JPS5859617A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPS5859617A
JPS5859617A JP15759481A JP15759481A JPS5859617A JP S5859617 A JPS5859617 A JP S5859617A JP 15759481 A JP15759481 A JP 15759481A JP 15759481 A JP15759481 A JP 15759481A JP S5859617 A JPS5859617 A JP S5859617A
Authority
JP
Japan
Prior art keywords
single crystal
surface acoustic
acoustic wave
layer
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15759481A
Other languages
Japanese (ja)
Other versions
JPH025330B2 (en
Inventor
Nobuo Mikoshiba
御子柴 宣夫
Kazuo Tsubouchi
和夫 坪内
Kazuyoshi Sukai
須貝 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15759481A priority Critical patent/JPS5859617A/en
Publication of JPS5859617A publication Critical patent/JPS5859617A/en
Publication of JPH025330B2 publication Critical patent/JPH025330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To easily form a piezoelectric film and, at the same time, improve characteristics at high frequencies of a titled element, by forming a substrate by installing an aluminium nitride single crytal eqitaxial layer on a silicon single crystal layer consisting of (001) crystal planes. CONSTITUTION:A silicon single crystal plate 1 is composed of a silicon crystal cut along crystal planes (001) or equivalent planes. An aluminium nitride (AlN) single crystal epitaxial layer 2 is formed on the silicon single crystal substrate 1 in such a way that the piezoelectric axis becomes perpendicular to the plane of the substrate 1. Then, comb-shaped elastic acoustic wave driving electrodes 3 and detecting electrodes 4 are formed on the layer 2. The phase speed Vp of the surface acoustic wave against the film pressure (h) of the layer 2 rises from about 5,083m/sec to about 5,600m/sec within 0-5.0 range of 2pih/lambda (lambda is the wavelength of the surface acoustic wave). The variation is one maintaining a high phase speed and the dispersion to the film pressure is small.

Description

【発明の詳細な説明】 本発明は、特性的に優れた新しい構造の弾性表弾性表面
波(Sur f ace Acous t i c W
ave )を利用することにより各種の電気的信号を扱
うための弾性表面波素子を構成する構造(基板)として
は従来、l、圧電体基板のみの構造(圧電体単結晶基板
、圧電セラミックス基板等)、 2、非圧電体基板上に圧電膜を形成した構造3、半導体
基板上に圧電膜を形成した構造、等が知られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a new structure of surface acoustic waves (Surface Acoustic Waves) with excellent characteristics.
Conventionally, structures (substrates) constituting surface acoustic wave elements for handling various electrical signals by using ave) have been conventionally used. ), 2. Structure 3 in which a piezoelectric film is formed on a non-piezoelectric substrate, structure 3 in which a piezoelectric film is formed on a semiconductor substrate, etc. are known.

これらのうち、同一半導体基板上に集積回路と共に弾性
表面波素子を形成することができる3のモノリシック構
造が用途上有利であり、今後発展していくと思われる。
Among these, the monolithic structure of No. 3, in which a surface acoustic wave element can be formed together with an integrated circuit on the same semiconductor substrate, is advantageous in terms of applications and is expected to be further developed in the future.

ところで上述の3.のモノリシック構造としては、現在
のところシリコン(、Si)単結晶基板上にスパッタリ
ング法等[工り酸化亜鉛膜(ZnO)膜を形成した構造
がよく知られているが、このZnO膜は以下のような欠
点が存在するために実用上にあたっては問題がある。
By the way, 3 above. At present, a well-known monolithic structure is a structure in which a zinc oxide (ZnO) film is formed by sputtering or other methods on a silicon (Si) single crystal substrate. Due to these drawbacks, there are problems in practical use.

1、 電圧印加により電気的不安定性が生ずる。1. Electrical instability occurs due to voltage application.

2、 良質な膜が形成しにくいため、比抵抗、圧電性等
の点で十分再現性のあるものが得られない。
2. Because it is difficult to form a high-quality film, it is difficult to obtain a film with sufficient reproducibility in terms of resistivity, piezoelectricity, etc.

3、 シリコン単結晶基板上に保護膜(8i0z )を
必要とする。
3. A protective film (8i0z) is required on the silicon single crystal substrate.

4、高周波領域において弾性表面波の伝播損失が多い。4. Surface acoustic wave propagation loss is large in the high frequency region.

5゜ 弾性表面波伝播特性において分布が大きい。5゜ Large distribution in surface acoustic wave propagation characteristics.

6、通常のシリエンICプロセスと合致シない。6. It does not match the normal Sirien IC process.

本発明はこれらの問題点に対処してなされたものであり
、シリコン単結晶層上に窒化アルミニウム単結晶エピタ
キシャル層を形成した弾性体構造(基板)を用いること
を根本的特徴とするもので、特[(001)結晶面から
成るシリコン単結晶層を用いた弾性表面波素子を提供す
ることを目的とするものである。以下図面を参照して本
発明実施例を説明する。
The present invention has been made to address these problems, and its fundamental feature is to use an elastic structure (substrate) in which an aluminum nitride single crystal epitaxial layer is formed on a silicon single crystal layer. Specifically, it is an object of the present invention to provide a surface acoustic wave device using a silicon single crystal layer having a (001) crystal plane. Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明実施例による弾性表面波素子を示す断面
図で、lはシリコン単結晶基板で(001)結晶面もし
くはこれと等価な面でカットされたものから成り、2は
その上に形成された窒化アルミニウム(AlN)単結晶
エピタキシャル層でその圧電軸は上記シリコン単結晶基
板1面に直角になるように形成される。号、4は上記窒
化アルミニウム単結晶エピタキシャル層2表面に形成さ
れたくし型状から成る弾性表面波発生用電極および検出
用電極で、hH窒化アルミニウム単結晶エピタキシャル
層2の膜厚である。
FIG. 1 is a cross-sectional view showing a surface acoustic wave device according to an embodiment of the present invention, where l is a silicon single crystal substrate cut on the (001) crystal plane or an equivalent plane, and 2 is a silicon single crystal substrate cut on the (001) crystal plane or an equivalent plane. The piezoelectric axis of the aluminum nitride (AlN) single crystal epitaxial layer thus formed is perpendicular to the surface of the silicon single crystal substrate. No. 4 is a comb-shaped surface acoustic wave generation electrode and detection electrode formed on the surface of the aluminum nitride single crystal epitaxial layer 2, and is the film thickness of the hH aluminum nitride single crystal epitaxial layer 2.

以上の構造の弾性表面波素子に対しそのシリコン単結晶
基板1の(110)軸方向と等価な方向へ弾性表面波を
励振(伝播)させた時、第5図に示すような弾性表面波
の速度分散特性が得られた。
When a surface acoustic wave element having the above structure is excited (propagated) in a direction equivalent to the (110) axis direction of the silicon single crystal substrate 1, the surface acoustic wave as shown in FIG. Velocity dispersion characteristics were obtained.

同図において横@は窒化アルミニウム単結晶エピタキシ
ャル膜2の膜厚りの規格化された厚さを2πh/λ(こ
こでλは弾性表面波の波長)で示し、縦軸は弾性表面波
の位相速度Vpを示すものである。同図から明らかなよ
うに2πh/λが約5.01で弾性表面波としてのモー
ドは消失しなかった。
In the figure, the horizontal @ indicates the standardized thickness of the aluminum nitride single crystal epitaxial film 2 in 2πh/λ (here, λ is the wavelength of the surface acoustic wave), and the vertical axis indicates the phase of the surface acoustic wave. This shows the speed Vp. As is clear from the figure, when 2πh/λ was approximately 5.01, the surface acoustic wave mode did not disappear.

しかし2πh/λのO〜5,0の範囲に対応したVpは
約5083 In / s e cから約5600m/
secまで右上りに上昇しており、この変化は大きな位
相速度を保持した変化であり、また膜厚に対する分散は
小さかった。
However, Vp corresponding to the range of 2πh/λ from O to 5,0 is approximately 5083 In/sec to approximately 5600 m/sec.
It rose to the right up to sec, and this change maintained a large phase velocity, and the dispersion with respect to the film thickness was small.

第6図は電気機械結合係数の特性曲線を示すもので、横
軸は第5図と同様な2πh/λで示し、縦軸は電気機械
結合係数にの二乗値Kを百分率で示すものである。同図
において曲線Aが第1図の構造に対応した特性で、規格
化膜厚2πh/λの31近傍においてK[約0.5%が
得られた。この値は通常弾性表面波を発生および検出さ
せるに充分な値である。
Figure 6 shows the characteristic curve of the electromechanical coupling coefficient, where the horizontal axis shows 2πh/λ as in Figure 5, and the vertical axis shows the square value K of the electromechanical coupling coefficient as a percentage. . In the same figure, curve A has a characteristic corresponding to the structure of FIG. 1, and K[about 0.5% was obtained near 31 of the normalized film thickness 2πh/λ. This value is usually sufficient to generate and detect surface acoustic waves.

第2図(al、(bl ’ld本発明の他の実施例を示
す断面図で、(alはシリコン単結晶基板1の表面部に
弾性表面波発生用電極3お工び検出用電極4を形成し□
た後、これらを覆うように窒化アルミニウム単結晶エピ
タキシャル層2を形成した構造を示し、(blは上記シ
リコン単結晶基板1表面部に部分的に高抵抗層7もしく
は空乏層を形成し、これらの層に低抵抗シリコンから成
るくし型状の弾性表面波発生用電極5および検出用電極
6を埋込み形成した後にこれ−らを覆うように窒化アル
ミニウム単結晶ある。
FIG. 2 (al, bl'ld) is a sectional view showing another embodiment of the present invention, in which (al) shows a surface acoustic wave generation electrode 3 and a fabrication detection electrode 4 on the surface of a silicon single crystal substrate 1. Formed□
After that, an aluminum nitride single crystal epitaxial layer 2 is formed to cover these. After comb-shaped surface acoustic wave generation electrodes 5 and detection electrodes 6 made of low-resistance silicon are embedded in the layer, an aluminum nitride single crystal is placed to cover them.

以上の構造の弾性表面波素子に対し第1図の構造と同様
にシリコン単結晶基板1のC110)軸方向と等価な方
向へ弾性表面波を励伽、1せることにより、第5図に示
すような速度分散特性が得られ、窒化アルミニウム単結
晶エビクキ、シャル層2の規格化膜厚2πh/λに対し
て分散が小さいことがわかった。。
In the surface acoustic wave element having the above structure, surface acoustic waves are excited in a direction equivalent to the C110) axis direction of the silicon single crystal substrate 1 in the same manner as in the structure shown in FIG. 1, as shown in FIG. It was found that such velocity dispersion characteristics were obtained, and the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single-crystal layer 2. .

また第6図の曲線Bは電気機械結合係数の二乗値に特性
を示T敏ので、規格化膜厚2πh/λの3.1近傍にお
いてKに約0.61%が得られた。このばは通常弾性表
面波を発生および検出させるに充分な値である。
Further, since the curve B in FIG. 6 is sensitive to the square value of the electromechanical coupling coefficient, a K value of about 0.61% was obtained in the vicinity of 3.1 of the normalized film thickness 2πh/λ. This value is usually sufficient to generate and detect surface acoustic waves.

第3図(al、(blは本発明のその他の実施例を示す
もので、・(acidシリコン単結晶基板10表面部に
部分的に第2電極として一対のしやへい電極8を形成し
た後、これらを覆うように窒化アルミニウム単結晶エピ
タキシャル層2を形成しこの表面vcw1電極として弾
性表面波検出用電極3お工び検出用電極4を形成した構
造を示し、(b)は上記シリコン単結晶基板1衣面部に
部分的に低抵抗シリコン層9を形成した後、これらを覆
うように窒化シリコン単結晶エピタキシャル層2を形成
しこの異面に第1電極として上記発生用電極3お工び検
出用電極4を形成した構造を示すものである。
FIG. 3 (al, (bl) shows other embodiments of the present invention, after a pair of thin electrodes 8 are partially formed as second electrodes on the surface of the acid silicon single crystal substrate 10. , shows a structure in which an aluminum nitride single crystal epitaxial layer 2 is formed so as to cover these, and a surface acoustic wave detection electrode 3 and a machining detection electrode 4 are formed on this surface as a vcw1 electrode, and (b) shows a structure in which an aluminum nitride single crystal epitaxial layer 2 is formed on this surface as a vcw1 electrode. After forming a low-resistance silicon layer 9 partially on the surface of the substrate 1, a silicon nitride single crystal epitaxial layer 2 is formed to cover these layers, and the generation electrode 3 is used as a first electrode on this different surface to detect the production. This figure shows the structure in which the electrode 4 is formed.

以上の構造の弾性表面波素子に対し第1図の構造と同様
にシリコン単結晶基板1の〔110〕軸方向と等価な方
向へ弾性表面波を励珈させることに工り、第5図に示す
ような速度分散特性が得られ、窒化アルミニウム単結晶
エピタキシャル層2の規格化膜厚2πh/λに対して分
散が小さいことがわかった。
Similar to the structure shown in FIG. 1, the surface acoustic wave element having the above structure was designed to excite surface acoustic waves in a direction equivalent to the [110] axis direction of the silicon single crystal substrate 1, and as shown in FIG. It was found that the velocity dispersion characteristics as shown were obtained, and the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第6図の曲線Cは電気機械結合係数の二乗r[K特
性を示すもので、規格化膜厚2πh/λの0.29近傍
においてKは約0.34%が得られ、さらvc2πh/
λの41近傍においてKは約0.44%が得られいわゆ
るダブルピーク特性が得られた。
Curve C in FIG. 6 shows the square r[K characteristic of the electromechanical coupling coefficient, and K is about 0.34% near 0.29 of the normalized film thickness 2πh/λ, and further, vc2πh/
In the vicinity of λ of 41, K was about 0.44%, and a so-called double peak characteristic was obtained.

特に前者の第1ピークを与える薄い膜厚においては分散
は非常に少なく、超高周波、低分散特性に優れているこ
とがわがった。これらにおけるに2値は通常弾性表面波
を発生および検出させるに充分な値である。
In particular, it was found that at a thin film thickness that gives the first peak of the former, dispersion is very small, and the film has excellent ultra-high frequency and low dispersion characteristics. These two values are usually sufficient to generate and detect surface acoustic waves.

第4図(a)、(blは本発明のその他の実施例を示す
もので、(a)はシリコン単結晶基板1表面部に第1電
極として弾性表面波発生用電極3および検出用電極4を
形成した後、これらを復うに窒化アルミニウム単結晶エ
ピタキシャル層2を形成、t、、コノ表面に部分的に第
2電極として一対のしゃへい電極8を形成した構造を示
し、(b)は上記シリコン単結晶基板1表面部に部分的
に高低抵抗層7もしくは空乏層を形成し、これらの層に
低抵抗シリコンから成るくし型状の第1電極としての上
記発生用電極5および検出用電極6を埋め込み形成した
後、これらを覆うエラに窒化アルミニウム単結晶エピタ
キシャル層2を形成しこの表面に第2電極として一対の
しやへい電極8を形成した構造を示すものである。
FIGS. 4(a) and 4(bl) show other embodiments of the present invention. FIG. 4(a) shows a surface acoustic wave generation electrode 3 and a detection electrode 4 as first electrodes on the surface of a silicon single crystal substrate 1. After forming these, an aluminum nitride single crystal epitaxial layer 2 is formed on top of these, and a pair of shielding electrodes 8 are partially formed on the surface of the silicon layer as a second electrode. A high/low resistance layer 7 or a depletion layer is partially formed on the surface of the single crystal substrate 1, and the generation electrode 5 and the detection electrode 6 as a comb-shaped first electrode made of low resistance silicon are formed on these layers. After embedding, an aluminum nitride single crystal epitaxial layer 2 is formed in the gills covering these, and a pair of thin electrodes 8 are formed as second electrodes on the surface of the aluminum nitride single crystal epitaxial layer 2.

以上の構造の弾性表面波素子に対し第1図の構造と同様
にシリコン単結晶基板lのC110)軸方向と等価な方
向へ弾性表面波を励珈させることにより、第5図に示す
ような速度分散特性が得られ、窒化アルミニウム単結晶
エピタキシャル層2の規格化膜厚2πh/λに対して分
散が小さいことがわかった。
In the surface acoustic wave device having the above structure, by exciting surface acoustic waves in a direction equivalent to the C110) axis direction of the silicon single crystal substrate l in the same manner as in the structure shown in FIG. Velocity dispersion characteristics were obtained, and it was found that the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第6図の曲線りは電気機械結合係数の二乗値に特性
を示すもので、規格化膜厚2πh/λの0.19近傍に
おいてKは約0.26%が得られ、さらvc2πh/λ
の3.6近傍においてKは約0.54%が得られダブル
ビーク特性が得られた。特に前者の第1ピークを与える
薄い膜厚においてに分散は非蕪に少なく、超島周波、低
分散性に優れていることがわかった。これらにおけるK
[に通常弾性波を発生および検出式せるに充分な値であ
る。
The curve in Figure 6 shows the characteristics of the square value of the electromechanical coupling coefficient, and in the vicinity of 0.19 of the normalized film thickness 2πh/λ, K is approximately 0.26%, and further, vc2πh/λ
In the vicinity of 3.6, K was approximately 0.54%, and double-beak characteristics were obtained. In particular, it was found that at a thin film thickness giving the first peak of the former, the dispersion was lower than that of non-turnips, and it was found to be excellent in ultra-island frequency and low dispersion. K in these
This value is sufficient to generate and detect normal acoustic waves.

第1図乃至第4図(a)、 (blの構造において、特
に窒化アルミニウム単結晶エピタキシャル層2をこの圧
電軸がシリコン単結晶基板1面に平行かつその(110
)軸と等価な方向になるように形成した場合の本発明の
その他の実施例について以下説明する。
In the structure of FIGS. 1 to 4(a), (bl), the piezoelectric axis of the aluminum nitride single crystal epitaxial layer 2 is parallel to the surface of the silicon single crystal substrate and its (110
) Other embodiments of the present invention will be described below in which they are formed in a direction equivalent to the axis.

子を用意し、そのシリコン単結晶基板1の(110:]
軸方向と等価な方向へ弾性表面波を励珈させた時、第7
図に示すような弾性表面波の速度分散特性が得られた。
(110:] of the silicon single crystal substrate 1)
When a surface acoustic wave is excited in a direction equivalent to the axial direction, the seventh
The velocity dispersion characteristics of surface acoustic waves as shown in the figure were obtained.

同図において横軸および縦軸は第5図と同一であり、規
格化膜厚2πh/λが約5.0−1で弾性表面波として
のモードに消失しなかった。
In the figure, the horizontal and vertical axes are the same as in FIG. 5, and the normalized film thickness 2πh/λ was about 5.0-1, and the mode did not disappear into a surface acoustic wave mode.

しかし2πh/λの0〜八、0の範囲に対応した位相速
度Vpは約5083m/secから約5570 m /
 sec 1で右上りに上昇しており、この変化は大き
な位相速度を保持した変化であり、また膜厚に対する分
散は小さかった。特に2πh/λが1.0近傍では分散
は極小値をとるため非常に小でくなった。
However, the phase velocity Vp corresponding to the range of 0 to 8,0 of 2πh/λ is about 5083 m/sec to about 5570 m/sec.
It rose to the right in sec 1, and this change maintained a large phase velocity, and the dispersion with respect to the film thickness was small. In particular, when 2πh/λ is around 1.0, the dispersion takes a minimum value and becomes very small.

また2πh/λが0.2近傍でも分散に極大値をとるた
め小さくなった。
Further, even when 2πh/λ is around 0.2, the dispersion takes a local maximum value and becomes small.

第8図の曲線Afi電気機械結合係数の二乗値に2特性
を示すもので、規格化膜厚2πh/λの2.5近傍にお
いてKは約0.95%が得られた。また速度分散の小さ
い1.0近傍でも0.65%が得られた。
The curve Afi in FIG. 8 shows two characteristics in the square value of the electromechanical coupling coefficient, and K was about 0.95% in the vicinity of 2.5 of the normalized film thickness 2πh/λ. Furthermore, even in the vicinity of 1.0, where velocity dispersion is small, 0.65% was obtained.

これらの[は通常弾性表面波を発生および検出させるに
充分な値である。
These values are usually sufficient to generate and detect surface acoustic waves.

次に第2図(a)、(blと同一構造に形成した弾性表
面波素子を用意し、そのシリコン単結晶基板1の(11
0”l軸方向と等価な方向へ弾性表面波を励娠させるこ
とにエリ、第7図に示すような速度分散特性が褥られ、
窒化アルミニウム単結晶エピタキシャル層2の規格化膜
厚2πh/λに対して分散が小さいことがわかった。
Next, in FIG. 2(a), a surface acoustic wave element formed in the same structure as (bl) is prepared, and the (11
In order to excite the surface acoustic wave in the direction equivalent to the 0"l axis direction, the velocity dispersion characteristics as shown in Fig. 7 are obtained,
It was found that the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第8図の曲線Bは電気機械結合係数の二乗値に特性
を示すもので、規格化膜厚2πh/λの0.39近傍に
おいてに2は約0.15%が得られ、′さゝ 2 ら[2πh/λの富、0近傍に、おいてKは約0.5%
が得られダブルピーク特性が得られた。これらのに2値
に通常弾性表面波を発生および検出式せるに充分な値で
ある。
Curve B in Figure 8 shows the characteristics of the square value of the electromechanical coupling coefficient, and 2 is approximately 0.15% in the vicinity of 0.39 of the normalized film thickness 2πh/λ, and ' 2 [2πh/λ wealth, near 0, K is about 0.5%
was obtained, and a double peak characteristic was obtained. These two values are usually sufficient to generate and detect surface acoustic waves.

次に第3図(a)、(blと同一構造に形成した弾性表
面波素子を用意し、そのシリコン単結晶基板1の(11
0)軸方向と等価な方向へ弾性表面波を励奈させること
にエリ、第7図に示すような速度分散特性が得られ、窒
化アルミニウム単結晶エピタキシャル層2の規格化膜厚
2πh/λに対して分散が小さいことがわかった。
Next, in FIG. 3(a), a surface acoustic wave element formed in the same structure as (bl) is prepared, and the (11
0) By exciting the surface acoustic waves in a direction equivalent to the axial direction, the velocity dispersion characteristics shown in Fig. 7 can be obtained, and the normalized film thickness of the aluminum nitride single crystal epitaxial layer 2 is 2πh/λ. It was found that the variance was small.

また第8図の曲線Cは電気機械結合係数の二乗[K2特
性を示すもので、規格化膜厚2πh/λの2.0近傍に
おいてKは約1,1%が得られた。
Curve C in FIG. 8 shows the square of the electromechanical coupling coefficient [K2 characteristic, and K was about 1.1% in the vicinity of 2.0 of the normalized film thickness 2πh/λ.

特に第7図において2πh/λが1.0近傍の速度分散
が小さいところで約0.8%のKが得られた。
In particular, in FIG. 7, a K of about 0.8% was obtained where the velocity dispersion was small where 2πh/λ was around 1.0.

これらの直は通常弾性表面波を発生および検出させるに
充分な値である。
These values are usually sufficient to generate and detect surface acoustic waves.

次に第4図(a)・、(blと同一構造に形成した弾性
表面波を用意し、そのシリコン単結晶基板1の〔110
〕軸方向と等価な方向へ弾性表面波を励奈させるこ。
Next, prepare a surface acoustic wave formed in the same structure as FIG.
] Exciting surface acoustic waves in a direction equivalent to the axial direction.

とに工り、第7図に示すような速度分布特性が得られ、
窒化アルミニウム単結晶エピタキシャル層2の規格化膜
厚2πh/λに対して分散が小さいことがわかった。
As a result, the velocity distribution characteristics shown in Figure 7 were obtained.
It was found that the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第8図の曲線りは電気機械結合係数の二乗1iK特
性を示すもので、規格化膜厚2πh/λの2.7近傍に
おいてに2 、約0.56%のピー〉が得られた。
Furthermore, the curve in FIG. 8 shows the square 1iK characteristic of the electromechanical coupling coefficient, and approximately 0.56% of the normalized film thickness 2πh/λ was obtained in the vicinity of 2.7.

特に速度分散の小さい2πh/λが1.0近傍で約0.
12%のKが得られた。これらの値に通常弾性表面波を
発生および検出させるに充分な値である。
In particular, 2πh/λ, which has a small velocity dispersion, is around 1.0 and about 0.
A K of 12% was obtained. These values are usually sufficient to generate and detect surface acoustic waves.

第1図乃至第4図(al、(blの構造の弾性表面波素
子において、そのシリコン単結晶基板1の〔100〕軸
方向と等価な方向へ弾性表面波を励娠させた場合の本発
明のその4他め実施例について以下説明する。
The present invention when surface acoustic waves are excited in a direction equivalent to the [100] axis direction of the silicon single crystal substrate 1 in a surface acoustic wave device having the structure shown in FIGS. 1 to 4 (al, (bl). The fourth embodiment will be described below.

先ず第1図と同一構造の弾性表面波素手の場合、第9図
に示′fような弾性表面波の速度分散特性が得られた。
First, in the case of a surface acoustic wave bare hand having the same structure as that shown in FIG. 1, the velocity dispersion characteristics of the surface acoustic wave as shown in FIG. 9'f were obtained.

同図において横軸および縦軸は第5図と同一であり、規
格化膜厚2πh/λが約5.0まで弾性表面波としての
モードは消失しなかった。
In this figure, the horizontal and vertical axes are the same as in FIG. 5, and the surface acoustic wave mode did not disappear until the normalized film thickness 2πh/λ was approximately 5.0.

しかし2πh/λのO〜5,0の範囲に対応した位相速
度Vpは約4920m/secから約5500m/se
cまで右上vvc上昇しており、この変化は大きな位相
速度を保持した変化であり、また膜厚に対する分散は小
さかった。
However, the phase velocity Vp corresponding to the range of 0 to 5,0 of 2πh/λ is about 4920 m/sec to about 5500 m/sec.
The upper right vvc rose to c, and this change maintained a large phase velocity, and the dispersion with respect to the film thickness was small.

第10図の曲1fMAは電気機械結合係数の二乗値3.
1近傍においてKは約0.49%が得られた。この値は
通常弾性表面波を発生および検出させるに充分な値であ
る。
The song 1fMA in FIG. 10 has a square value of electromechanical coupling coefficient of 3.
In the vicinity of 1, K of about 0.49% was obtained. This value is usually sufficient to generate and detect surface acoustic waves.

次[第2図(al、lb)と同一構造の弾性表面波素子
の場合、第9図に示すような速度分散特性が得られ、窒
化アルミニウム単結晶エピタキシャル層2の規格化膜厚
2πh/λに対して分散が小さいことがわかった。
Next [In the case of a surface acoustic wave device having the same structure as in FIG. 2 (al, lb), the velocity dispersion characteristics shown in FIG. 9 are obtained, and the normalized film thickness of the aluminum nitride single crystal epitaxial layer 2 is 2πh/λ. It was found that the variance was small.

また第10図の曲線Bに電気機械結合係数の二乗(W 
K 特性を示すもので、規格化膜厚2πh/λの3.1
近傍においてKは約0.57%が得られた。
In addition, the square of the electromechanical coupling coefficient (W
3.1 of the normalized film thickness 2πh/λ
K of about 0.57% was obtained in the vicinity.

この値は通常弾性表面波を発生および検出さ騒るに充分
な匝である。
This value is usually sufficient to generate and detect surface acoustic waves.

次に第3図(al、fb)と同一構造の弾性表面波素子
の場合、第9図に示′fよつな速度分散特性が得られ、
窒化アルミニウム単結晶エピタキシャル層2の規格化膜
厚2πh/λに対して分散が小さいことがわかった。
Next, in the case of a surface acoustic wave element having the same structure as in Fig. 3 (al, fb), velocity dispersion characteristics as shown in Fig. 9 are obtained,
It was found that the dispersion was small with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第10図の曲線Cに電気機械結合係数の二W値に特
性を示すもので、規格化膜厚2πh/λの0.25近傍
においてKに約0.35%が得られ、さらl/(2πh
/λの4,0近傍においてKは約044係が得られいわ
ゆるダブルビ、−り特性が得られた。
In addition, the curve C in Figure 10 shows the characteristics of the electromechanical coupling coefficient at 2W values, and in the vicinity of 0.25 of the normalized film thickness 2πh/λ, approximately 0.35% of K is obtained, and further l/ (2πh
In the vicinity of /λ of 4.0, K of about 044 was obtained, and a so-called double-bi characteristic was obtained.

特に前者の第1ピークを与える薄い膜厚においては分散
は非常に少なく、超高周波、低分散特性に優れているこ
とがわかった。これらにおけるに2値は通常弾性表面波
を発生および検出させるに充分な1直である。
In particular, it was found that at a thin film thickness that gives the first peak of the former, dispersion is very small, and the film has excellent ultra-high frequency and low dispersion characteristics. The two values in these are usually one value, which is sufficient to generate and detect surface acoustic waves.

次に第4図(al、(blと同一構造の弾性表面波素子
の場合、第9図に示″fような速度分散特性が得られ、
窒化アルミニウム単結晶エピタキシャル層2の規格化膜
厚2πh/λに対して分散が小さいCとがわかった。
Next, in the case of a surface acoustic wave element having the same structure as in FIGS. 4(al and bl), velocity dispersion characteristics as shown in FIG.
It was found that C had a small dispersion with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第10図の曲線りは電気機械結合係数の二乗値に特
性を示すもので、規格化膜厚2πh/λの0.20近傍
においてKは約0.28%が得られ、さらに2πh/λ
の3.5近傍においてKは約0.51係が得られいわゆ
るダブルピーク特性が得られた。
Furthermore, the curve shown in Fig. 10 shows the characteristic of the square value of the electromechanical coupling coefficient, and K is approximately 0.28% in the vicinity of 0.20 of the normalized film thickness 2πh/λ, and furthermore, 2πh/λ
In the vicinity of 3.5, K had a coefficient of about 0.51, and a so-called double peak characteristic was obtained.

特に前者の第1ピークを与える薄い膜厚においては分散
は非常に少なく、超高周波、低分散特性に優れているこ
とがわかった。これらにおけるに2mは通常弾性表面波
を発生および検出させるに充分な値である。
In particular, it was found that at a thin film thickness that gives the first peak of the former, dispersion is very small, and the film has excellent ultra-high frequency and low dispersion characteristics. In these cases, 2 m is usually a sufficient value to generate and detect surface acoustic waves.

第1図乃至第4図(al、 (b)の構造において、特
に窒化アルミニウム単結晶エピタキシャル層2をこの圧
電軸がシリコン単結晶基板1面に平行がっその(100
)軸と等価な方向になるように形成゛した場合の本発明
のその他の実施例について以下説明する。
In the structure shown in FIGS. 1 to 4 (al, (b)), the piezoelectric axis of the aluminum nitride single crystal epitaxial layer 2 is parallel to the surface of the silicon single crystal substrate (100
) Other embodiments of the present invention will be described below in which they are formed in a direction equivalent to the axis.

先ず第1図と同で構造に形成した弾性表面波素子を用意
し、そのシリコン単結晶基板1の[100]軸方向と等
価な方向へ弾性表面波を励碌させた時、第11図に示す
ような弾性表面波の速度分散特性が得られた。
First, a surface acoustic wave element formed in the same structure as that shown in FIG. 1 is prepared, and when surface acoustic waves are excited in a direction equivalent to the [100] axis direction of the silicon single crystal substrate 1, the result shown in FIG. 11 is obtained. The velocity dispersion characteristics of surface acoustic waves as shown were obtained.

同図において横軸および縦軸は第5図と同一であり、規
格化膜厚2πh/λが約0.51で弾性表面波としての
モードは消失したが、った。
In the figure, the horizontal and vertical axes are the same as in FIG. 5, and the surface acoustic wave mode disappeared when the normalized film thickness 2πh/λ was about 0.51.

しかし2πh/λのO〜5.0の範囲に対応した位相速
度Vpは約4921 m/ Secから約5600 m
 / sec 1で右上りに上昇しており、この変化は
大きな位相速度を保持した変化であり、また膜厚に対す
る分散は小でかった。
However, the phase velocity Vp corresponding to the range of 2πh/λ from O to 5.0 is about 4921 m/Sec to about 5600 m
/sec 1, and this change was a change that maintained a large phase velocity, and the dispersion with respect to the film thickness was small.

第12図の曲線Aは電気機械結合係数の二乗値に特性を
示すもので、規格化膜厚2πh/λの2.5近傍におい
てKは約0.9%のピークが得られた。特に2πh/λ
が1.0の近傍で約0.6%のに2が得られ、かつ第1
1図のように分散に極小点で非常に小さい。これらの値
は通常弾性表面波を発生および検出させるに充分な値で
ある。
Curve A in FIG. 12 shows the characteristics of the square value of the electromechanical coupling coefficient, and a peak of K of about 0.9% was obtained near 2.5 of the normalized film thickness 2πh/λ. Especially 2πh/λ
is around 1.0, approximately 0.6% of 2 is obtained, and the first
As shown in Figure 1, the dispersion is extremely small at the minimum point. These values are usually sufficient to generate and detect surface acoustic waves.

次に第2図(al、(blと同一構造に形成した弾性表
面波素子を用意し、そのシリコン単結晶基板1の〔10
0〕軸方向と等価な方向へ弾性表面波を励娠嘔せること
により、第11図に示すような速度分散特性が得られ、
窒化アルミニウム単結晶エピタキシャル層2の規格化膜
厚2πh/λに対して分散が不埒いことがわかった。
Next, prepare a surface acoustic wave element formed in the same structure as in FIG. 2 (al, (bl),
0] By exciting surface acoustic waves in a direction equivalent to the axial direction, velocity dispersion characteristics as shown in Figure 11 can be obtained,
It was found that the dispersion was unfavorable with respect to the normalized film thickness 2πh/λ of the aluminum nitride single crystal epitaxial layer 2.

また第12図の曲線Bは電気機械結合係数の二乗III
IK2特性を示すもので、規格化膜厚2πh/λの0,
34近傍においてKは約0.15 %が得られ、係が得
られダブルピーク特性が得られた。これらのKllは通
常弾性表面波を発生および検出させるに充分な値である
Curve B in Figure 12 is the square of the electromechanical coupling coefficient III.
It shows IK2 characteristics, and has a normalized film thickness of 2πh/λ of 0,
In the vicinity of 34, K of about 0.15% was obtained, a relationship was obtained, and a double peak characteristic was obtained. These Klls are usually of sufficient value to generate and detect surface acoustic waves.

次に第3図(al、(blと同一構造に形成した弾性表
面波素子を用意し、そのシリコン単結晶基板1の(10
0)−軸方向と等価な方向へ弾性表面波を励珈させるこ
とにより、第11図に示すような速度分散特性が得られ
、窒化アルミニウム単結晶エピタキシャル層2の規格化
膜厚2πh/λに対して分散が小さいこと功!わかった
Next, a surface acoustic wave element formed in the same structure as in FIG. 3 (al, (bl) is prepared, and the (10
0) - By exciting the surface acoustic waves in a direction equivalent to the axial direction, a velocity dispersion characteristic as shown in FIG. 11 is obtained, and the normalized film thickness of the aluminum nitride single crystal epitaxial layer 2 is 2πh/λ. On the other hand, the dispersion is small! Understood.

また第12図の曲線CFs、電気機械結合係数の二乗値
に特性を示すもので、規格化膜厚2πh/λの2.0近
傍においてKは約1.0%が得られた。
Further, in the curve CFs in FIG. 12, which shows the characteristics in the square value of the electromechanical coupling coefficient, K was about 1.0% in the vicinity of 2.0 of the normalized film thickness 2πh/λ.

特[2πh/λカ1.0近傍1/m$−イテ、約0.7
%)に2が得られかつ第11図のように分散は極小点で
非常に小さい。これらの値は通常弾性表面波を発生お工
ひ検出はせるに充分な値である。
Special [2πh/λ force around 1.0 1/m$-ite, about 0.7
%) is obtained, and as shown in FIG. 11, the dispersion is very small at the minimum point. These values are usually sufficient to generate and detect surface acoustic waves.

次に第4図(alと(blと同一構造に形成した弾性表
面波を用意し、そのシリコン単結晶基板1の(100)
軸方向と等価な方向へ弾性表面波を励伽テせることにエ
リ、第11図に示すような速度分布特性が得られ、窒化
アルミニウム単結晶エピタキシャル層2の規格化膜厚2
πh/λに対して分散が小さいことがわ力)つた。
Next, prepare surface acoustic waves formed in the same structure as (al and (bl) in FIG. 4, and (100)
By exciting the surface acoustic waves in a direction equivalent to the axial direction, a velocity distribution characteristic as shown in FIG. 11 is obtained, and the normalized film thickness 2 of the aluminum nitride single crystal epitaxial layer 2 is
It was found that the dispersion was small relative to πh/λ.

また第12図の曲線りは電気機械結合係数の二乗f直に
2特性を示すもので、規格化膜厚2πh/λの2.7近
傍においてKは約0.55%のピークが得られた。
In addition, the curve shown in Figure 12 shows two characteristics directly related to the square f of the electromechanical coupling coefficient, and a peak of about 0.55% for K was obtained near 2.7 of the normalized film thickness 2πh/λ. .

この値は通常弾性表面波を発生および検出きせるに充分
な値である。
This value is usually sufficient to generate and detect surface acoustic waves.

以上説明して明らかなように本発明によれは;シリコン
単結晶基板(層)上に窒化アルミニウム単結晶エピタキ
シャル層′を形成した弾性体構造を用い、特K (00
1)結晶面から成るシリコン単結晶基板を用いて弾性表
面波を伝播させるように構成するものであるから、特性
的に優れた弾性表面波素子を得ることができる。
As is clear from the above description, the present invention uses an elastic body structure in which an aluminum nitride single crystal epitaxial layer is formed on a silicon single crystal substrate (layer).
1) Since a silicon single crystal substrate consisting of crystal planes is used to propagate surface acoustic waves, a surface acoustic wave element with excellent characteristics can be obtained.

なお本文各実施例における窒化アルミニウム単結晶エピ
タキシャル層の膜厚りの最適範囲は各特性図から明らか
であるが、各実施例ごとに示せば次表のようになる。
The optimum range of the film thickness of the aluminum nitride single crystal epitaxial layer in each of the examples in this text is clear from each characteristic diagram, and is shown in the following table for each example.

以上説明した本発明によれば次のような効果が得られる
According to the present invention explained above, the following effects can be obtained.

1、 エピタキシャル膜による窒化アルミニウム膜を用
いるので、膜質が均一であり高周波での伝播損失が小さ
い。
1. Since an epitaxial aluminum nitride film is used, the film quality is uniform and the propagation loss at high frequencies is small.

2、弾性表面波音速が大きいため高周波での波長が大き
くなり、くし型電極等の製造が容易になる。
2. Surface acoustic waves have a high sound velocity, so the wavelength at high frequencies becomes large, making it easier to manufacture comb-shaped electrodes and the like.

3、 弾性表面波音速゛の周波数分散が小さく抑えられ
るので、信号伝播に伴なう波形歪が小さくなる。
3. Since the frequency dispersion of surface acoustic wave sound velocity is kept small, waveform distortion accompanying signal propagation is reduced.

4、共通半導体基板上に集積回路および弾性表面波素子
を形成するモノリシック構造が可能となる。
4. A monolithic structure is possible in which integrated circuits and surface acoustic wave devices are formed on a common semiconductor substrate.

5、 窒化アルミニウム膜はバンドギャップが約6.2
e■と大きくまた比抵抗は1016Ωm以上のものが得
られるため、電気的に安定であり、MO−CVD技術を
用いて容易に形成できるためシリコンのICプロセスと
合致する。
5. The band gap of aluminum nitride film is approximately 6.2.
It is electrically stable because it has a large resistivity of 1016 Ωm or more, and can be easily formed using MO-CVD technology, which is compatible with the silicon IC process.

以上のように本発明による構造に、特に弾性表に形成す
ることができるため広範囲の用途への適用が可能となる
As described above, the structure according to the present invention can be particularly formed into an elastic surface, so that it can be applied to a wide range of uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図ta)、Tb)、第3図(a)、(bl
オ[Lil!4図(al、 (blはいずれも本発明実
施例を示す断面図、第5因乃至第12図にいずれも本発
明により得られた結果を示す特性図である。 l・・・シリコン単結晶基板、2・・・窒化アルミニラ
A 単結晶エピタキシャル層、3.4.5.6・・・く
し型電極、7・・・高抵抗シリコン層、8・・・しゃへ
い電極、9・・・低抵抗シリコン層。 特許出願人 御子柴 宣 夫 坪   内   オロ   夫 代理人 弁理士 永 1)武三部 1、事件の表示 昭和謁年特許願 第157594号 3、 補正をする者 事件との関係  特許出願人 4、代理人〒105 住 所  東京都港区芝3丁目2番14号芝三丁目ビル
昭和57年2月n日(発送日)
Figure 1, Figure 2 ta), Tb), Figure 3 (a), (bl
Oh [Lil! Figures 4 (al and bl) are cross-sectional views showing examples of the present invention, and Figures 5 to 12 are characteristic diagrams showing the results obtained by the present invention. l...Silicon single crystal Substrate, 2... Aluminum nitride A single crystal epitaxial layer, 3.4.5.6... Comb-shaped electrode, 7... High resistance silicon layer, 8... Shielding electrode, 9... Low resistance Silicon layer. Patent applicant: Nobu Mikoshiba, Oro Uchi, Patent attorney: Nagai 1) Takesanbe 1, Indication of the case Showa Patent Application No. 157594 3, Relationship with the amended person case Patent applicant 4 , Agent 105 Address: Shiba 3-chome Building, 3-2-14 Shiba, Minato-ku, Tokyo February n, 1982 (shipment date)

Claims (1)

【特許請求の範囲】 1、  (001)結晶面もしくはそれと等価な面がら
成るシリコン単結晶層と、この上vc1成されがつ圧電
軸が配向した窒化アルミニウム単結茜エピタキシャル層
と、これら所定位置に形成された電極とを含むことを特
徴とする弾性表面波素子。 2、 上記窒化アルミニウム単結晶エピタキシャル層の
圧電軸がシリコン単結晶層に垂直になるように形成され
たことを特徴とする特許請求の範囲第1項記載の弾性表
面波素子。 3、上記窒化アルミニウム単結晶エピタキシャル層の圧
電軸がシリコン単結晶層に平行かつその〔110〕結晶
軸と等価な方向になるように形成されたことを特徴とす
る特許請求の範囲第1項記載の弾性表面波素子。 4、上記窒化アルミニウム単結晶エピタキシャル層の圧
電軸がシリコン単結晶層に平行かつ七の(100)結晶
軸と等価な方向になるように形成されたことを特徴とす
る特許請求の範囲第1項記載の弾性表面波素子。 5、上記シリコン単結晶層面上の(110)軸と等価な
方向に弾性表面波を伝播させることを特徴とする特許請
求の範囲第2項又は第3項記載の表面弾性波素子。 6、上記シリコン単結晶層面上の(100)軸と等価な
方向に弾性表面波を伝播させることを特徴とする特許請
求の範囲第2項又に第4項記載の表面弾性波素子。 7、 上記窒化アルミニウム単結晶エピタキシャル層の
膜厚りが、2πh/λ(5,0(ただし、λは弾性表面
波の成長を示′T)の範囲に属することを特徴とする特
許請求の範囲第2項乃至第6項のいずれかに記載の表面
弾性波素子。 8、 上記電極が窒化アルミニウム単結晶エピタキシャ
ル層の表面部に形成されたことを特徴とする特許請求の
範囲第1項乃至第7項のいずれかに記載の弾性底面波素
子。 9 上記電極がシリコン単結晶層と窒化アルミニウム単
結晶エピタキシャル層間に形成されたことを特徴とする
特許請求の範囲第1項乃至第7項のいずれかに記載の弾
性表面波素子。 10  上記電極が窒化アルミニウム単結晶エピタキシ
ャル層の表面部に一対の第1電極として形成され、上記
シリコン単結晶層と窒化アルミニウム単結晶エピタキシ
ャル層間に他に第2電極として一対のしやへい電極が形
成されたことを特徴とする特許請求の範囲第1項乃至第
7項のいずれかに記載の弾性表面波素子0− 11、  上記電極がシリコン単結晶層と窒化アルミニ
ウム単結晶エピタキシャル層間に一対の第1電極として
形成され、上記窒化アルミニウム学結晶エピタキシャル
層の表面部に他に第2電極として一対のしやへい電極が
形成されたことを特徴とする特許請求の範囲第1項乃至
第7項のいずれかに記載の弾性表面波素子。
[Claims] 1. A silicon single crystal layer consisting of a (001) crystal plane or a plane equivalent thereto, an aluminum nitride single-crystalline epitaxial layer formed on this layer with a piezoelectric axis oriented in VC1, and a predetermined position thereof. A surface acoustic wave element comprising: an electrode formed on the surface of the surface acoustic wave element; 2. The surface acoustic wave device according to claim 1, wherein the piezoelectric axis of the aluminum nitride single crystal epitaxial layer is perpendicular to the silicon single crystal layer. 3. Claim 1, characterized in that the piezoelectric axis of the aluminum nitride single crystal epitaxial layer is formed in a direction parallel to the silicon single crystal layer and in a direction equivalent to its [110] crystal axis. surface acoustic wave device. 4. Claim 1, characterized in that the piezoelectric axis of the aluminum nitride single crystal epitaxial layer is formed in a direction parallel to the silicon single crystal layer and in a direction equivalent to the 7 (100) crystal axis. The surface acoustic wave device described above. 5. The surface acoustic wave device according to claim 2 or 3, characterized in that the surface acoustic wave is propagated in a direction equivalent to the (110) axis on the plane of the silicon single crystal layer. 6. The surface acoustic wave device according to claim 2 or 4, characterized in that surface acoustic waves are propagated in a direction equivalent to the (100) axis on the plane of the silicon single crystal layer. 7. Claims characterized in that the film thickness of the aluminum nitride single crystal epitaxial layer belongs to the range of 2πh/λ (5,0 (where λ represents the growth of surface acoustic waves 'T) The surface acoustic wave device according to any one of items 2 to 6. 8. Claims 1 to 6, characterized in that the electrode is formed on a surface portion of an aluminum nitride single crystal epitaxial layer. 9. The bottom acoustic wave device according to any one of claims 1 to 7, wherein the electrode is formed between a silicon single crystal layer and an aluminum nitride single crystal epitaxial layer. 10. The surface acoustic wave device according to claim 10, wherein the electrodes are formed as a pair of first electrodes on the surface of the aluminum nitride single crystal epitaxial layer, and a second electrode is formed between the silicon single crystal layer and the aluminum nitride single crystal epitaxial layer. A surface acoustic wave device 0-11 according to any one of claims 1 to 7, characterized in that a pair of thin electrodes are formed, the electrodes being a silicon single crystal layer and a nitrided silicon layer. A pair of first electrodes are formed between the aluminum single crystal epitaxial layers, and a pair of thin electrodes are formed as second electrodes on the surface of the aluminum nitride epitaxial layer. A surface acoustic wave device according to any one of the ranges 1 to 7.
JP15759481A 1981-10-05 1981-10-05 Surface acoustic wave element Granted JPS5859617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15759481A JPS5859617A (en) 1981-10-05 1981-10-05 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15759481A JPS5859617A (en) 1981-10-05 1981-10-05 Surface acoustic wave element

Publications (2)

Publication Number Publication Date
JPS5859617A true JPS5859617A (en) 1983-04-08
JPH025330B2 JPH025330B2 (en) 1990-02-01

Family

ID=15653119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15759481A Granted JPS5859617A (en) 1981-10-05 1981-10-05 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS5859617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388406A (en) * 1989-04-11 1991-04-12 Sanyo Electric Co Ltd Surface acoustic wave element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207106A (en) * 1990-11-30 1992-07-29 Kubota Corp Riding-type lawn mower

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATIONAL TECHNICAL REPORT=1976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388406A (en) * 1989-04-11 1991-04-12 Sanyo Electric Co Ltd Surface acoustic wave element
US5059847A (en) * 1989-04-11 1991-10-22 Sanyo Electric Co., Ltd. Surface acoustic wave device

Also Published As

Publication number Publication date
JPH025330B2 (en) 1990-02-01

Similar Documents

Publication Publication Date Title
JPH0218614B2 (en)
US5446330A (en) Surface acoustic wave device having a lamination structure
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
JP3435789B2 (en) Surface acoustic wave device
JPS5863214A (en) Surface acoustic wave element
US10951193B2 (en) Elastic wave device
JPH0336326B2 (en)
US6046657A (en) Magnetostrictive surface acoustic wave device and microelectronic circuit including same
JPH11274883A (en) Piezoelectric compound substrate and surface acoustic wave element
KR20030059076A (en) Semiconductor element comprising a sequence of layers for converting acoustic or thermal signals and electrical voltage changes into each other and method for producing the same
JPS6341449B2 (en)
JP2000278087A (en) Surface acoustic wave device
JPS5859617A (en) Surface acoustic wave element
JPS5859616A (en) Surface acoustic wave element
JPS5941602B2 (en) surface acoustic wave device
JPH0249566B2 (en)
JPS5864815A (en) Surface acoustic wave element
JP3449013B2 (en) Shear wave transducer
JPH0213853B2 (en)
JP3493315B2 (en) Piezoelectric resonator
JPS58156215A (en) Surface acoustic wave element
JPS60210018A (en) Thin film piezoelectric oscillator
JPH01103310A (en) Surface acoustic wave element
JP2003273691A (en) Surface acoustic wave device
JPH0247888B2 (en) DANSEIHYOMENHASOSHI