JP2001228229A - Magnetic impedance effect element - Google Patents

Magnetic impedance effect element

Info

Publication number
JP2001228229A
JP2001228229A JP2000043613A JP2000043613A JP2001228229A JP 2001228229 A JP2001228229 A JP 2001228229A JP 2000043613 A JP2000043613 A JP 2000043613A JP 2000043613 A JP2000043613 A JP 2000043613A JP 2001228229 A JP2001228229 A JP 2001228229A
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
magnetic
effect element
impedance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000043613A
Other languages
Japanese (ja)
Inventor
Akira Nakabayashi
亮 中林
Eijiro Yajima
英治郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2000043613A priority Critical patent/JP2001228229A/en
Publication of JP2001228229A publication Critical patent/JP2001228229A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic impedance effect element with high sensitivity in detecting external magnetic fields capable of suppressing the lifting of both sides of a magnetic thin film in the widthwise direction of the magnetic thin film. SOLUTION: The magnetic impedance effect element is provided with both a substrate 2 made of a non-magnetic body and a band-shaped magnetic thin film 3 provided on the thin film 2. The film thickness of both side parts of the magnetic thin film 3 is formed more thinly than the film thickness of the center part of the magnetic thin film 3 in the widthwise direction B of the magnetic thin film 3, so that the width Wa of the lower surface 3a of the magnetic thin film 3 closely adhering to the substrate 2 may be larger than the width Wb of the upper surface 3b of the magnetic thin film 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気インピーダン
ス効果を利用して外部磁界を検出する磁気インピーダン
ス効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-impedance effect element for detecting an external magnetic field using a magneto-impedance effect.

【0002】[0002]

【従来の技術】磁気インピーダンス効果素子は、高い外
部磁界検出感度を有しているため、磁気検出素子として
方位センサやモータの回転センサ等に適用され始めてい
る。図8乃至図10は、このような磁気インピーダンス
効果素子の従来技術を説明するためのものであって、こ
の磁気インピーダンス効果素子21は、非磁性体からな
る基板22上に形成された高い透磁率を有する帯状の磁
性薄膜23の長手方向両端部に、導電膜からなるリード
線引出用の第1,第2の電極24,25が積層されて構
成されており、磁性薄膜23は図9に示すような断面長
方形状に形成されている。また、磁性薄膜23には、そ
の膜面内で磁化容易軸の方向が磁性薄膜23の長手方向
(矢印A方向)に対して垂直となるように、磁性薄膜2
3の幅方向(矢印B方向)に磁気異方性が付けられてい
る。
2. Description of the Related Art Magneto-impedance effect elements have a high external magnetic field detection sensitivity, and therefore have begun to be applied to azimuth sensors, motor rotation sensors and the like as magnetic detection elements. 8 to 10 are for explaining the prior art of such a magneto-impedance effect element. This magneto-impedance effect element 21 has a high magnetic permeability formed on a substrate 22 made of a non-magnetic material. The first and second electrodes 24 and 25 for leading out a lead made of a conductive film are laminated on both ends in the longitudinal direction of a strip-shaped magnetic thin film 23 having a magnetic thin film 23 as shown in FIG. It is formed in such a rectangular cross section. Also, the magnetic thin film 23 is formed such that the direction of the axis of easy magnetization is perpendicular to the longitudinal direction of the magnetic thin film 23 (the direction of arrow A) in the film plane.
3 has magnetic anisotropy in the width direction (the direction of arrow B).

【0003】このように構成された磁気インピーダンス
効果素子21は、磁性薄膜23の長手方向が図示せぬ被
検出体から発せられる外部磁界Hに沿うように配置され
た状態で、第1,第2の電極24,25を介して磁性薄
膜23にMHz帯域の高周波電流を通電すると、磁性薄
膜23の長手方向両端部間のインピーダンスが変化し、
この変化を電気信号に変換して外部磁界Hの検出出力が
得られるようになっている。
[0003] The magneto-impedance effect element 21 having the above-described configuration is arranged such that the longitudinal direction of the magnetic thin film 23 is arranged along an external magnetic field H generated from a detection object (not shown). When a high-frequency current in the MHz band is applied to the magnetic thin film 23 through the electrodes 24 and 25, the impedance between both ends in the longitudinal direction of the magnetic thin film 23 changes.
This change is converted into an electric signal, and a detection output of the external magnetic field H is obtained.

【0004】この磁気インピーダンス効果素子21の製
造は、図10(a)に示すように、静磁場中で基板22
の上面に磁性薄膜23となる非晶質状態の合金薄膜26
をスパッタリング法により形成し、次いで、図10
(b)に示すように、合金薄膜26上に帯状のフォトレ
ジスト27を形成する。そして、合金薄膜26をウエッ
トエッチングして図10(c)に示す状態とし、次い
で、図10(d)に示すように、フォトレジスト27を
除去し、この合金薄膜26及び基板22に静磁場中で加
熱処理(アニール)を施して、合金薄膜26を結晶状態
に相変化させ磁性薄膜23とし(図10(e)参照)、
磁性薄膜23の長手方向両端部に電極24,25を形成
すことにより、図8,図9に示す磁気インピーダンス効
果素子21が製造される。
[0004] As shown in FIG. 10A, the production of the magneto-impedance effect element 21 is carried out in a static magnetic field.
Alloy thin film 26 in an amorphous state to be a magnetic thin film 23 on the top surface
Is formed by a sputtering method.
As shown in (b), a strip-shaped photoresist 27 is formed on the alloy thin film 26. Then, the alloy thin film 26 is wet-etched to a state shown in FIG. 10C, and then, as shown in FIG. 10D, the photoresist 27 is removed, and the alloy thin film 26 and the substrate 22 are exposed to a static magnetic field. A heat treatment (annealing) is performed to change the alloy thin film 26 into a crystalline state to form a magnetic thin film 23 (see FIG. 10E).
By forming electrodes 24 and 25 at both ends in the longitudinal direction of the magnetic thin film 23, the magneto-impedance effect element 21 shown in FIGS. 8 and 9 is manufactured.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】しかしながら、上述した従来の磁気インピ
ーダンス効果素子21にあっては、エッチングにより帯
状に形成された合金薄膜26が基板22を伴って加熱処
理される際に、両者の熱膨張係数の違いから、基板22
に密着する合金薄膜26の下面側が合金薄膜26の上面
側に引っ張られて、図11に示すように、合金薄膜26
の幅方向(矢印B方向)において、合金薄膜26の両側
部がめくれ上がり、その結果、図12に示すように、磁
性薄膜23の幅方向(矢印B方向)において、磁性薄膜
23の両側部のめくれ上がった部分の磁区が加熱処理中
に消失し、磁性薄膜23の磁区28が形成された部分が
少なくなって、外部磁界Hに対するインピーダンスの変
化が小さくなり磁気インピーダンス効果素子21の外部
磁界検出感度が低下するという問題があった。
However, in the above-described conventional magneto-impedance effect element 21, when the alloy thin film 26 formed in a strip shape by etching is heated together with the substrate 22, the difference in the thermal expansion coefficient between the two occurs. , Substrate 22
The lower surface of the alloy thin film 26 adhered to the metal thin film 26 is pulled toward the upper surface of the alloy thin film 26, and as shown in FIG.
In the width direction of the magnetic thin film 23 (direction of arrow B), both sides of the alloy thin film 26 are turned up. As a result, as shown in FIG. The magnetic domain of the turned up portion disappears during the heat treatment, the portion of the magnetic thin film 23 where the magnetic domain 28 is formed decreases, the change in impedance with respect to the external magnetic field H decreases, and the external magnetic field detection sensitivity of the magnetic impedance effect element 21 increases. However, there was a problem that was reduced.

【0006】この磁性薄膜の両側部がめくれ上がり磁区
が消失する現象は、加熱処理によって非晶質状態から結
晶状態へと相変化する材料を合金薄膜26に用いた場合
に特に顕著に現れる。
The phenomenon that both sides of the magnetic thin film are turned up and the magnetic domain disappears appears particularly remarkably when a material which undergoes a phase change from an amorphous state to a crystalline state by heat treatment is used for the alloy thin film 26.

【0007】本発明は、上述した従来技術の事情に鑑み
てなされたもので、その目的は、磁性薄膜の幅方向にお
いて、磁性薄膜の両側部の磁区の消失を抑えることがで
き、外部磁界検出感度の高い磁気インピーダンス効果素
子を提供することにある。
The present invention has been made in view of the above-mentioned circumstances of the prior art, and has as its object to suppress the disappearance of magnetic domains on both sides of a magnetic thin film in the width direction of the magnetic thin film, and to detect an external magnetic field. An object of the present invention is to provide a magneto-impedance effect element having high sensitivity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気インピーダンス効果素子は、非磁性体
からなる基板と、この基板上に設けられた帯状の磁性薄
膜とを備え、前記基板に密着する前記磁性薄膜の下面の
幅が前記磁性薄膜の上面の幅よりも大きくなるように、
前記磁性薄膜の幅方向において、前記磁性薄膜の両側部
の膜厚を前記磁性薄膜の中央部の膜厚よりも薄く形成し
たことを最も主要な特徴としている。
In order to achieve the above object, a magneto-impedance effect element according to the present invention comprises a substrate made of a non-magnetic material, and a strip-shaped magnetic thin film provided on the substrate. As the width of the lower surface of the magnetic thin film adhered to the substrate is larger than the width of the upper surface of the magnetic thin film,
The most characteristic feature is that the film thickness on both sides of the magnetic thin film in the width direction of the magnetic thin film is formed smaller than the film thickness on the central portion of the magnetic thin film.

【0009】また、上記構成において、前記磁性薄膜の
前記両側部にテーパ面を設けた。
Further, in the above configuration, tapered surfaces are provided on the both side portions of the magnetic thin film.

【0010】また、上記構成において、前記磁性薄膜の
前記両側部を階段状に形成した。
[0010] In the above structure, the both sides of the magnetic thin film are formed stepwise.

【0011】また、上記構成において、前記磁性薄膜は
均結晶粒子径が30nm以下であるbccFe、bcc
FeCo、bccCoの単体もしくは混合物を主体とし
た軟磁性合金薄膜よりなる構成とした。
In the above structure, the magnetic thin film may have a uniform crystal grain size of 30 nm or less.
The soft magnetic alloy thin film was mainly composed of a simple substance or a mixture of FeCo and bccCo.

【0012】また、上記構成において、前記磁性薄膜は
組成式がT100-a-b-c-dabcdで表され、元素T
はFe,Coのうちの1種又は2種の元素であり、Xは
Si,Alのうちの1種又は2種の元素であり、MはT
i,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれ
る1種又は2種以上の元素であり、元素ZはC,Nのう
ちの1種又は2種の元素からなり、0≦a≦25、1≦
b≦10、5≦c≦15、0≦d≦10の関係を満足
し、前記磁性薄膜の結晶組織内に平均結晶粒径10nm
以下の元素Mの微細な炭化物もしくは窒化物がFeもし
くはCoの結晶粒の周辺に析出している構成とした。
[0012] In the above structure, the magnetic thin film is represented by a compositional formula T 100-abcd X a M b Z c Q d, element T
Is one or two elements of Fe and Co, X is one or two elements of Si and Al, and M is T
i, Zr, Hf, V, Nb, Ta, Mo, W are one or more elements selected from the group consisting of one or two elements of C and N; a ≦ 25, 1 ≦
b ≦ 10, 5 ≦ c ≦ 15, 0 ≦ d ≦ 10, and the crystal structure of the magnetic thin film has an average crystal grain size of 10 nm.
The structure was such that fine carbides or nitrides of the following element M precipitated around Fe or Co crystal grains.

【0013】[0013]

【発明の実施の形態】以下、本発明の磁気インピーダン
ス効果素子の第1の実施形態を図1乃至図4を用いて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of a magneto-impedance effect element according to the present invention will be described with reference to FIGS.

【0014】この磁気インピーダンス効果素子1は、非
磁性体からなる基板2上に形成された高い透磁率を有す
る帯状の磁性薄膜3の長手方向両端部に、導電膜からな
るリード線引出用の第1,第2の電極4,5が積層して
配設されて構成されている。
This magneto-impedance effect element 1 is provided on both ends in the longitudinal direction of a strip-shaped magnetic thin film 3 having a high magnetic permeability formed on a substrate 2 made of a non-magnetic material. The first and second electrodes 4 and 5 are arranged in a stacked manner.

【0015】磁性薄膜3は、平均結晶粒径が30nm以
下であるbcc構造のFe、bcc構造のFeCo、b
cc構造のCoの単体もしくは混合物を主体とした軟磁
性合金薄膜からなり、例えば組成式がFe71.4Al5.8
Si13.1Hf3.34.5Ru1.9(at%)で表される、
bcc構造のFe微結晶粒を主体とし、加熱処理によっ
てFe微結晶粒の周囲にHfCの結晶粒が析出された結
晶粒径5〜30nmの微結晶軟磁性合金薄膜であって、
その膜面内で磁化容易軸の方向が磁性薄膜3の長手方向
(矢印A方向)に対して垂直となるように、磁性薄膜3
の幅方向(矢印B方向)に磁気異方性が付けられてい
る。
The magnetic thin film 3 is made of Fe having a bcc structure and FeCo, b having a bcc structure having an average crystal grain size of 30 nm or less.
Consisting of a soft magnetic alloy thin film mainly composed of a simple substance or a mixture of Co having a cc structure, for example, the composition formula is Fe 71.4 Al 5.8
Represented by Si 13.1 Hf 3.3 C 4.5 Ru 1.9 (at%),
a microcrystalline soft magnetic alloy thin film having a crystal grain size of 5 to 30 nm mainly composed of Fe microcrystalline grains having a bcc structure and having HfC crystal grains deposited around the Fe microcrystalline grains by heat treatment,
The direction of the axis of easy magnetization is perpendicular to the longitudinal direction (the direction of arrow A) of the magnetic thin film 3 within the film plane.
Are provided with magnetic anisotropy in the width direction (arrow B direction).

【0016】そして、図2に示すように、基板2に密着
する磁性薄膜3の下面3aの幅Waが磁性薄膜3の上面
3bの幅Wbよりも大きくなるように、磁性薄膜3の両
側部には該磁性薄膜3の長手方向に延びるテーパ面6,
7が設けられており、これにより、磁性薄膜3の幅方向
において、磁性薄膜3の中央部の膜厚が磁性薄膜3の両
側部の膜厚よりも厚く形成されている。尚、磁性薄膜3
の下面3aの幅をWaとし、磁性薄膜3の上面3bの幅
をWbとし、上面3bから下面3aの厚さをdとしたと
きに、x=(Wa−Wb)/2とおくと、x/dが1〜
5程度の値であることが望ましい。
Then, as shown in FIG. 2, the width Wa of the lower surface 3a of the magnetic thin film 3 adhered to the substrate 2 is larger than the width Wb of the upper surface 3b of the magnetic thin film 3, Are tapered surfaces 6 extending in the longitudinal direction of the magnetic thin film 3.
7, the thickness of the magnetic thin film 3 in the width direction at the center is larger than the thickness of the magnetic thin film 3 on both sides in the width direction. The magnetic thin film 3
When the width of the lower surface 3a of the magnetic thin film 3 is Wa, the width of the upper surface 3b of the magnetic thin film 3 is Wb, and the thickness of the lower surface 3a from the upper surface 3b is d, x = (Wa-Wb) / 2, x / D is 1
A value of about 5 is desirable.

【0017】また、磁性薄膜3は、上記組成以外に組成
式がT100-a-b-c-dabcdで表され、元素TはF
e,Coのうちの1種又は2種の元素であり、XはS
i,Alのうちの1種又は2種の元素であり、MはT
i,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれ
る1種又は2種以上の元素であり、元素ZはC,Nのう
ちの1種又は2種の元素からなり、0≦a≦25(at
%)、1≦b≦10(at%)、5≦c≦15(at
%)、0≦d≦10(at%)の関係を満足し、加熱処
理により磁性薄膜3の結晶組織内において平均結晶粒径
10nm以下の元素Mの微細な炭化物もしくは窒化物が
FeもしくはCoの結晶粒の周辺に析出している微結晶
軟磁性合金薄膜としてもよい。
The magnetic thin film 3 has a composition formula other than the above composition represented by T 100-abcd X a M b Z c Q d , and the element T is F
e is one or two of Co and X is S
i is one or two elements of Al, and M is T
i, Zr, Hf, V, Nb, Ta, Mo, W are one or more elements selected from the group consisting of one or two elements of C and N; a ≦ 25 (at
%), 1 ≦ b ≦ 10 (at%), 5 ≦ c ≦ 15 (at
%) And 0 ≦ d ≦ 10 (at%), and the fine carbide or nitride of the element M having an average crystal grain size of 10 nm or less in the crystal structure of the magnetic thin film 3 is made of Fe or Co by heat treatment. A microcrystalline soft magnetic alloy thin film precipitated around crystal grains may be used.

【0018】次に、この磁気インピーダンス効果素子1
の製造方法について説明すると、先ず、図3(a)に示
すように、静磁場中で基板2の上面に上記組成式で表さ
れる非晶質状態の合金薄膜8をスパッタリング法により
形成し、次いで、図3(b)に示すように、合金薄膜8
上に帯状のフォトレジスト9を形成する。そして、図3
(c)に示すように、ウエットエッチング法により、基
板2を従来技術よりも長い時間にわたりエッチング液
(例えば、フッ酸、過酸化水素水等を含む酸性水溶液)
に浸して合金薄膜8にエッチング処理を施し、次いで、
図3(d)に示すように、フォトレジスト9を除去する
と、両側部にテーパ面6,7が形成された帯状の合金薄
膜8を形成することができる。
Next, the magneto-impedance effect element 1
First, as shown in FIG. 3A, an amorphous alloy thin film 8 represented by the above composition formula is formed on the upper surface of the substrate 2 by a sputtering method in a static magnetic field, as shown in FIG. Next, as shown in FIG.
A strip-shaped photoresist 9 is formed thereon. And FIG.
As shown in (c), the substrate 2 is etched by a wet etching method for a longer period of time than in the prior art (for example, an acidic aqueous solution containing hydrofluoric acid, hydrogen peroxide, or the like).
To perform an etching process on the alloy thin film 8, and then
As shown in FIG. 3D, when the photoresist 9 is removed, a strip-shaped alloy thin film 8 having tapered surfaces 6 and 7 formed on both sides can be formed.

【0019】次に、この合金薄膜8及び基板2に静磁場
中で加熱処理を施して、合金薄膜8を非晶質状態から結
晶状態へと相変化させ上述した元素Mの微細な炭化物も
しくは窒化物をFeもしくはCoの結晶粒の周辺に析出
させることにより、合金薄膜8を高透磁率及び幅方向の
磁気異方性を有する磁性薄膜3に変化させる(図3
(e)参照)。しかる後、磁性薄膜3の長手方向両端部
に第1,第2の電極4,5を形成し、磁気インピーダン
ス効果素子1の製造が完了する。
Next, the alloy thin film 8 and the substrate 2 are subjected to a heat treatment in a static magnetic field to change the phase of the alloy thin film 8 from an amorphous state to a crystalline state, thereby forming a fine carbide or nitride of the element M described above. The alloy thin film 8 is changed to a magnetic thin film 3 having high magnetic permeability and magnetic anisotropy in the width direction by depositing a material around the Fe or Co crystal grains (FIG. 3).
(E)). Thereafter, the first and second electrodes 4 and 5 are formed on both ends in the longitudinal direction of the magnetic thin film 3, and the manufacture of the magneto-impedance effect element 1 is completed.

【0020】このように構成・製造された磁気インピー
ダンス効果素子1は、磁性薄膜3の長手方向が図示せぬ
被検出体から発せられる外部磁界Hに沿うように配置さ
れた状態で、第1,第2の電極4,5を介して磁性薄膜
3にMHz帯域の高周波電流を通電すると、磁性薄膜3
の長手方向両端部間のインピーダンスが変化し、この変
化を電気信号に変換して外部磁界Hの検出出力が得られ
るようになっている。
The magneto-impedance effect element 1 constructed and manufactured in this manner is arranged such that the longitudinal direction of the magnetic thin film 3 is arranged along the external magnetic field H emitted from the detection object (not shown). When a high-frequency current in the MHz band is applied to the magnetic thin film 3 through the second electrodes 4 and 5, the magnetic thin film 3
The impedance between both ends in the longitudinal direction changes, and this change is converted into an electric signal to obtain a detection output of the external magnetic field H.

【0021】しかして、この磁気インピーダンス効果素
子1にあっては、その製造工程において従来技術と同様
に磁性薄膜3となる合金薄膜8に加熱処理が施される
が、図3(d)に示すように、基板2に密着する合金薄
膜8の下面8aの幅Waが合金薄膜8の上面8bの幅W
bよりも大きくなるように、合金薄膜8の両側部には該
合金薄膜8の長手方向に延びるテーパ面6,7が設けら
れ、合金薄膜8の幅方向(矢印B方向)において、合金
薄膜8の中央部の膜厚が合金薄膜8の両側部の膜厚より
も厚く形成されているため、加熱処理によって基板2に
密着する合金薄膜8の下面8a側が合金薄膜8の上面8
b側に引っ張られ合金薄膜8の両側部がめくれ上がるこ
とがなくなり、その結果、磁性薄膜3の下面3aを基板
2に確実に密着させ、図4に示すように、磁性薄膜3全
体に磁区10を形成することができ、磁性薄膜3の幅方
向において、加熱処理中の磁性薄膜3の両側部の磁区1
0の消失を抑え、これに起因する外部磁界検出感度の低
下を完全に防止することができる。
In the magneto-impedance effect element 1, the alloy thin film 8 which becomes the magnetic thin film 3 is subjected to a heat treatment in the manufacturing process as in the prior art, as shown in FIG. As described above, the width Wa of the lower surface 8a of the alloy thin film 8 in close contact with the substrate 2 is equal to the width W of the upper surface 8b of the alloy thin film 8.
The tapered surfaces 6 and 7 extending in the longitudinal direction of the alloy thin film 8 are provided on both sides of the alloy thin film 8 so as to be larger than b. Is formed thicker than the film thickness on both sides of the alloy thin film 8, the lower surface 8 a of the alloy thin film 8 that adheres to the substrate 2 by the heat treatment is
As a result, the lower surface 3a of the magnetic thin film 3 is securely brought into close contact with the substrate 2 so that the magnetic domain 10 is spread over the entire magnetic thin film 3 as shown in FIG. Can be formed, and in the width direction of the magnetic thin film 3, the magnetic domains 1 on both sides of the magnetic thin film 3 during the heat treatment are formed.
It is possible to suppress the disappearance of 0 and completely prevent the external magnetic field detection sensitivity from being lowered.

【0022】次に、本発明の磁気インピーダンス効果素
子の第2の実施形態を図5乃至図7に基づいて説明す
る。
Next, a second embodiment of the magneto-impedance effect element of the present invention will be described with reference to FIGS.

【0023】この第2の実施形態の磁気インピーダンス
効果素子11が上述した磁気インピーダンス効果素子1
と構成上異なる点は、基板2に密着する磁性薄膜3の下
面3aの幅Waが磁性薄膜3の上面3bの幅Wbよりも
大きくなるように、磁性薄膜3の両側部に該磁性薄膜3
の長手方向に延びる段部12,13をテーパ面6,7に
代えて設け、磁性薄膜3の両側部を階段状に形成した点
が異なるのみで、他は第1の実施形態と同様である。
The magneto-impedance effect element 11 of the second embodiment is the same as the magneto-impedance effect element 1 described above.
The difference from the configuration is that the width Wa of the lower surface 3a of the magnetic thin film 3 adhered to the substrate 2 is larger than the width Wb of the upper surface 3b of the magnetic thin film 3, and the magnetic thin film 3 is provided on both sides of the magnetic thin film 3.
Steps 12 and 13 extending in the longitudinal direction of the magnetic thin film 3 are provided in place of the tapered surfaces 6 and 7, and both sides of the magnetic thin film 3 are formed in a step-like manner. .

【0024】この磁気インピーダンス効果素子11の製
造は、先ず、図7(a)に示すように、第1の実施形態
と同様に、静磁場中で基板2の上面に上記組成式で表さ
れる非晶質状態の合金薄膜8をスパッタリング法により
形成し、次いで、図7(b)に示すように、合金薄膜8
上に帯状のフォトレジスト14を形成する。次に、図7
(c)に示すように、ウエットエッチング法により、基
板2をエッチング液に浸して合金薄膜8にエッチング処
理を施し、フォトレジスト14を除去した後、図7
(d)に示すように、再び合金薄膜8上に帯状のフォト
レジスト15を形成する。
In the manufacture of the magneto-impedance effect element 11, first, as shown in FIG. 7A, as in the first embodiment, the magneto-impedance effect element is expressed by the above composition formula on the upper surface of the substrate 2 in a static magnetic field. An alloy thin film 8 in an amorphous state is formed by a sputtering method, and then, as shown in FIG.
A strip-shaped photoresist 14 is formed thereon. Next, FIG.
As shown in FIG. 7C, after the substrate 2 is immersed in an etching solution to perform an etching process on the alloy thin film 8 by a wet etching method, and the photoresist 14 is removed, FIG.
As shown in (d), a strip-shaped photoresist 15 is formed on the alloy thin film 8 again.

【0025】次に、図7(e)に示すように、ウエット
エッチング法により、基板2をエッチング液に浸して合
金薄膜8にエッチング処理を施し、次いで、図7(f)
に示すように、フォトレジスト15を除去すると、両側
部に段部12,13が形成された帯状の合金薄膜8を形
成することができる。そして、この合金薄膜8及び基板
2に静磁場中で加熱処理を施して、合金薄膜8を非晶質
状態から結晶状態へと相変化させ上述した元素Mの微細
な炭化物もしくは窒化物をFeもしくはCoの結晶粒の
周辺に析出させることにより、合金薄膜8を高透磁率及
び幅方向の磁気異方性を有する磁性薄膜3に変化させる
(図7(g)参照)。しかる後、磁性薄膜3の長手方向
両端部に第1,第2の電極4,5を形成し、磁気インピ
ーダンス効果素子11の製造が完了する。尚、磁性薄膜
3の下面3aの幅をWaとし、磁性薄膜3の上面3bの
幅をWbとして、下面3aから段部12,13までの厚
さをd1、下面3aから上面3bの厚さをd2としたと
きに、x=(Wa−Wb)/2、Δd=d2−d1とお
くと、x/Δdが1〜5程度の値であることが望まし
い。
Next, as shown in FIG. 7E, the substrate 2 is immersed in an etchant to perform an etching process on the alloy thin film 8 by a wet etching method.
As shown in FIG. 5, when the photoresist 15 is removed, a strip-shaped alloy thin film 8 having steps 12 and 13 formed on both sides can be formed. Then, the alloy thin film 8 and the substrate 2 are subjected to a heat treatment in a static magnetic field to change the phase of the alloy thin film 8 from an amorphous state to a crystalline state, so that the fine carbide or nitride of the above-described element M is changed to Fe or By precipitating around the Co crystal grains, the alloy thin film 8 is changed into the magnetic thin film 3 having high magnetic permeability and magnetic anisotropy in the width direction (see FIG. 7G). Thereafter, the first and second electrodes 4 and 5 are formed on both ends in the longitudinal direction of the magnetic thin film 3, and the manufacture of the magneto-impedance effect element 11 is completed. Note that the width of the lower surface 3a of the magnetic thin film 3 is Wa, the width of the upper surface 3b of the magnetic thin film 3 is Wb, the thickness from the lower surface 3a to the steps 12, 13 is d1, and the thickness of the lower surface 3a to the upper surface 3b is If x = (Wa−Wb) / 2 and Δd = d2−d1 when d2, x / Δd is preferably a value of about 1 to 5.

【0026】そして、このように構成・製造された磁気
インピーダンス効果素子11は、磁性薄膜3の長手方向
が図示せぬ被検出体から発せられる外部磁界Hに沿うよ
うに配置され、上記磁気インピーダンス効果素子1と同
様に動作する。
The magneto-impedance effect element 11 constructed and manufactured as described above is arranged so that the longitudinal direction of the magnetic thin film 3 is along the external magnetic field H emitted from the detection object (not shown). It operates similarly to the element 1.

【0027】しかして、この磁気インピーダンス効果素
子11にあっても、その製造工程において従来技術と同
様に磁性薄膜3となる合金薄膜8に加熱処理が施される
が、図7(e)に示すように、基板2に密着する合金薄
膜8の下面8aの幅Waが磁性薄膜8の上面8bの幅W
bよりも大きくなるように、合金薄膜8の両側部には該
合金薄膜8の長手方向に延びる段部12,13が設けら
れ、合金薄膜8の幅方向(矢印B方向)において、合金
薄膜8の中央部の膜厚が合金薄膜8の両側部の膜厚より
も厚く形成されているため、加熱処理によって基板2に
密着する合金薄膜8の下面8a側が合金薄膜8の上面8
b側に引っ張られ合金薄膜8の両側部がめくれ上がるこ
とがなくなり、その結果、磁性薄膜3の下面3bを基板
2に確実に密着させ、磁性薄膜3の幅方向において、加
熱処理中の磁性薄膜3の両側部の磁区の消失を抑えるこ
とができ、これに起因する外部磁界検出感度の低下を完
全に防止することができる。
Thus, in the magneto-impedance effect element 11 as well, in the manufacturing process, the alloy thin film 8 to be the magnetic thin film 3 is subjected to a heat treatment in the same manner as in the prior art, as shown in FIG. As described above, the width Wa of the lower surface 8a of the alloy thin film 8 in close contact with the substrate 2 is equal to the width W of the upper surface 8b of the magnetic thin film 8.
Steps 12 and 13 extending in the longitudinal direction of the alloy thin film 8 are provided on both sides of the alloy thin film 8 so as to be larger than the thickness of the alloy thin film 8. Is formed thicker than the film thickness on both sides of the alloy thin film 8, the lower surface 8 a of the alloy thin film 8 that adheres to the substrate 2 by the heat treatment is
As a result, the lower surface 3b of the magnetic thin film 3 is securely brought into close contact with the substrate 2 so that the magnetic thin film 3 is heated in the width direction of the magnetic thin film 3. The disappearance of the magnetic domains on both sides of the third magnetic field can be suppressed, and a decrease in external magnetic field detection sensitivity due to this can be completely prevented.

【0028】[0028]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is embodied in the form described above and has the following effects.

【0029】非磁性体からなる基板と、この基板上に設
けられた帯状の磁性薄膜とを備え、前記基板に密着する
前記磁性薄膜の下面の幅が前記磁性薄膜の上面の幅より
も大きくなるように、前記磁性薄膜の幅方向において、
前記磁性薄膜の両側部の膜厚を前記磁性薄膜の中央部の
膜厚よりも薄く形成したので、前記磁性薄膜の前記下面
を前記基板に確実に密着させ、前記磁性薄膜の幅方向に
おいて、前記磁性薄膜の両側部の磁区の消失を抑えるこ
とができ、外部磁界検出感度の高い磁気インピーダンス
効果素子を提供することことができる。
A substrate made of a non-magnetic material; and a strip-shaped magnetic thin film provided on the substrate, wherein the width of the lower surface of the magnetic thin film which is in close contact with the substrate is larger than the width of the upper surface of the magnetic thin film. Thus, in the width direction of the magnetic thin film,
Since the film thickness on both sides of the magnetic thin film was formed smaller than the film thickness at the center of the magnetic thin film, the lower surface of the magnetic thin film was securely adhered to the substrate, and in the width direction of the magnetic thin film, The disappearance of magnetic domains on both sides of the magnetic thin film can be suppressed, and a magneto-impedance effect element having high external magnetic field detection sensitivity can be provided.

【0030】また、前記磁性薄膜の前記両側部にテーパ
面を設けたので、前記磁性薄膜の幅方向において、簡単
に前記磁性薄膜の両側部の膜厚を前記磁性薄膜の中央部
の膜厚よりも薄く形成することができる。
Further, since the tapered surfaces are provided on the both sides of the magnetic thin film, the film thickness of both sides of the magnetic thin film can be easily made larger than the film thickness of the central part of the magnetic thin film in the width direction of the magnetic thin film. Can also be formed thin.

【0031】また、前記磁性薄膜の前記両側部を階段状
に形成したので、前記磁性薄膜の幅方向において、簡単
に前記磁性薄膜の両側部の膜厚を前記磁性薄膜の中央部
の膜厚よりも薄く形成することができる。
Also, since the both sides of the magnetic thin film are formed stepwise, the thickness of the both sides of the magnetic thin film can be easily made larger than the thickness of the center of the magnetic thin film in the width direction of the magnetic thin film. Can also be formed thin.

【0032】また、前記磁性薄膜は平均結晶粒径が30
nm以下であるbccFe、bccFeCo、bccC
oの単体もしくは混合物を主体とした軟磁性合金薄膜よ
りなるので、外部磁界に対する前記磁性薄膜のインピー
ダンスの変化が大きく、磁界検出感度の高い優れた磁気
インピーダンス効果素子を得ることができる。
The magnetic thin film has an average crystal grain size of 30.
bccFe, bccFeCo, bccC of not more than nm
Since the magnetic thin film is made of a soft magnetic alloy thin film mainly composed of a simple substance or a mixture of o, the change of the impedance of the magnetic thin film with respect to an external magnetic field is large, and an excellent magnetic impedance effect element having high magnetic field detection sensitivity can be obtained.

【0033】また、前記磁性薄膜は組成式がT
100-a-b-c-dabcdで表され、元素TはFe,C
oのうちの1種又は2種の元素であり、XはSi,Al
のうちの1種又は2種の元素であり、MはTi,Zr,
Hf,V,Nb,Ta,Mo,Wから選ばれる1種又は
2種以上の元素であり、元素ZはC,Nのうちの1種又
は2種の元素からなり、0≦a≦25(at%)、1≦
b≦10(at%)、5≦c≦15(at%)、0≦d
≦10(at%)の関係を満足し、前記磁性薄膜の結晶
組織内に平均結晶粒径10nm以下の元素Mの微細な炭
化物もしくは窒化物がFeもしくはCoの結晶粒の周辺
に析出しているので、外部磁界に対する前記磁性薄膜の
インピーダンスの変化が一層大きく、より磁界検出感度
の高い優れた磁気インピーダンス効果素子を得ることが
できる。
The composition formula of the magnetic thin film is T
Expressed in 100-abcd X a M b Z c Q d, element T Fe, C
o is one or two elements, and X is Si, Al
And M is Ti, Zr,
One or more elements selected from Hf, V, Nb, Ta, Mo, W, and the element Z is composed of one or two elements of C and N, and 0 ≦ a ≦ 25 ( at%), 1 ≦
b ≦ 10 (at%), 5 ≦ c ≦ 15 (at%), 0 ≦ d
≦ 10 (at%), and fine carbides or nitrides of the element M having an average crystal grain size of 10 nm or less are precipitated around Fe or Co crystal grains in the crystal structure of the magnetic thin film. Therefore, the change of the impedance of the magnetic thin film with respect to an external magnetic field is further increased, and an excellent magneto-impedance effect element having higher magnetic field detection sensitivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る磁気インピーダ
ンス効果素子の平面図。
FIG. 1 is a plan view of a magneto-impedance effect element according to a first embodiment of the present invention.

【図2】図1の2−2線に沿う断面図。FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;

【図3】本発明の第1の実施形態に係る磁気インピーダ
ンス効果素子の製造工程を示す説明図。
FIG. 3 is an explanatory view showing a manufacturing process of the magneto-impedance effect element according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態に係る磁気インピーダ
ンス効果素子に備わる磁性薄膜の磁区の形成状態を示す
説明図。
FIG. 4 is an explanatory view showing a state of forming magnetic domains of a magnetic thin film provided in the magneto-impedance effect element according to the first embodiment of the present invention.

【図5】本発明の第2の実施形態に係る磁気インピーダ
ンス効果素子の平面図。
FIG. 5 is a plan view of a magneto-impedance effect element according to a second embodiment of the present invention.

【図6】図5の6−6線に沿う断面図。FIG. 6 is a sectional view taken along the line 6-6 in FIG. 5;

【図7】本発明の第2の実施形態に係る磁気インピーダ
ンス効果素子の製造工程を示す説明図。
FIG. 7 is an explanatory view showing a manufacturing process of the magneto-impedance effect element according to the second embodiment of the present invention.

【図8】従来の磁気インピーダンス効果素子の平面図。FIG. 8 is a plan view of a conventional magneto-impedance effect element.

【図9】図8の9−9線に沿う断面図。FIG. 9 is a sectional view taken along lines 9-9 in FIG. 8;

【図10】従来の磁気インピーダンス効果素子の製造工
程を示す説明図。
FIG. 10 is an explanatory view showing a manufacturing process of a conventional magneto-impedance effect element.

【図11】従来の磁気インピーダンス効果素子の問題点
を示す説明図。
FIG. 11 is an explanatory diagram showing a problem of a conventional magneto-impedance effect element.

【図12】従来の磁気インピーダンス効果素子に備わる
磁性薄膜の磁区の形成状態を示す説明図。
FIG. 12 is an explanatory view showing a state of forming magnetic domains of a magnetic thin film provided in a conventional magneto-impedance effect element.

【符号の説明】[Explanation of symbols]

1 磁気インピーダンス効果素子 2 基板 3 磁性薄膜 3a 下面 3b 上面 4 第1の電極 5 第2の電極 6 テーパ面 7 テーパ面 8 合金薄膜 9 フォトレジスト 10 磁区 11 磁気インピーダンス効果素子 12 段部 13 段部 14 フォトレジスト 15 フォトレジスト DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Substrate 3 Magnetic thin film 3a Lower surface 3b Upper surface 4 First electrode 5 Second electrode 6 Tapered surface 7 Tapered surface 8 Alloy thin film 9 Photoresist 10 Magnetic domain 11 Magnetic impedance effect element 12 Step 13 Step 14 Photoresist 15 Photoresist

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性体からなる基板と、この基板上に
設けられた帯状の磁性薄膜とを備え、 前記基板に密着する前記磁性薄膜の下面の幅が前記磁性
薄膜の上面の幅よりも大きくなるように、 前記磁性薄膜の幅方向において、前記磁性薄膜の両側部
の膜厚を前記磁性薄膜の中央部の膜厚よりも薄く形成し
たことを特徴とする磁気インピーダンス効果素子。
1. A substrate made of a non-magnetic material, and a band-shaped magnetic thin film provided on the substrate, wherein a width of a lower surface of the magnetic thin film which is in close contact with the substrate is larger than a width of an upper surface of the magnetic thin film. A magneto-impedance effect element characterized in that the film thickness on both sides of the magnetic thin film is formed to be larger in the width direction of the magnetic thin film than the film thickness at a central portion of the magnetic thin film.
【請求項2】 前記磁性薄膜の前記両側部にテーパ面を
設けたことを特徴とする請求項1に記載の磁気インピー
ダンス効果素子。
2. The magneto-impedance effect element according to claim 1, wherein tapered surfaces are provided on both sides of the magnetic thin film.
【請求項3】 前記磁性薄膜の前記両側部を階段状に形
成したことを特徴とする請求項1に記載の磁気インピー
ダンス効果素子。
3. The magneto-impedance effect element according to claim 1, wherein said both side portions of said magnetic thin film are formed in a step shape.
【請求項4】 前記磁性薄膜は平均結晶粒径が30nm
以下であるbccFe、bccFeCo、bccCoの
単体もしくは混合物を主体とした軟磁性合金薄膜よりな
ることを特徴とする請求項1,2又は3に記載の磁気イ
ンピーダンス効果素子。
4. The magnetic thin film has an average crystal grain size of 30 nm.
4. The magneto-impedance effect element according to claim 1, wherein the magneto-impedance effect element is made of a soft magnetic alloy thin film mainly composed of bccFe, bccFeCo, or bccCo as follows.
【請求項5】 前記磁性薄膜は組成式がT100-a-b-c-d
abcdで表され、元素TはFe,Coのうちの1
種又は2種の元素であり、XはSi,Alのうちの1種
又は2種の元素であり、MはTi,Zr,Hf,V,N
b,Ta,Mo,Wから選ばれる1種又は2種以上の元
素であり、元素ZはC,Nのうちの1種又は2種の元素
からなり、0≦a≦25(at%)、1≦b≦10(a
t%)、5≦c≦15(at%)、0≦d≦10(at
%)の関係を満足し、前記磁性薄膜の結晶組織内に平均
結晶粒径10nm以下の元素Mの微細な炭化物もしくは
窒化物がFeもしくはCoの結晶粒の周辺に析出してい
ることを特徴とする請求項4に記載の磁気インピーダン
ス効果素子。
5. The magnetic thin film has a composition formula of T 100-abcd
X a M b Z c is represented by Q d, element T Fe, 1 of the Co
X is one or two elements of Si and Al, and M is Ti, Zr, Hf, V, N
b, Ta, Mo, W, one or more elements selected from the group consisting of one or two elements of C and N, and 0 ≦ a ≦ 25 (at%); 1 ≦ b ≦ 10 (a
t%), 5 ≦ c ≦ 15 (at%), 0 ≦ d ≦ 10 (at
%), Wherein fine carbides or nitrides of the element M having an average crystal grain size of 10 nm or less are precipitated around Fe or Co crystal grains in the crystal structure of the magnetic thin film. The magneto-impedance effect element according to claim 4.
JP2000043613A 2000-02-16 2000-02-16 Magnetic impedance effect element Withdrawn JP2001228229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043613A JP2001228229A (en) 2000-02-16 2000-02-16 Magnetic impedance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043613A JP2001228229A (en) 2000-02-16 2000-02-16 Magnetic impedance effect element

Publications (1)

Publication Number Publication Date
JP2001228229A true JP2001228229A (en) 2001-08-24

Family

ID=18566504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043613A Withdrawn JP2001228229A (en) 2000-02-16 2000-02-16 Magnetic impedance effect element

Country Status (1)

Country Link
JP (1) JP2001228229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
JP7464420B2 (en) 2020-03-23 2024-04-09 キヤノン電子株式会社 Magnetic detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7582489B2 (en) 2002-11-21 2009-09-01 Denso Corporation Method for manufacturing magnetic sensor apparatus
DE10354444B4 (en) * 2002-11-21 2014-04-10 Denso Corporation Magnetic impedance device, same sensor device and method of making the same
JP7464420B2 (en) 2020-03-23 2024-04-09 キヤノン電子株式会社 Magnetic detector

Similar Documents

Publication Publication Date Title
JP3565163B2 (en) Oxide film formation method and manufacturing method of magnetic tunnel junction device
US20030016011A1 (en) Barber pole structure for magnetorestrictive sensors
JP2001228229A (en) Magnetic impedance effect element
JP2000099923A (en) Magnetic tunnel element and its manufacturing method
JP3936137B2 (en) Magneto-impedance effect element
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JP3866467B2 (en) Magneto-impedance effect element
JPH06349031A (en) Magneto-resistance effect type head
KR100392677B1 (en) A magneto-impedance effect element and method for manufacturing the same
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
JP3688942B2 (en) Method for manufacturing thin film magneto-impedance effect element
JPH11204855A (en) Method of forming indium antimony type crystal film, indium antimony type semiconductor element and its manufacture
JP3602988B2 (en) Magnetic impedance effect element
JP2004349528A (en) Magnetic impedance element
JP2004172430A (en) Magnetic impedance element
JP3650575B2 (en) Magneto-impedance effect element
JP4474835B2 (en) Magneto-impedance element
JP3590291B2 (en) Magnetoresistive element
JPS5859617A (en) Surface acoustic wave element
JP2002043647A (en) Magnetic impedance effect element
JP2957362B2 (en) Pattern etching method for sendust and chromium films
JP2000114041A (en) Thin-film laminated body manufacture thereof and thin- film transformer using the same, thin-film inductor, and thin-film magnetic head
JP4810005B2 (en) Magnetic field detection element
JPH0373078B2 (en)
JPH07201563A (en) Magnetic thin film structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050620