JPS58156215A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPS58156215A
JPS58156215A JP3923882A JP3923882A JPS58156215A JP S58156215 A JPS58156215 A JP S58156215A JP 3923882 A JP3923882 A JP 3923882A JP 3923882 A JP3923882 A JP 3923882A JP S58156215 A JPS58156215 A JP S58156215A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
substrate
axis
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3923882A
Other languages
Japanese (ja)
Inventor
Nobuo Mikoshiba
御子柴 宣夫
Kazuo Tsubouchi
和夫 坪内
Kazuyoshi Sukai
須貝 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3923882A priority Critical patent/JPS58156215A/en
Priority to US06/473,410 priority patent/US4511816A/en
Priority to DE3348366A priority patent/DE3348366C2/en
Priority to GB08306526A priority patent/GB2120037B/en
Priority to DE3308365A priority patent/DE3308365A1/en
Priority to DE3348369A priority patent/DE3348369C2/en
Priority to NL8300879A priority patent/NL8300879A/en
Priority to FR8303952A priority patent/FR2523382B1/en
Publication of JPS58156215A publication Critical patent/JPS58156215A/en
Priority to GB08624225A priority patent/GB2181917B/en
Priority to GB08624226A priority patent/GB2181918B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the reproducibility of piezoelectric characteristics and to reduce the transmission loss of a high frequency region, by using an elastic matter structure in which an aluminum nitride film is formed on an elastic substrate which has a positive delay time temperature coefficient to a surface acoustic wave. CONSTITUTION:An aluminum nitride film 2 is formed on a surface equivalent to the crystalline face (0001) of a sapphire substrate 1 having a positive delay time temperature coefficient to a surface acoustic wave. In this case, the piezoelectric axis of the film 2 is set vertical or horizontal to the substrate 1. Then a surface acoustic wave generating electrode 3 and a surface acoustic wave detecting electrode 4 are formed on the surface of the film 2. Thus a surface acoustic wave is excited in the direction equivalent to the direction of an axis 1-100 and on the surface (0001) of the substrate 1.

Description

【発明の詳細な説明】 本発明は、特性的に優れた新しい構造の弾性表面波素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave element with a new structure and excellent characteristics.

弾性表面ak (8urface Acoustic 
Valve )を利用することKより各種つ電気的信号
を扱うための弾性表面液素子を構成する構造(基板)と
しては従来、 1、圧電体基板のみの構造(圧電体単結晶基板、圧電セ
ラミックス基板等)、 2 非圧電体基板上に圧電膜を形成した構造、3、半導
体基板上に圧電膜を形成した構造、等が知られている。
8surface Acoustic
Conventionally, the structure (substrate) constituting an elastic surface liquid element for handling various electrical signals has been: 1. A structure consisting only of a piezoelectric substrate (piezoelectric single crystal substrate, piezoelectric ceramic substrate) etc.), 2. A structure in which a piezoelectric film is formed on a non-piezoelectric substrate, and 3. A structure in which a piezoelectric film is formed on a semiconductor substrate.

ところで上述の2の多層構造としては、現在のところサ
ファイア基板上もしくはガラス基板上にスパッタリング
法等により酸化亜鉛膜(ZnO)を形成した構造が知ら
れているが、このZnO膜は以下のような欠点が存在す
るため問題がある。
By the way, as the above-mentioned multilayer structure 2, a structure in which a zinc oxide film (ZnO) is formed on a sapphire substrate or a glass substrate by sputtering method etc. is currently known, but this ZnO film has the following structure. There are problems because there are flaws.

1、 良質な膜が形成しにくいため圧電性部の点で十分
再現性のあるものが得られない。
1. Because it is difficult to form a high-quality film, it is not possible to obtain a piezoelectric part with sufficient reproducibility.

2、  g周波領域において弾性表面波の伝播損失が多
い。
2. There is a lot of surface acoustic wave propagation loss in the g-frequency region.

3、弾性表面波伝播特性の分散が大きい。3. Dispersion of surface acoustic wave propagation characteristics is large.

4、弾性表面波の遅凰時間τの温度変化率(1/τ)・
(aτ/aT)の制御が困難である。(T:周囲温1) 本発明はこれらの問題点に対処してなされたものであり
、弾性表面波に対する遅凰時間温度係数が正である弾性
体基板上に窒化アルミニウム膜を形成した弾性体構造(
基板)を用いることを根本的特徴とするもので、特にサ
ファイア基板を用いた弾性表面波素子を提供することを
目的とするものである。以下図面を参照して本発明実施
例を説明する。
4. Temperature change rate of surface acoustic wave slow decay time τ (1/τ)・
It is difficult to control (aτ/aT). (T: ambient temperature 1) The present invention has been made to address these problems, and is an elastic body in which an aluminum nitride film is formed on an elastic body substrate that has a positive slow-decay time temperature coefficient for surface acoustic waves. structure(
The fundamental feature is that a sapphire substrate is used, and in particular, the purpose is to provide a surface acoustic wave element using a sapphire substrate. Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明実施例による弾性表面波素子を示す断面
図で、1はサファイア基板で(0001)結晶面と等価
なII(0面)あるいは(0112)結晶面と等価な面
(R面)でカットされたものから成り、2はこのす7フ
イ7基板l上に形成された窒化アルミニウム族でその圧
電軸(C軸もしくは(0001)軸)は上記サファイア
基板1面に垂直あるいは平行になるように形成される。
FIG. 1 is a cross-sectional view showing a surface acoustic wave device according to an embodiment of the present invention, where 1 is a sapphire substrate, and II (0 plane) is equivalent to the (0001) crystal plane, or II (0 plane) is equivalent to the (0112) crystal plane (R plane). ), 2 is an aluminum nitride group formed on this substrate 7, and its piezoelectric axis (C axis or (0001) axis) is perpendicular or parallel to the surface of the sapphire substrate 1. It is formed as follows.

3.4は上記窒化アルミニウム膜2表面に形成されたく
し型状から成る弾性表面波発生用電極および検出用電極
で、Hは窒化アルミニウム膜2の膜厚である。
3.4 is a comb-shaped surface acoustic wave generating electrode and a detection electrode formed on the surface of the aluminum nitride film 2; H is the thickness of the aluminum nitride film 2;

サファイア基板lの(0001)結晶面と等価な面(0
面)K窒化アルミニウム膜2をこのC軸がほぼ垂直とな
るように形成したII1図の構造の弾性表面波素子に対
して、窒化アルミニウム膜2の圧電軸(C軸)方向と垂
直な方向で上記サファイア基板1の(00o1 )面上
で(11oo)軸方向と等価な方向(Y軸)に弾性表面
波を励振(伝播)させた時、第2図に示すような弾性表
面波の速度分散特性が得られた。同図において横軸は窒
化アルミニウム膜2の膜厚Hの規格化された厚さを2π
H/λ(ここでλは弾性表面波の波長)で示し、縦軸は
弾性5m1tの位相速度Vpを示すものである。同一か
ら明らかなように位相速度■2の分散は少なく、しかも
非常に大きな値の位相速度■pが得られる。
A plane (0
For a surface acoustic wave element having the structure shown in Fig. II1 in which the K aluminum nitride film 2 is formed so that its C axis is almost perpendicular, When a surface acoustic wave is excited (propagated) on the (00o1) plane of the sapphire substrate 1 in a direction (Y-axis) equivalent to the (11oo) axis direction, the velocity dispersion of the surface acoustic wave as shown in FIG. Characteristics were obtained. In the figure, the horizontal axis represents the standardized thickness H of the aluminum nitride film 2, which is 2π
It is expressed as H/λ (here, λ is the wavelength of the surface acoustic wave), and the vertical axis indicates the phase velocity Vp of the elasticity 5m1t. As is clear from the sameness, the dispersion of the phase velocity ■2 is small, and a very large value of the phase velocity ■p can be obtained.

第3図は上記構造の弾性表面波素子に対して、上記同様
にサファイア基板lの(0001)面上で[1100)
軸方向と等価な方向(Y軸)に弾性表面波を伝播させた
時の電気機械結合係数の特性曲線を示すもので、横軸は
2πH/λで示し、縦軸は電気機械結合係数にの二乗K
を百分率で示すものである。同図から明らかなように、
特に規格化膜厚2πH/λが2.0〜6.0の範囲にお
いてKは0.22%〜0.27%が得られ、この値は通
常弾性表面波を発生および検出させるに望ましい値であ
り圧電性に優れていることを示している。
FIG. 3 shows a surface acoustic wave element having the above structure with a [1100
This shows the characteristic curve of the electromechanical coupling coefficient when a surface acoustic wave is propagated in the direction equivalent to the axial direction (Y-axis). The horizontal axis is 2πH/λ, and the vertical axis is the electromechanical coupling coefficient. K squared
is expressed as a percentage. As is clear from the figure,
In particular, when the normalized film thickness 2πH/λ is in the range of 2.0 to 6.0, K of 0.22% to 0.27% is obtained, which is usually a desirable value for generating and detecting surface acoustic waves. This shows that it has excellent piezoelectricity.

第4図は上記構造の弾性表面波素子に対して、上記同様
にサファイア基板lの(0001”)面上で波を励振さ
せた時の弾性表面波に対する遅延時間温度係数(TCD
)の特性曲線を示すもので、横軸は2πH/λで示し、
縦軸は弾性表面波の遅延時間t f) 温t’R化率(
”/r ) ・(at/3T)をppm/C率位で示す
ものである。ここでサファイア基板lは正の遅延時間温
度係数を有しているのに対し、窒化アルミニウム膜2は
逆に負の遅延時間温度係数を有しているために、同図か
ら明らかなようにその総合特性は両者が補償し合った値
となり、窒化アルミニウム膜2の膜厚Hの変化に応じて
変ってくる。特に上記膜厚Hな3.0<2fH/λ〈5
.0の範囲に選ぶことにより遅延時間の温度変化率を零
に近ずけることができる。
Figure 4 shows the temperature coefficient of delay time (TCD) for surface acoustic waves when waves are excited on the (0001'') plane of the sapphire substrate l in the same manner as above for the surface acoustic wave element having the above structure.
), the horizontal axis is 2πH/λ,
The vertical axis is the delay time tf) of the surface acoustic wave and the temperature t'R rate (
"/r) ・(at/3T) is expressed in ppm/C percentage. Here, the sapphire substrate l has a positive delay time temperature coefficient, while the aluminum nitride film 2 has a positive delay time temperature coefficient. Since it has a negative delay time temperature coefficient, as is clear from the figure, the overall characteristic is a value in which both of them compensate for each other, and it changes according to changes in the film thickness H of the aluminum nitride film 2. .Especially when the above film thickness H is 3.0<2fH/λ<5
.. By selecting a value in the range of 0, the rate of temperature change during the delay time can be brought close to zero.

以上の実施例のようK、(0001)結晶面と等価なt
h(0面)でカットされたサファイア基板上に窒化アル
ミニウム膜2のC軸をはぼ垂直に形成し、この窒化アル
ミニウム膜2のC軸方向と垂直な方向で上記サファイア
基板】の(0003)面上で(iioo)軸方向と等価
な方向(Y軸)k弾性表面波を伝播させることKより、
速度分散特性およびに一性と共に遅延時間の温度変化特
性に優れた弾性表面波素子を得ることができる。
As in the above example, K, t equivalent to the (0001) crystal plane
The C-axis of the aluminum nitride film 2 is formed almost vertically on a sapphire substrate cut at h (0 plane), and the sapphire substrate (0003) is formed in a direction perpendicular to the C-axis direction of the aluminum nitride film 2 From K, propagating a surface acoustic wave in a direction (Y axis) equivalent to the (iioo) axis direction on a surface,
A surface acoustic wave element having excellent velocity dispersion characteristics and uniformity as well as delay time temperature change characteristics can be obtained.

本発明の他の実施例を以下説明する。Other embodiments of the invention will be described below.

サファイア基板1の(0001)結晶面と等価な面(0
面)Km化アルミニウム膜2をこのC軸がはば垂直にな
るように形成した第1図の構造の弾性表面波素子に対し
て窒化アルミニウム112の圧電軸(C軸)方向と垂直
な方向で上記サファイア基板lの(0001)面上で(
1120)軸方向と等価な方向CX軸)K弾性表#ar
IL素子を伝播させた時、第5#tJK示すような弾性
表面波の速度分散特性が祷られた。
A plane (0
For the surface acoustic wave element having the structure shown in FIG. On the (0001) plane of the above sapphire substrate l (
1120) Direction equivalent to the axial direction CX axis) K elasticity table #ar
When propagating through the IL element, velocity dispersion characteristics of surface acoustic waves as shown in No. 5 #tJK were expected.

同図から明らかなように位相速1LVpの分散は少なく
、しかも非常に大きな値の位相速度■、が得られる。
As is clear from the figure, the dispersion of the phase velocity 1LVp is small, and a very large value of the phase velocity ■ can be obtained.

816図は上記構造の弾性表面波素子に対して、上記同
様にサファイア基板lの(0001)面上で(3120
)軸方向と等価な方向(X軸))c弾性表面波を伝播さ
せた時の電気機械結合係数の特性−−(K41t)を示
すものである。
Figure 816 shows the surface acoustic wave element having the above structure, with the (3120
) Direction equivalent to the axial direction (X-axis)) c Characteristics of electromechanical coupling coefficient when surface acoustic waves are propagated -- (K41t).

同図から明らかなように、%に規格膜厚2πH/λが2
.0〜8.0の範囲においてKは0.2%〜0628%
が得られ、この値は通常弾性表由波を発生および検出さ
せるに望ましい値であり圧電性に優れていることを示し
ている。
As is clear from the figure, the standard film thickness 2πH/λ is 2
.. K is 0.2% to 0628% in the range of 0 to 8.0
This value is usually desirable for generating and detecting elastic surface waves, and indicates excellent piezoelectricity.

第7図は上記構造の弾性表面波素子に対して、上記同様
にサファイア基板五の(0001)−上で〔1120〕
軸方向トf4i11す方向(x軸)k弾性表面波を伝播
させた時の弾性表面波に対する遅延時間温度係数(TC
D ’)の特性曲線を示すものである。
FIG. 7 shows a surface acoustic wave element having the above structure, with the sapphire substrate 5 (0001)-[1120]
Temperature coefficient of delay time (TC
D′) is shown.

rrIU図から明らかなように轡に窒化アルミニウムj
I20属厚Hを3.0(2πH/λ<6.0の範11K
j!lぶことにより遅延時間の温度変化率を零に近ずけ
ることができる。
As is clear from the rrIU diagram, aluminum nitride is used on the back.
I20 thickness H is 3.0 (2πH/λ<6.0 range 11K
j! The rate of temperature change during the delay time can be brought close to zero by increasing the temperature.

以上の実施例のように、(0001)結晶面と等価な面
(Cff1 ”)でカットされたサファイア基板上に窒
化アルミニウム膜2のC軸をはぼ垂直に形成し、この窒
化フルミニラム膜2のC軸方向と直角な方向で上記サフ
ァイア基板1の(0001)II上で〔1120〕軸方
向と等価な方向(X軸)K弾性表−波を伝播させること
により、速度分散特性およびに41性と共Kjl砥時開
時間度変化特性に優れた弾性表面波素子を得ることがで
きる。
As in the above embodiment, the C-axis of the aluminum nitride film 2 is formed almost perpendicularly on a sapphire substrate cut in a plane (Cff1'') equivalent to the (0001) crystal plane. By propagating a K-elastic wave in a direction (X-axis) equivalent to the [1120]-axis direction on the (0001) II of the sapphire substrate 1 in a direction perpendicular to the C-axis direction, velocity dispersion characteristics and 41 properties can be obtained. In addition, a surface acoustic wave element having excellent opening time degree change characteristics during Kjl grinding can be obtained.

本発明のその他の実施例を以下説明する。Other embodiments of the invention will be described below.

サファイア基板1の(0112)結晶面と等価な面(R
−)に窒化アルミニウム膜2をこのC軸が上記サファイ
ア基板lの〔0111〕軸方向と平行になるよ5に形成
した第1図の構造の弾性表面波素子に対して、窒化アル
ミニウム膜2の圧電軸(C軸)方向と平行な方向で上記
サファイア基板1の(0112)面上(R11)で(0
111)軸方向と等価な方向に弾性am波を伝播させた
時、第8図に示すような弾性表IOmの適度分散特性が
得られた。
A plane (R
-), the aluminum nitride film 2 is formed on the surface of the surface acoustic wave element having the structure shown in FIG. (0112) plane (R11) of the sapphire substrate 1 in a direction parallel to the piezoelectric axis (C-axis) direction
111) When an elastic am wave was propagated in a direction equivalent to the axial direction, a moderate dispersion characteristic of the elastic table IOm as shown in FIG. 8 was obtained.

同図から明らかなように位相速度■、の分散は少なく、
しかも非常に大きな値の位相速度■pが得られる。
As is clear from the figure, the dispersion of the phase velocity ■ is small;
Moreover, a very large value of the phase velocity ■p can be obtained.

第**は上記構造の弾性表面波素子に対して、上記同様
にサファイア基板1の(0112)It上で(0111
)軸方向と等価な方向に弾性表面波を伝播させた締の電
気機械結合係数の特性−!I(Kq!i性)を示すもの
である。
No. ** is for the surface acoustic wave element having the above structure, in the same manner as above, on (0112)
) Characteristics of the electromechanical coupling coefficient of a clamp in which surface acoustic waves are propagated in a direction equivalent to the axial direction -! I (Kq!i property).

同図から明らかなように、特に規格膜厚’;ltH/λ
が1.0− & 0の範囲においてに2は0.75%〜
0.8%が得られ、この値は通常弾性表面all−発生
および検出させるに望ましい値であり圧電性に優れてい
ることを示している。
As is clear from the figure, especially the standard film thickness'; ltH/λ
In the range of 1.0- & 0, 2 is 0.75%~
A value of 0.8% was obtained, which is usually a desirable value for all-generating and detecting elastic surfaces and indicates excellent piezoelectricity.

第1θ図は上記構造の弾性表面波素子に対して、上記一
様にサフイ7基@1の(Gill)面上で(0111)
軸方向と等価な方向に弾性表面波を伝播させた時の弾性
表面fILK′;r1する遅延時間温度係数(TCD 
)の特性曲線を示すものである。
Figure 1θ shows the surface acoustic wave device having the above structure, with the (0111)
When a surface acoustic wave is propagated in a direction equivalent to the axial direction, the elastic surface fILK';
) shows the characteristic curve of

同図から明らかなよ5に哲に窒化アルミニウム族2の膜
厚Hを2.0(2fH/λ〈5.0の範11に選ぶこと
により遅延時間の温度変化率を零に近ずけることができ
る。
As is clear from the figure, the temperature change rate of the delay time can be brought close to zero by selecting the film thickness H of the aluminum nitride group 2 in the range 11 of 2.0 (2fH/λ<5.0). I can do it.

以上の実施例のように、(0112)結晶向と等価な面
でカットされたサファイア基板上に窒化アルミニウム1
12のC軸を上記サファイア基板五の(0111)軸方
向と平行に形成し、この窒化アル建ニウムjII2のC
軸方向と平行な方向で上記すフッイア基板1の(000
1)面上で〔1120〕軸方向と等価な方向に弾性表面
波を伝播させることKより、適度分散特性およびに一性
と共に遅延時間の温度変化特性に優れた弾性表面波素子
を得ることができるO 各実施例で用いられた窒化アルミニウム膜はバンドギャ
ップが約6.2eVと大きく、また比抵抗6 が10  Ω−以上のものが容易に得られるので良好な
絶縁性を示す。この窒化アルミニウム膜は単結晶である
ことが望ましいが、周知のMO−CVD技術を用いるこ
とにより単結晶エピタキシャル族を容易に形成すること
ができる。
As in the above example, aluminum nitride was placed on a sapphire substrate cut in a plane equivalent to the (0112) crystal direction.
12 is formed parallel to the (0111) axis direction of the sapphire substrate 5, and the C axis of this aluminum nitride jII2 is
(000
1) By propagating surface acoustic waves on a surface in a direction equivalent to the [1120] axis direction, it is possible to obtain a surface acoustic wave element that has moderate dispersion characteristics and uniformity as well as excellent temperature change characteristics of delay time. The aluminum nitride film used in each example has a large band gap of about 6.2 eV, and a resistivity 6 of 10 Ω or more can be easily obtained, so it exhibits good insulation. Although this aluminum nitride film is preferably single crystal, a single crystal epitaxial group can be easily formed by using the well-known MO-CVD technique.

また゛従来においてのスパッタリング法等による酸化亜
鉛j1[比べ窒化アルミニウム膜は再現性に優れ、膜質
が均一なものが得られるのでII#に高周aにおける伝
搬損失を小さく抑えることができる。
In addition, compared to the conventional zinc oxide film formed by sputtering or the like, an aluminum nitride film has excellent reproducibility and a uniform film quality, so that the propagation loss at a high circumference a can be suppressed to II#.

41に上記窒化アルミニウム膜は弾性表面波に対する遅
延時間温度係数が負である性質を有しているので、サフ
ァイア基板のようにそれと逆に遅延時間温度係数が正で
ある性質を有している基板上に形成すれば遅延時間温度
係数は相互に補償されるために、温度変化に対して安定
な特性を得ることができる。4IK温度変化に対する素
子の安定性は共振器、発振器等の狭帯域信号処理素子に
おいて最も重要な性能であるが゛、上記各実施例構造に
よれば温度変化に対して安定な動作を行なわせることが
できる。しかも高周波化、低損失化も併せて計ることが
できる。
41. Since the aluminum nitride film has a negative temperature coefficient of delay time for surface acoustic waves, a substrate such as a sapphire substrate that has a positive temperature coefficient of delay time may be used. If formed above, the delay time temperature coefficients are compensated for each other, so that stable characteristics against temperature changes can be obtained. 4IK The stability of an element against temperature changes is the most important performance in narrowband signal processing elements such as resonators and oscillators, but according to the structures of each of the above embodiments, stable operation can be achieved against temperature changes. I can do it. Furthermore, higher frequencies and lower losses can be achieved at the same time.

上記窒化アルミニウム膜を形成すべき基板としてはサフ
ァイアに@らず、遅延時間温度係数が負である材料であ
れば任意のものを選択することができる。
As the substrate on which the aluminum nitride film is formed, any material other than sapphire can be selected as long as it has a negative temperature coefficient of delay time.

以上述べて明らかなように本発明によれば、弾性表面波
に対する遅延時間温度係数が正である弾性体基板上に窒
化アルミニウム膜を形成するようKした弾性体構造を用
いるものであるから、特性的に優れた弾性表面波素子を
得ることができる。
As is clear from the above description, according to the present invention, an elastic structure is used which has a temperature coefficient of K such that an aluminum nitride film is formed on an elastic substrate with a positive delay time temperature coefficient for surface acoustic waves. A surface acoustic wave device with excellent performance can be obtained.

以上説明した本発明によれば次のような効果が得られる
According to the present invention explained above, the following effects can be obtained.

!6弾性表面波速度が大きいため高周波での波長が大き
くなるので、<シ履状電極等の製造が容易になる。
! 6. Since the surface acoustic wave velocity is high, the wavelength at high frequencies becomes large, making it easier to manufacture sheet-shaped electrodes, etc.

2、膜厚変動による周波数変動率が小さいため設計した
動作周波1kK合わせた素子の製造が容易となるので、
歩留り向上によるコストダウンを計ることができる。
2. Since the rate of frequency fluctuation due to film thickness fluctuation is small, it is easy to manufacture elements that match the designed operating frequency of 1kK.
It is possible to reduce costs by improving yield.

3、弾性表面波素子の遅延時間を零に近ずけることがで
きる。
3. The delay time of the surface acoustic wave element can be brought close to zero.

4 絶縁性に富んだ窒化アルミニウム膜を容易に得るこ
とができ、またMO−CVD技術によりその単結晶エピ
タキシャル膜の形成も容易となる。
4. An aluminum nitride film with high insulating properties can be easily obtained, and its single crystal epitaxial film can also be easily formed using MO-CVD technology.

なお本文実施例中で示した基板および基板上く形成され
た窒化アルミニウム膜の結晶向および弾性表面波を励振
(伝播)させる結晶方向は、実施例以外に適当な選択を
行なっても同様な効果を得ることが可能である。
It should be noted that the crystal orientation of the substrate and the aluminum nitride film formed on the substrate and the crystal orientation for exciting (propagating) surface acoustic waves shown in the examples of the main text may be appropriately selected other than those shown in the examples to obtain the same effect. It is possible to obtain

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示す断面図、@2図乃至纂lO
図はいずれも本発明により得られた結果を示す特性図で
ある。 1・・・サファイア基板、2・・・窒化フルミニラム膜
、3・・・弾性表面波発生用電極、4・・・弾性表面波
検出用電極。 特許出願人 御子柴 宣 夫 坪  内  和  夫 代理人 弁理士  永 1)武三部 図面の浄書(内存に変更なしン 第1図 3            4 第2図 2’JCH/?−− 第3図 とルHへ− 手続補正書(方式・自船 昭和!S7 年4 月 9日 1、事件の表示 昭和67年@l’Flll  第segss号3、 捕
正をする者 事件との関係  轡許出皐人 4、代理人〒105
Figure 1 is a cross-sectional view showing an embodiment of the present invention, @Figure 2 to Figure 1
All figures are characteristic diagrams showing the results obtained by the present invention. DESCRIPTION OF SYMBOLS 1... Sapphire substrate, 2... Fluminilumium nitride film, 3... Electrode for surface acoustic wave generation, 4... Electrode for surface acoustic wave detection. Patent applicant Noriyoshi Mikoshiba Kazuo Utsubo, agent Patent attorney Nagai 1) Engraving of Takesanbu drawing (no changes to the original) Fig. 1 3 4 Fig. 2 2'JCH/?-- Fig. 3 and RuH To - Procedural amendment (method/own ship Showa! S7 April 9, 1, Indication of the incident 1986 @l'Fllll Segs No. 3, Relationship with the arresting person incident) , Agent〒105

Claims (1)

【特許請求の範囲】 1、 弾性表面波に対する遅鷺時間温度係数が正である
弾性体基板と、この弾性体基板上に形成されかつ圧電軸
が配向した窒化アルミニウム膜と、これら所定位−に形
成された電極とを含むことを特徴とする弾性表面波素子
。 2、 上記弾性体基板がサファイアから成ることを特徴
とする特許請求の範8111項記載の弾性表面波素子。 3、 上記サファイア基板が(0001)結晶向と等価
な面からなり、窒化アルミニウム膜の圧電軸が上記サフ
ァイア基板K[i直あるいは水平になるように形成され
、上記サファイア基板の(0001) ml上で(11
00)軸と等価な方向に弾性表面波を伝播させることを
4911とする特許請求の範8第2項記載の弾性表面波
素子。 4、上記窒化フルミニラム膜の膜厚Hが、に214Vλ
〈6(ただし、λは弾性表面波の波長を示す)の範■に
属することを特徴とする特許請求の範S第s*e載の弾
性表iia液素子。 5、 上記サファイア基板が(0001)結晶面と等価
な画からなり、窒化アルミニウム膜の圧電軸が上記すフ
ァイア基板Kli直あるいは水平になるように形成され
、上記サファイア基板の(0001)面上で(112G
)軸と等価な方向に弾性表面波を伝播させることを特徴
とする特許請求の範囲第2項記載の弾性表面波素子。 6、上記窒化フルミニラム膜の膜厚Hが、2く2gH/
λ〈8の範■に属することを特徴とする特許請求の鳴−
115項記載の弾性表m波素子。 7、 上記サファイア基板が(0112)結晶向と等価
な画からなり、窒化フルミニラム膜の圧電軸が上記すフ
ァイア基板に垂直あるいは水平になるように形成され、
上記サファイア基板の(0112)面上で(0111)
軸と等価な方向に弾性表1iil波を伝播させることを
特徴とする特許請求の範5tvcz項記載の弾性表面波
素子。 8、上記窒化アルミニウム膜の膜厚Hが、l〈2xH/
λ〈8の範i!!tlK属することを41111とする
特許請求の範181纂7項記載の弾性表面波素子。 9、上記窒化アルミニウム膜が単結晶エピタキシャル膜
から成ることを特徴とする特許請求の範囲111項乃至
第8項のいずれかに記載の弾性表面波素子。
[Scope of Claims] 1. An elastic substrate having a positive temperature coefficient of delay time with respect to surface acoustic waves, an aluminum nitride film formed on the elastic substrate and having a piezoelectric axis oriented; A surface acoustic wave device comprising: an electrode formed thereon. 2. The surface acoustic wave device according to claim 8111, wherein the elastic substrate is made of sapphire. 3. The sapphire substrate has a plane equivalent to the (0001) crystal direction, and the piezoelectric axis of the aluminum nitride film is formed perpendicular or horizontal to the sapphire substrate K[i, and is formed on the (0001) ml of the sapphire substrate. So (11
00) The surface acoustic wave element according to claim 8, wherein the surface acoustic wave element propagates in a direction equivalent to the axis. 4. The film thickness H of the nitride Fluminilum film is 214Vλ.
6 (where λ indicates the wavelength of a surface acoustic wave); 5. The sapphire substrate has a plane equivalent to the (0001) crystal plane, and is formed so that the piezoelectric axis of the aluminum nitride film is perpendicular or horizontal to the above-mentioned fire substrate Kli, and on the (0001) plane of the sapphire substrate. (112G
) A surface acoustic wave element according to claim 2, characterized in that the surface acoustic wave is propagated in a direction equivalent to the axis. 6. The film thickness H of the above-mentioned Fluminiram nitride film is 2×2gH/
A patent claim characterized by belonging to the range of λ〈8〉
Elastic table m-wave element according to item 115. 7. The sapphire substrate is formed with a pattern equivalent to the (0112) crystal orientation, and the piezoelectric axis of the nitrided Fluminilum film is perpendicular or horizontal to the fire substrate,
(0111) on the (0112) plane of the above sapphire substrate
The surface acoustic wave element according to claim 5, characterized in that the surface acoustic wave element propagates an elastic wave in a direction equivalent to the axis. 8. The thickness H of the aluminum nitride film is l<2xH/
Range of λ〈8! ! 41111. The surface acoustic wave device according to claim 181, item 7. 9. The surface acoustic wave device according to any one of claims 111 to 8, wherein the aluminum nitride film is made of a single crystal epitaxial film.
JP3923882A 1982-03-11 1982-03-11 Surface acoustic wave element Pending JPS58156215A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3923882A JPS58156215A (en) 1982-03-11 1982-03-11 Surface acoustic wave element
DE3348369A DE3348369C2 (en) 1982-03-11 1983-03-09 Device forming surface acoustic waves
DE3348366A DE3348366C2 (en) 1982-03-11 1983-03-09 Acoustic surface wave generator
GB08306526A GB2120037B (en) 1982-03-11 1983-03-09 Surface acoustic wave device
DE3308365A DE3308365A1 (en) 1982-03-11 1983-03-09 ACOUSTIC SURFACE SHAFT DEVICE
US06/473,410 US4511816A (en) 1982-03-11 1983-03-09 Surface acoustic wave device using an elastic substrate and an aluminum nitride piezoelectric film
NL8300879A NL8300879A (en) 1982-03-11 1983-03-10 ACOUSTIC SURFACE WAVE DEVICE.
FR8303952A FR2523382B1 (en) 1982-03-11 1983-03-10 SURFACE ACOUSTIC WAVE DEVICE
GB08624225A GB2181917B (en) 1982-03-11 1986-10-09 Surface acoustic wave device
GB08624226A GB2181918B (en) 1982-03-11 1986-10-09 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3923882A JPS58156215A (en) 1982-03-11 1982-03-11 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPS58156215A true JPS58156215A (en) 1983-09-17

Family

ID=12547546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3923882A Pending JPS58156215A (en) 1982-03-11 1982-03-11 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS58156215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049155A (en) * 1997-10-27 2000-04-11 Lucent Technologies Inc. Thermally tunable surface acoustic wave devices
JP2011139214A (en) * 2009-12-28 2011-07-14 Seiko Epson Corp Surface acoustic wave device, oscillator, and module apparatus
JP2021516015A (en) * 2018-03-07 2021-06-24 アールエフ360・ヨーロップ・ゲーエムベーハー Multiple layer system, manufacturing method and SAW device formed on multiple layer system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPIED PHYSICS LETTERS *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049155A (en) * 1997-10-27 2000-04-11 Lucent Technologies Inc. Thermally tunable surface acoustic wave devices
JP2011139214A (en) * 2009-12-28 2011-07-14 Seiko Epson Corp Surface acoustic wave device, oscillator, and module apparatus
JP2021516015A (en) * 2018-03-07 2021-06-24 アールエフ360・ヨーロップ・ゲーエムベーハー Multiple layer system, manufacturing method and SAW device formed on multiple layer system
US11949400B2 (en) 2018-03-07 2024-04-02 Rf360 Singapore Pte. Ltd. Multiple layer system, method of manufacture and saw device formed on the multiple layer system

Similar Documents

Publication Publication Date Title
JPH0218614B2 (en)
Benetti et al. Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices
US4511816A (en) Surface acoustic wave device using an elastic substrate and an aluminum nitride piezoelectric film
TWI597392B (en) Lithium tantalate single crystal substrate, bonding substrate and method for manufacturing the same, and elastic surface acoustic wave device using the same
US7323803B2 (en) Boundary acoustic wave device
US4342012A (en) Surface acoustic wave device
JPS5861686A (en) Surface elastic wave element
US8829764B2 (en) HBAR resonator with high temperature stability
US3591813A (en) Lithium niobate transducers
US3311854A (en) Single crystal quartz filter elements, transducers and delay lines
US6310424B1 (en) Surface acoustic wave device
JP4127170B2 (en) Surface wave device
JPS6341449B2 (en)
Yantchev et al. A spurious free SH-SAW resonator employing a novel multilayer stack
JPS58156215A (en) Surface acoustic wave element
Tanaka et al. IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate
US3809931A (en) Temperature-stabilized transducer device
JPH0213853B2 (en)
JPS5941602B2 (en) surface acoustic wave device
Uehara et al. Surface acoustic wave properties of atomically flat-surface aluminum nitride epitaxial film on sapphire
JPS5930332B2 (en) surface acoustic wave device
JPH0247888B2 (en) DANSEIHYOMENHASOSHI
JPS5859618A (en) Surface acoustic wave element
JPS60140918A (en) Surface acoustic wave resonator
Shih et al. The effect of an SiO/sub 2/buffer layer on the SAW properties of ZnO/SiO/sub 2//GaAs structure