溶融状態では低粘度を示すため成形時
に樹脂組成物の流動性が高く、薄型パッケージへの充填
性に優れる。融点50〜150℃の結晶性エポキシ樹脂
は総エポキシ樹脂中に30重量%以上含まれることが必
要である。30重量%未満では熱時の低弾性化や低粘度
化の効果が得難く、従って基板との高密着性が発現せず
好ましくない。
These crystalline epoxy resins have as few as two epoxy groups in one molecule, and have a low crosslink density when combined with a phenol novolak resin or a phenol resin curing agent having a flexible skeleton. Only a cured product having a low viscosity. However, it has a rigid planar or rod-like skeleton as a structure, and has the property of being crystallized, that is, the feature that molecules are easily oriented, so that the general formula (5)
When the polyfunctional phenol resin curing agent represented by the formula (1) is used in combination, it is difficult to lower the heat resistance such as the glass transition temperature even if the crosslink density of the crosslinked structure by the cured polyfunctional phenol resin is reduced. On the other hand, in a combination of a normal bifunctional non-crystalline epoxy resin and a polyfunctional phenol resin, the crosslink density is reduced and the glass transition temperature is significantly reduced. Furthermore, when a crystalline epoxy resin and a polyfunctional phenol resin are combined, a low elastic modulus characteristic of a low functional group resin is exhibited in a temperature region once exceeding the glass transition temperature. It is effective for conversion. This has the effect of preventing the occurrence of package cracks during the soldering process and the occurrence of peeling at the interface between the substrate and the cured product of the resin composition. Further, since the resin composition has a low viscosity in a molten state, the fluidity of the resin composition during molding is high, and the filling property into a thin package is excellent. The crystalline epoxy resin having a melting point of 50 to 150 ° C. needs to be contained in the total epoxy resin in an amount of 30% by weight or more. If the content is less than 30% by weight, it is difficult to obtain the effect of lowering the elasticity or lowering the viscosity during heating, and therefore, high adhesion to the substrate is not exhibited, which is not preferable.

【0018】本発明のエポキシ樹脂は更に他のエポキシ
樹脂と併用しても差し支えない。併用可能なエポキシ樹
脂としては、エポキシ基を有するモノマー、オリゴマ
ー、ポリマー全般を指し、例えば、ビスフェノールA型
エポキシ樹脂、オルソクレゾールノボラック型エポキシ
樹脂、ナフタレン型エポキシ樹脂等が挙げられる。又、
これらのエポキシ樹脂は、単独もしくは混合して用いて
も差し支えない。
The epoxy resin of the present invention may be used in combination with another epoxy resin. The epoxy resin that can be used in combination refers to all monomers, oligomers, and polymers having an epoxy group, and includes, for example, bisphenol A type epoxy resin, orthocresol novolak type epoxy resin, and naphthalene type epoxy resin. or,
These epoxy resins may be used alone or in combination.

【0019】本発明で用いられるB成分のフェノール樹
脂硬化剤の内、式(5)で示されるフェノール樹脂硬化
剤はいわゆるトリフェノールメタン型フェノール樹脂と
呼ばれるもので、具体例を以下に示す。
Among the phenolic resin curing agents of component B used in the present invention, the phenolic resin curing agent represented by the formula (5) is a so-called triphenolmethane-type phenolic resin, and specific examples are shown below.

【化9】 Embedded image

【0020】これらフェノール樹脂硬化剤を使用すると
硬化物の架橋密度が高くなり、高いガラス転移温度の硬
化物が得られる。式(5)のフェノール樹脂の使用量と
しては、ガラス転移温度の点から総フェノール樹脂中の
30重量%以上配合することが必要である。30重量%
未満ではガラス転移温度が低下し、また硬化収縮率も大
きくなり、成形後のパッケージの反り量が大きくなる。
式(5)のフェノール樹脂は他のフェノール樹脂と適宜
併用可能であり、特に限定されるものではないが、フェ
ノールノボラック樹脂、クレゾールノボラック樹脂、ナ
フトールノボラック樹脂等が挙げられる。
When these phenolic resin curing agents are used, the crosslink density of the cured product increases, and a cured product having a high glass transition temperature can be obtained. The amount of the phenolic resin of the formula (5) needs to be 30% by weight or more based on the total phenolic resin in view of the glass transition temperature. 30% by weight
If it is less than 10, the glass transition temperature decreases, the curing shrinkage ratio increases, and the amount of warpage of the molded package increases.
The phenolic resin of the formula (5) can be appropriately used in combination with other phenolic resins, and is not particularly limited, and examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthol novolak resin.

