JP2001229980A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001229980A
JP2001229980A JP2001020302A JP2001020302A JP2001229980A JP 2001229980 A JP2001229980 A JP 2001229980A JP 2001020302 A JP2001020302 A JP 2001020302A JP 2001020302 A JP2001020302 A JP 2001020302A JP 2001229980 A JP2001229980 A JP 2001229980A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
battery
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020302A
Other languages
Japanese (ja)
Other versions
JP3501365B2 (en
Inventor
Masayuki Nagamine
政幸 永峰
Naoyuki Date
尚幸 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001020302A priority Critical patent/JP3501365B2/en
Publication of JP2001229980A publication Critical patent/JP2001229980A/en
Application granted granted Critical
Publication of JP3501365B2 publication Critical patent/JP3501365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery, that can impregnate a positive plate with a sufficient volume of lithium, has light weight, low self-discharging and high energy density, is resistant to its use with heavy load, and is superior in charging and discharging cycle characteristics. SOLUTION: In a nonaqueous electrolyte secondary battery comprising a vortex-type, wound-around electrode body, the relation for the separator width > anode width > cathode width is set up, and a vacant space is arranged in the center of the wound-around electrode body. Then, the volume of a nonaqueous electrolyte is set to be 2.5-4.5 μl per 1 mAh of discharge capacity of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素質材料から主
として構成される負極と、正極と、リチウム塩を溶解さ
せた非水電解液とをそれぞれ具備する非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode mainly composed of a carbonaceous material, a positive electrode, and a non-aqueous electrolyte in which a lithium salt is dissolved. is there.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても、ますます小
型・軽量かつ高エネルギー密度のものが求められてい
る。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has enabled electronic devices to become smaller and lighter one after another. Along with this, there is a demand for increasingly smaller, lighter, and higher energy density batteries as power supplies for transportation.

【0003】従来、一般用途の二次電池としては、鉛電
池、ニッケル・カドミウム電池などの水溶液系電池が主
流であった。これらの電池は、サイクル特性には優れて
いるが、電池重量やエネルギー密度の点では十分満足で
きる特性とは言えない。
Conventionally, aqueous batteries such as lead batteries and nickel-cadmium batteries have been the mainstream as secondary batteries for general use. Although these batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】最近、二次電池として、電池重量やエネル
ギー密度の点で不十分である鉛電池やニッケル・カドミ
ウム電池に替わって、リチウムあるいはリチウム合金を
負極に用いた非水電解液二次電池の研究・開発が盛んに
行われている。
Recently, as a secondary battery, a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for a negative electrode has been replaced by a lead battery or a nickel cadmium battery, which are insufficient in battery weight and energy density. Research and development are actively conducted.

【0005】この電池は、高エネルギー密度を有し、自
己放電も少なく、軽量であるという優れた特徴を有して
いる。しかし、この電池では、充放電サイクルの進行に
伴い、負極において充電時にリチウムがデンドライト状
に結晶成長し、このデンドライト状の結晶が正極に到達
して内部短絡に至る可能性が高いという欠点があり、実
用化への大きな障害となっていた。
[0005] This battery has excellent features of high energy density, low self-discharge, and light weight. However, this battery has a drawback that, with the progress of the charge / discharge cycle, lithium grows in a dendrite shape at the time of charging at the negative electrode, and this dendrite-like crystal is likely to reach the positive electrode and cause an internal short circuit. , A major obstacle to its practical application.

【0006】これに対し、負極に炭素材料を使用した非
水電解液二次電池によれば、化学的、物理的方法によっ
て予め負極の炭素材料に担持させたリチウム、正極活物
質の結晶構造中に含有させたリチウムおよび電解液中に
溶解したリチウムのそれぞれが、充放電時に負極におい
て炭素層間へドープされかつ炭素層間から脱ドープされ
る。このために、充放電サイクルが進行しても負極にお
いて充電時にデンドライト状の結晶の析出はあまり見ら
れずに内部短絡を起こしにくくて、良好な充放電サイク
ル特性を示す。また、エネルギー密度も高くかつ軽量で
あることから、実用化に向けて開発が進んでいる。
[0006] On the other hand, according to the nonaqueous electrolyte secondary battery using a carbon material for the negative electrode, the lithium and the positive electrode active material previously supported on the carbon material of the negative electrode by a chemical and physical method are used. And lithium dissolved in the electrolyte are doped between the carbon layers and de-doped from the carbon layers in the negative electrode during charge and discharge. For this reason, even when the charge / discharge cycle proceeds, precipitation of dendrite-like crystals is hardly observed in the negative electrode at the time of charge, so that an internal short circuit hardly occurs and good charge / discharge cycle characteristics are exhibited. In addition, since the energy density is high and the weight is low, development is proceeding toward practical use.

【0007】上述のような非水電解液二次電池の用途と
しては、ビデオ・カメラやラップ・トップ・パソコンな
どがある。このような電子機器は比較的消費電流が大き
いものが多いために、電池は重負荷に耐えられることが
必要である。
[0007] Applications of the non-aqueous electrolyte secondary battery as described above include a video camera and a laptop personal computer. Since many of such electronic devices consume relatively large current, the batteries need to be able to withstand heavy loads.

【0008】したがって、電池構造として、帯状の正極
と帯状の負極とを帯状のセパレータを介してその長さ方
向に巻回することによって構成される渦巻型の巻回電極
体構造が有効である。この巻回電極体構造の電池によれ
ば、電極面積が大きくとれるために、重負荷による使用
にも耐えることができる。
Therefore, as a battery structure, a spirally wound electrode structure formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode through a strip-shaped separator in the longitudinal direction thereof is effective. According to the battery having the spirally wound electrode structure, the electrode area can be increased, so that the battery can withstand heavy load.

【0009】[0009]

【発明が解決しようとする課題】ところが、上述のよう
な負極に炭素質材料を用いた非水電解液二次電池は、充
放電サイクルの進行に伴って容量が低下してしまうこと
があって、優れたサイクル特性を長期間にわたって得ら
れないことがあった。
However, in a non-aqueous electrolyte secondary battery using a carbonaceous material for the negative electrode as described above, the capacity may decrease as the charge / discharge cycle progresses. In some cases, excellent cycle characteristics could not be obtained for a long period of time.

【0010】このサイクル特性に関係する重要な要素の
ひとつとして、非水電解液二次電池内に含まれる非水電
解液の体積(非水電解液量)が挙げられる。
One of the important factors related to the cycle characteristics is the volume of the non-aqueous electrolyte contained in the non-aqueous electrolyte secondary battery (the amount of the non-aqueous electrolyte).

【0011】例えば、電池内の非水電解液量が少ない
と、電極の一部に非水電解液に濡れない部分が生じる。
この部分は充放電反応に関与しないから、非水電解液に
濡れている部分の電流密度は通常よりも高くなる。その
結果、充電時において、負極の炭素質材料の持つリチウ
ムドープ能力を超える場合が起き易くなるから、負極に
金属リチウムが析出してセパレータを貫通し正極まで到
達することによって内部短絡が発生してしまうと考えら
れる。
For example, if the amount of the non-aqueous electrolyte in the battery is small, a part of the electrode is not wetted by the non-aqueous electrolyte.
Since this portion does not participate in the charge / discharge reaction, the current density of the portion wet with the non-aqueous electrolyte becomes higher than usual. As a result, at the time of charging, the case where the lithium doping ability of the carbonaceous material of the negative electrode is likely to be exceeded is likely to occur, so that metal lithium is deposited on the negative electrode, penetrates through the separator, reaches the positive electrode, and an internal short circuit occurs. It is considered to be lost.

【0012】本発明の目的は、非水電解液二次電池が、
軽量であり、自己放電が少なく、高エネルギー密度を有
し、充放電サイクルが進行しても負極において充電時に
デントライト状の結晶があまり見られなくて内部短絡を
起こしにくいのに加えて、重負荷による使用にも耐える
ことができ、また、充放電サイクルの進行に伴う電池容
量の低下を少なくでき、しかも、正極に十分な量のリチ
ウムを含ませることができるとともに、電池の内部短絡
の発生をさらに良好に抑制し得るようにすることであ
る。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery,
Light weight, low self-discharge, high energy density, and even when the charge-discharge cycle proceeds, the dentrite-like crystals are not seen so much at the time of charging at the negative electrode. It can withstand use by load, can reduce the decrease in battery capacity due to the progress of charge / discharge cycles, can contain a sufficient amount of lithium in the positive electrode, and can cause internal short-circuit of the battery. Is more preferably suppressed.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
の本発明は、帯状の負極集電体の両面に塗布し形成され
た炭素質材料から主として構成される負極と帯状の正極
集電体の両面に塗布し形成された一般式LiMo2(た
だし、MはCo、Niの少なくとも一種を表す)で表さ
れる複合金属酸化物もしくはリチウムを含んだ層間化合
物から主として構成される正極とを帯状のセパレ−タを
介して巻回することによって構成された渦巻型の巻回電
極体と、リチウム塩を溶解させた非水電解液とをそれぞ
れ具備する非水電解液二次電池において、前記巻回電極
体の前記正極、前記負極および前記セパレータのそれぞ
れの幅が、 セパレータ幅>負極幅>正極幅 の関係にあり、前記巻回電極体がその中央に空隙部を有
しており、前記非水電解液量が電池の放電容量1mAh
当り2.5μl以上でかつ4.5μl以下、好ましくは
3.0μlを超えかつ4.5μl以下であることを特徴
とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a negative electrode mainly composed of a carbonaceous material applied to both sides of a negative electrode current collector and a positive electrode current collector. A positive electrode mainly composed of a composite metal oxide represented by the general formula LiMo 2 (where M represents at least one of Co and Ni) or an intercalation compound containing lithium, formed on both surfaces of In a non-aqueous electrolyte secondary battery comprising a spirally wound electrode body formed by winding through a separator and a non-aqueous electrolyte in which a lithium salt is dissolved, The width of each of the positive electrode, the negative electrode, and the separator of the spirally wound electrode body has a relationship of separator width> negative electrode width> positive electrode width, and the spirally wound electrode body has a void in the center thereof, Water electrolyte volume Battery discharge capacity 1mAh
It is characterized in that it is not less than 2.5 μl and not more than 4.5 μl, preferably more than 3.0 μl and not more than 4.5 μl.

【0014】前記非水電解液二次電池における負極活物
質担持体としての炭素質材料には、熱分解炭素類、コー
クス類(石油コークス、ピッチコークス、石炭コークス
など)、カーボンブラック(アセチレンブラックな
ど)、ガラス状炭素、有機高分子材料焼成体(有機高分
子材料を500℃以上の適当な温度で不活性ガス気流中
あるいは真空中で焼成したもの)、炭素繊維などが挙げ
られる。
The carbonaceous material as the negative electrode active material carrier in the nonaqueous electrolyte secondary battery includes pyrolytic carbons, cokes (such as petroleum coke, pitch coke, and coal coke), and carbon black (such as acetylene black). ), Glassy carbon, a fired organic polymer material (a fired organic polymer material at an appropriate temperature of 500 ° C. or higher in an inert gas stream or in a vacuum), carbon fibers, and the like.

【0015】好ましい炭素質材料は、(002)面の面
間隔(格子間隔)が3.70Å以上、真密度1.70g
/cm3未満でありかつ空気気流中における示差熱分析
で700℃以上に発熱ピークを有しないものである。こ
のような性質を有する炭素質材料によれば高容量の電池
が得られる。
A preferred carbonaceous material has a (002) plane spacing (lattice spacing) of 3.70 ° or more and a true density of 1.70 g.
/ Cm 3 and does not have an exothermic peak at 700 ° C. or more in differential thermal analysis in an air stream. According to the carbonaceous material having such properties, a high-capacity battery can be obtained.

【0016】以上のような好ましい炭素質材料として
は、有機材料を焼成などの方法により炭素化して得られ
る炭素質材料が挙げられる。この炭素化の出発原料とし
ては、フリフリルアルコールあるいはフルフラールのホ
モポリマー、コポリマーよりなるフラン樹脂が好適であ
る。具体的には、フルフラール+フェノール、フルフリ
ルアルコール+ジメチロール尿素、フルフリルアルコー
ル、フルフリルアルコール+ホルムアルデヒド、フルフ
リルアルコール+フルフラール、フルフラール+ケトン
類などよりなる重合体が、非常に良好な特性を示す。
As the preferable carbonaceous material as described above, a carbonaceous material obtained by carbonizing an organic material by a method such as firing is exemplified. As a starting material for the carbonization, a furan resin composed of a homopolymer or copolymer of furfuryl alcohol or furfural is preferable. Specifically, polymers composed of furfural + phenol, furfuryl alcohol + dimethylol urea, furfuryl alcohol, furfuryl alcohol + formaldehyde, furfuryl alcohol + furfural, furfural + ketones, etc. show very good properties. .

【0017】また、出発原料として水素/炭素原子比
0.6〜0.8の石油ピッチを用い、これに酸素を含む
官能基を導入し、いわゆる酸素架橋を施して酸素含有量
10〜20重量%の前駆体とした後に、この前駆体を焼
成して得られる炭素質材料も好適である。
Further, a petroleum pitch having a hydrogen / carbon atom ratio of 0.6 to 0.8 is used as a starting material, a functional group containing oxygen is introduced into the pitch, and a so-called oxygen cross-link is performed to obtain an oxygen content of 10 to 20% by weight. % Of a precursor, and then calcining the precursor to obtain a carbonaceous material.

【0018】また、前記フラン樹脂や石油ピッチなどを
炭素化する際に、リン化合物あるいはホウ素化合物を添
加することにより、リチウムに対するドープ量を大きな
ものとした炭素質材料も使用可能である。
When carbonizing the furan resin or petroleum pitch, it is possible to use a carbonaceous material in which the doping amount with respect to lithium is increased by adding a phosphorus compound or a boron compound.

【0019】また、正極活物質としては、十分な量のリ
チウムを含んだ材料を使用するのが好ましく、具体的に
は,一般式LiMO2(ただし、MはCo、Niの少な
くとも一種を表す)で表される複合金属酸化物や、リチ
ウムを含んだ層間化合物が使用される。特に、高電圧、
高エネルギー密度が得られ、サイクル特性にも優れるこ
とから、LiCoO2、LiCo0.8Ni0.2O2
望ましい。
As the positive electrode active material, it is preferable to use a material containing a sufficient amount of lithium. Specifically, a general formula LiMO 2 (where M represents at least one of Co and Ni) And an intercalation compound containing lithium. In particular, high voltage,
High energy density is obtained, since the excellent cycle characteristics, LiCoO 2, LiCo0.8Ni0.2O 2 is desirable.

【0020】また、非水電解液としては、リチウム塩を
電解質とし、これを非水溶媒(有機溶媒)に溶解した非
水電解液が用いられてよい。
As the non-aqueous electrolyte, a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in a non-aqueous solvent (organic solvent) may be used.

【0021】ここで、非水溶媒としては、特に限定され
るものではなく、各種の有機溶媒を用いることができ、
例えばプロピレンカーボネート、エチレンカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラ
ン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリルなどを単独でも
しくは二種類以上を混合して使用できる。
Here, the non-aqueous solvent is not particularly limited, and various organic solvents can be used.
For example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
3-Dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be used alone or in combination of two or more.

【0022】電解質も、従来より公知のリチウム塩がい
ずれも使用でき、例えば、LiCO4、LiAsF6、L
iPF6、LiBF4、LiB(C654、LiC 、L
iBr、CH3SO3Li、CF3SO3Liなどを使用で
きる。
As the electrolyte, any of conventionally known lithium salts can be used. For example, LiCO 4 , LiAsF 6 , L
iPF 6, LiBF 4, LiB ( C 6 H 5) 4, LiC, L
iBr, CH 3 SO 3 Li, CF 3 SO 3 Li, or the like can be used.

【0023】本発明によれば、巻回電極体の中央に空隙
部を設けるとともに、非水電解液二次電池内の非水電解
液量を放電容量1mAh当り2.5μl以上でかつ4.
5μl以下としたことにより、電極に過不足なく電解液
が行き渡る。また、巻回電極体の正極、負極およびセパ
レータのそれぞれの幅を、セパレータ幅>負極幅>正極
幅の関係にしたので、充電時に正極中のリチウムが負極
に回り込んで負極においてデンドライト状に結晶成長し
たり、また、このデンドライト状の結晶が正極に到達し
て内部短絡に至るのを効果的に防止することができる。
According to the present invention, a void is provided at the center of the spirally wound electrode body, and the amount of the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery is 2.5 μl or more per mAh of discharge capacity and 4.
By setting the volume to 5 μl or less, the electrolyte can be distributed to the electrodes without excess or shortage. In addition, since the width of each of the positive electrode, the negative electrode, and the separator of the spirally wound electrode body was set to have a relationship of separator width> negative electrode width> positive electrode width, lithium in the positive electrode wrapped around the negative electrode during charging and crystallized in a dendrite shape at the negative electrode. It is possible to effectively prevent the dendrite-like crystal from growing or reaching the positive electrode and causing an internal short circuit.

【0024】[0024]

【発明の実施の形態】以下において、本発明による実施
例について、図1〜図3を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIGS.

【0025】実施例1 図1は本実施例の非水電解液二次電池の概略的な縦断面
を示すものであるが、この電池を以下のようにして作製
した。
Example 1 FIG. 1 shows a schematic longitudinal section of a non-aqueous electrolyte secondary battery of this example . This battery was manufactured as follows.

【0026】まず、負極1はつぎのようにして作製し
た。出発原料としての石油ピッチに酸素を含む官能基を
10〜20重量%導入する酸素架橋をした後に、この酸
素架橋された前駆体を不活性ガスの気流中にて1000
℃で焼成することによって、ガラス状炭素に近い性質を
持った炭素質材料を得た。
First, the negative electrode 1 was manufactured as follows. After subjecting the petroleum pitch as a starting material to oxygen crosslinking in which 10 to 20% by weight of a functional group containing oxygen is introduced, this oxygen-crosslinked precursor is mixed in an inert gas stream at 1000
By firing at ℃, a carbonaceous material having properties close to glassy carbon was obtained.

【0027】この炭素質材料について、X線回折測定を
行った結果、(002)面の面間隔は3.76Åであ
り、また、ピクノメータ法により真比重を測定したとこ
ろ、1.58g/cm3であった。さらに、空気気流中
において示差熱分析を行ったところ、700℃以上に発
熱ピークを有していなかった。
As a result of X-ray diffraction measurement of this carbonaceous material, the (002) plane spacing was 3.76 °, and the true specific gravity was measured by a pycnometer method to be 1.58 g / cm 3. Met. Further, when a differential thermal analysis was performed in an air stream, it did not have an exothermic peak at 700 ° C. or higher.

【0028】この炭素質材料を粉砕して、平均粒径10
μmの炭素材料粉末とした。
This carbonaceous material is pulverized to an average particle size of 10
μm carbon material powder.

【0029】以上のようにして得た炭素質材料を負極活
物質担持体とし、この炭素質材料の粉末90重量部と結
着剤としてのポリフッ化ビニリデン(PVDF)10重
量部とを混合して、負極合剤を調製した。この負極合剤
を、溶剤であるN−メチル−2−ピロリドンに分散させ
て、スラリー(ペースト状)にした。
The carbonaceous material obtained as described above was used as a negative electrode active material carrier, and 90 parts by weight of the carbonaceous material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed. , To prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry (paste).

【0030】つぎに、この負極合剤スラリーを、厚さ1
0μmの帯状の銅箔である負極集電体9の両面に均一に
塗布して乾燥し、この乾燥後にローラプレス機により圧
縮成型して帯状の負極1を得た。
Next, this negative electrode mixture slurry was applied to a thickness of 1
The negative electrode current collector 9, which is a 0-μm band-shaped copper foil, was uniformly coated on both sides and dried. After the drying, compression molding was performed using a roller press to obtain a band-shaped negative electrode 1.

【0031】なお、成形後の負極合剤の膜厚は両面とも
に80μmで同一であり、帯状の負極1の幅は33.5
mm、長さは700mmとした。
The thickness of the negative electrode mixture after molding was the same at 80 μm on both sides, and the width of the strip-shaped negative electrode 1 was 33.5.
mm and the length were 700 mm.

【0032】つぎに、正極2はつぎのようにして作製し
た。炭酸リチウム0.5モルと炭酸コバルト1モルとを
混合して900℃の空気中で5時間焼成することによっ
て、LiCoO2を得た。
Next, the positive electrode 2 was produced as follows. LiCoO 2 was obtained by mixing 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate and calcining the mixture in air at 900 ° C. for 5 hours.

【0033】このLiCoO2を正極活物質とし、この
LiCoO291重量部に導電剤としてのグラファイト
6重量部と結着剤としてのポリフッ化ビニリデン3重量
部とを混合して、正極合剤とした。この正極合剤を、溶
剤N−メチルピロリドンに分散させて、スラリー(ペー
スト状)にした。
This LiCoO 2 was used as a positive electrode active material, and 91 parts by weight of LiCoO 2 was mixed with 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder to prepare a positive electrode mixture. . This positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste).

【0034】つぎに、この正極合剤スラリーを、厚さ2
0μmの帯状のアルミニウム箔である正極集電体10の
両面に均一に塗布して乾燥し、この乾燥後にローラプレ
ス機により圧縮成型して帯状の正極2を得た。
Next, this positive electrode mixture slurry was coated with a thickness of 2
The positive electrode current collector 10, which is a 0-μm band-shaped aluminum foil, was uniformly coated on both sides and dried. After the drying, compression molding was performed with a roller press to obtain a band-shaped positive electrode 2.

【0035】なお、成型後の合剤膜厚は両面ともに80
μmで同一であり、帯状の正極2の幅は31.5mm、
長さは650mmとした。
The mixture film thickness after molding is 80 on both sides.
μm, the width of the band-shaped positive electrode 2 is 31.5 mm,
The length was 650 mm.

【0036】以上のようにして作製した帯状の負極1
と、帯状の正極2と、厚さが25μmで幅が36mmの
微多孔性ポリプロピレンフィルムから成る一対の帯状の
セパレータ3a、3bとを用いて、負極1、セパレータ
3a、正極2、セパレータ3bの順に4層に積層させ
た。そして、この4層構造の積層電極体をその長さ方向
に沿って負極1を内側にして渦巻型に多数回巻回するこ
とによって、巻回電極体15を作製した。
The strip-shaped negative electrode 1 produced as described above
And a band-shaped positive electrode 2 and a pair of band-shaped separators 3a and 3b made of a microporous polypropylene film having a thickness of 25 μm and a width of 36 mm, and in the order of the negative electrode 1, the separator 3a, the positive electrode 2, and the separator 3b. It was laminated in four layers. Then, a spirally wound electrode body 15 was manufactured by spirally winding the four-layered laminated electrode body many times along the length direction with the negative electrode 1 inside.

【0037】この巻回電極体15の中心の中空部分の内
径は3.5mm、外径は19.7mmであった。なお、
図1から明らかなように、この中空部分には中空の巻芯
33が位置しているので、巻回電極体15はその中央に
巻芯33の中空孔から成りかつ上下に貫通している空隙
部37を有している。
The inner diameter of the hollow portion at the center of the wound electrode body 15 was 3.5 mm, and the outer diameter was 19.7 mm. In addition,
As is apparent from FIG. 1, since the hollow core 33 is located in this hollow portion, the spirally wound electrode body 15 is formed of a hollow hole of the core 33 at the center thereof, and a space penetrating vertically. It has a part 37.

【0038】上述のようにして作製した渦巻型の巻回電
極体15を、図1に示すように、ニッケルめっきを施し
た鉄製の電池缶5に収容した。
The spirally wound spirally wound electrode body 15 produced as described above was accommodated in a nickel-plated iron battery can 5 as shown in FIG.

【0039】また、負極1および正極2の集電をそれぞ
れ行うために、ニッケル製の負極リード11を予め負極
集電体9に取付け、これを負極1から導出して電池缶5
の底面に溶接した。また、アルミニウム製の正極リード
12を予め正極集電体10に取付け、これを正極2から
導出して金属製の安全弁34の突起部34aに溶接し
た。
In order to collect the current of the negative electrode 1 and the positive electrode 2 respectively, a negative electrode lead 11 made of nickel is attached to the negative electrode current collector 9 in advance, and this is led out of the negative electrode 1 to remove the battery can 5.
Welded to the bottom. Further, the positive electrode lead 12 made of aluminum was attached to the positive electrode current collector 10 in advance, and this was led out of the positive electrode 2 and welded to the projection 34a of the safety valve 34 made of metal.

【0040】その後に、電池缶5の中にプロピレンカー
ボネートと1,2−ジメトキシエタンとのなど容量混合
溶媒にリチウム塩のLiPF6を1モル/lの割合で溶
解した非水電解液を2.10ml注入して、巻回電極体
15に含浸させた。この場合、電池缶5の上方からこの
電池缶5の中に注入された非水電解液は、巻回電極体1
5の上端面だけでなく、この巻回電極体15の空隙部3
7を通して巻回電極体15の下面に至ってこの下端面か
らも(換言すれば、両端面から)巻回電極体15に含浸
した。
Thereafter, a non-aqueous electrolyte obtained by dissolving LiPF 6 as a lithium salt in a mixed solvent of a volume such as propylene carbonate and 1,2-dimethoxyethane at a ratio of 1 mol / l in a battery can 5 is used. 10 ml was injected, and the wound electrode body 15 was impregnated. In this case, the non-aqueous electrolyte injected into the battery can 5 from above the battery can 5 is a wound electrode body 1
5 as well as the gap 3 of the wound electrode body 15
7, the lower surface of the wound electrode body 15 was reached, and the wound electrode body 15 was impregnated also from this lower end surface (in other words, from both end surfaces).

【0041】この前後に、巻回電極体15の上端面およ
び下端面に対向するように、電池缶5内に円板状の絶縁
板4aおよび4bをそれぞれ配設した。
Before and after this, disk-shaped insulating plates 4a and 4b were disposed in the battery can 5 so as to face the upper end surface and the lower end surface of the wound electrode body 15, respectively.

【0042】この後に、電池缶5と、互いに外周が密着
している安全弁34および金属製の電池蓋7のそれぞれ
とを、表面にアスファルトを塗布した絶縁封口ガスケッ
ト6を介してかしめることによって、電池缶5を封口し
た。これにより、電池蓋7および安全弁34を固定する
とともに、電池缶5内の気密性を保持させた。このと
き、ガスケット6の図1における下端が絶縁板4aの外
周面と当接することによって、絶縁板4aが巻回電極体
15の上端面側と密着する。
Thereafter, the battery can 5 and each of the safety valve 34 and the metal battery cover 7 whose outer circumferences are in close contact with each other are caulked via the insulating sealing gasket 6 coated with asphalt on the surface. The battery can 5 was sealed. As a result, the battery lid 7 and the safety valve 34 were fixed, and the airtightness in the battery can 5 was maintained. At this time, the lower end of the gasket 6 in FIG. 1 comes into contact with the outer peripheral surface of the insulating plate 4a, so that the insulating plate 4a is in close contact with the upper end surface of the spirally wound electrode body 15.

【0043】以上のようにして、直径20mm、高さ4
2mmの円筒型非水電解液二次電池を作製した。この実
施例1の電池を、後掲の表1に示すように、便宜上電池
Bとする。
As described above, the diameter 20 mm and the height 4
A 2 mm cylindrical non-aqueous electrolyte secondary battery was produced. The battery of Example 1 is referred to as Battery B for convenience as shown in Table 1 below.

【0044】なお、上記円筒型非水電解液二次電池は、
二重の安全装置を構成するために、安全弁34と、スト
リッパ36と、これらの安全弁34とストリッパ36と
を一体にするための絶縁材料から成る中間嵌合体35と
を備えている。図示を省略するが、安全弁34にはこの
安全弁34が変形したときに開裂する開裂部が、また、
電池蓋7には孔がそれぞれ設けられている。
The above cylindrical non-aqueous electrolyte secondary battery is
In order to form a double safety device, a safety valve 34, a stripper 36, and an intermediate fitting body 35 made of an insulating material for integrating the safety valve 34 and the stripper 36 are provided. Although not shown in the drawings, the safety valve 34 has a cleavage portion that cleaves when the safety valve 34 is deformed.
The battery cover 7 is provided with holes.

【0045】万一、電池内圧が何らかの原因で上昇した
場合、安全弁34がその突起部34aを中心にして図1
の上方へ変形することによって、正極リード12と突起
部34aとの接続が断たれて電池電流を遮断するよう
に、あるいは、安全弁34の開裂部が開裂して電池内に
発生したガスを排気するように夫々構成されている。
If the internal pressure of the battery rises for some reason, the safety valve 34 is turned around the projection 34a as shown in FIG.
To disconnect the positive electrode lead 12 and the protruding portion 34a so as to cut off the battery current, or exhaust the gas generated in the battery due to the open portion of the safety valve 34 breaking open. Respectively.

【0046】また、上記円筒型非水電解液二次電池にお
いては、上述のように、帯状の負極1の幅は33.5m
m、帯状の正極2の幅は31.5mm、一対の帯状のセ
パレータ3a、3bの幅は36mmである。したがっ
て、帯状の負極1、帯状の正極2および帯状のセパレー
タ3a、3bの幅は、図1にも明示されているように、 セパレータ幅>負極幅>正極幅 の関係にある。このために、充電時に正極2中のリチウ
ムが負極1に回り込んで負極1においてデンドライト状
に結晶成長したり、また、このデンドライト状の結晶が
正極2に到達して内部短絡に至るのをさらに効果的に防
止することができるので、さらに良好な充放電サイクル
特性が得られる。
In the cylindrical non-aqueous electrolyte secondary battery, as described above, the width of the strip-shaped negative electrode 1 is 33.5 m.
m, the width of the band-shaped positive electrode 2 is 31.5 mm, and the width of the pair of band-shaped separators 3a, 3b is 36 mm. Therefore, the widths of the band-shaped negative electrode 1, the band-shaped positive electrode 2, and the band-shaped separators 3a and 3b have a relation of separator width> negative electrode width> positive electrode width, as clearly shown in FIG. For this reason, during charging, the lithium in the positive electrode 2 goes around the negative electrode 1 and grows in the negative electrode 1 in a dendrite-like crystal, and further, the dendrite-like crystal reaches the positive electrode 2 and causes an internal short circuit. Since it can be effectively prevented, better charge / discharge cycle characteristics can be obtained.

【0047】実施例2、3、4、5 実施例2〜5では、電池缶5内に注入する非水電解液を
それぞれ2.55ml、3.00ml、3.40ml、
3.80ml としたこと以外は実施例1と同様にし
て、直径20mm、高さ42mmの円筒型非水電解液二
次電池B、C、DおよびEをそれぞれ作製した。
Examples 2, 3, 4, 5 In Examples 2 to 5, the amount of the nonaqueous electrolyte injected into the battery can 5 was 2.55 ml, 3.00 ml, 3.40 ml, respectively.
Cylindrical nonaqueous electrolyte secondary batteries B, C, D and E having a diameter of 20 mm and a height of 42 mm were produced in the same manner as in Example 1 except that the amount was 3.80 ml.

【0048】つぎに、本発明の効果を確認するための比
較例として、次のような電池を作製した。
Next, as a comparative example for confirming the effect of the present invention, the following battery was manufactured.

【0049】比較例1、2 電池缶5内に注入する非水電解液をそれぞれ1.70m
lおよび4.25mlとしたこと以外は実施例1と同様
にして、直径20mm、高さ42mmの円筒型非水電解
液二次電池AおよびGをそれぞれ作製した。
Comparative Examples 1 and 2 The non-aqueous electrolyte solution injected into the battery can 5 was 1.70 m each.
In the same manner as in Example 1 except that the amounts were 1 and 4.25 ml, cylindrical nonaqueous electrolyte secondary batteries A and G having a diameter of 20 mm and a height of 42 mm were produced, respectively.

【0050】なお、上述の電池A〜Gの組立時の電池缶
5をかしめる工程において、電池Gの場合のみ電池蓋7
の上に非水電解液が溢れた。
In the step of caulking the battery can 5 at the time of assembling the batteries A to G, the battery cover 7 is used only for the battery G.
Non-aqueous electrolyte overflowed on the top.

【0051】以上の7種類の電池A〜Gについて、充電
上限電圧を4.1Vに設定し、1Aの定電流で2時間充
電した後に、7.5Ωの定負荷で終止電圧2.75Vま
で放電させる充放電サイクルを繰り返した。
With respect to the above seven types of batteries A to G, the upper limit charging voltage was set to 4.1 V, the battery was charged with a constant current of 1 A for 2 hours, and then discharged to a final voltage of 2.75 V with a constant load of 7.5 Ω. The charge / discharge cycle was repeated.

【0052】この充放電サイクルの10サイクル経過時
の放電容量(初期容量)と100サイクル経過時の放電
容量とを測定し、100サイクル経過時の容量と10サ
イクル経過時の容量との比を電池容量維持率とした。
The discharge capacity (initial capacity) after 10 cycles of this charge / discharge cycle and the discharge capacity after 100 cycles were measured, and the ratio of the capacity after 100 cycles to the capacity after 10 cycles was measured. The capacity retention rate was used.

【0053】下記の表1に初期容量および電池の初期容
量を850mAhとしたときの放電容量1mAh当りの
各電池A〜Gの非水電解液量をそれぞれ示す。
Table 1 below shows the amount of non-aqueous electrolyte of each of the batteries A to G per 1 mAh of discharge capacity when the initial capacity and the initial capacity of the battery are 850 mAh.

【0054】また、図2に放電容量1mAh当りの非水
電解液量と100サイクル経過時における電池容量維持
率との関係を示す。
FIG. 2 shows the relationship between the amount of nonaqueous electrolyte per 1 mAh of discharge capacity and the battery capacity retention rate after 100 cycles.

【0055】[0055]

【表1】 [Table 1]

【0056】図2から明らかなように、放電容量1mA
h当りの非水電解液量が4.5μl以下の電池A〜F
は、電池容量維持率が80%を超えてサイクル特性が良
く、さらに、放電容量1mAh当りの非水電解液量が
4.0μl以下の電池A〜Eは、電池容量維持率が85
%を超えておりより好ましい。
As is apparent from FIG. 2, the discharge capacity is 1 mA.
Batteries A to F having a nonaqueous electrolyte amount of 4.5 μl or less per hour
The batteries A to E having a battery capacity retention ratio exceeding 80% and having good cycle characteristics, and having a nonaqueous electrolyte amount of 4.0 μl or less per 1 mAh of discharge capacity have a battery capacity retention ratio of 85% or less.
% Is more preferable.

【0057】つぎに、上述の各電池A〜Gを各100個
ずつ作製して、充電時における内部短絡の発生率を調査
した。
Next, 100 batteries each of the above-described batteries A to G were manufactured, and the occurrence rate of an internal short circuit during charging was examined.

【0058】図3に各電池A〜Gについて放電容量1m
Ah当りの非水電解液量と内部短絡発生率との関係を示
す。
FIG. 3 shows a discharge capacity of 1 m for each of the batteries A to G.
4 shows the relationship between the amount of nonaqueous electrolyte per Ah and the rate of occurrence of internal short circuits.

【0059】図3から明らかなように、放電容量1mA
h当りの非水電解液量が2.5μl以上の電池B〜G
は、内部短絡発生率が低い。また、放電容量1mAh当
りの非水電解液量が3.0μlを超える電池D〜Gでは
内部短絡が全く発生していない。
As is apparent from FIG. 3, the discharge capacity is 1 mA.
B to G having a nonaqueous electrolyte amount of 2.5 μl or more per hour
Has a low internal short-circuit occurrence rate. In addition, in the batteries D to G in which the amount of the nonaqueous electrolyte per 1 mAh of discharge capacity exceeds 3.0 μl, no internal short circuit occurs.

【0060】以上のように、巻回電極体15の中央に空
隙部を設けるとともに、電池内の非水電解液が適度に多
く含まれるようにしたから、電極のほとんどの部分に非
水電解液が行き渡って非水電解液に濡れない部分が生じ
ることがなく、このために、電極の充放電密度が部分的
に高くなることはなく、この結果、充電時に負極におい
て金属リチウムが析出せずに内部短絡が発生しないもの
と考えられる。
As described above, the void is provided in the center of the wound electrode body 15 and the non-aqueous electrolyte in the battery is contained in a moderately large amount. Does not form a part that is not wetted by the non-aqueous electrolyte, and therefore, the charge / discharge density of the electrode does not partially increase, and as a result, metal lithium does not precipitate on the negative electrode during charging. It is considered that no internal short circuit occurs.

【0061】以上の図2および図3から、非水電解液二
次電池に注入する非水電解液量は、電池の放電容量1m
Ah当りの非水電解液量で2.5μl以上でかつ4.5
μl以下が好ましく、3.0μlを超えかつ4.0μl
以下がさらに好ましいことがわかる。
From the above FIGS. 2 and 3, the amount of the non-aqueous electrolyte injected into the non-aqueous electrolyte secondary battery was 1 m
The amount of non-aqueous electrolyte per Ah is 2.5 μl or more and 4.5
μl or less, preferably more than 3.0 μl and 4.0 μl
It can be seen that the following is more preferable.

【0062】なお、本実施例の電池は、渦巻型の巻回電
極体を用いた円筒型非水電解液二次電池であったが、本
発明はこれに限定されるものではなく、例えば、角筒型
などの非水電解液二次電池にも適用し得る。
Although the battery of this embodiment was a cylindrical nonaqueous electrolyte secondary battery using a spirally wound electrode body, the present invention is not limited to this. It can be applied to a non-aqueous electrolyte secondary battery such as a prismatic type.

【0063】[0063]

【発明の効果】本発明による非水電解液二次電池は、帯
状の負極集電体の両面に塗布し形成された炭素質材料か
ら主として構成される負極と帯状の正極集電体の両面に
塗布し形成されたリチウムを含む正極とを帯状のセパレ
ータを介して巻回することによって構成された渦巻型の
巻回電極体と、リチウム塩を溶解させた非水電解液とを
それぞれ具備している。したがって、軽量であり、自己
放電が少なく、エネルギー密度が大きく、また、充放電
サイクルが進行しても負極において充電時にデンドライ
ト状の結晶があまり見られなくて内部短絡を起こしにく
いために良好な充放電サイクル特性を示し、さらに、電
極面積が大きくとれるために重負荷による使用にも耐え
ることができる。
The non-aqueous electrolyte secondary battery according to the present invention has a negative electrode mainly composed of a carbonaceous material formed on both sides of a strip-shaped negative electrode current collector and both sides of a strip-shaped positive electrode current collector. A spiral-type wound electrode body constituted by winding a coated positive electrode containing lithium through a band-shaped separator, and a nonaqueous electrolyte in which a lithium salt is dissolved, respectively. I have. Therefore, it is light in weight, has a low self-discharge, has a high energy density, and has good dendrite-like crystals in the negative electrode during charging even when a charge-discharge cycle proceeds, so that an internal short circuit does not easily occur. It shows discharge cycle characteristics, and can withstand heavy load due to the large electrode area.

【0064】また、巻回電極体の中央に空隙部を設ける
とともに、非水電解液二次電池内の非水電解液量を放電
容量1mAh当り2.5μl以上でかつ4.5μl以下
としたから、非水電解液量が電池の放電容量1mAh当
り4.5μl以下と適度に少なくて多すぎることがな
く、このために、充放電サイクルの進行に伴う電池容量
の低下を少なくできるとともに、非水電解液量が電池の
放電容量1mAh当り2.5μl以上と適度に多くて少
なすぎることがなく、したがって、内部短絡の発生をさ
らに良好に抑制することができて、充放電サイクル特性
に非常に優れている。
A gap is provided at the center of the wound electrode body, and the amount of the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery is not less than 2.5 μl and not more than 4.5 μl per 1 mAh of discharge capacity. The amount of the non-aqueous electrolyte is 4.5 μl or less per 1 mAh of discharge capacity of the battery, which is appropriately small and not too large. Therefore, the decrease in the battery capacity due to the progress of the charge / discharge cycle can be reduced, and The amount of the electrolyte is 2.5 μl or more per 1 mAh of discharge capacity of the battery, which is moderately large and not too small. Therefore, the occurrence of an internal short circuit can be more favorably suppressed, and the charge / discharge cycle characteristics are extremely excellent. ing.

【0065】また、巻回電極体の正極、負極およびセパ
レータのそれぞれの幅を、 セパレータ幅>負極幅>正極幅 の関係にしたので、充電時に正極中のリチウムが負極に
回り込んで負極においてデンドライト状に結晶成長した
り、また、このデンドライト状の結晶が正極に到達して
内部短絡に至るのをさらに効果的に防止することがで
き、このために、さらに良好な充放電サイクル特性を示
す。
Further, since the width of each of the positive electrode, the negative electrode and the separator of the spirally wound electrode body was set to the relation of separator width> negative electrode width> positive electrode width, the lithium in the positive electrode wrapped around the negative electrode during charging and dendrite It is possible to more effectively prevent the dendrite-like crystals from reaching the positive electrode and causing an internal short circuit, thereby exhibiting better charge / discharge cycle characteristics.

【0066】また、正極は、一般式LiMO2 (ただ
し、MはCo、Niの少なくとも一種を表す)で表され
る複合金属酸化物もしくはリチウムを含んだ層間化合物
であるから、正極に十分な量のリチウムを含ませること
ができる。
The positive electrode is a composite metal oxide represented by the general formula LiMO 2 (where M represents at least one of Co and Ni) or an intercalation compound containing lithium. Of lithium.

【0067】さらに、請求項2の発明によれば、負極を
主として構成する炭素質材料として、(002)面の面
間隔が3.70Å以上、真密度1.70g/cm3 未満
でありかつ空気気流中における示差熱分析で700℃以
上に発熱ピークを有していないものを用いているので、
高容量の非水電解液二次電池を得ることができる。
Further, according to the second aspect of the present invention, the carbonaceous material mainly constituting the negative electrode has a (002) plane spacing of 3.70 ° or more, a true density of less than 1.70 g / cm 3 , and air Since a material that does not have an exothermic peak at 700 ° C. or more in differential thermal analysis in an airflow is used,
A high capacity non-aqueous electrolyte secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施例である円筒型非水電解液二
次電池の概略的な縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】本発明による実施例および比較例における7種
類の電池についての電池放電容量1mAh当りの非水電
解液量と電池容量維持率との関係を示す図である。
FIG. 2 is a graph showing the relationship between the amount of non-aqueous electrolyte per 1 mAh of battery discharge capacity and the battery capacity retention rate for seven types of batteries in Examples and Comparative Examples according to the present invention.

【図3】上記7種類の電池についての電池放電容量1m
Ah当りの非水電解液量と内部短絡発生率との関係を示
す図である。
FIG. 3 shows a battery discharge capacity of 1 m for the above seven types of batteries.
It is a figure which shows the relationship between the amount of non-aqueous electrolytes per Ah, and the internal short circuit occurrence rate.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3a セパレータ 3b セパレータ 9 負極集電体 10 正極集電体 15 巻回電極体 37 空隙部 Reference Signs List 1 negative electrode 2 positive electrode 3a separator 3b separator 9 negative electrode current collector 10 positive electrode current collector 15 wound electrode body 37 void

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】帯状の負極集電体の両面に塗布し形成され
た炭素質材料から主として構成される負極と帯状の正極
集電体の両面に塗布し形成された一般式LiMo2(た
だし、MはCo、Niの少なくとも一種を表す)で表さ
れる複合金属酸化物もしくはリチウムを含んだ層間化合
物から主として構成される正極とを帯状のセパレ−タを
介して巻回することによって構成された渦巻型の巻回電
極体と、 リチウム塩を溶解させた非水電解液とをそれぞれ具備す
る非水電解液二次電池において、 前記巻回電極体の前記正極、前記負極および前記セパレ
ータのそれぞれの幅が、セパレータ幅>負極幅>正極幅
の関係にあり、 前記巻回電極体がその中央に空隙部を有しており、 前記非水電解液量が電池の放電容量1mAh当り2.5
μl以上でかつ4.5μl以下であることを特徴とする
非水電解液二次電池。
1. A negative electrode composed mainly of a carbonaceous material formed on both sides of a strip-shaped negative electrode current collector and a general formula LiMo 2 formed on both sides of a strip-shaped positive electrode current collector (wherein M represents at least one of Co and Ni) and a positive electrode mainly composed of an intermetallic compound containing lithium or an intermetallic compound represented by lithium, which is wound through a belt-shaped separator. In a non-aqueous electrolyte secondary battery including a spiral wound electrode body and a non-aqueous electrolyte in which a lithium salt is dissolved, each of the positive electrode, the negative electrode, and the separator of the wound electrode body The width has a relationship of separator width> negative electrode width> positive electrode width, the wound electrode body has a void portion in the center thereof, and the amount of the non-aqueous electrolyte is 2.5 per 1 mAh of battery discharge capacity.
A non-aqueous electrolyte secondary battery having a volume of not less than μl and not more than 4.5 μl.
【請求項2】前記炭素質材料は、(002)面の面間隔
が3.70Å以上、真密度1.70g/cm3 未満であ
りかつ空気気流中における示差熱分析で700℃以上に
発熱ピークを有していないことを特徴とする請求項1記
載の非水電解液二次電池。
2. The carbonaceous material has a (002) plane spacing of 3.70 ° or more, a true density of less than 1.70 g / cm 3 , and an exothermic peak of 700 ° C. or more in differential thermal analysis in an air stream. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is not provided.
JP2001020302A 2001-01-29 2001-01-29 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3501365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020302A JP3501365B2 (en) 2001-01-29 2001-01-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020302A JP3501365B2 (en) 2001-01-29 2001-01-29 Non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2333698A Division JPH04206364A (en) 1990-11-30 1990-11-30 Nonaqueous electrolytic secondary battery

Publications (2)

Publication Number Publication Date
JP2001229980A true JP2001229980A (en) 2001-08-24
JP3501365B2 JP3501365B2 (en) 2004-03-02

Family

ID=18886028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020302A Expired - Lifetime JP3501365B2 (en) 2001-01-29 2001-01-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3501365B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell
WO2014132660A1 (en) 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
WO2015064051A1 (en) 2013-10-31 2015-05-07 Sony Corporation Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US20200365891A1 (en) * 2017-10-30 2020-11-19 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell
WO2014132660A1 (en) 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
CN104904058A (en) * 2013-03-01 2015-09-09 松下知识产权经营株式会社 Lithium ion secondary battery
US9666903B2 (en) 2013-03-01 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Lithium ion secondary battery
WO2015064051A1 (en) 2013-10-31 2015-05-07 Sony Corporation Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
KR20160081899A (en) 2013-10-31 2016-07-08 소니 주식회사 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US20200365891A1 (en) * 2017-10-30 2020-11-19 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary cell
US11616228B2 (en) * 2017-10-30 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP3501365B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US9017875B2 (en) Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP3019421B2 (en) Non-aqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP2004103476A (en) Nonaqueous electrolyte battery
JP2004103475A (en) Battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2012014993A (en) Nonaqueous electrolyte secondary battery
JP3709628B2 (en) Non-aqueous electrolyte secondary battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2006134758A (en) Secondary battery
JP2004335439A (en) Nonaqueous electrolyte secondary battery
JP3552377B2 (en) Rechargeable battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JP3544142B2 (en) Lithium ion secondary battery
JPH04249860A (en) Nonaqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

EXPY Cancellation because of completion of term