JP2001233699A - Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate - Google Patents

Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate

Info

Publication number
JP2001233699A
JP2001233699A JP2000049050A JP2000049050A JP2001233699A JP 2001233699 A JP2001233699 A JP 2001233699A JP 2000049050 A JP2000049050 A JP 2000049050A JP 2000049050 A JP2000049050 A JP 2000049050A JP 2001233699 A JP2001233699 A JP 2001233699A
Authority
JP
Japan
Prior art keywords
znse
heat treatment
crystal
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049050A
Other languages
Japanese (ja)
Inventor
Yasuo Namikawa
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000049050A priority Critical patent/JP2001233699A/en
Publication of JP2001233699A publication Critical patent/JP2001233699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for thermally treating a low resistant ZnSe crystal and its mixed crystal substrate having a prescribed specific resistance value without deteriorating crystallinity, and to provide the ZnSe crystal and its mixed crystal substrate thermally treated by the method. SOLUTION: This method for thermally treating the ZnSe crystal and its mixed crystal substrate, characterized by forming one or more Al films and one or usore Zn films, or one or more Al-Zn alloy films on the surface of a substrate of ZnSe crystal or its mixed crystal represented by formula: Zn1-xAsSe, ZnBySe1-y [A is an element in the group II; B is an element in the group VI; 0<(x)<=0.2; 0<(y)<=0.2], placing the ZnSe crystal or its mixed crystal substrate and Zn in a closed vessel, and then thermally treating both the materials in a state that both the materials do no contact with each other, and the substrate obtained by the treating method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ZnSe結晶に対
するドナー性不純物であるAlをドーピングしたZnS
e結晶及びその混晶基板の熱処理方法、並びにその方法
で熱処理された基板に関する。
The present invention relates to a ZnS crystal doped with Al which is a donor impurity for ZnSe crystals.
The present invention relates to a heat treatment method for an e-crystal and a mixed crystal substrate thereof, and a substrate heat-treated by the method.

【0002】[0002]

【従来の技術】青色、緑色、青緑色などの短波長のレー
ザ、LED等の発光素子が注目を集めている。これらの
発光素子はGaAs等の基板上にも作製できるが、素子
特性を向上させるという点からみると、同じ材料である
ZnSe基板上にZnSe系結晶薄膜をホモエピタキシ
ャル成長させて作製する方が望ましい。
2. Description of the Related Art Light-emitting elements such as lasers and LEDs having short wavelengths such as blue, green, and blue-green light are attracting attention. These light-emitting elements can be manufactured on a substrate such as GaAs. However, from the viewpoint of improving the element characteristics, it is preferable to manufacture the ZnSe-based crystal thin film on a ZnSe substrate of the same material by homoepitaxial growth.

【0003】また、最近、基板上の活性層からの発光で
励起されたZnSe基板自体の長波長発光を活性層から
の短波長発光と混色する、白色LEDを作製する技術も
開発されている。この場合はZnSe基板が必須とな
る。
Recently, a technique has been developed for producing a white LED in which the long-wavelength emission of the ZnSe substrate itself excited by the emission from the active layer on the substrate is mixed with the short-wavelength emission from the active layer. In this case, a ZnSe substrate is essential.

【0004】このように、発光素子用基板としてZnS
e単結晶基板が使用されるが、素子構造を簡略化し、素
子特性を向上させるためには導電性の低抵抗基板が必要
不可欠である。しかし、通常のPVT(Physical Vapor
Transport)法あるいはGG(Grain Growth)法などの
製法で作製されるZnSeバルク単結晶はアンドープで
あり、高抵抗である。
As described above, ZnS is used as a light emitting element substrate.
Although an e-single crystal substrate is used, a conductive low-resistance substrate is indispensable to simplify the element structure and improve the element characteristics. However, ordinary PVT (Physical Vapor)
A ZnSe bulk single crystal manufactured by a manufacturing method such as a Transport (Transport) method or a GG (Grain Growth) method is undoped and has high resistance.

【0005】従来、ZnSe単結晶を低抵抗化する方法
としては、ZnSe単結晶をZn−Al融液中で加熱処
理する方法が提案されている。(J. Phys.D: Appl. Phy
s.vol.9, 1976, p.799〜810, G. Jones et al.)この方
法では、AlがZnSe結晶中に拡散してドナー性不純
物として働くと同時に、Zn空孔濃度が低下してAlの
活性化率を増加させることができ、n型キャリア濃度を
増加させて所望の比抵抗値を得ることができる。
Conventionally, as a method of reducing the resistance of a ZnSe single crystal, there has been proposed a method of heat-treating a ZnSe single crystal in a Zn—Al melt. (J. Phys. D: Appl. Phy
s.vol.9, 1976, p.799-810, G. Jones et al.) In this method, Al diffuses into the ZnSe crystal and acts as a donor impurity, and at the same time, the Zn vacancy concentration decreases. The activation rate of Al can be increased, and the desired resistivity can be obtained by increasing the n-type carrier concentration.

【0006】しかし、この熱処理方法では、冷却時に融
液がZnSe単結晶に付着することを防止できず、Zn
SeとZn−Al融液との熱膨張率差により発生する応
力のため、ZnSe単結晶の転位密度が増大するなど、
結晶性が著しく悪化するという問題があった。この問題
を解決するために、Al薄膜をZnSe単結晶表面に形
成し、密閉容器内でZn雰囲気下で熱処理するという方
法が提案された(特許第2839027号明細書)。こ
の方法により、結晶性の著しい悪化は抑制され、熱処理
前の転位密度が5×104 cm-2以上有する基板に対し
ては、転位密度の増加をほぼ抑制できるようになった。
However, this heat treatment method cannot prevent the melt from adhering to the ZnSe single crystal at the time of cooling.
Due to the stress generated by the difference in thermal expansion coefficient between Se and the Zn-Al melt, the dislocation density of the ZnSe single crystal increases,
There is a problem that crystallinity is significantly deteriorated. In order to solve this problem, a method has been proposed in which an Al thin film is formed on the surface of a ZnSe single crystal and heat-treated in a sealed container in a Zn atmosphere (Japanese Patent No. 2839027). By this method, remarkable deterioration in crystallinity was suppressed, and an increase in the dislocation density could be substantially suppressed for a substrate having a dislocation density of 5 × 10 4 cm −2 or more before heat treatment.

【0007】しかし、さらに転位密度の低い結晶性の良
好な基板に同様の条件で熱処理を施すときに、Al膜厚
が厚くなると、転位密度が増加するという問題が残され
ていた。即ち、この方法でAl膜厚が400Å以上の
時、5×104 cm-2以下のレベルでは転位密度の増加
を完全に抑制できないことが明らかとなった。しかし、
熱処理後のZnSe基板のキャリア密度は熱処理前のA
l膜厚に依存しており、Al膜厚が400Åを下回ると
キャリア密度が6×1017cm-3以下の基板しか作製す
ることができない。
However, when heat treatment is performed on a substrate having a low dislocation density and good crystallinity under the same conditions, the problem remains that the dislocation density increases as the Al film thickness increases. That is, it has been clarified that the increase in the dislocation density cannot be completely suppressed at a level of 5 × 10 4 cm −2 or less when the Al film thickness is 400 ° or more by this method. But,
The carrier density of the ZnSe substrate after the heat treatment is A
When the Al film thickness is less than 400 °, only a substrate having a carrier density of 6 × 10 17 cm −3 or less can be manufactured.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明では、
上記の問題点を解消し、結晶性を悪化させることなく所
定の比抵抗値の低抵抗化ZnSe結晶及びその混晶基板
の熱処理方法、並びに前記方法で熱処理されたZnSe
結晶及びその混晶基板を提供しようとするものである。
Therefore, in the present invention,
Solving the above problems, a method of heat-treating a low-resistance ZnSe crystal having a predetermined specific resistance value without deteriorating crystallinity and a mixed crystal substrate thereof, and ZnSe heat-treated by the method
It is intended to provide a crystal and a mixed crystal substrate thereof.

【0009】[0009]

【課題を解決するための手段】本発明は、下記の構成を
採用することにより、上記の課題の解決に成功した。 (1) ZnSe結晶又はZn1-x x Se、ZnBy Se
1-y (AはII族元素、BはVI族元素、0<x≦0.
2、0<y≦0.2)で表される混晶基板の表面にAl
膜及びZn膜を各々1層以上形成した後、密閉容器内に
前記ZnSe結晶又はその混晶とZnを入れ、両者が接
触しない状態に保持して熱処理することを特徴とするZ
nSe結晶及びその混晶基板の熱処理方法。
The present invention has succeeded in solving the above-mentioned problems by adopting the following constitution. (1) ZnSe crystal or Zn 1-x A x Se, ZnB y Se
1-y (A is a group II element, B is a group VI element, 0 <x ≦ 0.
(2, 0 <y ≦ 0.2)
After forming at least one film and at least one Zn film, the ZnSe crystal or a mixed crystal thereof and Zn are placed in a closed container, and heat treatment is performed while keeping both in a non-contact state.
Heat treatment method for nSe crystal and its mixed crystal substrate.

【0010】(2) ZnSe結晶又はZn1-x x Se、
ZnBy Se1-y (AはII族元素、BはVI族元素、
0<x≦0.2、0<y≦0.2)で表される混晶基板
の表面にAl−Zn合金の膜を形成した後、密閉容器内
に前記ZnSe結晶又はその混晶とZnを入れ、両者が
接触しない状態に保持して熱処理することを特徴とする
ZnSe結晶及びその混晶基板の熱処理方法。
(2) ZnSe crystal or Zn 1-x A x Se,
ZnB y Se 1-y (A is a group II element, B is a group VI element,
0 <x ≦ 0.2, 0 <y ≦ 0.2), after forming an Al—Zn alloy film on the surface of the mixed crystal substrate, the ZnSe crystal or the mixed crystal thereof and Zn And heat-treating the ZnSe crystal and the mixed crystal substrate thereof in a state where they are not in contact with each other.

【0011】(3) 前記Al膜とZn膜の合計重量又は前
記Al−Zn合金膜重量に占めるZn重量の割合が10
〜95%の範囲にあることを特徴とする前記(1) 又は
(2) 記載のZnSe結晶及びその混晶基板の熱処理方
法。 (4) 前記Al膜とZn膜の合計膜厚又は前記Al−Zn
合金膜の膜厚が、50〜5000Åの範囲にあることを
特徴とする前記(1) 〜(3) のいずれか1つに記載のZn
Se結晶及びその混晶基板の熱処理方法。
(3) The total weight of the Al film and the Zn film or the ratio of the weight of Zn to the weight of the Al—Zn alloy film is 10%.
(1) or the above-mentioned (1), wherein
(2) The heat treatment method for the ZnSe crystal and the mixed crystal substrate described in (2). (4) the total thickness of the Al film and the Zn film or the Al-Zn
The Zn according to any one of the above (1) to (3), wherein the thickness of the alloy film is in the range of 50 to 5000 °.
Heat treatment method for Se crystal and its mixed crystal substrate.

【0012】(5) 前記熱処理における熱処理温度を66
0〜1200℃の範囲に設定することを特徴とする前記
(1) 〜(4) のいずれか1つに記載のZnSe結晶及びそ
の混晶基板の熱処理方法。 (6) 前記熱処理における熱処理時間を1〜800時間の
範囲に設定することを特徴とする前記(1) 〜(5) のいず
れか1つに記載のZnSe結晶及びその混晶基板の熱処
理方法。
(5) The heat treatment temperature in the heat treatment is 66
The temperature is set in the range of 0 to 1200 ° C.
The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of (1) to (4). (6) The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of (1) to (5), wherein a heat treatment time in the heat treatment is set in a range of 1 to 800 hours.

【0013】(7) 前記熱処理後の冷却速度を1〜200
℃/分の範囲に設定することを特徴とする前記(1) 〜
(6) のいずれか1つに記載のZnSe結晶及びその混晶
基板の熱処理方法。 (8) 前記熱処理後の冷却過程において、前記ZnSe結
晶又はその混晶が存在する部分の温度よりも1〜100
℃低い温度となる部分を前記密閉容器内に設けることを
特徴とする前記(1) 〜(7) のいずれか1つに記載のZn
Se結晶及びその混晶基板の熱処理方法。 (9) 前記Al膜とZn膜、又は前記Al−Zn合金膜を
真空蒸着法で形成することを特徴とする前記(1) 〜(8)
のいずれか1つに記載のZnSe結晶及びその混晶基板
の熱処理方法。
(7) The cooling rate after the heat treatment is 1 to 200
(1)-characterized in that the temperature is set in the range of ° C / min.
(6) The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of (6). (8) In the cooling process after the heat treatment, the temperature of the portion where the ZnSe crystal or the mixed crystal exists is 1 to 100 higher
The Zn according to any one of the above (1) to (7), wherein a portion having a temperature lower by 0 ° C. is provided in the closed container.
Heat treatment method for Se crystal and its mixed crystal substrate. (9) The (1) to (8), wherein the Al film and the Zn film, or the Al-Zn alloy film are formed by a vacuum evaporation method.
4. The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of the above.

【0014】(10)前記ZnSe結晶又はその混晶からな
る基板を2枚用意し、そのうちの少なくとも1枚に前記
Al膜とZn膜、又は前記Al−Zn合金膜を形成し、
そのAl膜とZn膜、又はAl−Zn合金膜を挟むよう
に前記2枚の基板同士を対向させて密着させた後、前記
熱処理を行うことを特徴とする前記(1) 〜(9) のいずれ
か1つに記載のZnSe結晶及びその混晶基板の熱処理
方法。 (11)前記対向配置させる面を予め平坦に研磨することを
特徴とする前記(1) 〜(10)のいずれか1つに記載のZn
Se結晶及びその混晶基板の熱処理方法。 (12)前記(1) 〜(11)のいずれか1つに記載の熱処理方法
で熱処理されたことを特徴とするZnSe結晶又はその
混晶基板。
(10) Two substrates made of the ZnSe crystal or a mixed crystal thereof are prepared, and the Al film and the Zn film or the Al—Zn alloy film is formed on at least one of them.
The heat treatment is performed after the two substrates are brought into close contact with each other so as to sandwich the Al film and the Zn film or the Al-Zn alloy film, and then the heat treatment is performed. A heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of the above. (11) The Zn according to any one of the above (1) to (10), wherein the surface to be opposed is polished flat in advance.
Heat treatment method for Se crystal and its mixed crystal substrate. (12) A ZnSe crystal or a mixed crystal substrate thereof, which is heat-treated by the heat treatment method according to any one of (1) to (11).

【0015】[0015]

【発明の実施の形態】本発明において「熱処理」とは、
特に断らない限り、昇温、高温保持、冷却の一連の工程
全てを含むプロセス全体を意味する。高温保持は、一定
の温度に保持する場合だけでなく、途中で温度を変化さ
せて複数の温度で順次保持する場合、時間とともに温度
を連続的に変化させる場合を含む。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, "heat treatment"
Unless otherwise specified, it refers to the entire process including all the series of steps of heating, maintaining high temperature, and cooling. The high-temperature holding includes not only the case where the temperature is changed to a certain temperature, but also the case where the temperature is changed in the middle and the temperature is sequentially held at a plurality of temperatures, and the case where the temperature is continuously changed with time.

【0016】ZnSe基板上にAl薄膜を形成して昇温
するプロセスにおいて、Alの融点が660℃であるた
め、融点よりも低温では固体Alが固体ZnSeに密着
していることになる。両者の線膨張係数はZnSeが
7.5×10-6/deg、Alが2.3×10-5/de
gと大きく異なる。そのため、Al拡散量を増大させよ
うとしてAl膜厚を厚くすると、昇温時にZnSeとA
lの熱膨張率差に起因する応力が大きくなり、ZnSe
基板の結晶性が悪化する。結晶性を悪化させずにAl拡
散量を増加させ、抵抗率を一層低下させることは困難で
あった。
In the process of forming an Al thin film on a ZnSe substrate and raising the temperature, since the melting point of Al is 660 ° C., solid Al is in close contact with solid ZnSe at a temperature lower than the melting point. The linear expansion coefficients of both are 7.5 × 10 −6 / deg for ZnSe and 2.3 × 10 −5 / de for Al.
greatly different from g. Therefore, if the Al film thickness is increased in order to increase the Al diffusion amount, ZnSe and A
1 due to the difference in thermal expansion coefficient of ZnSe
The crystallinity of the substrate deteriorates. It has been difficult to increase the Al diffusion amount without deteriorating the crystallinity and further reduce the resistivity.

【0017】図4にAl−Znの2元系状態図(Consti
tution of Binary Alloys, M. Hansen, McGraw-Hill,19
58)を示す。AlとZnは共晶を形成し、その共晶点は
382℃である。本発明においては、ZnSe基板上に
Al膜を単独で形成するのではなく、Al−Znの2元
系化合物にすることにより、ZnSe上の薄膜の融解温
度を低下させることができ、ZnSe基板とその上に形
成される薄膜との熱膨張率の差による応力を抑制するこ
とが可能となった。
FIG. 4 shows a binary phase diagram of Al—Zn (Consti
tution of Binary Alloys, M. Hansen, McGraw-Hill, 19
58). Al and Zn form a eutectic, and the eutectic point is 382 ° C. In the present invention, the melting temperature of a thin film on ZnSe can be reduced by forming an Al-Zn binary compound instead of forming an Al film alone on a ZnSe substrate. It has become possible to suppress the stress due to the difference in the coefficient of thermal expansion with the thin film formed thereon.

【0018】Al−Znの2元系化合物を形成する方法
としては、図1に示すようなAl/Zn多層膜を形成す
る方法、図2に示すようなAl−Zn合金膜を形成する
方法などを採用することができる。Al−Zn合金膜の
場合は、熱処理昇温過程で図4の状態図における合金組
成の固相線に温度が達した時、合金膜は融解を開始す
る。Al/Zn多層膜の場合は、Al膜とZn膜の重量
比に相当するAl−Zn合金組成における固相線温度近
傍において、多層膜が相互に反応して融解を開始する。
したがって、どちらの場合もAl膜単独の場合と比較し
て薄膜融解温度を低下させることができ、ZnSeと薄
膜の熱膨張率の差に起因する応力を抑制することが可能
となる。ZnSeの臨界剪断応力は温度上昇にしたがっ
て急激に低下するので、ZnSe結晶性悪化抑制に極め
て有効である。
As a method of forming an Al-Zn binary compound, a method of forming an Al / Zn multilayer film as shown in FIG. 1, a method of forming an Al-Zn alloy film as shown in FIG. Can be adopted. In the case of the Al—Zn alloy film, the alloy film starts melting when the temperature reaches the solidus line of the alloy composition in the phase diagram of FIG. In the case of an Al / Zn multilayer film, the multilayer films react with each other and start melting near the solidus temperature in the Al-Zn alloy composition corresponding to the weight ratio of the Al film and the Zn film.
Therefore, in either case, the melting temperature of the thin film can be reduced as compared with the case of using the Al film alone, and the stress caused by the difference in the coefficient of thermal expansion between ZnSe and the thin film can be suppressed. Since the critical shear stress of ZnSe decreases sharply as the temperature rises, it is extremely effective in suppressing the deterioration of ZnSe crystallinity.

【0019】図4から明らかなように、Al−Zn2元
系化合物において共晶組成のZnの上限値は95重量%
である。有効に融解温度を低下させ、かつAlをZnS
e中に拡散させるためには、Znの割合を95重量%以
下にする必要がある。また、Znの割合が10重量%を
下回ると、融解温度の低下はAl融点から僅か30℃低
くなるだけであり低融点化効果が小さい。それ故、Zn
の割合は10重量%以上にすることが望ましい。ここ
で、Znの重量%とは、Al膜とZn膜の合計重量又は
Al−Zn合金膜重量に占めるZn重量の割合をいう。
Alの比重が約2.7、Znの比重が約7.14である
ところから、本発明に適したZn重量%をZn体積%で
表すと、4〜88体積%の範囲となる。
As apparent from FIG. 4, the upper limit of the eutectic composition of Zn in the Al—Zn binary compound is 95% by weight.
It is. Effectively lower the melting temperature and convert Al to ZnS
In order to diffuse into e, the proportion of Zn needs to be 95% by weight or less. On the other hand, when the Zn content is less than 10% by weight, the melting temperature decreases only by 30 ° C. from the Al melting point, and the effect of lowering the melting point is small. Therefore, Zn
Is desirably 10% by weight or more. Here, the weight percent of Zn refers to the total weight of the Al film and the Zn film or the ratio of the weight of Zn to the weight of the Al—Zn alloy film.
Since the specific gravity of Al is about 2.7 and the specific gravity of Zn is about 7.14, when Zn weight% suitable for the present invention is represented by Zn volume%, it is in the range of 4-88 volume%.

【0020】Al膜とZn膜の合計膜厚又はAl−Zn
合金膜厚は50〜5000Åの範囲にあることが望まし
い。膜厚が50Å未満ではZnSe中へのAl拡散量が
低く、十分にZnSe結晶を低抵抗化することができな
い。また、膜厚が5000Åを超えると拡散しきれなか
ったAl又はAl−Zn合金がZnSe基板表面に残留
し、冷却時にZnSe結晶に応力を及ぼし、結晶性を悪
化する原因となる。なおAl膜とZn膜の合計膜厚又は
Al−Zn合金膜厚のより好ましい範囲は100〜10
00Åである。
The total thickness of the Al film and the Zn film or Al-Zn
The alloy film thickness is desirably in the range of 50 to 5000 °. If the film thickness is less than 50 °, the diffusion amount of Al into ZnSe is low, and the resistance of the ZnSe crystal cannot be sufficiently reduced. On the other hand, if the film thickness exceeds 5000 °, Al or Al—Zn alloy that could not be diffused remains on the ZnSe substrate surface, exerts stress on the ZnSe crystal during cooling, and causes deterioration of crystallinity. The total thickness of the Al film and the Zn film or the more preferable range of the Al-Zn alloy film thickness is 100 to 10
00 °.

【0021】本発明の熱処理温度は660〜1200℃
の範囲が望ましい。660℃未満てはAlが固体で存在
するため、ZnSe結晶中にAlが有効に拡散すること
ができない。また、1200℃を超えるとZnSeの結
晶性を悪化する。なお、熱処理温度のより好ましい範囲
は800〜1100℃である。
The heat treatment temperature of the present invention is 660 to 1200 ° C.
Is desirable. If the temperature is lower than 660 ° C., Al cannot be effectively diffused into the ZnSe crystal because Al exists as a solid. If the temperature exceeds 1200 ° C., the crystallinity of ZnSe deteriorates. Note that a more preferable range of the heat treatment temperature is 800 to 1100 ° C.

【0022】本発明の熱処理時間は1〜800時間の範
囲が望ましい。1時間未満ではAlがZnSe中に完全
に拡散させることができず、ZnSe表面に残留し、冷
却時にZnSe結晶に応力を及ぼし、結晶性を悪化する
原因となる。また、熱処理時間が800時間を超えると
AlがZnSe中に完全に拡散し、逆にZnSe表面か
ら気相中に揮発拡散する外方拡散が顕著になり、ZnS
e中のAl濃度が時間とともに低下するという問題があ
る。なお熱処理時間のより好ましい範囲は10〜400
時間である。
The heat treatment time of the present invention is preferably in the range of 1 to 800 hours. If the time is less than 1 hour, Al cannot be completely diffused into ZnSe, remains on the ZnSe surface, exerts stress on the ZnSe crystal at the time of cooling, and deteriorates crystallinity. On the other hand, if the heat treatment time exceeds 800 hours, Al diffuses completely into ZnSe, and conversely, outward diffusion in which the ZnSe surface volatilizes and diffuses into the gas phase becomes remarkable.
There is a problem that the Al concentration in e decreases with time. The more preferable range of the heat treatment time is 10 to 400.
Time.

【0023】熱処理後の冷却速度は1〜200℃/分の
範囲が望ましい。200℃/分を超えて急冷するとZn
Se結晶内部の温度分布が大きくなり、冷却過程で結晶
性が悪化する。また、1℃/分未満の徐冷では低温度領
域を通過する時間が長くなるため、ZnSeの剥製が低
温での熱平行状態に近づき、Alの活性化率が低下して
キャリア密度が低下し、抵抗率が増加してしまう。な
お、熱処理後の冷却速度のより好ましい範囲は10〜1
00℃/分である。
The cooling rate after the heat treatment is preferably in the range of 1 to 200 ° C./min. Rapid cooling at over 200 ° C / min results in Zn
The temperature distribution inside the Se crystal increases, and the crystallinity deteriorates during the cooling process. In addition, if the cooling rate is less than 1 ° C./min, the time required to pass through the low temperature region becomes longer, so that the peeling of ZnSe approaches the thermal parallel state at a low temperature, the activation rate of Al decreases, and the carrier density decreases. , The resistivity increases. A more preferable range of the cooling rate after the heat treatment is 10 to 1
00 ° C./min.

【0024】通常、熱処理は石英製気密容器内で行われ
るが、石英とAlが反応するため、結晶内に拡散するA
l量の制御性が低下する。容器内にあらかじめAlをセ
ットしておくと、熱処理中、容器内をAl平衡蒸気圧に
維持でき、Al膜が石英との反応により減少することを
防止でき、結晶中へのAl拡散量の制御性を向上させる
ことができる。
Usually, the heat treatment is performed in a quartz airtight container, but since quartz reacts with Al, A diffuses into the crystal.
The controllability of the amount 1 decreases. If Al is set in the container in advance, during the heat treatment, the inside of the container can be maintained at the Al equilibrium vapor pressure, the Al film can be prevented from decreasing due to the reaction with quartz, and the diffusion amount of Al into the crystal can be controlled. Performance can be improved.

【0025】冷却時にZnSe結晶とZn、Al又はZ
n−Al合金とが接触すると、熱膨張率の差でZnSe
の結晶性が大幅に悪化する。冷却時に反応容器内のZn
Se結晶基板をセットする位置以外の場所が最低温度と
なるように調整しておくと、Zn、Al、Zn−Al合
金がその最低温部に輸送されて固化するため、ZnSe
結晶基板との接触を防止することができ、結晶性の悪化
を防止することができる。最低温部とZnSe結晶基板
が存在している部分の温度差は1〜100℃の範囲にあ
ることが望ましい。温度差が1℃未満では最低温部設定
の効果がなく、温度差が100℃を超えると、ZnSe
結晶自身が最低温部に輸送され、結晶性の悪化を無視で
きなくなる。高温保持の間は、反応容器内を完全に均熱
してもZnSe結晶自身の輸送が顕著にならない範囲で
多少の温度分布があってもよい。なお、最低温部とZn
Se結晶基板の存在部分の温度差の好ましい範囲は5〜
20℃である。
At the time of cooling, ZnSe crystal and Zn, Al or Z
When it comes into contact with the n-Al alloy, the difference in thermal expansion coefficient
Greatly deteriorates crystallinity. Zn in the reaction vessel during cooling
If the temperature other than the position where the Se crystal substrate is set is adjusted to be the lowest temperature, Zn, Al, and Zn-Al alloy are transported to the lowest temperature part and solidified.
Contact with a crystal substrate can be prevented, and deterioration of crystallinity can be prevented. It is desirable that the temperature difference between the lowest temperature part and the part where the ZnSe crystal substrate exists is in the range of 1 to 100 ° C. If the temperature difference is less than 1 ° C., there is no effect of setting the lowest temperature part, and if the temperature difference exceeds 100 ° C., ZnSe
The crystal itself is transported to the lowest temperature, and deterioration of crystallinity cannot be ignored. During the high-temperature holding, there may be some temperature distribution within a range where the transport of the ZnSe crystal itself does not become significant even when the inside of the reaction vessel is completely soaked. The lowest temperature part and Zn
The preferred range of the temperature difference in the existing portion of the Se crystal substrate is 5 to 5.
20 ° C.

【0026】また、Al/Zn多層膜又はAl−Zn合
金膜をZnSe結晶表面に形成しただけで熱処理を行う
と、熱処理中にAl及びZnが散逸し、結晶中へのAl
の拡散量が低下し、Al濃度の制御性が低下するという
問題がある。形成した薄膜上に何らかの散逸防止材を密
着させることが、Al拡散量の制御性を向上させるのに
有効であるが、他の材料を用いると、熱膨張率差による
応力発生を新たに引き起こすおそれがある。
When heat treatment is performed only by forming an Al / Zn multilayer film or an Al—Zn alloy film on the ZnSe crystal surface, Al and Zn are dissipated during the heat treatment, and Al
There is a problem that the diffusion amount of Al decreases and the controllability of the Al concentration decreases. It is effective to improve the controllability of the amount of Al diffusion by adhering some anti-dissipation material on the formed thin film. However, if another material is used, stress may be newly generated due to a difference in thermal expansion coefficient. There is.

【0027】そこで、ZnSe膜をAl/Zn多層膜又
はAl−Zn合金膜上に形成するか、別のZnSe結晶
基板をAl/Zn多層膜又はAl−Zn合金膜上に密着
させることがAl散逸防止と結晶性悪化防止を両立させ
るのに有効である。特に、ZnSe結晶基板を用いる
と、薄膜を挟んで両側のZnSe結晶基板にAlを拡散
させることができ、生産性の上からも有効である。この
時、Al/Zn多層膜又はAl−Zn合金膜は片側のZ
nSe結晶基板表面にのみ形成してもよいし、両側のZ
nSe結晶基板表面上に形成し、両者の膜が密着するよ
うに配置してもよい。また、Al/Zn多層膜又はAl
−Zn合金膜を形成したZnSe結晶を多段に重ねて熱
処理を行うことも可能である。
Therefore, it is necessary to form the ZnSe film on the Al / Zn multilayer film or the Al—Zn alloy film, or to adhere another ZnSe crystal substrate to the Al / Zn multilayer film or the Al—Zn alloy film to dissipate Al. This is effective for achieving both prevention and deterioration of crystallinity. In particular, when a ZnSe crystal substrate is used, Al can be diffused into the ZnSe crystal substrates on both sides of the thin film, which is effective from the viewpoint of productivity. At this time, the Al / Zn multilayer film or the Al—Zn alloy film
It may be formed only on the surface of the nSe crystal substrate, or may be formed on both sides.
It may be formed on the surface of the nSe crystal substrate, and arranged so that both films are in close contact with each other. Also, an Al / Zn multilayer film or Al
It is also possible to perform heat treatment by stacking ZnSe crystals on which a Zn alloy film is formed in multiple stages.

【0028】上記のように、Al/Zn多層膜又はAl
−Zn合金膜をZnSe結晶基板で挟んで熱処理する場
合、Al散逸を抑制するためには、ZnSe結晶基板の
表面をできるだけ平坦に平滑に仕上げることが重要にな
る。表面のそりや荒れが大きいと、密着性が低くなり、
Al散逸防止の効果が小さく、また、結晶中へのAl拡
散量の制御性が低くなる。表面の凹凸高低差の面内平均
値が5000Å以下であれば、Alの散逸を十分に抑制
することができる。
As described above, the Al / Zn multilayer film or Al
-When heat treatment is performed by sandwiching a Zn alloy film between ZnSe crystal substrates, it is important to make the surface of the ZnSe crystal substrate as flat and smooth as possible in order to suppress Al dissipation. If the surface warpage or roughness is large, the adhesion will decrease,
The effect of preventing the dissipation of Al is small, and the controllability of the amount of Al diffusion into the crystal is reduced. When the in-plane average value of the surface unevenness height difference is 5000 ° or less, the dissipation of Al can be sufficiently suppressed.

【0029】上記の説明において、結晶としてZnSe
のみについて説明したが、ZnSeを主体とするII-VI
族化合物半導体の混晶では、臨界剪断応力が低く、転位
が増加しやすいという共通の特徴を有するところから、
本発明の方法を適用することができる。そのようなII-V
I 族化合物半導体の混晶としてはZn1-x Cdx Se、
ZnSy Se1-y 、ZnSe1-y Tey 等を挙げること
ができる。この時、x,yはそれぞれ0<x≦0.2、
0<y≦0.2の範囲になければならない。x,yが
0.2よりも大きくなると単純なZnSeとの物性の相
違が大きくなり、本発明の方法を適用することができな
い。
In the above description, ZnSe is used as a crystal.
Only II-VI mainly composed of ZnSe
In the mixed crystal of the group III compound semiconductor, the critical shear stress is low and the dislocation tends to increase.
The method of the present invention can be applied. Such II-V
As mixed crystals of Group I compound semiconductors, Zn 1-x Cd x Se,
ZnS y Se 1-y , ZnSe 1-y Te y and the like can be mentioned. At this time, x and y are respectively 0 <x ≦ 0.2,
It must be in the range of 0 <y ≦ 0.2. If x and y are larger than 0.2, the difference in physical properties from simple ZnSe increases, and the method of the present invention cannot be applied.

【0030】[0030]

【実施例】(比較例1)10mm角、厚さ1mmで(1
00)面のZnSe単結晶ウエハ2枚に対して熱処理を
行った。熱処理前のZnSe単結晶の比抵抗は、ホール
測定の測定可能範囲の上限である105 Ωcm以上の高
抵抗であった。また、ウエハ表面をミラー研磨し、Br
−メタノールによるエッチングにより測定した結晶の転
位密度は5×103 〜2×104 cm-2であった。この
エッチング面上に真空蒸着法により厚さ800ÅのAl
膜を形成した。蒸着前の表面の凹凸高低差の面内平均値
は8000Åであった。図3に示すように、この2枚の
ウエハのAl膜同士を密着させるように対向配置し、
0.1gのZnと一緒に石英アンプル中にセットし、真
空度を2×10-8Torrまで排気して封止した。
EXAMPLES (Comparative Example 1) A 10 mm square, 1 mm thick (1
A heat treatment was performed on two ZnSe single crystal wafers having the (00) plane. The specific resistance of the ZnSe single crystal before the heat treatment was a high resistance of 10 5 Ωcm or more, which is the upper limit of the measurable range of the hole measurement. Also, the surface of the wafer is mirror-polished, and Br
-The dislocation density of the crystal measured by etching with methanol was 5 × 10 3 to 2 × 10 4 cm −2 . On this etched surface, 800 mm thick Al
A film was formed. The in-plane average value of the unevenness height difference of the surface before vapor deposition was 8000 °. As shown in FIG. 3, the Al films of the two wafers are arranged facing each other so as to be in close contact with each other.
It was set in a quartz ampoule together with 0.1 g of Zn, evacuated to a vacuum of 2 × 10 −8 Torr, and sealed.

【0031】このアンプルを縦型管状炉にセットし、ウ
エハ部を1000℃の均一温度に、アンプル下端を98
0℃になるように加熱して7日間熱処理した後、10℃
/minの速度で室温まで冷却した。冷却後、Znはア
ンプル下端に凝結していた。対向配置した2枚のZnS
eウエハは、互いに一体化することなく容易に分離でき
た。ウエハ表面に蒸着したAlは、目視では表面上に観
察することができず、結晶内部に拡散し、又は外部に散
逸したものと思われる。熱処理済みのウエハのAl膜が
蒸着されていた側の表面を50μm再度研磨して評価し
た。比抵抗は0.04Ωcmと低抵抗化されていたが、
転位密度の増加はウエハ面内の局所最大値で約2×10
4 cm-2であり、熱処理によって結晶の転位密度が増加
したことが確認された。
The ampoule was set in a vertical tube furnace, the wafer was heated to a uniform temperature of 1000 ° C., and the lower end of the ampoule was heated to 98 ° C.
After heating to 0 ° C and heat-treating for 7 days, 10 ° C
/ Min at room temperature. After cooling, Zn had settled on the lower end of the ampoule. Two ZnS sheets facing each other
The e-wafers could be easily separated without being integrated with each other. The Al deposited on the wafer surface cannot be visually observed on the surface, but seems to have diffused into the crystal or dissipated outside. The surface of the heat-treated wafer on the side where the Al film was deposited was polished again by 50 μm and evaluated. Although the specific resistance was reduced to 0.04 Ωcm,
The increase in dislocation density is about 2 × 10 at the local maximum in the wafer plane.
It was 4 cm -2 , confirming that the heat treatment increased the dislocation density of the crystal.

【0032】(実施例1)薄膜形成プロセス以外は比較
例1と同一プロセスで熱処理を行った。薄膜形成は真空
蒸着法により行い、図1に示すようにAlとZnを20
0Åづつ交互に4層積み、合計膜厚を1600Åとし
た。Al膜もZn膜もともに十分に稠密であると仮定す
ると、この時のZn重量比は約73重量%となる。比較
例1と同様にウエハ表面に蒸着したAlとZnは、目視
では表面上に観察することができず、結晶内部に拡散
し、又は外部に散逸したものと思われる。熱処理済みの
ウエハのAl/Zn多層膜が蒸着されていた側の表面を
50μm再度研磨して評価した。比抵抗は0.04Ωc
mと低抵抗化されおり、転位密度の増加はウエハ面内の
局所最大値で約2×103 cm-2と低く、この値は測定
誤差範囲内で転位密度の増加がないことが確認された。
Example 1 A heat treatment was performed in the same process as in Comparative Example 1 except for the thin film forming process. The thin film is formed by a vacuum evaporation method, and as shown in FIG.
Four layers were alternately stacked at 0 °, and the total film thickness was 1600 °. Assuming that both the Al film and the Zn film are sufficiently dense, the Zn weight ratio at this time is about 73% by weight. Al and Zn vapor-deposited on the wafer surface in the same manner as in Comparative Example 1 cannot be visually observed on the surface, and are presumed to have diffused into the crystal or diffused outside. The surface of the heat-treated wafer on the side where the Al / Zn multilayer film was deposited was polished again by 50 μm and evaluated. Specific resistance is 0.04Ωc
m, and the increase in dislocation density is as low as about 2 × 10 3 cm -2 at the local maximum in the wafer surface, and this value is confirmed to not increase within the measurement error range. Was.

【0033】(実施例2)薄膜形成プロセス以外は実施
例1と同一プロセスで熱処理を行った。薄膜形成は真空
蒸着法により行い、図2に示すようにZn重量比60%
のAl−Zn合金からなる膜厚2000Åの薄膜を形成
した。実施例1と同様にウエハ表面に蒸着したAl−Z
n合金は、目視では表面上に観察することができず、結
晶内部に拡散し、又は外部に散逸したものと思われる。
熱処理済みのウエハのAl−Zn合金膜が蒸着されてい
た側の表面を50μm再度研磨して評価した。比抵抗は
0.04Ωcmと低抵抗化されおり、転位密度の増加は
ウエハ面内の局所最大値で約 1.5×103 cm-2
低く、この値は測定誤差範囲内で転位密度の増加がない
ことが確認された。
Example 2 A heat treatment was performed in the same process as in Example 1 except for the process of forming a thin film. The thin film is formed by a vacuum evaporation method, and as shown in FIG.
A thin film having a film thickness of 2000 ° made of the Al—Zn alloy was formed. Al-Z deposited on the wafer surface in the same manner as in Example 1.
The n-alloy cannot be visually observed on the surface and seems to have diffused inside the crystal or dissipated outside.
The surface of the heat-treated wafer on which the Al—Zn alloy film was deposited was polished again by 50 μm and evaluated. The specific resistance is as low as 0.04 Ωcm, and the increase in dislocation density is as low as about 1.5 × 10 3 cm -2 at the local maximum value within the wafer surface, and this value is within the measurement error range. It was confirmed that there was no increase.

【0034】(比較例2)薄膜形成プロセス以外は実施
例1と同一プロセスで熱処理を行った。薄膜形成は真空
蒸着法により行い、AlとZnを500Åづつ交互に6
層積み、合計膜厚を6000Åとした。Al膜もZn膜
もともに十分に稠密であると仮定すると、この時のZn
重量比は約73重量%となる。熱処理後のウエハ表面に
は薄膜状の残留物が観察された。熱処理済のウエハのA
l/Zn多層膜が蒸着されていた側の表面を50μm再
度研磨して評価した。比抵抗は0.02Ωcmと低抵抗
化されていたが、転位密度の増加はウエハ面内の局所最
大値で約1.2×104 cm-2と高く、熱処理により結
晶の転位密度が増加したことが確認された。
Comparative Example 2 A heat treatment was performed in the same process as in Example 1 except for the process of forming a thin film. The thin film is formed by a vacuum evaporation method, and Al and Zn are alternately formed by
The layers were stacked and the total film thickness was 6000 °. Assuming that both the Al film and the Zn film are sufficiently dense,
The weight ratio amounts to about 73% by weight. A thin film residue was observed on the wafer surface after the heat treatment. A of heat-treated wafer
The surface on which the 1 / Zn multilayer film was deposited was polished again by 50 μm and evaluated. Although the specific resistance was as low as 0.02 Ωcm, the increase in dislocation density was as high as about 1.2 × 10 4 cm -2 at the local maximum in the wafer surface, and the heat treatment increased the dislocation density of the crystal. It was confirmed that.

【0035】(実施例3)実施例1、2でAlを拡散さ
せて低抵抗化したZnSe結晶ウエハは、熱処理時のダ
メージにより表面が荒れており、そのままではZnSe
薄膜を成膜する基板としては不適なものであった。そこ
で、実施例1で使用したものとほぼ同一の特性を有する
10mm角、厚さ1mmで(100)面のZnSe単結
晶ウエハ2枚に対し、実施例1と同様の熱処理を行った
後、Alが蒸着されていた面を研磨して表面から100
μmの厚さまで除去し、表面をミラー研磨で仕上げた。
次に、ウエハを重クロム酸系溶液でエッチングし、ウエ
ハ表面層を厚さ3μmだけ除去した。得られたウエハを
MBE(分子線エピタクシー)装置内にセットし、厚さ
1.5μmのZnSe薄膜を成長させた。
(Embodiment 3) The ZnSe crystal wafer in which the resistance was reduced by diffusing Al in Embodiments 1 and 2 had a rough surface due to damage during heat treatment.
It was unsuitable as a substrate for forming a thin film. Then, the same heat treatment as in Example 1 was performed on two 10 mm square, 1 mm thick, (100) plane ZnSe single crystal wafers having almost the same characteristics as those used in Example 1, and then Al Is polished on the surface on which
It was removed to a thickness of μm, and the surface was finished by mirror polishing.
Next, the wafer was etched with a dichromic acid solution to remove the wafer surface layer by a thickness of 3 μm. The obtained wafer was set in an MBE (Molecular Beam Epitaxy) apparatus, and a ZnSe thin film having a thickness of 1.5 μm was grown.

【0036】成長したZnSe薄膜は良好な表面モフォ
ロジーを有していた。Br−メタノール溶液でエッチン
グしてエピタキシャル膜の転位密度を測定した。エピタ
キシャル成長時に新たに転位が約3×103 cm-2増加
していたが、ZnSe基板から引き継がれた転位と合わ
せた全体の転位密度は、8×103 〜2.2×104
-2と良好な結晶性が維持されていた。さらに、エピタ
キシャル成長した基板の裏面を研磨し、基板厚さを25
0μmまで薄くした。ウエハ裏面のキャリア密度をC−
V測定で評価したところ、約1×1018cm-3とn電極
形成に十分な高キャリア密度を有していることが確認さ
れた。
The grown ZnSe thin film had good surface morphology. The dislocation density of the epitaxial film was measured by etching with a Br-methanol solution. Although the number of dislocations newly increased by about 3 × 10 3 cm −2 during epitaxial growth, the total dislocation density including the dislocations inherited from the ZnSe substrate was 8 × 10 3 to 2.2 × 10 4 c
Good crystallinity of m -2 was maintained. Further, the back surface of the epitaxially grown substrate is polished, and the substrate thickness is reduced to 25.
The thickness was reduced to 0 μm. Carrier density on the back of wafer is C-
When evaluated by V measurement, it was confirmed that the carrier density was about 1 × 10 18 cm −3, which was high enough to form an n-electrode.

【0037】[0037]

【発明の効果】本発明は、上記の構成を採用することに
より、ZnSe基板中にAlを拡散させる熱処理方法に
おいて、昇温過程における応力を低減することができ、
結晶性に優れた導電性のZnSe結晶及びその混晶基板
を得ることが可能になった。
According to the present invention, by adopting the above structure, in the heat treatment method for diffusing Al into the ZnSe substrate, the stress in the temperature increasing process can be reduced.
It has become possible to obtain a conductive ZnSe crystal having excellent crystallinity and a mixed crystal substrate thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で使用したアンプル構造の断面模式図
である。
FIG. 1 is a schematic cross-sectional view of an ampule structure used in Example 1.

【図2】実施例2で使用したアンプル構造の断面模式図
である。
FIG. 2 is a schematic cross-sectional view of an ampule structure used in Example 2.

【図3】比較例1で使用したアンプル構造の断面模式図
である。
FIG. 3 is a schematic cross-sectional view of the ampule structure used in Comparative Example 1.

【図4】Al−Znの2元系状態図(Constitution of
Binary Alloys, M. Hansen, McGraw-Hill, 1958)であ
る。
FIG. 4 shows a binary system diagram of Al—Zn (Constitution of
Binary Alloys, M. Hansen, McGraw-Hill, 1958).

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ZnSe結晶又はZn1-x x Se、Z
nBy Se1-y (AはII族元素、BはVI族元素、0
<x≦0.2、0<y≦0.2)で表される混晶基板の
表面にAl膜及びZn膜を各々1層以上形成した後、密
閉容器内に前記ZnSe結晶又はその混晶とZnを入
れ、両者が接触しない状態に保持して熱処理することを
特徴とするZnSe結晶及びその混晶基板の熱処理方
法。
1. ZnSe crystal or Zn 1-x A x Se, Z
nB y Se 1-y (A is a group II element, B is a group VI element, 0
<X ≦ 0.2, 0 <y ≦ 0.2) After forming at least one Al film and at least one Zn film on the surface of the mixed crystal substrate, the ZnSe crystal or the mixed crystal thereof is placed in a closed container. And a ZnSe crystal and a mixed crystal substrate thereof.
【請求項2】 ZnSe結晶又はZn1-x x Se、Z
nBy Se1-y (AはII族元素、BはVI族元素、0
<x≦0.2、0<y≦0.2)で表される混晶基板の
表面にAl−Zn合金の膜を形成した後、密閉容器内に
前記ZnSe結晶又はその混晶とZnを入れ、両者が接
触しない状態に保持して熱処理することを特徴とするZ
nSe結晶及びその混晶基板の熱処理方法。
2. ZnSe crystal or Zn 1-x A x Se, Z
nB y Se 1-y (A is a group II element, B is a group VI element, 0
(X ≦ 0.2, 0 <y ≦ 0.2), after forming an Al—Zn alloy film on the surface of the mixed crystal substrate, the ZnSe crystal or the mixed crystal thereof and Zn are placed in a closed container. And heat-treating them while keeping them in contact with each other.
Heat treatment method for nSe crystal and its mixed crystal substrate.
【請求項3】 前記Al膜とZn膜の合計重量又は前記
Al−Zn合金膜重量に占めるZn重量の割合が10〜
95%の範囲にあることを特徴とする請求項1又は2記
載のZnSe結晶及びその混晶基板の熱処理方法。
3. The weight ratio of Zn to the total weight of the Al film and the Zn film or the weight of the Al—Zn alloy film is 10 to 10.
The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to claim 1 or 2, wherein the heat treatment is in a range of 95%.
【請求項4】 前記Al膜とZn膜の合計膜厚又は前記
Al−Zn合金膜の膜厚が、50〜5000Åの範囲に
あることを特徴とする請求項1〜3のいずれか1項に記
載のZnSe結晶及びその混晶基板の熱処理方法。
4. The method according to claim 1, wherein a total thickness of the Al film and the Zn film or a thickness of the Al—Zn alloy film is in a range of 50 to 5000 °. A heat treatment method for the ZnSe crystal and the mixed crystal substrate described in the above.
【請求項5】 前記熱処理における熱処理温度を660
〜1200℃の範囲に設定することを特徴とする請求項
1〜4のいずれか1項に記載のZnSe結晶及びその混
晶基板の熱処理方法。
5. The heat treatment temperature in the heat treatment is 660.
The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of claims 1 to 4, wherein the temperature is set in a range of from 1 to 1200 ° C.
【請求項6】 前記熱処理における熱処理時間を1〜8
00時間の範囲に設定することを特徴とする請求項1〜
5のいずれか1項に記載のZnSe結晶及びその混晶基
板の熱処理方法。
6. The heat treatment time in said heat treatment is 1 to 8
The time is set within a range of 00 hours.
6. The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of the above items 5.
【請求項7】 前記熱処理後の冷却速度を1〜200℃
/分の範囲に設定することを特徴とする請求項1〜6の
いずれか1項に記載のZnSe結晶及びその混晶基板の
熱処理方法。
7. The cooling rate after the heat treatment is 1 to 200 ° C.
The method for heat treating a ZnSe crystal and a mixed crystal substrate thereof according to any one of claims 1 to 6, wherein the heat treatment is performed in a range of / min.
【請求項8】 前記熱処理後の冷却過程において、前記
ZnSe結晶又はその混晶基板が存在する部分の温度よ
りも1〜100℃低い温度となる部分を前記密閉容器内
に設けることを特徴とする請求項1〜7のいずれか1項
に記載のZnSe結晶及びその混晶基板の熱処理方法。
8. In the cooling step after the heat treatment, a portion having a temperature lower by 1 to 100 ° C. than a temperature of a portion where the ZnSe crystal or the mixed crystal substrate exists is provided in the closed container. A heat treatment method for the ZnSe crystal and the mixed crystal substrate thereof according to claim 1.
【請求項9】 前記Al膜とZn膜、又は前記Al−Z
n合金膜を真空蒸着法で形成することを特徴とする請求
項1〜8のいずれか1項に記載のZnSe結晶及びその
混晶基板の熱処理方法。
9. The Al film and the Zn film, or the Al-Z
The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to any one of claims 1 to 8, wherein the n-alloy film is formed by a vacuum deposition method.
【請求項10】 前記ZnSe結晶又はその混晶基板を
2枚用意し、そのうちの少なくとも1枚に前記Al膜と
Zn膜、又は前記Al−Zn合金膜を形成し、そのAl
膜・Zn膜又はAl−Zn合金膜を挟むように前記2枚
の基板同士を対向させて密着させた後、前記熱処理を行
うことを特徴とする請求項1〜9のいずれか1項に記載
のZnSe結晶及びその混晶基板の熱処理方法。
10. The ZnSe crystal or a mixed crystal substrate thereof is prepared in two sheets, and the Al film and the Zn film or the Al—Zn alloy film are formed on at least one of them.
The heat treatment is performed after the two substrates are brought into close contact with each other so as to sandwich a film, a Zn film or an Al-Zn alloy film, and the heat treatment is performed. Heat treatment method for ZnSe crystal and mixed crystal substrate thereof.
【請求項11】 前記対向配置させる面を予め平坦に研
磨することを特徴とする請求項1〜10のいずれか1項
に記載のZnSe結晶及びその混晶基板の熱処理方法。
11. The heat treatment method for a ZnSe crystal and a mixed crystal substrate thereof according to claim 1, wherein the surface to be opposed is polished flat in advance.
【請求項12】 請求項1〜11のいずれか1項に記載
の熱処理方法で熱処理されたことを特徴とするZnSe
結晶又はその混晶基板。
12. A ZnSe heat-treated by the heat treatment method according to claim 1. Description:
Crystal or its mixed crystal substrate.
JP2000049050A 2000-02-25 2000-02-25 Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate Pending JP2001233699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049050A JP2001233699A (en) 2000-02-25 2000-02-25 Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049050A JP2001233699A (en) 2000-02-25 2000-02-25 Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate

Publications (1)

Publication Number Publication Date
JP2001233699A true JP2001233699A (en) 2001-08-28

Family

ID=18571039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049050A Pending JP2001233699A (en) 2000-02-25 2000-02-25 Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate

Country Status (1)

Country Link
JP (1) JP2001233699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835282A (en) * 2015-12-03 2017-06-13 中国科学院新疆理化技术研究所 Selenium antimony sodium barium optical crystal and preparation method and purposes
CN106835283A (en) * 2015-12-03 2017-06-13 中国科学院新疆理化技术研究所 Sulphur antimony sodium barium optical crystal and preparation method and purposes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835282A (en) * 2015-12-03 2017-06-13 中国科学院新疆理化技术研究所 Selenium antimony sodium barium optical crystal and preparation method and purposes
CN106835283A (en) * 2015-12-03 2017-06-13 中国科学院新疆理化技术研究所 Sulphur antimony sodium barium optical crystal and preparation method and purposes
CN106835283B (en) * 2015-12-03 2019-03-26 中国科学院新疆理化技术研究所 Sulphur antimony sodium barium optical crystal and preparation method and purposes

Similar Documents

Publication Publication Date Title
JP3409958B2 (en) Semiconductor light emitting device
WO2009020235A1 (en) Group iii nitride semiconductor epitaxial substrate
JP2000036620A (en) Multi-layer indium-contained nitride buffer layer for nitride epitaxy
JP2004292305A (en) Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method
JP3568112B2 (en) Semiconductor substrate manufacturing method
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
Ohmachi et al. The heteroepitaxy of Ge on Si (100) by vacuum evaporation
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
JP4749583B2 (en) Manufacturing method of semiconductor substrate
JP4298023B2 (en) Nitride semiconductor multilayer deposition substrate and method for forming nitride semiconductor multilayer deposition substrate
JP2839027B2 (en) Heat treatment method for II-VI compound semiconductor
JP2002299253A5 (en)
JP4035971B2 (en) Manufacturing method of semiconductor crystal
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JPH10290051A (en) Semiconductor device and manufacture thereof
JP2001233699A (en) Method for thermally treating group ii to vi compound semiconductor crystal substrate and the substrate
US6340535B2 (en) Method for the heat treatment of a ZnSe crystal substrate, heat treated substrate and light emission device
JP4749584B2 (en) Manufacturing method of semiconductor substrate
US6881658B2 (en) Process of and apparatus for heat-treating II-VI compound semiconductors and semiconductor heat-treated by the process
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP3065078B1 (en) II-VI compound semiconductor crystal and heat treatment method
JP3652861B2 (en) Thin film growth substrate and light emitting device using the same
JPH10284425A (en) Manufacture of semiconductor device
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
JP3788344B2 (en) Method for improving productivity of group 3-5 compound semiconductor