【0021】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。
The curing accelerator of the component (C) used in the present invention refers to those which can be a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically, amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0022】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。本発明の溶融シリカ粉末は総エポ
キシ樹脂組成物中に80〜90重量%含まれることが必
要である。80重量%未満では成形温度から室温までの
冷却課程での熱収縮量が基板の熱収縮量よりも大きくな
りすぎ、室温におけるパッケージの反り量が大きくなっ
てしまう。また、パッケージ吸湿量も大きいため、吸湿
後の半田処理時にパッケージクラックや基板/樹脂組成
物界面での剥離の発生が起こりやすい。また90重量%
を越えると、樹脂組成物の成形時の粘度が高過ぎるため
金線変形が起こりやすい。
The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider. The fused silica powder of the present invention must be contained in the total epoxy resin composition in an amount of 80 to 90% by weight. If it is less than 80% by weight, the heat shrinkage during the cooling process from the molding temperature to room temperature becomes too large compared to the heat shrinkage of the substrate, and the package warpage at room temperature becomes large. Further, since the package absorbs a large amount of moisture, the package is likely to be cracked or peeled off at the interface between the substrate and the resin composition during the soldering process after the moisture absorption. 90% by weight
If the ratio exceeds, the viscosity of the resin composition at the time of molding is too high, so that the gold wire deformation tends to occur.

【0023】本発明の樹脂組成物は、(A)〜(D)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹
脂、三酸化アンチモン等の難燃剤、カップリング剤、カ
ーボンブラックに代表される着色剤、天然ワックス及び
合成ワックス等の離型剤等が適宜配合可能である。樹脂
組成物とするには各成分を混合後、加熱ニーダや熱ロー
ルにより加熱混練し、続いて冷却、粉砕することで目的
とする樹脂組成物が得られる。本発明のエポキシ樹脂組
成物を用いて、半導体等の電子部品を封止し、半導体装
置を製造するには、トランスファーモールド、コンプレ
ッションモールド、インジェクションモールド等の従来
からの成形方法で硬化成形をすればよい。
The resin composition of the present invention is represented by a brominated epoxy resin, a flame retardant such as antimony trioxide, a coupling agent, and carbon black, if necessary, in addition to the essential components (A) to (D). Coloring agents, release agents such as natural waxes and synthetic waxes, etc., can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. Using the epoxy resin composition of the present invention to encapsulate electronic components such as semiconductors and manufacture semiconductor devices, transfer molding, compression molding, and injection molding can be performed by conventional molding methods such as injection molding. Good.

【0024】[0024]

【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(6)で示される構造を主成分とするハイドロキノン型エポキシ樹脂 融点144℃、エポキシ当量175 7.7重量部 ・式(7)で示されるフェノール樹脂 [明和化成(株)製、MEH−7500、軟化点107℃、水酸基当量97] 4.3重量部 ・トリフェニルホスフィン 0.2重量部 ・球状溶融シリカ 87.0重量部 ・カルナバワックス 0.5重量部 ・カーボンブラック 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1〜4に示す。
The present invention will be specifically described below with reference to examples. Example 1 Hydroquinone-type epoxy resin having a structure represented by the formula (6) as a main component Melting point 144 ° C., epoxy equivalent 175 7.7 parts by weight ・ Phenolic resin represented by the formula (7) [Meiwa Kasei Co., Ltd. ), MEH-7500, softening point 107 ° C, hydroxyl equivalent 97] 4.3 parts by weight ・ Triphenylphosphine 0.2 parts by weight ・ Spherical fused silica 87.0 parts by weight ・ Carnauba wax 0.5 parts by weight ・ Carbon black 0.3 parts by weight After the above components were mixed by a mixer, the mixture was kneaded 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain a resin. The composition was used. The properties of the obtained resin composition were evaluated by the following methods. The evaluation results are shown in Tables 1 to 4.

【0025】[0025]

【化10】 Embedded image

【0026】《実施例2〜5》実施例1を基本配合と
し、結晶性エポキシ樹脂の種類を変え、エポキシ樹脂、
フェノール樹脂硬化剤の配合量を変化させて、実施例1
と同様に混合、混練して樹脂組成物を得た。実施例1と
同様に評価を行った。配合処方及び評価結果を表1に示
す。 ≪実施例6及び比較例1〜3≫実施例1を基本配合と
し、結晶性エポキシ樹脂の配合比率を変え、また非結晶
性エポキシ樹脂の種類を変えて、実施例1と同様に混
合、混練して樹脂組成物を得た。実施例1と同様に評価
を行った。配合処方及び評価結果を表2に示す。 《実施例7及び比較例4、5》実施例1を基本配合と
し、式(7)のフェノール樹脂硬化剤の配合量を変化さ
せて、実施例1と同様に混合、混練して樹脂組成物を得
た。実施例1と同様に評価を行った。配合処方及び評価
結果を表3に示す。 ≪実施例8及び比較例6≫実施例1を基本配合とし、無
機質充填材の配合比率を変え、それに伴い結晶性エポキ
シ樹脂とフェノール樹脂硬化剤との配合比率を変えて、
実施例1と同様に混合、混練して樹脂組成物を得た。実
施例1と同様に評価を行った。配合処方及び評価結果を
表4に示す。
<< Examples 2 to 5 >> Based on Example 1 as a basic compound, the type of the crystalline epoxy resin was changed,
Example 1 by changing the blending amount of the phenol resin curing agent
Was mixed and kneaded in the same manner as in the above to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results. Example 6 and Comparative Examples 1 to 3 Mixing and kneading in the same manner as in Example 1 except that the mixing ratio of the crystalline epoxy resin was changed and the type of the non-crystalline epoxy resin was changed, based on Example 1. Thus, a resin composition was obtained. Evaluation was performed in the same manner as in Example 1. Table 2 shows the formulation and evaluation results. << Example 7 and Comparative Examples 4 and 5 >> A resin composition was prepared by mixing and kneading in the same manner as in Example 1 except that Example 1 was used as a basic compounding agent and the amount of the phenolic resin curing agent of the formula (7) was changed. I got Evaluation was performed in the same manner as in Example 1. Table 3 shows the formulation and evaluation results. Example 8 and Comparative Example 6 Based on Example 1 as a basic compound, changing the compounding ratio of the inorganic filler, and changing the compounding ratio of the crystalline epoxy resin and the phenol resin curing agent accordingly,
Mixing and kneading were performed in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 4 shows the formulation and evaluation results.

【0027】上記実施例及び比較例で使用した式(8)
〜(13)のエポキシ樹脂及び式(14)、(15)のフェノ
ール樹脂の構造及び性状を以下に示す。
Formula (8) used in the above Examples and Comparative Examples
The structures and properties of the epoxy resins of (13) and (14) and (15) are shown below.

【化11】 Embedded image

【0028】[0028]

【化12】 Embedded image

【0029】・式(8)の構造を主成分とするエポキシ
樹脂:融点 52℃、エポキシ当量225 ・式(9)の構造を主成分とするエポキシ樹脂:融点1
33℃、エポキシ当量182 ・式(10)の構造を主成分とするエポキシ樹脂:融点
82℃、エポキシ当量190 ・式(11)の構造を主成分とするエポキシ樹脂:軟化点
65℃、エポキシ当量200 ・式(12)の構造を主成分とするエポキシ樹脂:軟化点
60℃、エポキシ当量170 ・式(13)の構造を主成分とするエポキシ樹脂:液状、
粘度(25℃)55Poise、エポキシ当量168 ・式(14)のフェノール樹脂:軟化点80℃、水酸基当
量104 ・式(15)のフェノール樹脂:軟化点78℃、水酸基当
量175
An epoxy resin having a structure of the formula (8) as a main component: a melting point of 52 ° C. and an epoxy equivalent of 225. An epoxy resin having a structure of the formula (9) as a main component: a melting point of 1.
33 ° C., epoxy equivalent 182 ・ Epoxy resin having the structure of formula (10) as a main component: melting point
82 ° C., epoxy equivalent 190 ・ Epoxy resin having a structure of formula (11) as a main component: softening point 65 ° C., epoxy equivalent 200 ・ Epoxy resin having a structure of formula (12) as a main component: softening point 60 ° C., epoxy Equivalent 170-Epoxy resin having the structure of formula (13) as a main component: liquid,
Viscosity (25 ° C) 55 Poise, epoxy equivalent 168 ・ Phenolic resin of formula (14): softening point 80 ° C, hydroxyl equivalent 104 ・ Phenolic resin of formula (15): softening point 78 ° C, hydroxyl equivalent 175

【0030】《評価方法》 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温175℃、
注入圧力70kg/cm2 、硬化時間2分で測定した。 ・ガラス転移温度(Tg)及び線膨張係数(α1):1
75℃、2分間トランスファー成形したテストピースを
更に175℃、8時間後硬化し、熱機械分析装置[セイ
コー電子(株)製TMA−120、昇温速度5℃/分)で
測定した。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・パッケージ反り量:225ピンBGAパッケージ(基
板は0.36mm厚のBT樹脂基板、パッケージサイズ
は24×24mm、厚み1.17mm、シリコンチップ
はサイズ9×9mm、厚み0.35mm、チップと回路
基板のボンディングパッドとを25μm径の金線でボン
ディングしている)を180℃の金型温度、75kg/
cm2 射出圧力で2分間トランスファー成形を行い、
更に175℃で8時間、後硬化した。室温に冷却後パッ
ケージのゲートから対角線方向に、表面粗さ計を用いて
高さ方向の変位を測定し、変異差の最も大きい値を反り
量とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数及び基板/樹脂組成物界面の剥離数を(発生パッケ
ージ数)/(全パッケージ数)の%表示で表した。 ・金線変形量:パッケージ反り量評価で成形した225
ピンBGAパッケージを軟X線透視装置で観察し、金線
の変形率を(流れ量)/(金線長)で%表示した。
<< Evaluation Method >> Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. -Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): 1
The test piece obtained by transfer molding at 75 ° C. for 2 minutes was further cured at 175 ° C. for 8 hours, and measured by a thermomechanical analyzer [TMA-120 manufactured by Seiko Denshi Co., Ltd., heating rate 5 ° C./min].・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Package warpage: 225-pin BGA package (substrate is a 0.36 mm thick BT resin substrate, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is 9 × 9 mm, thickness 0.35 mm, chip and circuit board Is bonded with a gold wire having a diameter of 25 μm) at a mold temperature of 180 ° C. and 75 kg /
Perform transfer molding for 2 minutes at an injection pressure of cm 2 ,
Further post-curing was performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
The package was observed using an ultrasonic flaw detector, and the number of internal cracks and the number of peels at the interface between the substrate and the resin composition were represented by% of (number of generated packages) / (total number of packages). Gold wire deformation: 225 molded by evaluating package warpage
The pin BGA package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) in%.

【0031】 表 1 実 施 例 1 2 3 4 《エポキシ樹脂の種類 と配合量(重量部)》 式(6)のエポキシ樹脂 7.7 式(8)のエポキシ樹脂 8.4 式(9)のエポキシ樹脂 7.8 式(10)のエポキシ樹脂 7.9 《硬化剤の種類と 配合量(重量部)》 式(7)のフェノール樹脂 4.3 3.6 4.2 4.1 《評価》 スパイラルフォロー(cm) 104 118 95 120 Tg(℃) 155 154 159 148 α1(ppm/℃) 10 10 10 10 熱時弾性率(N/mm2) 2060 2010 2250 2000 パッケージ反り量(μm) 31 31 30 38 耐半田性:クラック数(%) 0 0 0 0 剥離数(%) 0 0 0 0 金線変化量(%) 3 2 4 2 Table 1 Example 1 2 3 4 << Type and blending amount (parts by weight) of epoxy resin >> Epoxy resin of formula (6) 7.7 Epoxy resin of formula (8) 8.4 Epoxy resin of formula (9) 7.8 Formula (10) 7.9 << Type and blending amount (parts by weight) of curing agent >> Phenolic resin of formula (7) 4.3 3.6 4.2 4.1 << Evaluation >> Spiral follow (cm) 104 118 95 120 Tg (° C) 155 154 159 148 α 1 (Ppm / ° C) 10 10 10 10 Thermal elastic modulus (N / mm 2 ) 2060 2010 2250 2000 Package warpage (μm) 31 31 30 38 Solder resistance: Number of cracks (%) 0 0 0 0 Number of peelings (%) 000 00 0 Gold wire change (%) 3 2 4 2

【0032】 表 2 実 施 例 比 較 例 1 6 1 2 3 《エポキシ樹脂の種類 と配合量(重量部)》 式(6)のエポキシ樹脂 7.7 2.7 1.5 式(11)のエポキシ樹脂 5.3 6.5 式(12)のエポキシ樹脂 7.6 式(13)のエポキシ樹脂 7.6 《硬化剤の種類と 配合量(重量部)》 式(8)のフェノール樹脂 4.3 4.0 4.0 4.4 4.4 《評価》 スパイラルフォロー(cm) 104 92 61 67 134 Tg(℃) 155 164 169 193 119 α1(ppm/℃) 10 10 9 9 10 熱時弾性率(N/mm2) 2060 2280 2340 3600 2070 パッケージ反り量(μm) 31 28 68 24 70 耐半田性:クラック数(%) 0 0 50 60 20 剥離数(%) 0 0 40 30 10 金線変化量(%) 3 5 14 18 3 Table 2 Example Comparison Example 1 6 1 2 3 << Type and amount of epoxy resin (parts by weight) >> Epoxy resin of formula (6) 7.7 2.7 1.5 Epoxy resin of formula (11) 5.3 6.5 Epoxy resin of formula (12) 7.6 Epoxy resin of formula (13) 7.6 << Type and blending amount (parts by weight) of curing agent >> Phenolic resin of formula (8) 4.3 4.0 4.0 4.4 4.4 << Evaluation >> Spiral follow (cm) 104 92 61 67 134 Tg (° C) ) 155 164 169 193 119 α 1 (ppm / ° C) 10 10 9 9 10 Thermal elastic modulus (N / mm 2 ) 2060 2280 2340 3600 2070 Package warpage (μm) 31 28 68 24 70 Solder resistance: number of cracks (%) 0 50 60 20 Number of peelings (%) 0 40 30 10 Change in gold wire (%) 3 5 14 18 3

【0033】 表 3 実 施 例 比 較 例 1 7 4 5 《エポキシ樹脂の種類 と配合量(重量部)》 式(6)のエポキシ樹脂 7.7 7.6 7.5 6.0 《硬化剤の種類と 配合量(重量部)》 式(7)のフェノール樹脂 4.3 1.6 1.1 式(14)のフェノール樹脂 2.8 3.4 式(15)のフェノール樹脂 6.0 《評価》 スパイラルフォロー(cm) 104 115 106 96 Tg(℃) 155 146 144 127 α1(ppm/℃) 10 9 10 10 熱時弾性率(N/mm2) 2060 2040 1980 1150 パッケージ反り量(μm) 31 35 65 156 耐半田性:クラック数(%) 0 0 30 0 剥離数(%) 0 0 50 0 金線変化量(%) 3 3 5 5 Table 3 Example Comparative Example 1 7 4 5 << Type and blending amount of epoxy resin ( parts by weight) >> Epoxy resin of formula (6) 7.7 7.6 7.5 6.0 << Type and blending amount of curing agent (parts by weight) >> Formula (7) ) 4.3 1.6 1.1 Phenolic resin of formula (14) 2.8 3.4 Phenolic resin of formula (15) 6.0 << Evaluation >> Spiral follow (cm) 104 115 106 96 Tg (° C) 155 146 144 127 α 1 (ppm / ° C) ) 10 9 10 10 Thermal elastic modulus (N / mm 2 ) 2060 2040 1980 1150 Package warpage (μm) 31 35 65 156 Solder resistance: Number of cracks (%) 0 30 0 Number of peelings (%) 0 50 0 Gold wire change (%) 3 3 5 5

【0034】 表 4 実 施 例 比較例 1 8 6 《エポキシ樹脂の種類 と配合量(重量部)》 式(6)のエポキシ樹脂 7.7 10.9 13.5 《硬化剤の種類と 配合量(重量部)》 式(7)のフェノール樹脂 4.3 6.1 7.5 《無機充填材の配合量》 溶融シリカ(重量部) 87 82 78 《評価》 スパイラルフォロー(cm) 104 137 158 Tg(℃) 155 150 148 α1(ppm/℃) 10 15 17 熱時弾性率(N/mm2) 2060 1530 1130 パッケージ反り量(μm) 31 41 168 耐半田性:クラック数(%) 0 0 60 剥離数(%) 0 0 60 金線変化量(%) 3 2 2 Table 4 Example Comparative Example 18 86 << Type and blending amount of epoxy resin ( parts by weight) >> Epoxy resin of formula (6) 7.7 10.9 13.5 << Type and blending amount of curing agent (parts by weight) >> phenol of formula (7) resin 4.3 6.1 7.5 "amount of the inorganic filler" fused silica (parts by weight) 87 82 78 "evaluation" spiral follow (cm) 104 137 158 Tg ( ℃) 155 150 148 α 1 (ppm / ℃) 10 15 17 thermal Elasticity at time (N / mm 2 ) 2060 1530 1130 Package warpage (μm) 31 41 168 Solder resistance: Number of cracks (%) 0 0 60 Number of peels (%) 0 0 60 Change in gold wire (%) 3 2 2

【0035】[0035]

【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は金線変形など成形性においても優れおり、該半導体
封止用エポキシ樹脂組成物により封止されたエリア実装
型半導体装置は、室温及び半田付け工程での反りが小さ
く、耐半田性や耐温度サイクル性などの信頼性が高いも
のである。
The epoxy resin composition for semiconductor encapsulation of the present invention is also excellent in moldability such as gold wire deformation, and the area mounting type semiconductor device sealed with the epoxy resin composition for semiconductor encapsulation can be used at room temperature. Also, the warpage in the soldering process is small, and the reliability such as solder resistance and temperature cycle resistance is high.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/31 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)〜(4)で示され、
かつ融点が50〜150℃の結晶性エポキシ樹脂からな
る群から選択される少なくとも一つのエポキシ樹脂を総
エポキシ樹脂中に30重量%以上含むエポキシ樹脂、
(B)一般式(5)で示されるフェノール樹脂を総フェ
ノール樹脂中に30重量%以上含むフェノール樹脂硬化
剤、(C)硬化促進剤、及び(D)総エポキシ樹脂組成
物中に80〜90重量%含まれる溶融シリカ粉末からな
ることを特徴とする半導体封止用エポキシ樹脂組成物。 【化1】 【化2】 式(1)〜(3)中のRは水素原子、ハロゲン原子又は
炭素数1〜12のアルキル基を示し、互いに同一であっ
ても、異なっていてもよい。式(4)、(5)中のRは
ハロゲン原子又は炭素数1〜12のアルキル基を示し、
互いに同一であっても、異なっていてもよく、lは1〜
10の正の整数、mは0もしくは1〜3の正の整数、及
びnは0もしくは1〜4の正の整数である。
(A) represented by the general formulas (1) to (4),
And an epoxy resin containing at least one epoxy resin selected from the group consisting of crystalline epoxy resins having a melting point of 50 to 150 ° C. in the total epoxy resin in an amount of 30% by weight or more,
(B) a phenolic resin curing agent containing at least 30% by weight of the phenolic resin represented by the general formula (5) in the total phenolic resin, (C) a curing accelerator, and (D) a total of 80 to 90 in the total epoxy resin composition. An epoxy resin composition for encapsulating a semiconductor, comprising a fused silica powder contained by weight%. Embedded image Embedded image R in the formulas (1) to (3) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different. R in the formulas (4) and (5) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms,
They may be the same or different, and l is 1 to
A positive integer of 10, m is 0 or a positive integer of 1 to 3, and n is 0 or a positive integer of 1 to 4.
【請求項2】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1記載のエポキシ樹脂組成物によって封止され
ていることを特徴とする半導体装置。
2. A semiconductor device is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor device is mounted is sealed with the epoxy resin composition according to claim 1. Semiconductor device.
JP21172797A 1997-06-11 1997-08-06 Epoxy resin composition and semiconductor device Expired - Fee Related JP3649554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21172797A JP3649554B2 (en) 1997-06-11 1997-08-06 Epoxy resin composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15396897 1997-06-11
JP9-153968 1997-06-11
JP21172797A JP3649554B2 (en) 1997-06-11 1997-08-06 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JPH1160687A true JPH1160687A (en) 1999-03-02
JP3649554B2 JP3649554B2 (en) 2005-05-18

Family

ID=26482425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21172797A Expired - Fee Related JP3649554B2 (en) 1997-06-11 1997-08-06 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP3649554B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128869A (en) * 2000-10-24 2002-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US6727594B2 (en) * 2002-01-02 2004-04-27 Intel Corporation Polybenzoxazine based wafer-level underfill material
JP2009256475A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128869A (en) * 2000-10-24 2002-05-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US6727594B2 (en) * 2002-01-02 2004-04-27 Intel Corporation Polybenzoxazine based wafer-level underfill material
JP2009256475A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Also Published As

Publication number Publication date
JP3649554B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JP3390335B2 (en) Semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JP4370666B2 (en) Semiconductor device
JP3292456B2 (en) Epoxy resin composition and semiconductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device
JP2002020460A (en) Epoxy resin composition and semiconductor device
JP4560871B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees