JP2001228138A - Evaluation method of water quality, and retaining container for water quality evaluating semiconductor substrate - Google Patents

Evaluation method of water quality, and retaining container for water quality evaluating semiconductor substrate

Info

Publication number
JP2001228138A
JP2001228138A JP2000039241A JP2000039241A JP2001228138A JP 2001228138 A JP2001228138 A JP 2001228138A JP 2000039241 A JP2000039241 A JP 2000039241A JP 2000039241 A JP2000039241 A JP 2000039241A JP 2001228138 A JP2001228138 A JP 2001228138A
Authority
JP
Japan
Prior art keywords
water
wafer
semiconductor substrate
evaluated
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000039241A
Other languages
Japanese (ja)
Other versions
JP4507336B2 (en
Inventor
Tetsuo Mizuniwa
哲夫 水庭
Mitsukazu Masuto
光和 益戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000039241A priority Critical patent/JP4507336B2/en
Publication of JP2001228138A publication Critical patent/JP2001228138A/en
Application granted granted Critical
Publication of JP4507336B2 publication Critical patent/JP4507336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the quality of ultrapure water (water to be evaluated) used as cleaning water in the last of cleaning process in the manufacture of wafer. SOLUTION: The water to be evaluated is brought into contact with a semiconductor substrate (wafer), and fine particles adhered to the surface of the substrate are counted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、LSI製造工程
などで、大量に使用される洗浄用の超純水(被評価水)
中に存在する微量不純物のうち、半導体基板(ウエハと
も称す。)の表面に付着し、ウエハの特性に悪影響を及
ぼす可能性がある物質のみを対象にしてその超純水の水
質を評価する水質の評価方法と、その水質の評価方法で
使用する半導体基板の保持容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultrapure water for cleaning (water to be evaluated) which is used in a large amount in an LSI manufacturing process or the like.
Water quality that evaluates the quality of ultrapure water only for substances that may adhere to the surface of a semiconductor substrate (also referred to as a wafer) and affect the characteristics of the wafer, among the trace impurities present therein. And a container for holding a semiconductor substrate used in the method for evaluating water quality.

【0002】[0002]

【従来の技術】LSIの製造工程において、多量に使用
されている超純水は、洗浄工程の最後にウエハに接触す
る物質であるために、超純水に含まれる不純物の濃度が
シリコン等ウエハの表面の清浄度に影響する。このた
め、これまでのLSI集積度の増加と共に、その製造工
程で使用される超純水中の不純物濃度を低下させること
が必要とされ、従来は、超純水中に含まれる不純物のす
べてを低減する努力がなされてきた。このために水中不
純物を、高感度の分析装置を使用して超微量まで分析で
きるような技術の開発が行われてきた。
2. Description of the Related Art Ultrapure water, which is used in a large amount in an LSI manufacturing process, is a substance that comes into contact with a wafer at the end of a cleaning process. Affects the cleanliness of the surface. For this reason, it is necessary to reduce the impurity concentration in the ultrapure water used in the manufacturing process together with the increase in the degree of integration of the LSI so far. Conventionally, all of the impurities contained in the ultrapure water have to be reduced. Efforts have been made to reduce it. For this reason, a technique has been developed which can analyze impurities in water to an extremely small amount using a highly sensitive analyzer.

【0003】超純水中の不純物のうち、微粒子は、ウエ
ハの表面に付着すると、不純物の供給源になるだけでな
く、光露光によって回路を形成する際には妨害して、正
しい回路形成ができなくなるという悪影響を及ぼす。従
って使用する超純水中の微粒子状不純物を極めて低濃度
にしてそれを維持する必要がある。超純水中の微粒子数
を測定するためには、試料水にレーザー光を照射して、
水中の微粒子にレーザーが当たったときに散乱される光
を検出し、散乱される光の強さから微粒子の大きさを、
散乱光の検出回数から微粒子数を測定するいわゆる水の
パーティクルカウンタによる測定、又は、多量の超純水
を、測定しようとする微粒子が表面で捕捉できるような
フィルタで濾過し、微粒子をフィルタ表面に捕捉濃縮し
て顕微鏡で拡大観察して計数し、元の水の中の微粒子数
を計算する方法が行われている。
[0003] Of the impurities in ultrapure water, fine particles, when adhered to the surface of a wafer, not only serve as a source of impurities but also interfere with the formation of a circuit by light exposure, and correct circuit formation. The adverse effect of not being able to do so. Therefore, it is necessary to keep the particulate impurities in the ultrapure water used at a very low concentration. To measure the number of particles in ultrapure water, irradiate the sample water with laser light,
Detects the light scattered when the laser hits the fine particles in the water, and determines the size of the fine particles from the intensity of the scattered light,
Measurement with a so-called water particle counter that measures the number of fine particles from the number of times of detection of scattered light, or a large amount of ultrapure water is filtered by a filter that can capture the fine particles to be measured on the surface, and the fine particles are filtered on the filter surface. A method of capturing and concentrating, observing with a microscope under magnification, counting, and calculating the number of fine particles in the original water has been performed.

【0004】[0004]

【発明が解決しようとする課題】超純水をウエハの洗浄
に使用したときには、超純水中の微粒子がすべてウエハ
に付着し、上記のような悪影響を及ぼすかどうかは全く
明らかになっていない。上述の方法で測定される微粒子
数は水中に浮遊している全微粒子を対象としているた
め、超純水中での濃度が検出されても、ウエハの洗浄の
ときにそれらがすべて付着して悪影響を及ぼすかどうか
は分からない。超純水がウエハに接触したときに、ウエ
ハに付着しやすい微粒子が多いかどうかを判定できれ
ば、その超純水が悪影響を及ぼす可能性のある超純水か
どうかを評価できることになり、工業的な意味は大き
い。
When ultrapure water is used for cleaning a wafer, it is not clear at all whether fine particles in the ultrapure water adhere to the wafer and have the above-mentioned adverse effects. . Since the number of particles measured by the above method covers all particles suspended in water, even if the concentration in ultrapure water is detected, they will all adhere when cleaning the wafer and adversely affect it. I do not know whether to exert. If it is possible to determine whether or not there are many fine particles that easily adhere to the wafer when the ultrapure water comes into contact with the wafer, it will be possible to evaluate whether or not the ultrapure water is ultrapure water that may have an adverse effect. The meaning is great.

【0005】[0005]

【課題を解決するための手段】本発明の水質の評価方法
は、ウエハ洗浄用の超純水を被評価水とし、ウエハに接
触したときにその被評価水がウエハに付着しやすい微粒
子を多く含むか、否かを判定するためのもので、請求項
1の水質の評価方法は、半導体基板の表面に被評価水と
を接触させた後、該基板の表面に付着した微粒子を計数
することにより水質を評価することを特徴とし、又、請
求項2の水質の評価方法は、請求項1の水質の評価方法
において、1枚の半導体基板を表面を上にして内部に水
平に装着し、被評価水を基板の表面の中央部に向けて供
給し、被評価水が半導体基板表面を半径方向に流れた
後、基板周辺部から半導体基板裏面を通って排出される
と共に、基板の表面と容器内面の距離が、中心部から半
径方向外向きに移行するに従って短くなっている半導体
基板の保持容器を用いて、被評価水を半導体基板の表面
に接触させることを特徴とする。又、請求項3の水質評
価用半導体基板の保持容器は、請求項1、請求項2の水
質の評価を行うときに使用するもので、内部に1枚の半
導体基板を、表面を上にして水平に保持する保持具を備
え、且つ被評価水を半導体基板の表面の中央部に供給
し、その外周に向かって表面を半径方向外向きに流すた
めの被評価水の給水口と、上記基板の外周からその裏面
を通って被評価水を排出する排水口とを有する半導体基
板の保持容器において、被評価水の入口と半導体基板の
保持具に外部から電圧を印加できる材料を用い、被評価
水と半導体基板の電位制御を可能とさせたことを特徴と
する。請求項4の水質の評価方法は、請求項3に記載の
半導体基板の保持容器を用いて被評価水を半導体基板の
表面と接触させた後、該基板の表面に付着した微粒子を
計数することにより水質を評価することを特徴とする。
According to the water quality evaluation method of the present invention, ultrapure water for cleaning a wafer is used as the water to be evaluated, and when the water comes into contact with the wafer, the water to be evaluated tends to adhere to a large amount of fine particles which are likely to adhere to the wafer. The method for evaluating water quality according to claim 1, wherein the method includes contacting the surface of the semiconductor substrate with the water to be evaluated, and then counting the fine particles attached to the surface of the substrate. The water quality evaluation method according to claim 2 is characterized in that in the method for evaluating water quality according to claim 1, one semiconductor substrate is horizontally mounted inside with one surface facing upward, The water to be evaluated is supplied toward the center of the surface of the substrate, and after the water to be evaluated flows radially on the surface of the semiconductor substrate, the water to be evaluated is discharged from the peripheral portion of the substrate through the back surface of the semiconductor substrate, and the surface of the substrate and The distance on the inner surface of the container shifts radially outward from the center Runishitagatte with holding container of the semiconductor substrate is shorter, which comprises contacting the water to be evaluated on the surface of the semiconductor substrate. The container for holding a semiconductor substrate for evaluating water quality according to claim 3 is used when the water quality is evaluated according to claims 1 and 2, wherein one semiconductor substrate is placed inside with the surface facing upward. A water supply port for supplying water to be evaluated, comprising a holder for holding horizontally, and supplying water to be evaluated to a central portion of the surface of the semiconductor substrate, and flowing the surface radially outward toward the outer periphery; In a semiconductor substrate holding container having a drain port for discharging water to be evaluated from the outer periphery of the semiconductor substrate through the back surface thereof, a material to which voltage can be externally applied to the inlet of the water to be evaluated and the holder for the semiconductor substrate is used, It is characterized in that potential control between water and the semiconductor substrate is enabled. According to a fourth aspect of the present invention, there is provided a method for evaluating water quality, comprising: contacting water to be evaluated with a surface of a semiconductor substrate by using the semiconductor substrate holding container according to the third aspect, and then counting fine particles attached to the surface of the substrate. It is characterized by evaluating water quality by

【0006】[0006]

【発明の実施の形態】請求項1の水質の評価方法は、ウ
エハの表面に超純水を接触させ、これによってウエハの
表面に付着する微粒子数を、ウエハ用パーティクルカウ
ンタで測定して超純水の水質を評価する。超純水に含ま
れる微粒子がウエハに対して悪影響を及ぼすことを考え
ると、水がウエハに接触したときに微粒子が先ずウエハ
表面に付着する必要がある。水中の微粒子がウエハの表
面に付着するプロセスは、微粒子が静電気的な力、ファ
ンデルワールス力、疎水性結合などの何らかの力によっ
てウエハ表面に引き寄せられて付着する場合と、ウエハ
の表面で微粒子を含む水が蒸発し、微粒子が表面に取り
残される場合が考えられるが、ウエハ製造工程で多量の
水が表面から蒸発する乾燥法は行われていないから、水
中で付着するプロセスを考えればよい。即ち、超純水が
ウエハに接触したときにウエハの表面に付着する不純物
が検出されれば、その超純水はウエハにとって悪影響を
及ぼす可能性のある水であると評価することができる。
According to a first aspect of the present invention, there is provided a method for evaluating water quality, wherein ultrapure water is brought into contact with the surface of a wafer, and the number of fine particles adhering to the surface of the wafer is measured with a wafer particle counter. Evaluate water quality. Considering that fine particles contained in ultrapure water have an adverse effect on the wafer, the fine particles must first adhere to the wafer surface when water comes into contact with the wafer. The process by which fine particles in water adhere to the surface of the wafer can be performed when the fine particles are attracted to and adhere to the wafer surface by some force, such as electrostatic force, van der Waals force, or hydrophobic bonding. It is conceivable that the water contained evaporates and fine particles are left on the surface. However, since a drying method in which a large amount of water evaporates from the surface is not performed in the wafer manufacturing process, a process of adhering in water may be considered. That is, if impurities attached to the surface of the wafer when the ultrapure water comes into contact with the wafer are detected, the ultrapure water can be evaluated as water that may have a bad influence on the wafer.

【0007】このような評価を行う際に、超純水中の微
粒子を効率よくウエハの表面に付着させる必要がある。
そのためには請求項2に記載したように、内部に1枚の
ウエハを、表面を上にして水平に装着し、被評価水をウ
エハの表面中央部に向けて供給し、被評価水がウエハの
表面を半径方向に流れた後、周辺部からウエハの裏面を
通って排出されると共に、ウエハの表面と容器内面との
距離が、中心部から半径方向外向きに移行するに従って
短くなっている水質評価用のウエハの保持容器を用い
て、被評価水をウエハの表面に接触させることが好まし
い。
[0007] In performing such an evaluation, it is necessary to efficiently attach fine particles in ultrapure water to the surface of the wafer.
To this end, as described in claim 2, one wafer is mounted horizontally with the surface facing upward, and the water to be evaluated is supplied toward the center of the surface of the wafer, and the water to be evaluated is supplied to the wafer. After flowing radially on the surface of the container, the wafer is discharged from the peripheral portion through the back surface of the wafer, and the distance between the surface of the wafer and the inner surface of the container decreases as the distance from the center portion to the radially outward direction decreases. The water to be evaluated is preferably brought into contact with the surface of the wafer by using a wafer holding container for evaluating the water quality.

【0008】上記水質評価用のウエハの保持容器は、本
特許出願人が特願2000−015515号で提案した
もので、これは図1に示すように、上蓋10と、上面に
有する円形の窪み21を上記上蓋によって塞がれる底盤
20とからなる。上蓋10と底盤20の外形は例えば円
形で、上蓋の中心には給水口11、底盤20の中心は排
水口22が開設されている。底盤20の上面の周縁部に
は円周方向に等間隔に位置決め突起23が設けてあり、
これに対応して上蓋の下面の周縁部には上記位置決め突
起を受入れる凹部が設けてある。従って、底盤の上面上
に上蓋を載せ、上蓋の凹部を前記位置決め突起23に嵌
めると、上蓋は正しく底盤の上に重なり、底盤の円形の
窪み21の上面を塞ぐ。
[0008] The above-mentioned water holding evaluation wafer holding container is proposed by the present applicant in Japanese Patent Application No. 2000-015515. As shown in Fig. 1, the wafer holding container includes an upper lid 10 and a circular recess provided on the upper surface. 21 comprises a bottom plate 20 closed by the upper lid. The outer shapes of the top cover 10 and the bottom plate 20 are, for example, circular. A water supply port 11 is provided at the center of the top cover, and a drain port 22 is provided at the center of the bottom plate 20. Positioning protrusions 23 are provided at equal intervals in the circumferential direction on the peripheral edge of the upper surface of the bottom plate 20,
Correspondingly, a concave portion for receiving the positioning protrusion is provided in a peripheral portion of the lower surface of the upper lid. Therefore, when the upper lid is placed on the upper surface of the bottom plate and the concave portion of the upper cover is fitted to the positioning projection 23, the upper cover correctly overlaps the bottom plate and closes the upper surface of the circular recess 21 of the bottom plate.

【0009】底盤の円形の窪み21の内径は保持すべき
ウエハWの直径よりも充分に大であり、その窪みの底の
中心に前記排水口22の上端が開口している。窪み21
の底面上には円周方向に等間隔に複数の、図では3つの
放射状畝24が隆設してある。この放射状畝24の内端
は排水口22の回りに位置し、外端は窪み21の内周面
から内側に間隔を保って離れている。
The inner diameter of the circular recess 21 of the bottom plate is sufficiently larger than the diameter of the wafer W to be held, and the upper end of the drain port 22 is opened at the center of the bottom of the recess. Hollow 21
A plurality of, in the figure, three radial ridges 24 are ridged at equal intervals in the circumferential direction on the bottom surface of. The inner end of the radial ridge 24 is located around the drain port 22, and the outer end is spaced apart from the inner peripheral surface of the depression 21 inward.

【0010】そして、ウエハWは上記複数の放射状畝2
4の上に表面を上にして水平に保持する。そのため、各
畝の外端部上にはウエハの周縁部を載せる段26を有す
る階段形の支持台25が設けてある。段26の段差はウ
エハの厚さ(約0.6mm)に対応している。又、必要
に応じ、各畝24の中間部上にウエハの半径方向の途中
の下面を支持する支持部27を突設する。
Then, the wafer W is placed on the plurality of radial ridges 2.
Hold it horizontally on top of 4 above. For this purpose, a stair-shaped support 25 having a step 26 on which the peripheral portion of the wafer is placed is provided on the outer end of each ridge. The step of the step 26 corresponds to the thickness of the wafer (about 0.6 mm). If necessary, a support portion 27 for supporting the lower surface of the wafer in the radial direction is provided on the middle portion of each ridge 24.

【0011】上蓋10の下面には、給水口11の下端に
連なった富士山形の通水用凹部12が設けてある。この
通水用凹部12の内径は、底盤の円形の窪み21の内径
に等しい。通水用凹部12を富士山形と称したのは、断
面形状において、凹部12の下面が半径方向外向きに、
前記階段形の支持台25に水平に支持されたウエハWの
表面に次第に近付くようにしてある。
On the lower surface of the upper lid 10, there is provided a mountain-shaped water-passing recess 12 connected to the lower end of the water supply port 11. The inner diameter of the water-passing recess 12 is equal to the inner diameter of the circular recess 21 of the bottom plate. The reason why the concave portion 12 for flowing water is referred to as Mt. Fuji shape is that, in the cross-sectional shape, the lower surface of the concave portion 12 faces outward in the radial direction.
The wafer W is gradually approached to the surface of the wafer W horizontally supported by the stepped support 25.

【0012】例えば、ウエハの半径が75mmの場合、
表面を上にして水平に支持されたウエハの表面からの通
水用凹部12の距離は、ウエハの中心から半径方向外向
きに5mmの位置で15mm、同じく10mmの位置で
7.5mm、同じく15mmの位置で5mm、20mm
の位置で3.75mm、30mmの位置で2.5mm、
40mmの位置で1.875mm、60mmの位置で
1.25mm、外周の75mmの位置で1mmである。
これは、給水口11から内部に供給された超純水を、ウ
エハWの表面上を半径方向外向きに均一な流量、流速で
流れ、窪みの内周面と放射状畝の外端との間の間隔を含
む窪みの底の周縁部21′に達するようにしてある。こ
れにより、 繰り返し試験するときにも接触水量を制御でき再現性
の高い評価ができる。そして、供給された水が効率よく
ウエハの表面に接触するため、短時間でも多量の水をウ
エハの表面と接触させることができ、感度が高い。 ウエハの表面を流れる水流の流速が均一のため、不純
物のウエハ表面への付着も均一となり、表面分析による
付着物評価の信頼度が高い。 又、水がウエハと接触する際に、ウエハからの不純物
溶出が極めて少ないため、供給する水中からのウエハへ
の汚染量が感度良く検出できる。との効果がある。
For example, when the radius of the wafer is 75 mm,
The distance of the water-passing recess 12 from the surface of the wafer supported horizontally with the surface facing upward is 15 mm radially outward from the center of the wafer at a position of 5 mm, 7.5 mm at a position of 10 mm, and also 15 mm. 5mm, 20mm at the position
3.75mm at the position, 2.5mm at the 30mm position,
It is 1.875 mm at a position of 40 mm, 1.25 mm at a position of 60 mm, and 1 mm at a position of 75 mm on the outer periphery.
This is because ultrapure water supplied into the inside from the water supply port 11 flows radially outward on the surface of the wafer W at a uniform flow rate and flow rate, and between the inner peripheral surface of the depression and the outer end of the radial ridge. To reach the peripheral edge 21 'of the bottom of the depression including the distance between the recesses. As a result, the amount of contact water can be controlled even during repeated tests, and evaluation with high reproducibility can be performed. Since the supplied water efficiently contacts the surface of the wafer, a large amount of water can be brought into contact with the surface of the wafer even in a short time, and the sensitivity is high. Since the flow velocity of the water stream flowing on the surface of the wafer is uniform, the adhesion of impurities to the surface of the wafer becomes uniform, and the reliability of the evaluation of the attached matter by surface analysis is high. Further, when water comes into contact with the wafer, the amount of impurities eluted from the wafer is extremely small, so that the amount of contamination from the supplied water to the wafer can be detected with high sensitivity. Has the effect.

【0013】上記窪みの底の周縁部21′に達した水は
窪み21の底と放射状の畝によって持ち上げられたウエ
ハの裏面との間の隙間を通って中心の排水口22に向か
って流れ、排出口から外に流出する。
The water that reaches the peripheral edge 21 'at the bottom of the depression flows toward the central drain port 22 through a gap between the bottom of the depression 21 and the back surface of the wafer lifted by the radial ridges. Spills out of outlet.

【0014】上蓋の給水口11と、底盤の排水口22に
は外気と容器の内部を遮断するために弁をねじ込んで設
け、クリーンルーム以外への容器持ち運び時は、前記弁
を閉とし、水との接触を実施する際にのみ開にする。給
水口11に設ける弁は3方弁(原水→容器内と、原水→
排出とに切り換える)13を用いることが好ましい。本
容器を水に接触させる前に、該弁13を「原水→排出」
に切り換えておいて容器内に水を入れないで水を流すこ
とができるようにしておけば、サンプリング用の流路の
洗浄ができるという効果がある。又、排水口22に設け
る弁28は開閉用の2方弁でよい。
A valve is screwed into the water supply port 11 on the top lid and the drain port 22 on the bottom panel to shut off the outside air and the inside of the container. When carrying the container to a place other than the clean room, the valve is closed, and the valve is closed. Open only when making contact. The valve provided at the water supply port 11 is a three-way valve (raw water → inside the container, raw water →
(Switching to discharge) 13 is preferably used. Before the container is brought into contact with water, the valve 13 is set to “raw water → discharge”.
In this case, it is possible to wash the sampling flow path if water is allowed to flow without putting water in the container. Further, the valve 28 provided at the drain port 22 may be a two-way valve for opening and closing.

【0015】上蓋10、底盤20の材質としては、供試
水中の金属成分やイオンを評価しようとする場合には、
金属やイオンなどの不純物含有量が少なく、加工が比較
的容易で耐久性のある合成樹脂又は石英を使用する。
又、容器の表面に付着している不純物を除去するため
に、容器使用前に加温超純水による洗浄や、超音波を使
った洗浄を行う。一方、供試水中の有機性不純物を評価
しようとするときには、上蓋や底盤を有機物の溶出がな
いステンレスやアルミニウムなどの金属又は石英で作る
か、又は上蓋や底盤の接液部に上記金属や石英を使用す
る。
As materials for the upper cover 10 and the bottom plate 20, when metal components and ions in the test water are to be evaluated,
A durable synthetic resin or quartz which has a low content of impurities such as metals and ions and is relatively easy to process is used.
Further, in order to remove impurities adhering to the surface of the container, cleaning using heated ultrapure water or cleaning using ultrasonic waves is performed before using the container. On the other hand, when evaluating the organic impurities in the test water, the top cover and the bottom plate should be made of metal such as stainless steel or aluminum or quartz that does not elute organic substances, or the metal or quartz should be placed on the liquid contact part of the top cover or the bottom plate. Use

【0016】前述したように上蓋10の下面には、中央
の給水口11の下端に連なった富士山形の通水用凹部1
2を設け、水平に支持されたウエハの表面からの通水用
凹部12の距離hを中心部から半径方向外向きに離れる
ほど短くし、給水口から内部に供給された超純水がウエ
ハWの表面上を半径方向外向きに均一な流量、流速で流
れてウエハの外周に到達するようにしてある。上記距離
hは、中心部からの距離dと次の式で表される。 2πdh=C ここにπは円周率、Cは水の流量によって決まる定数で
ある。すなわち、超純水中の微粒子は水中からウエハの
表面に引き寄せられて付着するから、付着しやすさは水
の流速によって異なる。このため、上記のようにウエハ
全面に亘って同じ流速で超純水が流れることによって微
粒子の付着条件がウエハの表面で均一になる。従って図
1の保持容器にウエハを装着して超純水を流すことによ
り微粒子付着程度の測定精度が高まる。
As described above, on the lower surface of the upper lid 10, a mountain-shaped water-passing recess 1 connected to the lower end of the central water supply port 11.
2, the distance h of the water-passing concave portion 12 from the surface of the horizontally supported wafer becomes shorter as the distance from the center to the radially outward direction increases, and the ultrapure water supplied from the water supply port to the inside of the wafer W Flows at a uniform flow rate and flow rate radially outward on the surface of the wafer to reach the outer periphery of the wafer. The distance h is expressed by a distance d from the center and the following equation. 2πdh = C where π is a circular constant and C is a constant determined by the flow rate of water. That is, the particles in the ultrapure water are attracted from the water to the surface of the wafer and adhere to the surface. For this reason, as described above, the ultrapure water flows at the same flow rate over the entire surface of the wafer, so that the conditions for adhering the fine particles are uniform on the surface of the wafer. Therefore, by mounting the wafer in the holding container of FIG. 1 and flowing ultrapure water, the measurement accuracy of the degree of adhesion of the fine particles is improved.

【0017】また、超純水中の微粒子が固体表面に付着
する機構の一部として、静電気的な相互作用がある。多
くの場合、水中の微粒子は負の表面電位を持っているこ
とが知られている。従ってウエハを水に対して正になる
ように水とウエハの表面との間の電位を制御することに
よって水中の微粒子のウエハ表面への付着を促進するこ
とができる。
In addition, there is an electrostatic interaction as a part of the mechanism for attaching the fine particles in ultrapure water to the solid surface. In many cases, fine particles in water are known to have a negative surface potential. Therefore, by controlling the potential between the water and the surface of the wafer so that the wafer becomes positive with respect to the water, the adhesion of the fine particles in the water to the surface of the wafer can be promoted.

【0018】図2は超純水とウエハ表面との間の電位を
制御可能にした請求項3のウエハの保持容器の一実施形
態を示す。この実施形態の保持容器は図1の保持容器と
ほゞ同じ構成を有するので、同じ構成要素には図1と同
じ符号を付して説明を省略する。この保持容器が図1の
ものと相違する点は、器内に供給される超純水に電位を
与えるための上部電極31と、容器内に保持したウエハ
Wに接触してウエハに電位を与えるための下部電極32
とを設け、超純水の供給中に超純水とウエハとの間の電
位を制御可能にした点である。
FIG. 2 shows an embodiment of the wafer holding container according to claim 3, wherein the potential between the ultrapure water and the wafer surface can be controlled. Since the holding container of this embodiment has almost the same configuration as the holding container of FIG. 1, the same components are denoted by the same reference numerals as in FIG. This holding container is different from that shown in FIG. 1 in that an upper electrode 31 for applying a potential to ultrapure water supplied into the vessel and a wafer W held in the container are applied to apply a potential to the wafer. Electrode 32 for
And that the potential between the ultrapure water and the wafer can be controlled during the supply of the ultrapure water.

【0019】具体的には、供給される超純水に電位を与
える上部電極31は上蓋10の中心の給水口11の内周
に筒状に設けてある。そして、各放射状畝24の途中に
設けた支持部27を省略し、底盤20には支持部の位置
に前記各畝24の上面から底盤の下面に開口する上下方
向の孔29を開設し、筒状の下部電極32を上記孔に貫
通して取付ける。各下部電極32の各畝24の上面から
の突出高さは支持部27と同じにし、放射状畝の上に保
持されたウエハの半径方向の途中の裏面に接触するよう
にする。又、各電極32の底盤の下面からの下向き突出
部の長さは配線を接続できる長さであればよい。
Specifically, an upper electrode 31 for applying a potential to the supplied ultrapure water is provided in a cylindrical shape on the inner periphery of the water supply port 11 at the center of the upper lid 10. Then, the support portion 27 provided in the middle of each radial ridge 24 is omitted, and the bottom plate 20 is provided with a vertical hole 29 which opens from the upper surface of each ridge 24 to the lower surface of the bottom plate at the position of the support portion. A lower electrode 32 having a rectangular shape is attached through the hole. The height of each lower electrode 32 protruding from the upper surface of each ridge 24 is made the same as that of the support portion 27 so that the lower electrode 32 comes into contact with the back surface in the radial direction of the wafer held on the radial ridge. Further, the length of the downwardly protruding portion from the lower surface of the bottom plate of each electrode 32 may be any length as long as wiring can be connected.

【0020】そして、変圧器により電圧を調節できる直
流電源の陰極を上部電極31に電気的に接続し、陽極は
3本の下部電極32に夫々電気的に接続する。直流電源
からの印加電圧は弱すぎると電圧印加の効果が無くな
り、強すぎると電極の溶出を促進し、電極の寿命を短く
するので、1〜5Vが適当である。
The cathode of a DC power supply whose voltage can be adjusted by a transformer is electrically connected to the upper electrode 31, and the anodes are electrically connected to the three lower electrodes 32, respectively. If the applied voltage from the DC power supply is too weak, the effect of the voltage application is lost, and if it is too strong, the elution of the electrode is promoted and the life of the electrode is shortened.

【0021】このようにして保持容器内に供給される超
純水と、保持容器に保持されたウエハとの間に適当な電
源装置を使用して電位を与えることによりウエハの表面
への超純水中の微粒子の付着を促進し、微粒子検出の感
度を向上できる。
By applying an electric potential between the ultrapure water supplied into the holding container and the wafer held in the holding container by using an appropriate power supply device, the ultrapure water on the surface of the wafer is provided. The adhesion of fine particles in water can be promoted, and the sensitivity of fine particle detection can be improved.

【0022】実施例1 直径6インチのn型シリコンウエハを3枚用意し、石英
製の槽を用いて、超純水による通常のRCA洗浄を行
い、ウエハの表面を清浄化した。この内の2枚を洗浄
後、乾燥して表面の微粒子数をウエハパーティクルカウ
ンターで測定した。その結果洗浄後のウエハ表面の0.
2μm以上の微粒子数の平均値は2.3個であった。こ
のウエハについて、図1に示す構造のポリプロピレン製
のウエハ保持容器にシリコンウエハを装着し、超純水を
1立/分の流速で1時間、すなわち60立を通水した。
その後、ウエハを汚染させないように容器から取出して
乾燥し、表面の微粒子数をウエハパーティクルカウンタ
で測定し、平均値を求めた。その結果、ウエハの表面に
は5個の微粒子が検出された。すなわち、60立の水か
ら平均で5個/ウエハだけの汚染を起こさせる超純水で
あると評価できた。
Example 1 Three n-type silicon wafers having a diameter of 6 inches were prepared, and normal RCA cleaning with ultrapure water was performed using a quartz tank to clean the surfaces of the wafers. Two of these were washed and dried, and the number of fine particles on the surface was measured with a wafer particle counter. As a result, the surface area of the wafer after cleaning is reduced to 0.
The average value of the number of fine particles of 2 μm or more was 2.3. With respect to this wafer, a silicon wafer was mounted on a polypropylene wafer holding container having the structure shown in FIG. 1, and ultrapure water was passed at a flow rate of 1 liter / min for 1 hour, that is, 60 liters.
Thereafter, the wafer was taken out of the container and dried so as not to contaminate the wafer, and the number of fine particles on the surface was measured with a wafer particle counter to obtain an average value. As a result, five fine particles were detected on the surface of the wafer. In other words, it could be evaluated as ultrapure water that caused contamination of only 5 wafers / wafer on average from 60 standing water.

【0023】実施例2 直径6インチのn型シリコンウエハを3枚用意し、石英
製の槽を用いて、超純水による通常のRCA洗浄を行
い、ウエハの表面を清浄化した。この内の2枚は洗浄後
乾燥して表面の微粒子数ウエハをパーティクルカウンタ
ーで測定した。その結果洗浄後のウエハ表面の0.2μ
m以上の微粒子数の平均値は2.6個であった。このウ
エハについて、図2に示す構造のポリプロピレン製のウ
エハ保持容器にシリコンウエハを装着し、ウエハ側が+
となるように電極に2ボルトの電圧を印加しながら超純
水を1立/分の流速で1時間、すなわち60立を通水し
た。その後、ウエハを汚染させないように容器から取出
して乾燥し、表面の微粒子数をウエハパーティクルカウ
ンタを用いて測定し、平均値を求めた。その結果、ウエ
ハ表面には7個の微粒子が検出された。すなわち、60
立の水から平均で7個/ウエハだけの汚染を起こさせる
超純水であると評価できた。
Example 2 Three n-type silicon wafers having a diameter of 6 inches were prepared, and normal RCA cleaning with ultrapure water was performed using a quartz tank to clean the surfaces of the wafers. Two of them were washed and dried, and the number of fine particles on the surface was measured by a particle counter. As a result, 0.2 μm
The average value of the number of fine particles of m or more was 2.6. With respect to this wafer, a silicon wafer was mounted on a polypropylene wafer holding container having a structure shown in FIG.
Ultrapure water was passed through the electrode at a flow rate of 1 liter / minute for 1 hour, that is, 60 liters while applying a voltage of 2 volts to the electrode so that Thereafter, the wafer was taken out of the container and dried so as not to contaminate the wafer, and the number of fine particles on the surface was measured using a wafer particle counter to obtain an average value. As a result, seven fine particles were detected on the wafer surface. That is, 60
It could be evaluated as ultrapure water that caused contamination of only 7 wafers / wafer on average from standing water.

【0024】[0024]

【発明の効果】本発明の微粒子汚染評価法を使用するこ
とによって、実際にウエハの表面を汚染させる超純水中
の微粒子レベルを評価でき、より実際の影響に近い水の
評価ができる。本発明のウエハの保持容器を使用するこ
とによって、クリーンルーム外にある超純水製造装置内
の純水製造工程中の水質を、ウエハと接触させて分析す
る方法を用いて評価でき、超純水の水質の向上や、コス
トの低減など超純水の製造技術の向上に役立てることが
できる。
By using the method for evaluating particulate contamination according to the present invention, the level of particulates in ultrapure water that actually contaminates the surface of a wafer can be evaluated, and the water can be evaluated closer to the actual effect. By using the wafer holding container of the present invention, the water quality during the pure water production process in the ultrapure water production apparatus outside the clean room can be evaluated using a method of contacting and analyzing the wafer, and the ultrapure water can be evaluated. It can be used for improving the quality of ultrapure water such as improving water quality and reducing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は請求項2の水質の評価方法で使用した
ウエハの保持容器の一実施形態の断面図、(B)は同上
の底盤の斜視図。
FIG. 1A is a cross-sectional view of an embodiment of a wafer holding container used in the method for evaluating water quality according to claim 2, and FIG. 1B is a perspective view of a bottom plate of the same.

【図2】(A)は請求項3の水質の評価方法で使用した
ウエハの保持容器の一実施形態の断面図、(B)は同上
の底盤の斜視図。
FIG. 2A is a sectional view of an embodiment of a wafer holding container used in the method for evaluating water quality according to claim 3, and FIG. 2B is a perspective view of a bottom plate of the same.

【符号の説明】[Explanation of symbols]

10 保持容器の上蓋 11 上蓋の給水口 12 上蓋の通水用凹部 20 保持容器の底盤 21 底盤の円形の窪み 22 底盤の排水口 24 底盤の放射状畝 25 放射状畝の階段形支持部 31 上部電極 32 下部電極 W 半導体基板(ウエハ) REFERENCE SIGNS LIST 10 Upper lid of holding container 11 Water supply port of upper lid 12 Water passage recess of upper lid 20 Bottom plate of holding container 21 Circular depression of bottom plate 22 Drain port of bottom plate 24 Radial ridge of bottom plate 25 Stair-shaped support portion of radial ridge 31 Upper electrode 32 Lower electrode W Semiconductor substrate (wafer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に被評価水を接触させ
た後、該基板の表面に付着した微粒子を計数することに
より水質を評価することを特徴とする水質の評価方法。
1. A method for evaluating water quality, comprising: bringing water to be evaluated into contact with the surface of a semiconductor substrate, and counting the fine particles attached to the surface of the substrate to evaluate the water quality.
【請求項2】 1枚の半導体基板を表面を上にして内部
に水平に装着し、被評価水を基板の表面の中央部に向け
て供給し、被評価水が半導体基板の表面を半径方向に流
れた後、基板周辺部から半導体基板の裏面を通って排出
されると共に、基板表面と容器内面の距離が、中心部か
ら半径方向外向きに移行するに従って短くなっている水
質評価用の半導体基板の保持容器を用いて、被評価水を
半導体基板の表面に接触させることを特徴とする請求項
1に記載の水質の評価方法。
2. A semiconductor substrate is mounted horizontally with its surface facing upward, and water to be evaluated is supplied toward the center of the surface of the substrate. The semiconductor for water quality evaluation is discharged from the peripheral portion of the substrate through the back surface of the semiconductor substrate, and the distance between the substrate surface and the inner surface of the container is reduced as the distance from the central portion to the radially outward direction is reduced. The method for evaluating water quality according to claim 1, wherein the water to be evaluated is brought into contact with the surface of the semiconductor substrate using a substrate holding container.
【請求項3】 内部に1枚の半導体基板を、表面を上に
して水平に保持する保持具を備え、且つ被評価水を半導
体基板の表面の中央部に供給し、その外周に向かって表
面を半径方向外向きに流すための被評価水の給水口と、
上記基板の外周からその裏面を通って被評価水を排出す
る排水口とを有する半導体基板の保持容器において、被
評価水の入口と半導体基板の保持具に外部から電圧を印
加できる材料を用い、被評価水と半導体基板の電位制御
を可能とさせたことを特徴とする半導体基板の保持容
器。
3. A semiconductor device comprising: a holder for holding one semiconductor substrate horizontally with its surface facing upward; and supplying water to be evaluated to a central portion of the surface of the semiconductor substrate; Water supply port of the evaluated water for flowing the water radially outward,
In a semiconductor substrate holding container having a drain port for discharging water to be evaluated from the outer periphery of the substrate through the back surface thereof, using a material capable of externally applying a voltage to the inlet of the water to be evaluated and the holder of the semiconductor substrate, A semiconductor substrate holding container, wherein potential of water to be evaluated and a semiconductor substrate can be controlled.
【請求項4】 請求項3に記載の半導体基板の保持容器
を用いて被評価水を半導体基板の表面と接触させた後、
該基板の表面に付着した微粒子を計数することにより水
質を評価することを特徴とする水質の評価方法。
4. After the water to be evaluated is brought into contact with the surface of the semiconductor substrate using the semiconductor substrate holding container according to claim 3,
A water quality evaluation method, wherein water quality is evaluated by counting fine particles attached to the surface of the substrate.
JP2000039241A 2000-02-17 2000-02-17 Water quality evaluation method and water quality evaluation semiconductor substrate holding container Expired - Fee Related JP4507336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039241A JP4507336B2 (en) 2000-02-17 2000-02-17 Water quality evaluation method and water quality evaluation semiconductor substrate holding container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039241A JP4507336B2 (en) 2000-02-17 2000-02-17 Water quality evaluation method and water quality evaluation semiconductor substrate holding container

Publications (2)

Publication Number Publication Date
JP2001228138A true JP2001228138A (en) 2001-08-24
JP4507336B2 JP4507336B2 (en) 2010-07-21

Family

ID=18562840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039241A Expired - Fee Related JP4507336B2 (en) 2000-02-17 2000-02-17 Water quality evaluation method and water quality evaluation semiconductor substrate holding container

Country Status (1)

Country Link
JP (1) JP4507336B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101982A (en) * 2006-10-18 2008-05-01 Kurita Water Ind Ltd Water quality evaluation method and device
US8012755B2 (en) * 2006-08-21 2011-09-06 Kurita Water Industries Ltd. Water quality evaluation method and substrate contacting apparatus used
JP2019020154A (en) * 2017-07-12 2019-02-07 オルガノ株式会社 Method for evaluating ultrapure water, method for evaluating membrane module for manufacturing ultrapure water, and method for evaluating ion exchange resin for manufacturing ultrapure water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761557U (en) * 1980-09-19 1982-04-12
JPH0475339A (en) * 1990-07-17 1992-03-10 Seiko Epson Corp Cleaning method by electric field
JPH10272492A (en) * 1997-03-31 1998-10-13 Mitsubishi Electric Corp Apparatus for producing high-temperature ultrapure water and chemical liquid preparing apparatus equipped therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761557U (en) * 1980-09-19 1982-04-12
JPH0475339A (en) * 1990-07-17 1992-03-10 Seiko Epson Corp Cleaning method by electric field
JPH10272492A (en) * 1997-03-31 1998-10-13 Mitsubishi Electric Corp Apparatus for producing high-temperature ultrapure water and chemical liquid preparing apparatus equipped therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012755B2 (en) * 2006-08-21 2011-09-06 Kurita Water Industries Ltd. Water quality evaluation method and substrate contacting apparatus used
JP2008101982A (en) * 2006-10-18 2008-05-01 Kurita Water Ind Ltd Water quality evaluation method and device
JP2019020154A (en) * 2017-07-12 2019-02-07 オルガノ株式会社 Method for evaluating ultrapure water, method for evaluating membrane module for manufacturing ultrapure water, and method for evaluating ion exchange resin for manufacturing ultrapure water
JP7054995B2 (en) 2017-07-12 2022-04-15 オルガノ株式会社 Evaluation method of ultrapure water, evaluation method of membrane module for ultrapure water production, and evaluation method of ion exchange resin for ultrapure water production

Also Published As

Publication number Publication date
JP4507336B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7678256B2 (en) Insulator-based DEP with impedance measurements for analyte detection
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
US20030023149A1 (en) Microfluidic microorganism detection system
JP3584262B2 (en) Sample pretreatment system for X-ray fluorescence analysis and X-ray fluorescence analysis system having the same
WO2011125321A1 (en) Array for detecting biological substance, assay system and assay method
EP0504169A4 (en) Fluidics head for testing chemical and ionic sensors
JP4507336B2 (en) Water quality evaluation method and water quality evaluation semiconductor substrate holding container
JP4449135B2 (en) Semiconductor substrate holding container
US6210640B1 (en) Collector for an automated on-line bath analysis system
JP4487364B2 (en) Semiconductor substrate holding container and water quality evaluation method
JP4450117B2 (en) Water quality evaluation method for silicon substrate cleaning ultrapure water
US20220362693A1 (en) Device for applying magnetic field to a filter for reducing metallic contaminants
US9689829B2 (en) Nanoprobe and methods of use
EP2413134A1 (en) Sensor for detecting material to be tested
JP2011104487A (en) Apparatus for treating fine particle
JP4505918B2 (en) Water quality evaluation board holding container
JP3300213B2 (en) Aerial impurity monitoring device and aerial impurity monitoring method
Qi et al. A nanofluidic sensor for real-time detection of ultratrace contaminant particles in ic fabrication
JP3121960B2 (en) Pollutant monitoring device for clean room
JPH04329335A (en) Apparatus for sampling and transferring particle and manufacture thereof
JP2005274400A (en) Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JPS5943347A (en) Automatically operated polarograph analyzer
JPH0845888A (en) Pure water cleaning apparatus
KR102612262B1 (en) Flow cell device for water quality measuring
JPH03273135A (en) Instrument for measuring particulates in liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees