JPH04249860A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04249860A
JPH04249860A JP2416915A JP41691590A JPH04249860A JP H04249860 A JPH04249860 A JP H04249860A JP 2416915 A JP2416915 A JP 2416915A JP 41691590 A JP41691590 A JP 41691590A JP H04249860 A JPH04249860 A JP H04249860A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode mixture
battery
weight
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2416915A
Other languages
Japanese (ja)
Inventor
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2416915A priority Critical patent/JPH04249860A/en
Publication of JPH04249860A publication Critical patent/JPH04249860A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery able to prevent the occurrence of separation and a crack in a negative electrode mixture layer and having high capacity and an excellent charge and discharge cycle characteristic. CONSTITUTION:In a nonaqueous electrolyte secondary battery, polyvinyliden fluoride (PVDF) is used as a binding agent in a negative electrode mixture layer 1a composed of a carbon material and the binding agent, and also a negative electrode 1 is provided in which a content of the binding agent in a negative electrode mixture is 5-20wt.%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、負極物質担持体として
の炭素材料と結着剤とを少なくとも含む負極合剤層を備
える負極と、正極と、非水電解質とを具備する非水電解
質二次電池に関し、特に結着剤に関するものである。
[Industrial Application Field] The present invention relates to a nonaqueous electrolyte diode comprising a negative electrode comprising a negative electrode mixture layer containing at least a carbon material and a binder as a negative electrode material carrier, a positive electrode, and a nonaqueous electrolyte. This invention relates to secondary batteries, and particularly to binders.

【0002】0002

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても益々小型・軽
量かつ高エネルギー密度のものが求められている。
2. Description of the Related Art The remarkable progress in electronic technology in recent years has led to successive reductions in the size and weight of electronic devices. Along with this, there is an increasing demand for batteries as mobile power sources to be smaller, lighter, and have higher energy density.

【0003】従来、一般用途の二次電池としては鉛電池
、ニッケル・カドミウム電池等の水溶液系電池が主流で
あった。これらの電池はサイクル特性は優れるが、電池
重量やエネルギー密度の点では十分満足できる特性とは
言えない。
Conventionally, aqueous batteries such as lead batteries and nickel-cadmium batteries have been mainstream as secondary batteries for general use. Although these batteries have excellent cycle characteristics, they cannot be said to have fully satisfactory characteristics in terms of battery weight and energy density.

【0004】最近、二次電池として、電池重量やエネル
ギー密度の点で不十分である鉛電池やニッケル・カドミ
ウム電池に替わって、リチウムあるいはリチウム合金を
負極に用いた非水電解液二次電池の研究・開発が盛んに
行われている。
Recently, non-aqueous electrolyte secondary batteries using lithium or lithium alloys as negative electrodes have been introduced as secondary batteries to replace lead batteries and nickel-cadmium batteries, which are insufficient in terms of battery weight and energy density. Research and development is actively underway.

【0005】この電池は高エネルギー密度を有し、自己
放電も少なく、軽量であるという優れた特徴を有してい
る。しかし、この電池では、充放電サイクルの進行に伴
い、負極において充電時にリチウムがデンドライト状に
結晶成長し、このデンドライト状の結晶が正極に到達し
て内部短絡に至る可能性が高いという欠点があり、実用
化への大きな障害となっていた。
[0005] This battery has excellent features such as high energy density, low self-discharge, and light weight. However, with this battery, as the charge/discharge cycle progresses, lithium crystals grow in the form of dendrites at the negative electrode during charging, and there is a high possibility that these dendrite-like crystals may reach the positive electrode and lead to an internal short circuit. , which was a major obstacle to practical application.

【0006】これに対し、負極に負極活物質担持体とし
ての炭素材料を使用した非水電解液二次電池によれば、
化学的、物理的方法によって予め負極の炭素材料に担持
させたリチウム及び正極活物質の結晶構造中に含有させ
たリチウム及び電解液中に溶解したリチウムのそれぞれ
が、充放電時に負極において炭素層間へドープされかつ
炭素層間から脱ドープされる。このため、充放電サイク
ルが進行しても負極において充電時にデンドライト状の
結晶の析出は見られずに内部短絡を起こしにくく、良好
な充放電サイクル特性を示す。また、エネルギー密度も
高くかつ軽量であることから、実用化に向けて開発が進
んでいる。
On the other hand, according to a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode active material carrier for the negative electrode,
Lithium previously supported on the carbon material of the negative electrode by chemical or physical methods, lithium contained in the crystal structure of the positive electrode active material, and lithium dissolved in the electrolyte move between the carbon layers in the negative electrode during charging and discharging. Doped and dedoped from between the carbon layers. Therefore, even as the charge/discharge cycle progresses, no dendrite-like crystals are deposited on the negative electrode during charging, making it difficult to cause internal short circuits and exhibiting good charge/discharge cycle characteristics. Furthermore, since it has a high energy density and is lightweight, development is progressing toward practical application.

【0007】上述のような非水電解液二次電池の用途と
しては、ビデオ・カメラやラップ・トップ・パソコンな
どがある。このような電子機器は比較的消費電流が大き
いものが多いため、電池は重負荷に耐えられることが必
要である。
[0007] Applications of the above-mentioned nonaqueous electrolyte secondary battery include video cameras, laptop computers, and the like. Since many of these electronic devices have relatively large current consumption, the batteries need to be able to withstand heavy loads.

【0008】従って、電池構造として、帯状の正極と帯
状の負極とを帯状のセパレータを介してその長さ方向に
巻回することによって構成される渦巻式の巻回電極体構
造が有効である。この巻回電極体構造の電池によれば、
電極面積が大きくとれるために重負荷による使用にも耐
えることができる。
[0008] Therefore, as a battery structure, a spirally wound electrode body structure constituted by winding a strip-shaped positive electrode and a strip-shaped negative electrode in the longitudinal direction with a strip-shaped separator interposed therebetween is effective. According to the battery with this wound electrode body structure,
Since the electrode area is large, it can withstand use under heavy loads.

【0009】上述のような巻回電極体では、電極面積を
大きくしかつ活物質又は活物質担持体を限られた空間内
にできるだけ多く充填するために、電極を薄くすること
が望ましい。そのため帯状の電極の製造方法としては、
ペースト (スラリー) を用いる方法が望ましい。こ
の方法は結着剤及び活物質 (又は活物質担持体) 等
を混合した電極含剤を溶剤に分散させることによって得
られた電極合剤スラリーを、電極集電体に塗布し、その
後乾燥させて、電極集電体に電極合剤層を形成するよう
にしたものである。この方法によれば、帯状の電極にお
ける電極合剤層は数μm〜数百μm程度の厚さにするこ
とが可能となる。
In the above-described wound electrode body, it is desirable to make the electrode thin in order to increase the electrode area and to fill as much active material or active material support into a limited space as possible. Therefore, the method for manufacturing the strip-shaped electrode is as follows.
A method using paste (slurry) is preferable. In this method, an electrode mixture slurry obtained by dispersing an electrode material containing a binder, an active material (or an active material support), etc. in a solvent is applied to an electrode current collector, and then dried. Accordingly, an electrode mixture layer is formed on the electrode current collector. According to this method, the electrode mixture layer in the strip-shaped electrode can have a thickness of about several μm to several hundred μm.

【0010】電極集電体としては従来まで網状のエキス
パンドメダルや穴が多数形成されているパンチングメダ
ルがよく使用されていたが、これらの電極集電体は上述
のように重負荷特性を得るために電極を薄くする等には
不向きである。従って、上述のように電極集電体として
金属箔を用いかつこの金属箔はできるだけ薄いことが好
ましい。
[0010] Up until now, net-like expanded medals and punched medals with many holes have been often used as electrode current collectors, but these electrode current collectors have heavy load characteristics as described above. It is not suitable for making electrodes thinner. Therefore, as mentioned above, it is preferable to use metal foil as the electrode current collector and to make this metal foil as thin as possible.

【0011】[0011]

【発明が解決しようとする課題】ところが、上述のよう
な金属箔はその表面が平滑なために、上述のように負極
合剤スラリーを負極集電体としての金属箔に塗布して形
成される負極合剤層は、電池の製造中や使用中に金属箔
から剥離したりクラックが生じ易いなどの問題点を有し
ていた。特に、電極を巻回して巻回電極体を作製する際
に上述の剥離が生じ易い。
[Problems to be Solved by the Invention] However, since the metal foil as described above has a smooth surface, it is formed by applying a negative electrode mixture slurry to the metal foil as a negative electrode current collector as described above. The negative electrode mixture layer has had problems such as being easily peeled off from the metal foil and cracking during battery manufacture and use. In particular, the above-mentioned peeling is likely to occur when winding the electrode to produce a wound electrode body.

【0012】本発明の目的は、負極における負極合剤層
にクラックや剥離などが生じないようにした非水電解質
二次電池を提供することである。
[0012] An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the negative electrode mixture layer in the negative electrode is free from cracking or peeling.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、負極活物質担持体としての炭素材料と接
着剤とを少なくとも含む負極合剤層1aを備える負極1
と、正極2と、非水電解質とを具備する非水電解質二次
電池において、前記結着剤はポリフッ化ビニリデンであ
るとともに、前記負極合剤における前記結着剤の含有量
は5重量%以上でかつ20重量%以下であることを特徴
とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a negative electrode 1 comprising a negative electrode mixture layer 1a containing at least a carbon material as a negative electrode active material carrier and an adhesive.
In the nonaqueous electrolyte secondary battery comprising a positive electrode 2 and a nonaqueous electrolyte, the binder is polyvinylidene fluoride, and the content of the binder in the negative electrode mixture is 5% by weight or more. and 20% by weight or less.

【0014】前記負極合剤層を構成する上で、ポリフッ
化ビニリデンは好適な結着剤である。これは、ポリフッ
化ビニリデンの融点が他の結着剤に較べて比較的高いた
め、高温においても安定であり、また、ポリフッ化ビニ
リデンは溶剤に溶解し易いため均一に負極合剤において
混合され得て比較的少量の添加で効果を得られるからで
ある。
Polyvinylidene fluoride is a suitable binder for forming the negative electrode mixture layer. This is because the melting point of polyvinylidene fluoride is relatively high compared to other binders, so it is stable even at high temperatures, and because polyvinylidene fluoride is easily dissolved in solvents, it can be uniformly mixed in the negative electrode mixture. This is because the effect can be obtained by adding a relatively small amount.

【0015】前記負極合剤層が、炭素材料と結着剤とか
ら成る負極合剤を溶剤に溶解した負極合剤スラリーから
つくられる場合、前記負極合剤における前記結着剤の含
有量とは、この溶剤を乾燥して除去した後における負極
合剤中の結着剤の成分量(重量%)である。
[0015] When the negative electrode mixture layer is made from a negative electrode mixture slurry in which a negative electrode mixture consisting of a carbon material and a binder is dissolved in a solvent, the content of the binder in the negative electrode mixture is , is the component amount (% by weight) of the binder in the negative electrode mixture after drying and removing the solvent.

【0016】前記負極では、リチウム等のアルカリ金属
をドープしかつ脱ドープし得る負極活物質担持体として
の炭素材料を用いるが、炭素材料として例えばピッチコ
ークス、ニードルコースク等のコークス類、ポリマー類
、カーボン・ファイバー、黒鉛材料等を挙げることがで
きる。特に、このような炭素材料としては、(002)
面の面間隔(格子間隔)が3.70Å以上、真密度1.
70g/cm3 未満でありかつ空気気流中における示
差熱分析で700℃以上に発熱ピークを有していない炭
素質材料が好ましい。このような炭素質材料は負極材料
として非常に良好な特性を有するから、高容量な電池が
得られる。
[0016] In the negative electrode, a carbon material is used as a negative electrode active material carrier that can be doped with an alkali metal such as lithium and dedoped. Examples of the carbon material include cokes such as pitch coke and needle coke, and polymers. , carbon fiber, graphite materials, etc. In particular, such carbon materials include (002)
The interplanar spacing (lattice spacing) of the planes is 3.70 Å or more, and the true density is 1.
It is preferable to use a carbonaceous material which has an exothermic peak of less than 70 g/cm 3 and does not have an exothermic peak at 700° C. or higher in differential thermal analysis in an air stream. Since such a carbonaceous material has very good properties as a negative electrode material, a high capacity battery can be obtained.

【0017】前記炭素質材料は、例えば有機材料を例え
ば700〜1500℃程度の温度で焼成等の方法によっ
て炭素化して製造することができる。なお、炭素材料は
、通常、炭素質材料と黒鉛質材料とに大別できていずれ
も使用可能であるが、上述のような炭素質材料が好まし
い。
[0017] The carbonaceous material can be produced, for example, by carbonizing an organic material by a method such as firing at a temperature of about 700 to 1500°C. Note that carbon materials can generally be broadly classified into carbonaceous materials and graphite materials, and either of them can be used, but the above-mentioned carbonaceous materials are preferable.

【0018】この炭素質材料の出発原料としては、フリ
フリルアルコールあるいはフリフラールのホモポリマー
、コポリマーよりなるフラン樹脂が好適である。具体的
なフラン樹脂としては、フルフラール+フェノール、フ
ルフリルアルコール+ジメチロール尿素、フルフリルア
ルコール、フルフリルアルコール+ホルムアルデヒド、
フルフリルアルコール+フルフラール、フルフラール+
ケトン類等よりなる重合体が挙げられる。このようなフ
ラン樹脂を焼成することによって、上述のような性質を
持つ炭素質材料を得ることができる。
As a starting material for this carbonaceous material, a furan resin made of furifuryl alcohol or a homopolymer or copolymer of furfural is suitable. Specific furan resins include furfural + phenol, furfuryl alcohol + dimethylol urea, furfuryl alcohol, furfuryl alcohol + formaldehyde,
furfuryl alcohol + furfural, furfural +
Examples include polymers made of ketones and the like. By firing such a furan resin, a carbonaceous material having the above properties can be obtained.

【0019】また、出発原料として水素/炭素原子比0
.6〜0.8の石油ピッチを用い、これに酸素を含む官
能基を導入するための酸素架橋を施すことによって酸素
含有量10〜20重量%の前駆体を得た後、この前駆体
を焼成して得られる炭素質材料も上述のような性質を持
ち好適である。
[0019] Also, as a starting material, a hydrogen/carbon atomic ratio of 0
.. After obtaining a precursor with an oxygen content of 10 to 20% by weight by using petroleum pitch of 6 to 0.8 and subjecting it to oxygen crosslinking to introduce an oxygen-containing functional group, this precursor is fired. The carbonaceous material obtained by this method also has the above-mentioned properties and is suitable.

【0020】また、前記フラン樹脂や前記石油ピッチを
炭素化する際に、リン化合物、あるいはホウ素化合物を
添加することによって、リチウムに対するドープ量の大
きい炭素質材料を得ることができて好ましい。
It is also preferable to add a phosphorus compound or a boron compound when carbonizing the furan resin or the petroleum pitch, since it is possible to obtain a carbonaceous material with a large amount of lithium doped.

【0021】また、前記正極における正極活物質として
は、二酸化マンガンや五酸化バナジウムのような遷移金
属酸化物、硫化鉄や硫化チタンのような遷移金属カルコ
ゲン化物、又はこれらとリチウムとの複合化合物、例え
ば一般式LiMO2 (ただしMはCo、Niの少なく
とも一種を表す)で表される複合金属酸化物などを用い
ることができる。特に、高電圧、高エネルギー密度が得
られ、サイクル特性にも優れることから、LiCoO2
 、LiCo0.8 Ni0.2 O2 などのリチウ
ム・コバルト複合酸化物、リチウム・コバルト・ニッケ
ル複合酸化物が好ましい。
The positive electrode active material in the positive electrode may be a transition metal oxide such as manganese dioxide or vanadium pentoxide, a transition metal chalcogenide such as iron sulfide or titanium sulfide, or a composite compound of these and lithium. For example, a composite metal oxide represented by the general formula LiMO2 (where M represents at least one of Co and Ni) can be used. In particular, LiCoO2 can obtain high voltage, high energy density, and has excellent cycle characteristics.
, LiCo0.8 Ni0.2 O2 and other lithium-cobalt composite oxides and lithium-cobalt-nickel composite oxides are preferred.

【0022】また、前記非水電解質としては、例えば電
解質(リチウム塩)を非水溶媒(有機溶媒)に溶解した
非水電解液を用いることができる。
[0022] As the non-aqueous electrolyte, for example, a non-aqueous electrolyte in which an electrolyte (lithium salt) is dissolved in a non-aqueous solvent (organic solvent) can be used.

【0023】ここで有機溶媒としては、特に限定される
ものではないが、例えばプロピレンカーボネート、エチ
レンカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、γ−ブチロラクトン、テトラヒド
ロフラン、1,3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル等を
単独であるいは二種類以上を混合して使用できる。
[0023] The organic solvent here is not particularly limited, but includes, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-dimethoxyethane, etc.
-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
-Dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. can be used alone or in combination of two or more.

【0024】また、有機溶剤に溶解させる電解質も従来
より公知のものがいずれも使用でき、LiClO4 、
LiAsF6 、LiPF6 、LiBF4 、LiB
(C6 H5 )4 、LiCl、LiBr、CH3 
SO3 Li、CF3 SO3 Li等がある。
[0024] Furthermore, any conventionally known electrolyte can be used as the electrolyte to be dissolved in the organic solvent, such as LiClO4,
LiAsF6, LiPF6, LiBF4, LiB
(C6 H5)4, LiCl, LiBr, CH3
There are SO3 Li, CF3 SO3 Li, etc.

【0025】また、前記非水電解質は固体であってもよ
く、例えば高分子錯体固体電解質などがある。
[0025] Furthermore, the non-aqueous electrolyte may be solid, such as a polymer complex solid electrolyte.

【0026】[0026]

【作用】ポリフッ化ビニリデンは、結着剤としてすくれ
た性質を有し、かつ負極合剤において適切な量だけ含有
されるから、負極において負極合剤層に剥離やクラック
が生じにくくなる。
[Function] Since polyvinylidene fluoride has properties as a binder and is contained in an appropriate amount in the negative electrode mixture, peeling and cracking of the negative electrode mixture layer in the negative electrode is less likely to occur.

【0027】[0027]

【実施例】以下に、本発明における結着剤の適切な含有
量を決定するための実験例及び本発明による実施例を図
1及び図2を参照しながら説明する。なお、図1は本実
施例の非水電解質二次電池の概略的な縦断面図であり、
図2はこの電池に用いることのできる帯状の負極の斜視
図である。
EXAMPLES Experimental examples for determining the appropriate content of the binder in the present invention and examples according to the present invention will be described below with reference to FIGS. 1 and 2. Note that FIG. 1 is a schematic longitudinal cross-sectional view of the non-aqueous electrolyte secondary battery of this example,
FIG. 2 is a perspective view of a strip-shaped negative electrode that can be used in this battery.

【0028】実験例1 図2に示すような負極1を実験のために次のようにして
作製した。出発原料としての石油ピッチに酸素を含む官
能基を10〜20重量%導入する酸素架橋をした後、こ
の酸素架橋された前駆体を不活性ガスの気流中にて10
00℃で焼成することによって、ガラス状炭素に近い性
質を持った炭素質材料を得た。
Experimental Example 1 A negative electrode 1 as shown in FIG. 2 was prepared for an experiment in the following manner. After carrying out oxygen crosslinking to introduce 10 to 20% by weight of oxygen-containing functional groups into petroleum pitch as a starting material, this oxygen-crosslinked precursor was heated in an inert gas stream for 10% by weight.
By firing at 00°C, a carbonaceous material with properties similar to glassy carbon was obtained.

【0029】なお、この炭素質材料について、X線回折
測定を行った結果、(002)面の面間隔は3.76Å
であり、また、ピクノメータ法により真比重を測定した
ところ1.58g/cm3 であった。また、空気気流
中において示差熱分析を行ったところ700℃以上に発
熱ピークを有していなかった。この炭素質材料を粉砕し
、平均粒径10μmの炭素質材料粉末とした。
[0029] As a result of X-ray diffraction measurement of this carbonaceous material, the spacing of the (002) plane was 3.76 Å.
Moreover, when the true specific gravity was measured by the pycnometer method, it was 1.58 g/cm3. Further, when differential thermal analysis was performed in an air stream, it was found that there was no exothermic peak above 700°C. This carbonaceous material was pulverized to obtain carbonaceous material powder with an average particle size of 10 μm.

【0030】以上のようにして得た炭素質材料の粉末9
7重量部と結着剤としてのポリフッ化ビニリデン(PV
DF)3重量部とを混合し、負極合剤を調製した。この
負極合剤を、この負極合剤の重量と同重量の溶剤(N−
メチル−2−ピロリドンを使用)に分散させてスラリー
(ペースト状)した。
Carbonaceous material powder 9 obtained as above
7 parts by weight and polyvinylidene fluoride (PV) as a binder.
DF) was mixed with 3 parts by weight to prepare a negative electrode mixture. This negative electrode mixture was mixed with a solvent (N-
(using methyl-2-pyrrolidone) to form a slurry (paste).

【0031】次に、この負極合剤スラリーを厚さ10μ
mの帯状の銅箔である負極集電体9の片面に均一に塗布
してから、負極合剤スラリー中の溶剤を乾燥しこの乾燥
後にローラプレス機により圧縮成型して図2に示すよう
に負極集電体9の片面に負極合剤層1a(図2の実線部
分)を有する帯状の負極1を得た。
Next, this negative electrode mixture slurry was applied to a thickness of 10 μm.
After applying it uniformly to one side of the negative electrode current collector 9, which is a strip-shaped copper foil of m, the solvent in the negative electrode mixture slurry is dried, and after this drying, compression molding is performed using a roller press machine, as shown in FIG. A strip-shaped negative electrode 1 having a negative electrode mixture layer 1a (solid line portion in FIG. 2) on one side of a negative electrode current collector 9 was obtained.

【0032】なお、成形後の負極合剤層1aの膜厚は8
0μmであり、帯状の負極1の幅は41.5mm、長さ
は280mmとした。
Note that the film thickness of the negative electrode mixture layer 1a after molding is 8.
The strip-shaped negative electrode 1 had a width of 41.5 mm and a length of 280 mm.

【0033】実験例2,3,4,5,及び6上述の実験
例1における負極合剤において、下記表1に示すように
、炭素質材料をそれぞれ95、90、85、80、75
重量部としかつポリフッ化ビニリデン(PVDF)をそ
れぞれ5、10、15、20、25重量部としたこと以
外は、上記実験例1と同様にして図2に示すような帯状
の負極1を5種類作製した。
Experimental Examples 2, 3, 4, 5, and 6 In the negative electrode mixture in Experimental Example 1 described above, as shown in Table 1 below, carbonaceous materials were used at 95%, 90%, 85%, 80%, and 75%, respectively.
Five types of strip-shaped negative electrodes 1 as shown in FIG. Created.

【0034】以上の実験例1〜6において得た6種類の
帯状の負極1について、負極合剤層1aの負極集電体9
に対する密着性を調査するために、次のような折り曲げ
試験を行った。すなわち、負極集電体9の金属箔が内側
に負極合剤層1aが外側になるように帯状の負極1を長
さ方向に180度折り曲げて完全に二つ折りの状態にし
た。この折り曲げ部分の負極合剤層1aを観察しクラッ
ク及び剥離の状態を調べた。この結果及び、各実験例で
得た負極を実際に用いることができるかどうかの実用性
の可否を下記表1に示す。
Regarding the six types of strip-shaped negative electrodes 1 obtained in Experimental Examples 1 to 6 above, the negative electrode current collector 9 of the negative electrode mixture layer 1a
In order to investigate the adhesion to the film, the following bending test was conducted. That is, the strip-shaped negative electrode 1 was bent 180 degrees in the length direction so that the metal foil of the negative electrode current collector 9 was on the inside and the negative electrode mixture layer 1a was on the outside, so that it was completely folded in half. The negative electrode mixture layer 1a at this bent portion was observed to check for cracks and peeling. The results and the practicality of whether the negative electrodes obtained in each experimental example can actually be used are shown in Table 1 below.

【0035】[0035]

【表1】[Table 1]

【0036】上記表1に示すように、溶剤を乾燥させた
後の負極合剤中の結着剤(PVDF)の含有量が5〜2
0重量%の範囲内にあると、負極集電体9から負極合剤
層1aが剥離せずかつクラックが生じないことがわかっ
た。
As shown in Table 1 above, the content of the binder (PVDF) in the negative electrode mixture after drying the solvent is 5 to 2.
It was found that within the range of 0% by weight, the negative electrode mixture layer 1a would not peel off from the negative electrode current collector 9 and no cracks would occur.

【0037】また、結着剤の含有量が3重量%の場合に
負極合剤層1aに剥離が見られたがこれは結着剤が少な
くて結着剤の効果が不十分であるためと考えられ、また
25重量%の場合にはクラックが見られたが、これは結
着剤が多すぎて負極合剤層1aの延性が低下したためと
考えられる。
[0037] Also, when the content of the binder was 3% by weight, peeling was observed in the negative electrode mixture layer 1a, but this was probably due to the lack of binder and the insufficient effect of the binder. In addition, cracks were observed in the case of 25% by weight, but this is thought to be because too much binder was present and the ductility of the negative electrode mixture layer 1a decreased.

【0038】実施例1 図1に示す非水電解質二次電池を次のようにして作製し
た。
Example 1 The non-aqueous electrolyte secondary battery shown in FIG. 1 was manufactured as follows.

【0039】まず、負極1を次のようにして作製した。 上述の実験例2における負極合剤(炭素質材料を95重
量%、PVDFを5重量%含有)を用いて、上述の実験
例1と同様にして得られた負極合剤スラリーを銅製の負
極集電体9の両面に塗布してから、負極合剤スラリー中
の溶剤を乾燥し、乾燥後にローラプレス機により圧縮成
型して図2に示すように、負極集電体9の両面に負極合
剤層1a(図2の実線及び破線で示す部分)を有する帯
状の負極1を得た。なお、負極合剤層1aの膜厚は両面
共に80mmであり、負極1の幅は41.5mm、長さ
は280mmとした。
First, the negative electrode 1 was produced as follows. Using the negative electrode mixture (containing 95% by weight of carbonaceous material and 5% by weight of PVDF) in Experimental Example 2 described above, a negative electrode mixture slurry obtained in the same manner as in Experimental Example 1 described above was made into a copper negative electrode assembly. After coating both sides of the current collector 9, the solvent in the negative electrode mixture slurry is dried, and after drying, compression molding is performed using a roller press machine to apply the negative electrode mixture to both sides of the negative electrode current collector 9, as shown in FIG. A strip-shaped negative electrode 1 having a layer 1a (portions indicated by solid lines and broken lines in FIG. 2) was obtained. The thickness of the negative electrode mixture layer 1a was 80 mm on both sides, and the width of the negative electrode 1 was 41.5 mm, and the length was 280 mm.

【0040】なお、負極集電体には、銅以外にステンレ
ス銅、ニッケル、チタン等の金属箔を用いることができ
る。
[0040] In addition to copper, metal foils such as stainless steel copper, nickel, and titanium can be used for the negative electrode current collector.

【0041】次に、正極2を次のようにして作製した。 炭素リチウム0.5モルと炭素コバルト1モルとを混合
して900℃の空気中で5時間焼成することによって、
LiCoO2 を得た。
Next, the positive electrode 2 was produced as follows. By mixing 0.5 mole of lithium carbon and 1 mole of cobalt carbon and baking the mixture in air at 900°C for 5 hours,
LiCoO2 was obtained.

【0042】このLiCoO2 を正極活物質とし、こ
のLiCoO2 91重量部に導電剤としてのグラファ
イト6重量部と結着剤としてのポリフッ化ビニリデン3
重量部とを混合して、正極合剤を調製した。この正極合
剤をこの正極合剤と同重量の溶剤(N−メチル−2−ピ
ロリドンを使用)に分散させてスラリー(ペースト状)
にした。
This LiCoO2 is used as a positive electrode active material, and 91 parts by weight of this LiCoO2 is mixed with 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder.
A positive electrode mixture was prepared by mixing parts by weight. This positive electrode mixture is dispersed in a solvent (using N-methyl-2-pyrrolidone) of the same weight as the positive electrode mixture to form a slurry (paste).
I made it.

【0043】次に、この正極合剤スラリーを、厚さ20
μmの帯状のアルミニウム箔である正極集電体10の両
面に均一に塗布してから、正極合剤スラリー中の溶剤を
乾燥し、この乾燥後にローラプレス機により圧縮成型し
て正極集電体10の両面に正極合剤層2aを有する帯状
の正極2を得た。
Next, this positive electrode mixture slurry was coated to a thickness of 20 mm.
After uniformly coating both sides of the positive electrode current collector 10, which is a μm band-shaped aluminum foil, the solvent in the positive electrode mixture slurry is dried, and after this drying, compression molding is performed using a roller press machine to form the positive electrode current collector 10. A strip-shaped positive electrode 2 having positive electrode mixture layers 2a on both sides was obtained.

【0044】なお、成型後の正極合剤層2aの膜厚は両
面共に80μmで同一であり、帯状の正極2の幅は39
.5mm、長さは230mmとした。
The film thickness of the positive electrode mixture layer 2a after molding is 80 μm on both sides, which is the same, and the width of the strip-shaped positive electrode 2 is 39 μm.
.. 5 mm, and the length was 230 mm.

【0045】以上のように作製した帯状の負極1と、帯
状の正極2と、厚さが25μmで幅が44mmの微多孔
性ポリプロピレンフィルムから成る一対の帯状のセパレ
ータ3a、3bとを用いて、負極1、セパレータ3a、
正極2、セパレータ3bの順に4層に積層させ、この4
層構造の積層電極体をその長さ方向に沿って負極1を内
側にして渦巻状に多数回巻回することによって巻回電極
体15を作製した。この際、巻回電極体15の巻回最終
端部を接着テープによって固定した。以上のような巻回
電極体を製造する工程において、負極1からの負極合剤
層1aの剥離は全く見られずに良好に巻回電極体15を
作製できた。
Using the strip-shaped negative electrode 1 produced as described above, the strip-shaped positive electrode 2, and a pair of strip-shaped separators 3a and 3b made of microporous polypropylene film with a thickness of 25 μm and a width of 44 mm, Negative electrode 1, separator 3a,
The positive electrode 2 and the separator 3b are stacked in four layers in this order, and these four layers are stacked in this order.
A wound electrode body 15 was produced by spirally winding a laminated electrode body having a layered structure many times along its length with the negative electrode 1 facing inside. At this time, the final winding end of the wound electrode body 15 was fixed with an adhesive tape. In the process of manufacturing the wound electrode body as described above, the wound electrode body 15 was successfully manufactured without any peeling of the negative electrode mixture layer 1a from the negative electrode 1.

【0046】この巻回電極体15の中心部の中空部分の
内径は3.5mm、外径は13.9mmであった。なお
、この中空部分に巻芯33が位置している。
The inner diameter of the hollow portion at the center of this wound electrode body 15 was 3.5 mm, and the outer diameter was 13.9 mm. Note that the winding core 33 is located in this hollow portion.

【0047】上述のように作製した渦巻型の巻回電極体
15を図1に示すように、ニッケルめっきを施した鉄製
の電池缶5に収容した。
The spirally wound electrode body 15 produced as described above was housed in a nickel-plated iron battery can 5, as shown in FIG.

【0048】また、負極1及び正極2の集電をそれぞれ
行うために、ニッケル製の負極リード11を予め負極集
電体9に取付け、これを負極1から導出して電池缶5の
底面に溶接し、またアルミニウム製の正極リード12を
予め正極集電体10に取付け、これを正極2から導出し
て金属製の安全弁34の突起部34aに溶接した。
In order to collect current from the negative electrode 1 and the positive electrode 2, a nickel negative electrode lead 11 is attached to the negative electrode current collector 9 in advance, led out from the negative electrode 1, and welded to the bottom of the battery can 5. In addition, an aluminum positive electrode lead 12 was attached to the positive electrode current collector 10 in advance, led out from the positive electrode 2, and welded to the protrusion 34a of the metal safety valve 34.

【0049】その後、電池缶5の中にプロピレンカーボ
ネートと1,2−ジメトキシエタンとの等容量混合溶媒
にリチウム塩のLiPF6 を1モル/lの割合で溶解
した非水電解液を注入して、巻回電極体15に含浸させ
た。
Thereafter, a non-aqueous electrolyte in which lithium salt LiPF6 was dissolved at a ratio of 1 mol/l in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane was injected into the battery can 5. The wound electrode body 15 was impregnated.

【0050】この前後に、巻回電極体15の上端面及び
下端面に対向するように、電池缶5内に円板状の絶縁板
4a及び4bをそれぞれ配設した。
Before and after this, disc-shaped insulating plates 4a and 4b were disposed inside the battery can 5 so as to face the upper and lower end surfaces of the wound electrode body 15, respectively.

【0051】この後、電池缶5、互いに外周が密着して
いる安全弁34及び金属製の電池蓋7のそれぞれを、表
面にアスファルトを塗布した絶縁封口ガスケット6を介
してかしめることによって、電池缶5を封口した。これ
により電池蓋7及び安全弁34を固定するとともに電池
缶5内の気密性を保持させた。また、このとき、ガスケ
ット6の図1における下端が絶縁板4aの外周面と当接
することによって、絶縁板4aが巻回電極体15の上面
側と密着する。
After that, the battery can 5, the safety valve 34 whose outer peripheries are in close contact with each other, and the metal battery lid 7 are each caulked through an insulating sealing gasket 6 whose surface is coated with asphalt. 5 was sealed. As a result, the battery lid 7 and the safety valve 34 were fixed, and the airtightness inside the battery can 5 was maintained. Further, at this time, the lower end of the gasket 6 in FIG. 1 comes into contact with the outer peripheral surface of the insulating plate 4a, so that the insulating plate 4a comes into close contact with the upper surface side of the wound electrode body 15.

【0052】以上のようにして、直径14mm、高さ5
0mmの円筒型非水電解質二次電池を作製した。この実
施例1の電池を後掲の表2に示すように、便宜上電池A
とする。
[0052] As described above, a diameter of 14 mm and a height of 5
A 0 mm cylindrical non-aqueous electrolyte secondary battery was manufactured. As shown in Table 2 below, the battery of Example 1 was used as battery A for convenience.
shall be.

【0053】なお、上記円筒型非水電解質二次電池は、
二重の安全装置を構成するために、安全弁34、ストリ
ッパ36、これらの安全弁34とストリッパ36とを一
体にするための絶縁材料から成る中間嵌合体35を備え
ている。図示省略するが、安全弁34にはこの安全弁3
4が変形したときに開裂する開裂部が、電池蓋7には孔
が設けられている。
[0053] The cylindrical non-aqueous electrolyte secondary battery has the following characteristics:
In order to constitute a double safety device, a safety valve 34, a stripper 36, and an intermediate fitting body 35 made of an insulating material for integrating the safety valve 34 and the stripper 36 are provided. Although not shown, the safety valve 34 has this safety valve 3
A hole is provided in the battery lid 7 to form a cleavage portion that ruptures when the battery 4 is deformed.

【0054】万一、電池内圧が何らかの原因で上昇した
場合、安全弁34がその突起部34aを中心にして図1
の上方へ変形することによって、正極リード12と突起
部34aとの接続が断たれて電池電流を遮断するように
、あるいは安全弁34の開裂部が開裂して電池内に発生
したガスを排気するように夫々構成されている。
In the unlikely event that the internal pressure of the battery rises for some reason, the safety valve 34 will move around its protrusion 34a as shown in FIG.
By deforming upward, the connection between the positive electrode lead 12 and the protrusion 34a is severed and the battery current is cut off, or the cleavage part of the safety valve 34 is ruptured and the gas generated in the battery is exhausted. They are each composed of .

【0055】また、上述のような負極合剤スラリーある
いは正極合剤スラリーの調製時の溶剤としては、結着剤
として用いるポリフッ化ビニリデンを溶解させ得るもの
であれば、各種のものが使用可能である。具体的には、
メチルエチルケトン、シクロヘキサノン等のケトン類、
酢酸メチル、アクリル酸メチル等のエステル類、ヂメチ
ルホルムアミド、ヂメチルアセンアミド、N−メチルピ
ロリドン等のアミド類、ヂエチルトリアミン、N−Nヂ
メチルアミノプロピルアミン等のアミン類、エチレンオ
キシド、テトラヒドロフラン等の環状エーテル類等が使
用できる。
[0055] Furthermore, as a solvent for preparing the negative electrode mixture slurry or positive electrode mixture slurry as described above, various solvents can be used as long as they can dissolve polyvinylidene fluoride used as a binder. be. in particular,
Ketones such as methyl ethyl ketone and cyclohexanone,
Esters such as methyl acetate and methyl acrylate, amides such as dimethylformamide, dimethylacenamide and N-methylpyrrolidone, amines such as diethyltriamine and N-N dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. cyclic ethers etc. can be used.

【0056】実施例2 本実施例では、上述の実験例3で得た負極合剤(炭素質
材料を90重量%、PVDFを10重量%含有)を用い
たこと以外は、実施例1と同様にして円筒型非水電解質
二次電池を作製した。この電池を後掲の表2に示すよう
に、電池Bとする。
Example 2 This example was the same as Example 1 except that the negative electrode mixture (containing 90% by weight of carbonaceous material and 10% by weight of PVDF) obtained in Experimental Example 3 above was used. A cylindrical nonaqueous electrolyte secondary battery was manufactured using the following methods. This battery is designated as battery B as shown in Table 2 below.

【0057】実施例3 本実施例では、上述の実験例4で得た負極合剤(炭素質
材料を85重量%、PVDFを15重量%含有)を用い
たこと以外は、実施例1と同様にして円筒型非水電解質
二次電池を作製した。この電池を後掲の表2に示すよう
に、電池Cとする。
Example 3 This example was the same as Example 1 except that the negative electrode mixture (containing 85% by weight of carbonaceous material and 15% by weight of PVDF) obtained in Experimental Example 4 above was used. A cylindrical nonaqueous electrolyte secondary battery was manufactured using the following methods. This battery is designated as battery C as shown in Table 2 below.

【0058】実施例4 本実施例では、上述の実験例5で得た負極合剤(炭素質
材料を80重量%、PVDFを20重量%含有)を用い
たこと以外は、実施例1と同様にして円筒型非水電解質
二次電池を作製した。この電池を後掲の表1に示すよう
に、電池Dとする。
Example 4 This example was the same as Example 1 except that the negative electrode mixture (containing 80% by weight of carbonaceous material and 20% by weight of PVDF) obtained in Experimental Example 5 above was used. A cylindrical nonaqueous electrolyte secondary battery was manufactured using the following methods. This battery is designated as Battery D as shown in Table 1 below.

【0059】比較例 本発明の効果を確認するための比較例として、次のよう
な電池を作製した。すなわち、上述の実験例6で得た負
極合剤(炭素質材料を80重量%、PVDFを25重量
%含有)を用いたこと以外は、実施例1と同様にして円
筒型非水電解質二次電池を作製した。この電池を、後掲
の表1に表すように電池Eとする。
Comparative Example As a comparative example for confirming the effects of the present invention, the following battery was manufactured. That is, a cylindrical nonaqueous electrolyte secondary was prepared in the same manner as in Example 1, except that the negative electrode mixture (containing 80% by weight of carbonaceous material and 25% by weight of PVDF) obtained in Experimental Example 6 above was used. A battery was created. This battery is designated as Battery E as shown in Table 1 below.

【0060】なお、上述の実験例1で得た負極合剤(炭
素質材料を97重量%、PVDFを3重量%含有)を用
いたこと以外は、実施例1と同様にして巻回電極体を作
製しようとしたが、巻回開始付近の曲率半径の小さい負
極部分において負極合剤層1aが剥離してしまい、巻回
電極体を完成できなかった。また、上述の実施例2〜4
及び比較例では、巻回電極体の製造工程において負極1
からの負極合剤層1aの剥離は全く見られずに良好に巻
回電極体15をそれぞれ作製できた。
A wound electrode body was prepared in the same manner as in Example 1, except that the negative electrode mixture (containing 97% by weight of carbonaceous material and 3% by weight of PVDF) obtained in Experimental Example 1 above was used. However, the negative electrode mixture layer 1a peeled off at the negative electrode portion with a small radius of curvature near the start of winding, and the wound electrode body could not be completed. Moreover, the above-mentioned Examples 2 to 4
And in the comparative example, in the manufacturing process of the wound electrode body, the negative electrode 1
No peeling of the negative electrode mixture layer 1a was observed at all, and the wound electrode bodies 15 were successfully manufactured.

【0061】以上5種類の電池A、B、C、D、Eにつ
いて、充電上限電圧を4.1Vに設定し、500mAで
2時間の定電流充電をした後、18Ωの定負荷で終止電
圧2.75Vまで放電させる充放電サイクルを繰り返し
た。この充放電サイクル10サイクル時の容量を初期容
量として測定し、さらに100サイクル時の放電容量を
測定した。100サイクル時の放電容量と初期容量との
比(100サイクル時の容量/初期容量)を容量維持率
とした。この結果を下記表2に示す。
For the above five types of batteries A, B, C, D, and E, after setting the charging upper limit voltage to 4.1 V and constant current charging at 500 mA for 2 hours, the final voltage was set to 2 with a constant load of 18 Ω. Charge and discharge cycles were repeated to discharge to .75V. The capacity after 10 charge/discharge cycles was measured as the initial capacity, and the discharge capacity after 100 cycles was further measured. The ratio of the discharge capacity at 100 cycles to the initial capacity (capacity at 100 cycles/initial capacity) was defined as the capacity retention rate. The results are shown in Table 2 below.

【0062】[0062]

【表2】[Table 2]

【0063】上記表2に示すように、本実施例の結着剤
としてのポリフッ化ビニリデンの含有量が5〜20重量
%である電池A〜Dは、その含有量が25%である比較
例の電池Fに比較して放電容量が増加し、また容量維持
率の改善が著しいことがわかる。これらの電池A〜Dの
充放電中に負極合剤層1aにおいて剥離等は生じていな
いと考えられる。
As shown in Table 2 above, batteries A to D in which the content of polyvinylidene fluoride as a binder in the present example is 5 to 20% by weight are different from those in the comparative example in which the content is 25%. It can be seen that the discharge capacity is increased compared to Battery F, and the capacity retention rate is significantly improved. It is considered that no peeling or the like occurred in the negative electrode mixture layer 1a during charging and discharging of these batteries A to D.

【0064】表1及び表2から、負極合剤における結着
剤としてのポリフッ化ビニリデンの含有量は5〜20重
量%範囲内が適当であり、これによって、非水電解質二
次電池の製造中及び使用中に負極合剤層に剥離やクラッ
クは発生せず、かつ、高容量で充放電サイクル特性の優
れた電池を得ることができる。
From Tables 1 and 2, it is found that the content of polyvinylidene fluoride as a binder in the negative electrode mixture is suitably within the range of 5 to 20% by weight. Furthermore, it is possible to obtain a battery that does not cause peeling or cracking in the negative electrode mixture layer during use, has a high capacity, and has excellent charge/discharge cycle characteristics.

【0065】なお、本実施例の電池は、渦巻式の巻回電
極体を用いた円筒型非水電解質二次電池であったが、本
発明はこれに限定されるものではなく、例えば、角筒型
などであってもよく、また、ボタン型あるいはコイン型
の非水電解質二次電池にも適用し得る。
Although the battery of this example was a cylindrical nonaqueous electrolyte secondary battery using a spirally wound electrode body, the present invention is not limited to this. It may be cylindrical or the like, and can also be applied to button- or coin-shaped non-aqueous electrolyte secondary batteries.

【0066】[0066]

【発明の効果】本発明は、上述の通りに構成されている
ので、電池の製造中及び使用中に負極合剤層における剥
離及びクラックの発生を防止できて電池の生産性及び電
池寿命の改善が図られ、また高容量化及び充放電サイク
ルの進行に伴う容量低下の防止を達成できる。従って、
従来から知られていた軽量及び高エネルギー密度といっ
た特徴に加えて、高容量でかつ充放電サイクル特性に優
れた非水電解質二次電池を提供できる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to prevent peeling and cracking in the negative electrode mixture layer during battery manufacturing and use, thereby improving battery productivity and battery life. This also makes it possible to increase the capacity and prevent the capacity from decreasing as the charge/discharge cycle progresses. Therefore,
In addition to the conventionally known features of light weight and high energy density, it is possible to provide a non-aqueous electrolyte secondary battery that has high capacity and excellent charge/discharge cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による実施例の円筒型非水電解質二次電
池の概略的な縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】図1に示す電池における巻回電極体を作製する
前の帯状の負極を示す斜視図である。
FIG. 2 is a perspective view showing a strip-shaped negative electrode before manufacturing a wound electrode body in the battery shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1    負極 1a  負極合剤層 2    正極 1 Negative electrode 1a Negative electrode mixture layer 2 Positive electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極活物質担持体としての炭素材料と結着
剤とを少なくとも含む負極合剤層を備える負極と、正極
と、非水電解質とを具備する非水電解質二次電池におい
て、前記結着剤はポリフッ化ビニリデンであるとともに
、前記負極合剤における前記結着剤の含有量は5重量%
以上でかつ20重量%以下であることを特徴とする非水
電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising: a negative electrode comprising a negative electrode mixture layer containing at least a carbon material as a negative electrode active material support and a binder; a positive electrode; and a non-aqueous electrolyte. The binder is polyvinylidene fluoride, and the content of the binder in the negative electrode mixture is 5% by weight.
A non-aqueous electrolyte secondary battery characterized in that the content is above and 20% by weight or less.
JP2416915A 1990-12-28 1990-12-28 Nonaqueous electrolyte secondary battery Pending JPH04249860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416915A JPH04249860A (en) 1990-12-28 1990-12-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416915A JPH04249860A (en) 1990-12-28 1990-12-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04249860A true JPH04249860A (en) 1992-09-04

Family

ID=18525091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416915A Pending JPH04249860A (en) 1990-12-28 1990-12-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04249860A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203833A (en) * 1992-12-30 1994-07-22 Kanebo Ltd Organic electrolyte battery
US5643508A (en) * 1995-02-23 1997-07-01 Council Of Scientific And Industrial Research Process for the preparation of nanodimensional particles of oxides and sulphides of metals
US6048372A (en) * 1997-09-29 2000-04-11 Furukawa Denchi Kabushiki Kaisha Method of producing an electrode plate used for a lithium secondary battery and a lithium secondary battery
US6652773B2 (en) 1996-10-01 2003-11-25 Nippon Zeon Co., Ltd. High gel-content polymer dispersed in a high-boiling organic medium
US7112383B2 (en) 2002-06-27 2006-09-26 Dupont-Mitsui Fluorochemicals Co. Ltd. Binder for electrodes
WO2011055760A1 (en) 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
WO2012043765A1 (en) 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203833A (en) * 1992-12-30 1994-07-22 Kanebo Ltd Organic electrolyte battery
US5643508A (en) * 1995-02-23 1997-07-01 Council Of Scientific And Industrial Research Process for the preparation of nanodimensional particles of oxides and sulphides of metals
US6652773B2 (en) 1996-10-01 2003-11-25 Nippon Zeon Co., Ltd. High gel-content polymer dispersed in a high-boiling organic medium
US6048372A (en) * 1997-09-29 2000-04-11 Furukawa Denchi Kabushiki Kaisha Method of producing an electrode plate used for a lithium secondary battery and a lithium secondary battery
US7112383B2 (en) 2002-06-27 2006-09-26 Dupont-Mitsui Fluorochemicals Co. Ltd. Binder for electrodes
WO2011055760A1 (en) 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
US9306219B2 (en) 2009-11-06 2016-04-05 Asahi Glass Company, Limited Binder composition for secondary battery, electrode mixture for secondary battery employing it, and secondary battery
WO2012043765A1 (en) 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
US9214665B2 (en) 2010-09-30 2015-12-15 Asahi Glass Company, Limited Positive electrode material mixture, and positive electrode for non-aqueous secondary battery and secondary battery, employing it

Similar Documents

Publication Publication Date Title
JP3019421B2 (en) Non-aqueous electrolyte secondary battery
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4927064B2 (en) Secondary battery
JP3321853B2 (en) Non-aqueous electrolyte secondary battery
JPH08171917A (en) Cell
US20110111302A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, method for fabricating the same, and nonaqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
JPH04332481A (en) Nonaqueous electrolyte secondary battery
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2018160379A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH04249860A (en) Nonaqueous electrolyte secondary battery
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
JP3381070B2 (en) Manufacturing method of laminated battery
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
WO2024150390A1 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP3337077B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery