JP2011104487A - Apparatus for treating fine particle - Google Patents

Apparatus for treating fine particle Download PDF

Info

Publication number
JP2011104487A
JP2011104487A JP2009260378A JP2009260378A JP2011104487A JP 2011104487 A JP2011104487 A JP 2011104487A JP 2009260378 A JP2009260378 A JP 2009260378A JP 2009260378 A JP2009260378 A JP 2009260378A JP 2011104487 A JP2011104487 A JP 2011104487A
Authority
JP
Japan
Prior art keywords
hole
fine particles
fine particle
electrodes
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009260378A
Other languages
Japanese (ja)
Inventor
Atsushi Morimoto
篤史 森本
Tatsu Futami
達 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009260378A priority Critical patent/JP2011104487A/en
Publication of JP2011104487A publication Critical patent/JP2011104487A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost and simple-structured apparatus for treating fine particles, requiring least expense, time and skill in its maintenance and allowing an operator to carry out a highly accurate treatment of fine particles without requiring a specific skill. <P>SOLUTION: The apparatus for treating fine particles including a storage section that stores a dispersion of fine particles, an electrode base plate whereon a pair of electrodes are disposed, and an AC power source connected to the pair of electrodes, is characterized in that a part of the storage section is constituted of an insulating material and comprises a plurality of through-holes enabling the suspension to contact each of the electrodes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微粒子を特定の位置に誘導し、捕捉する微粒子操作装置に関する。   The present invention relates to a particle manipulation device that guides and captures fine particles at a specific position.

無機材料系微粒子、有機材料系微粒子、生物試料系微粒子などを、それぞれの微粒子の物理的形状や物性を損なうことのないように、非接触、非破壊で捕捉し、保持し、選択し、移動させ、分別回収等する方法や装置として、光による微粒子の操作方法や光による微粒子の操作装置などが用いられてきた(例えば、特許文献1参照。なお本明細書では微粒子を非接触、非破壊で捕捉し、保持し、選択し、移動させ、分別回収等することを単に「操作する」等と表現することがある。)。この操作方法は、一般に光ピンセット法又は光トラップ法と呼ばれ、光源に主としてレーザーを用いることから、レーザートラッピング法などとも呼ばれている。詳しくは、光源からのレーザー光を集光光学系により円錐状に集光し、媒体中の微粒子近傍に照射することにより、微粒子に発生する光の放射圧を利用して微粒子を捕捉し、保持し、移動等させるものである。   Non-contact, non-destructive capture, retention, selection, transfer of inorganic material-based fine particles, organic material-based fine particles, biological sample-based fine particles, etc., without damaging the physical shape and physical properties of each fine particle For example, a method for manipulating fine particles by light, a device for manipulating fine particles by light, and the like have been used as a method and an apparatus for separating and collecting (see, for example, Patent Document 1. In this specification, fine particles are non-contact and non-destructive. Capture, hold, select, move, separate collection, etc. in the above are sometimes simply expressed as “operating”.) This operation method is generally called an optical tweezer method or an optical trap method, and is also called a laser trapping method because a laser is mainly used as a light source. Specifically, the laser light from the light source is condensed in a conical shape by a condensing optical system, and irradiated to the vicinity of the fine particles in the medium, so that the fine particles are captured and held using the radiation pressure of the light generated in the fine particles. And move it.

しかしながら、光トラップ法は、レーザー光源やその集光等のための光学系を必要とし、しかもその精密な制御が必要となることから、装置が高価、精密かつ大掛かりになって取扱いも複雑になるため、操作者に一定の熟練を強いるという課題がある。また光軸調整を含む光学系及び光源の維持管理にも時間、費用及び熟練が要求され、それに伴い管理費用が高騰するという課題もある。さらに光トラップ法では、基本的に微粒子を1個ずつ顕微鏡等で視覚的に確認しながら捕捉等しなければならないため、一度に大量の微粒子を操作できないという課題がある。   However, the optical trap method requires a laser light source and an optical system for condensing the light source, and requires precise control thereof, so that the apparatus becomes expensive, precise and large-scale, and handling is complicated. Therefore, there is a problem that the operator is forced to have a certain level of skill. In addition, the maintenance of the optical system and the light source including the optical axis adjustment requires time, cost, and skill, and the management cost increases accordingly. Furthermore, the optical trap method has a problem that a large amount of fine particles cannot be manipulated at a time because the fine particles must basically be captured one by one while visually confirming with a microscope or the like.

光トラップ法等の微粒子操作方法及び操作装置は、例えば細胞等の異なる生物試料系微粒子を捕捉しておき、これらを融合させて1つの交雑細胞とする細胞融合のための基礎的な技術としてとらえることもできる(例えば、特許文献4参照)。しかしながら、上記したように、装置が高価、精密かつ大がかりになって取扱いが煩雑になり、操作者は一定の熟練が強いられる、光軸調整を含む光学系及び光源の維持管理にも時間、費用及び熟練が要求され、それに伴い管理費用も高騰する、微粒子を1個ずつ顕微鏡等で視覚的に確認しながら捕捉等しなければならないため、一度に大量の微粒子を操作できないため、細胞の操作効率を向上するためには更なる改良が必要である。   Microparticle manipulation methods and manipulation devices such as the optical trap method are regarded as basic techniques for cell fusion by capturing different biological sample microparticles such as cells and fusing them into one hybrid cell. (For example, refer to Patent Document 4). However, as described above, the apparatus becomes expensive, precise and large-scale, and the handling becomes complicated, and the operator is required to have a certain level of skill. In addition, because the skill is required and the management cost increases accordingly, it is necessary to capture each particle while visually confirming them one by one with a microscope, etc., so that a large amount of particles cannot be manipulated at one time. Further improvement is necessary to improve

細胞等の生物試料系微粒子の操作に関わる他の公知技術として、例えば特許文献2が開示するような、細胞融合用チャンバーの融合領域に対向するように配置された導電部材よりなる一対の電極と、前記一対の電極間に配置され、且つ前記一対の電極方向に貫通した貫通孔を有する絶縁体とよりなる細胞融合用チャンバーが報告されている。   As another known technique related to the manipulation of biological sample-based microparticles such as cells, for example, as disclosed in Patent Document 2, a pair of electrodes made of a conductive member arranged to face the fusion region of the cell fusion chamber, A cell fusion chamber comprising an insulator having a through hole disposed between the pair of electrodes and penetrating in the direction of the pair of electrodes has been reported.

特許文献2について具体的に説明する。図1は特許文献2の細胞融合用チャンバーの断面図を示した概念図である。図1において、例えば樹脂材からなる細胞融合用チャンバーの融合領域(1)の両側には、導電部材からなる電極(2)が配置され、これら電極は導電線(3)を介して外部に設けられた電源(4)と接続されている。外部に設けられた電源は電界の強さが約400V/cmから700V/cm、周波数1MHz程度の高周波交流電圧を出力する交流電源(5)と、約7kV/cm、パルス幅50μsec程度のパルス電圧を出力する直流パルス電源(6)と、電極と交流電源又は直流パルス電源の電気的接続を切り換える為のスイッチ(7)とから構成されている。ここで、交流電源から出力する交流電圧には、通常、一般的な正弦波の波形を用いる。細胞融合用チャンバーは、電気的に絶縁な材料、例えばシリコーン樹脂からなる絶縁体(8)により2つの空間に区分けされている。ここで、絶縁体には最小口径が1μmから数十μmの貫通孔(9)が設けられている。また、細胞A(10)及び細胞B(11)はそれぞれ細胞融合用チャンバーの融合領域内の懸濁液内におかれている。   Patent Document 2 will be specifically described. FIG. 1 is a conceptual diagram showing a cross-sectional view of the cell fusion chamber of Patent Document 2. In FIG. 1, electrodes (2) made of conductive members are arranged on both sides of a fusion region (1) of a cell fusion chamber made of a resin material, for example, and these electrodes are provided outside via conductive wires (3). Connected to the power source (4). The power supply provided outside is an AC power supply (5) that outputs a high-frequency AC voltage with an electric field strength of about 400 V / cm to 700 V / cm and a frequency of about 1 MHz, and a pulse voltage of about 7 kV / cm and a pulse width of about 50 μsec. And a switch (7) for switching the electrical connection between the electrode and the AC power source or the DC pulse power source. Here, a general sine wave waveform is usually used as the AC voltage output from the AC power supply. The cell fusion chamber is divided into two spaces by an insulator (8) made of an electrically insulating material such as silicone resin. Here, the insulator is provided with a through hole (9) having a minimum diameter of 1 μm to several tens of μm. Cell A (10) and cell B (11) are each placed in a suspension in the fusion region of the cell fusion chamber.

上記特許文献2に記載された装置の動作を図2から図4を用いて具体的に説明する。最初に、電源(4)の切り換えスイッチ(7)を電界の強さが約400V/cmから700V/cm、周波数1MHzの高周波電圧を出力する交流電源(5)に接続する。この状態において電気力線(12)は、図2に示すように貫通孔(9)に集中する。細胞A(10)および細胞B(11)は、ここに集中する電気力線(12)のため誘電泳動力を受け、図3に示すように貫通孔(9)の中心付近に捕捉される。ここで細胞A(10)と細胞B(11)は出会い接触する。次に、電源(4)の切り換えスイッチ(7)を直流パルス電源(6)に切り換える。図3に示した状態におかれた細胞A(10)及び細胞B(11)は、パルス電圧により細胞A(10)および細胞B(11)の接触点で細胞膜の可逆的破壊が起こり、図4に示すように融合が生ずる。   The operation of the apparatus described in Patent Document 2 will be specifically described with reference to FIGS. First, the changeover switch (7) of the power source (4) is connected to an AC power source (5) that outputs a high-frequency voltage having an electric field strength of about 400 V / cm to 700 V / cm and a frequency of 1 MHz. In this state, the electric lines of force (12) are concentrated in the through hole (9) as shown in FIG. The cells A (10) and B (11) receive a dielectrophoretic force due to the electric lines of force (12) concentrated here, and are captured near the center of the through hole (9) as shown in FIG. Here, cell A (10) and cell B (11) meet and come into contact. Next, the selector switch (7) of the power source (4) is switched to the DC pulse power source (6). In the cells A (10) and B (11) placed in the state shown in FIG. 3, the reversible destruction of the cell membrane occurs at the contact point of the cells A (10) and B (11) due to the pulse voltage. Fusion occurs as shown in FIG.

特許文献2の装置では、貫通孔において細胞Aと細胞B融合させることを目的としているため、2細胞を一対として取り扱う。従って、特許文献2に記載された装置によって一度に複数の融合細胞(51)を得ようとする場合、複数の貫通孔を絶縁体上に2細胞を一対として複数対捕捉する必要がある。しかしながら、交流電源を接続して細胞を貫通孔に捕捉する際に、ある貫通孔には複数の細胞が捕捉される一方で、細胞が全く捕捉されない貫通孔が発生するというように、不均一な細胞操作(不均一な貫通孔への捕捉)が発生するという課題がある。そこで、貫通孔をアレイ状に配置する(貫通孔をいずれの隣接する貫通孔とも等間隔となるように配置する、又は、貫通孔を縦横が等しい格子状に配置する)ことにより、微小粒子に作用する電気力線を均一化して細胞操作(貫通孔への捕捉)を均一化する試みもなされている。   The device of Patent Document 2 is intended to fuse cell A and cell B in the through-hole, and therefore handles two cells as a pair. Therefore, when trying to obtain a plurality of fused cells (51) at once by the apparatus described in Patent Document 2, it is necessary to capture a plurality of pairs of two through holes on the insulator as a pair of two cells. However, when an AC power source is connected and cells are captured in the through-holes, a plurality of cells are captured in a certain through-hole, while a through-hole in which no cells are captured is generated. There is a problem that cell manipulation (capturing in uneven through-holes) occurs. Therefore, by arranging the through-holes in an array (by arranging the through-holes at equal intervals with any adjacent through-holes, or by arranging the through-holes in a lattice shape with the same length and width) Attempts have also been made to uniformize the cell operation (capture in the through-hole) by uniforming the acting electric field lines.

特許文献3では、アレイ状に配置した貫通孔に1つずつ細胞を捕捉する方法が開示されている(特許文献3参照)。この方法は、貫通孔(マイクロウエル)の内径と深さがそれぞれ細胞(被検体リンパ球)の粒径の1から2倍の大きさの貫通孔に、複数の細胞を含む懸濁液を貫通孔を覆うように加え、貫通孔内に細胞が沈むのを待つ過程と、貫通孔に沈んだ細胞以外の細胞を洗い流す洗浄の過程を繰り返し行うことで、1つの貫通孔に1つの細胞を捕捉するものである。しかしながら、特許文献3に記載された方法では、重力により細胞が沈むのを待つ時間が5分程度と長いこと、貫通孔内に細胞が沈むのを待つ過程と貫通孔に入らなかった細胞を洗い流す洗浄過程を繰り返すために操作が面倒かつ煩雑で迅速な処理を行い難いこと、そして貫通孔に入らなかった細胞を洗い流す過程で貫通孔に入った細胞も失われる可能性があるという課題があった。特に、任意の特異性について細胞を処理(選択)した後の場合には、貫通孔に入らなかった細胞を洗い流すのは大きなロスとなってしまう。   Patent Document 3 discloses a method of capturing cells one by one in through holes arranged in an array (see Patent Document 3). This method penetrates a suspension containing a plurality of cells into a through-hole whose inside diameter and depth of the through-hole (microwell) are 1 to 2 times the particle size of the cell (subject lymphocyte). In addition to covering the hole, the process of waiting for the cells to sink into the through hole and the washing process of washing away cells other than the cells that have settled in the through hole are repeated to capture one cell in one through hole. To do. However, in the method described in Patent Document 3, the time for waiting for the cells to sink due to gravity is as long as about 5 minutes, the process of waiting for the cells to sink in the through holes, and the cells that have not entered the through holes are washed away. There were problems that the operation was cumbersome and complicated to repeat the washing process, and it was difficult to perform rapid processing, and that the cells that entered the through hole could be lost in the process of washing the cells that did not enter the through hole . In particular, after treating (selecting) cells for any specificity, it is a great loss to wash away cells that have not entered the through-hole.

特開2001−290083号公報JP 2001-290083 A 特公平7−4218号公報Japanese Patent Publication No. 7-4218 特許第3723882号公報Japanese Patent No. 3723882 特開平7−31455号広報JP-A-7-31455

本発明は、かかる従来の実状に鑑みて提案されたものであり、その目的は、安価な装置であって、簡便な構成であり、その維持、管理に時間、費用更には熟練を必要としない、微粒子の操作装置を提供することにある。また本発明の目的は、その使用に当たっては特別の熟練を要することなく、精度の高い微粒子の処理を可能とする装置を提供することにある。更に本発明の目的は、大量の微粒子を一度に処理し得る処理装置を提供することにある。   The present invention has been proposed in view of such a conventional situation, and an object thereof is an inexpensive apparatus having a simple configuration, and does not require time, cost, and skill for maintenance and management. An object of the present invention is to provide an operation device for fine particles. Another object of the present invention is to provide an apparatus that can process fine particles with high accuracy without requiring any special skill in use. Furthermore, the objective of this invention is providing the processing apparatus which can process a lot of fine particles at once.

上記目的を達成するためになされた本発明は、微粒子懸濁液を収容する収容部、一対の電極が配置された電極基板及び電極に接続された交流電源とから構成され、前記収容部の一部は絶縁体の材料で構成されるとともに前記懸濁液を前記各電極に接触可能とする貫通孔を有することを特徴とする、微粒子操作装置である。以下、図面を参照しつつ、本発明を詳細に説明する。   The present invention, which has been made to achieve the above object, comprises a housing part for housing a fine particle suspension, an electrode substrate on which a pair of electrodes are arranged, and an AC power source connected to the electrodes. The part is a fine particle manipulating device characterized in that it is made of an insulating material and has a through-hole that allows the suspension to contact each electrode. Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明で取り扱うことができる微粒子は、電気的に静電容量性を有する微粒子であれば特に制限はなく、例えばシリカ、ジルコニア又は酸化ニッケル等の無機材料系微粒子、ポリスチレン等の有機材料系微粒子、抗体産生細胞やミエローマ細胞等の生物試料系微粒子を例示することができる。粒子の大きさも、後述する誘電泳動によって懸濁液中を移動できる範囲の大きさであれば制限はない。また装置に供する微粒子懸濁液は、上記のような微粒子が後述する誘電泳動で移動できる懸濁液であれば良い。例えば微粒子が無機材料系微粒子である場合には粒子径数μmから数百μm程度のジルコニア粒子を懸濁した水溶液を、微粒子が有機材料系微粒子である場合には粒子径粒子径数μmから数百μm程度のポリスチレン粒子を懸濁した水溶液を、微粒子が生物試料系微粒子である場合には抗体産生細胞(5μm程度の大きさ)やマウスのミエローマ細胞(10μm程度の大きさ)を懸濁したマンニトール水溶液(マンニトール濃度:300mM程度)を例示することができる。   The fine particles that can be handled in the present invention are not particularly limited as long as they are electrically capacitive fine particles. For example, inorganic material-based fine particles such as silica, zirconia or nickel oxide, organic material-based fine particles such as polystyrene, Biological sample microparticles such as antibody-producing cells and myeloma cells can be exemplified. The size of the particles is not limited as long as it is a size that can move in the suspension by dielectrophoresis, which will be described later. The fine particle suspension used in the apparatus may be a suspension in which the fine particles as described above can move by dielectrophoresis described later. For example, when the fine particles are inorganic material-based fine particles, an aqueous solution in which zirconia particles having a particle diameter of several μm to several hundred μm are suspended, and when the fine particles are organic material-based fine particles, the particle diameter is from several μm to several μm. An aqueous solution in which polystyrene particles of about 100 μm are suspended is suspended in the case where the microparticles are biological sample microparticles, in which antibody-producing cells (size of about 5 μm) and mouse myeloma cells (size of about 10 μm) are suspended. A mannitol aqueous solution (mannitol concentration: about 300 mM) can be exemplified.

上記した微粒子を懸濁した懸濁液は、収容部に収容される。収容部は、その一部が絶縁体の材料で構成されるとともに、前記懸濁液を本発明の装置を構成する電極基板上に配置された電極に接触可能とする貫通孔を有する。かかる条件を満たす限り、収容部は、寸法や形状に特に制限はなく、また懸濁液を密閉した状態で収容するものに限られず、例えば上蓋のない液溜であっても良いし、例えば別途構成される細胞抽出装置に接続される流路の一部であっても良い。上蓋のない例として、例えば図5の構成において、上蓋14を省いた図8のような構成のものを例示できる(図9はこの図8の構成のB−B’断面を示す図である)。上蓋は、収容部に入れた微粒子を含む懸濁液の水分が蒸発することを防止したり、図5のような態様の装置においては、微粒子を含む懸濁液を安定して装置に供給するという役割を有する。   The suspension in which the fine particles are suspended is accommodated in the accommodating portion. The accommodating portion has a through hole that allows a part of the accommodating portion to be made of an insulating material and allows the suspension to contact an electrode disposed on an electrode substrate constituting the device of the present invention. As long as this condition is satisfied, the storage portion is not particularly limited in size and shape, and is not limited to the storage portion in which the suspension is stored in a sealed state. For example, the storage portion may be a liquid reservoir without an upper lid, for example, separately. It may be a part of the flow path connected to the constructed cell extraction device. As an example without the upper lid, for example, in the configuration of FIG. 5, the configuration of FIG. 8 with the upper lid 14 omitted may be illustrated (FIG. 9 is a diagram showing a BB ′ cross section of the configuration of FIG. 8). . The upper lid prevents the water in the suspension containing the fine particles contained in the storage portion from evaporating, and in the apparatus as shown in FIG. 5, the suspension containing the fine particles is stably supplied to the apparatus. Has a role.

また収容部は、収容部の一部に形成された貫通孔を、電極基板上に配置された電極で塞ぐように(図6参照)、電極基板と接続する。ここで、貫通孔を有する部分を絶縁体の材料で構成するのは、電極に交流電圧を付加した際に、任意の貫通孔に対して電気力線を集中させ、微粒子を当該貫通孔に移動させて捕捉するためである。本発明で採用することができる絶縁体の材料として、例えばガラス、セラミック、樹脂等が例示できるが、貫通孔を形成する際の加工容易性を考慮すると、樹脂等が好ましい絶縁体として例示できる。   Further, the housing portion is connected to the electrode substrate so as to block a through-hole formed in a part of the housing portion with an electrode disposed on the electrode substrate (see FIG. 6). Here, the part having a through hole is made of an insulating material because, when an AC voltage is applied to the electrode, the lines of electric force are concentrated on an arbitrary through hole, and the fine particles are moved to the through hole. It is for letting it capture. Examples of the insulator material that can be employed in the present invention include glass, ceramic, resin, and the like. However, considering ease of processing when forming the through-hole, resin or the like can be exemplified as a preferable insulator.

また、収容部の一部を形成する絶縁体の材質は、微粒子をそこに形成された貫通孔に引き寄せて捕捉することから、微粒子と親和性のある絶縁体であることが好ましい。微粒子と親和性のある絶縁体の材質とは、微粒子が親水性である場合には親水性の絶縁体が、微粒子が疎水性である場合には疎水性の絶縁体が好ましい。親和性の目安としては、一般的には、絶縁体の表面に前記微粒子に近い親和性を有する液体を滴下したときに形成される液滴と絶縁体の表面との接触角で示される(接触角が小さいほど液体と絶縁体の表面との親和性が高く、接触角が大きいほど液体と絶縁体の表面との親和性が低い)。親水性の比較的高い絶縁体としては、ガラスや酸化チタン等があり、疎水性の比較的高い絶縁体としては、ポリスチレン、ポリイミド、テフロン(登録商標)等の樹脂があり、扱う微粒子の親水性、疎水性に応じてこれらの材料を絶縁体として用いることを例示できる。   Further, the insulator material forming a part of the accommodating portion is preferably an insulator having affinity with the fine particles because the fine particles are attracted and captured by the through holes formed therein. The insulator material having affinity for the fine particles is preferably a hydrophilic insulator when the fine particles are hydrophilic, and a hydrophobic insulator when the fine particles are hydrophobic. A measure of affinity is generally indicated by the contact angle between the droplet formed when a liquid having affinity close to the fine particles is dropped on the surface of the insulator and the surface of the insulator (contact). The smaller the angle, the higher the affinity between the liquid and the surface of the insulator, and the larger the contact angle, the lower the affinity between the liquid and the surface of the insulator). Insulators with relatively high hydrophilicity include glass and titanium oxide, and insulators with relatively high hydrophobicity include resins such as polystyrene, polyimide, and Teflon (registered trademark). The use of these materials as insulators can be exemplified depending on the hydrophobicity.

なお、本質的に微粒子との親和性が低い絶縁体を用いざるを得ない場合であっても、絶縁体の表面を改質することによって微粒子との親和性を高めることができる。樹脂等の疎水性の絶縁体を親水化する方法としては、既知の方法である、プラズマ処理、化学修飾、タンパク質の物理吸着などによる修飾、或いはこれらの方法を任意に組み合わせた方法などを用いればよい。ここで、絶縁体表面のプラズマ処理とは、電子・イオン・ラジカルなどの活性種が存在する電気的に中性な電離気体(プラズマ)を絶縁体の表面に照射することにより、絶縁体の表面における有機汚染物の除去や化学結合状態を変化させ、絶縁体の表面を改質する処理である。プラズマ処理には、非重合性ガス(Ar、Oなど)を用いるプラズマ表面処理と有機モノマーを用いて絶縁体の表面を高分子薄膜でコーティング処理するプラズマ重合がある。プラズマ表面処理は、Arなどの非反応性ガスによる表面架橋層の形成、Oなどの反応性ガスによる官能基の導入などがあり、酸素プラズマ処理により−COOHや−COを導入し、絶縁体の表面の親水性を向上させることで親水性の微粒子との親和性を高めることが可能である。またここで絶縁体表面の化学修飾による親水化とは、水酸基やカルボキシル基、アミノ基、スルホン基などの親水基を有する誘導体やシランカップリング剤などを絶縁体の表面へ結合させることで親水化する方法である。シランカップリング剤は有機物とケイ素から構成される化合物であり、分子中に親水性を示す反応基(水酸基、カルボキシル基、アミノ基、スルホン基など)と疎水性を示す反応基(ビニル基、メチル基、エチル基、プロピル基など)の2種以上の異なった反応基を有している。このため、シランカップリング剤の希薄溶液に疎水性の絶縁体を浸漬すれば、シランカップリング剤の疎水性を示す反応基が疎水性の材料の表面に化学的に結合し、親水性を示す反応基が表面を覆うため、容易に疎水性の材料の表面を均一に親水化することが可能である。またここで、タンパク質の物理吸着などによる修飾であれば、例えばBSA(ウシ血清アルブミン)などのタンパク質含有溶液に絶縁体を数分から数時間を浸漬することで、タンパク質を物理吸着させ、絶縁体の表面を親水化することができる。 Even in the case where an insulator having essentially low affinity with the fine particles must be used, the affinity with the fine particles can be increased by modifying the surface of the insulator. As a method of hydrophilizing a hydrophobic insulator such as a resin, a known method such as plasma treatment, chemical modification, modification by protein physical adsorption, or any combination of these methods may be used. Good. Here, the plasma treatment of the insulator surface refers to the surface of the insulator by irradiating the insulator surface with an electrically neutral ionized gas (plasma) in which active species such as electrons, ions, and radicals are present. In this process, the surface of the insulator is modified by removing organic contaminants and changing the chemical bonding state. Plasma treatment includes plasma surface treatment using a non-polymerizable gas (Ar, O 2, etc.) and plasma polymerization in which an insulator surface is coated with a polymer thin film using an organic monomer. Plasma surface treatment includes formation of a surface cross-linked layer with a non-reactive gas such as Ar, introduction of a functional group with a reactive gas such as O 2, etc., and —COOH or —CO is introduced by oxygen plasma treatment, and an insulator It is possible to increase the affinity with hydrophilic fine particles by improving the hydrophilicity of the surface. In addition, hydrophilicity by chemical modification of the insulator surface here means hydrophilicity by bonding a derivative having a hydrophilic group such as a hydroxyl group, a carboxyl group, an amino group or a sulfone group or a silane coupling agent to the surface of the insulator. It is a method to do. A silane coupling agent is a compound composed of an organic substance and silicon. In the molecule, hydrophilic reactive groups (hydroxyl group, carboxyl group, amino group, sulfone group, etc.) and hydrophobic reactive groups (vinyl group, methyl group) Group, ethyl group, propyl group, etc.) having two or more different reactive groups. For this reason, when a hydrophobic insulator is immersed in a dilute solution of a silane coupling agent, the reactive group showing the hydrophobicity of the silane coupling agent is chemically bonded to the surface of the hydrophobic material, thereby showing hydrophilicity. Since the reactive group covers the surface, the surface of the hydrophobic material can be easily hydrophilized uniformly. In addition, here, in the case of modification by physical adsorption of protein, the protein is physically adsorbed by immersing the insulator in a protein-containing solution such as BSA (bovine serum albumin) for several minutes to several hours. The surface can be hydrophilized.

ガラス等の親水性の絶縁体を疎水化する方法としては、シランカップリング剤を親水性の絶縁体表面に結合させる化学修飾による方法がある。シランカップリング剤は有機物とケイ素から構成される化合物であり、分子中に親水性を示す反応基(水酸基、カルボキシル基、アミノ基、スルホン基など)と疎水性を示す反応基(ビニル基、メチル基、エチル基、プロピル基など)の2種以上の異なった反応基を有している。そのため、シランカップリング剤の希薄溶液に親水性の絶縁体を浸漬すれば、シランカップリング剤の親水性を示す反応基が親水性の絶縁体の表面に化学的に結合し、疎水性を示す反応基が表面を覆うため、絶縁体の表面を均一に疎水化することが可能である。   As a method of hydrophobizing a hydrophilic insulator such as glass, there is a method by chemical modification in which a silane coupling agent is bonded to the hydrophilic insulator surface. A silane coupling agent is a compound composed of an organic substance and silicon. In the molecule, hydrophilic reactive groups (hydroxyl group, carboxyl group, amino group, sulfone group, etc.) and hydrophobic reactive groups (vinyl group, methyl group) Group, ethyl group, propyl group, etc.) having two or more different reactive groups. Therefore, if a hydrophilic insulator is immersed in a dilute solution of a silane coupling agent, the reactive group showing the hydrophilicity of the silane coupling agent is chemically bonded to the surface of the hydrophilic insulator and exhibits hydrophobicity. Since the reactive group covers the surface, it is possible to uniformly hydrophobize the surface of the insulator.

なお、親水性又は疎水性の評価方法としては、以下の一般的な手法を用いることができる。すなわち、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定することによって絶縁体の表面の親水性及び疎水性を評価するのである。親水性及び疎水性の厳密な定義は存在しないため、本発明においては、親水性を前記接触角が50°以下、好ましくは40°以下であると定義し、疎水性を前記接触角が50°より大きく、好ましくは60°より大きいと定義する。さらに、接触角の測定は、基板上に滴下した液滴の左右端点と頂点を結ぶ直線の、固体表面に対する角度から接触角を算出するθ/2法を用いる。   In addition, as a hydrophilicity or hydrophobicity evaluation method, the following general methods can be used. That is, pure water is dropped on the surface of the insulator, and the hydrophilicity and hydrophobicity of the surface of the insulator are measured by measuring the contact angle between the droplet formed on the surface of the insulator and the surface of the insulator. Evaluate. Since there is no strict definition of hydrophilicity and hydrophobicity, in the present invention, hydrophilicity is defined as the contact angle of 50 ° or less, preferably 40 ° or less, and hydrophobicity is defined as 50 ° or less. It is defined as greater than, preferably greater than 60 °. Furthermore, the measurement of the contact angle uses the θ / 2 method for calculating the contact angle from the angle of the straight line connecting the left and right end points and the vertex of the droplet dropped on the substrate with respect to the solid surface.

絶縁体に貫通孔を形成するためには、絶縁体の種類に応じた種々の方法を採用することができる。例えば樹脂に貫通孔を形成するためにはレーザーを照射する方法や、貫通孔を形成するためのピンを有する金型を用いて収容部を成形する方法などの既知の方法を用いることができる。また光硬化性樹脂などを用いる場合は、貫通孔に相当するパターンを描画した露光用フォトマスクを用いて一般的なフォトリソグラフィー(露光)とエッチング(現像)により貫通孔を形成することができる。   In order to form the through hole in the insulator, various methods according to the type of the insulator can be employed. For example, in order to form a through hole in the resin, a known method such as a method of irradiating a laser or a method of forming a housing portion using a mold having a pin for forming a through hole can be used. In the case of using a photocurable resin or the like, the through hole can be formed by general photolithography (exposure) and etching (development) using an exposure photomask on which a pattern corresponding to the through hole is drawn.

図5に例示した本発明の微粒子操作装置では、装置の本体13は、上蓋14、スペーサー16及び貫通孔を形成した平板状の絶縁体8とからなる収容部と、電極を配置した電極基板15とから構成されている。収容部における貫通孔を有する部分は、例えば収容部を密閉可能な箱状の形態とするならば、微粒子の比重が微粒子を含有する懸濁液の比重以下であり、微粒子が上方向に浮上する場合は、その上面とすることができる。しかし、微粒子の操作に重力をも利用することができること、操作終了後に移動され、捕捉等された微粒子を分別回収するにあたり、上部から回収操作を行う方が簡便であること等を考慮すれば、当該部分は収容分の下部とし、同時に上部を塞ぐ部分(図5における14)を取り外し可能としておくことが特に好ましい。なお、微粒子の比重が小さい場合であっても、懸濁液の比重をそれ以下とすることは比較的容易である。   In the fine particle manipulating apparatus of the present invention illustrated in FIG. 5, the main body 13 of the apparatus has an accommodating portion composed of an upper lid 14, a spacer 16, a flat insulator 8 having a through hole, and an electrode substrate 15 on which electrodes are arranged. It consists of and. For example, if the portion having the through hole in the housing portion has a box shape capable of sealing the housing portion, the specific gravity of the fine particles is not more than the specific gravity of the suspension containing the fine particles, and the fine particles float upward. In the case, it can be the upper surface. However, considering that gravity can also be used for the operation of fine particles, and that it is easier to carry out the collection operation from the top when separating and collecting fine particles that have been moved and trapped after the operation, etc. It is particularly preferable that the part is a lower part of the accommodated part, and at the same time, a part (14 in FIG. 5) that closes the upper part is removable. Even if the specific gravity of the fine particles is small, it is relatively easy to make the specific gravity of the suspension below that.

収容部は、その全部を絶縁体の材料で構成することもできるが、例えば図5で示したように、収容部を絶縁体の材料で構成した部分(貫通孔を有する部分8)とその他の部分(16及び14)に分けて構成することも可能である。例えば加工の容易な材料で枠やスペーサー16を形成し、懸濁液が漏れないように貫通孔を設けた樹脂製の平板8を底面として当該枠やスペーサーに結合することで収容部とすることが例示できる。   The housing portion can be entirely made of an insulating material. For example, as shown in FIG. 5, the portion (the portion 8 having a through hole) in which the housing portion is made of an insulating material, and other parts It is also possible to divide into parts (16 and 14). For example, a frame or spacer 16 is formed of a material that is easy to process, and a resin flat plate 8 provided with a through hole so that the suspension does not leak is used as a bottom surface to be combined with the frame or spacer to form a housing portion. Can be illustrated.

図5に示したような、収容部を上蓋14、スペーサー16及び絶縁体8で構成した場合について更に説明する。スペーサー16は、実際に微粒子の懸濁液を保持するスペースを確保するためのものであり、例えばガラス、セラミック、樹脂等の絶縁体を材料として構成しても良いし、スペーサーが電極aとbの両方(後述)と電気的に導通しなければ、金属等の導電体を材料として構成しても良い。図5の例では、スペーサーに導入流路及び該流路に連通する導入口19と、懸濁液を排出する排出流路及び該流路に連通する排出口20を設け、微粒子操作装置に対する懸濁液の供給と排出が迅速に実施可能にしてある。スペーサーの寸法、形状に特別の制限はないが、電極基板15に配置された一対の電極に合致する寸法、形状であることが好ましい。スペーサーの内側の空間と厚みは、操作対象とする懸濁液の量との関係で決定すれば良く、特に制限はないが、通常は微粒子懸濁液を数μLから数mL程度入れる容量があればよく、例えば、スペーサーのサイズが縦40mm×横40mm程度の場合、スペーサーの内側の空間は、縦20mm×横20mm程度であればよく、スペーサーの厚みは0.5から2.0mm程度であればよい。   The case where the accommodating portion is constituted by the upper lid 14, the spacer 16, and the insulator 8 as shown in FIG. The spacer 16 is for securing a space for actually holding a suspension of fine particles. For example, an insulator such as glass, ceramic, or resin may be used as a material, and the spacer may be electrodes a and b. As long as they are not electrically connected to both (described later), a conductor such as metal may be used as a material. In the example of FIG. 5, the introduction channel and the introduction port 19 communicating with the channel, the discharge channel for discharging the suspension, and the discharge port 20 communicating with the channel are provided in the spacer, and the suspension for the fine particle manipulating device is provided. Suspension can be supplied and discharged quickly. Although there are no particular restrictions on the size and shape of the spacer, it is preferable that the size and shape match a pair of electrodes arranged on the electrode substrate 15. The space inside the spacer and the thickness may be determined in relation to the amount of suspension to be operated, and there is no particular limitation, but usually there should be a capacity to put a microparticle suspension of several μL to several mL. For example, if the spacer size is about 40 mm long x 40 mm wide, the space inside the spacer may be about 20 mm long x 20 mm wide, and the spacer thickness should be about 0.5 to 2.0 mm. That's fine.

絶縁体8には、一対の電極の真上に位置する貫通孔9が、アレイ状に構成されている。ここでアレイ状とは、厳密には貫通孔の縦と横の間隔が等間隔に配置されていることを意味するが、本発明では貫通孔が縦方向のみ、あるいは横方向のみに、直線上かつ等間隔に配置された場合もアレイ状と表現する。このように貫通孔をアレイ状に配置することで、電極間に印加した交流電圧によって生じる電界がすべての貫通孔にほぼ均等に生じることになり、本発明の装置において均一な操作を実現するという効果を発揮するのである。   The insulator 8 is configured with an array of through-holes 9 positioned immediately above the pair of electrodes. Strictly speaking, the array shape means that the vertical and horizontal intervals of the through holes are arranged at equal intervals. However, in the present invention, the through holes are linear only in the vertical direction or only in the horizontal direction. In addition, the case where they are arranged at equal intervals is also expressed as an array. By arranging the through holes in an array like this, the electric field generated by the AC voltage applied between the electrodes is generated almost evenly in all the through holes, and uniform operation is realized in the apparatus of the present invention. It is effective.

貫通孔を塞ぐように収容部に接続される電極基板には、交流電圧を印可するための一対の電極が配置される。電極基板は、その上部に一対の電極を形成するため、絶縁体を用いる以外は特に制限はない。例えばガラス、セラミック、樹脂等を材料となる絶縁体の一例として例示できる。   A pair of electrodes for applying an alternating voltage is disposed on the electrode substrate connected to the housing portion so as to close the through hole. The electrode substrate is not particularly limited except that an insulator is used to form a pair of electrodes on the electrode substrate. For example, glass, ceramic, resin, etc. can be illustrated as an example of the insulator used as a material.

電極の材質は導電部材であって化学的に安定な部材であればとくに制限はなく、白金、金、銅などの金属やステンレスなどの合金及び、ITO(Indium Tin Oxide:酸化インジウムスズ)等の透明導電性材料等を使用することもできる。特に本発明の装置に懸濁液を供して操作を実施した際の、収容部内での微粒子の挙動をモニターする目的で電極基板を透明なガラス等とする場合、ITOは、その透明性や成膜性等の面で特に好ましい材料である。電極基板に配置された電極29及び30とからなる一対の電極31は、交流電源4に接続される(以後、本明細書ではこれら一対の電極の一方を便宜のために電極a、他方を電極b等と称することがある)。電極aとb(図5は、4本の電極aと、同じく4本の電極bを配置した例を記載している)は、収容部が有する全ての貫通孔に対応するものである。むろん、貫通孔の数に対応する、独立した複数の電極aとbであっても良い(a+b=貫通孔の数となる)が、通常、同時に多数の微粒子の操作を可能とするために多数の貫通孔を形成した収容部を使用することが好ましいため、その一つ一つに対応するように独立した複数の電極aとbを配置すると装置の構成が複雑となり、また各電極の維持も煩雑になる。そこで本発明では、図5に示したように、一対の電極を対向する2つの辺のそれぞれから他方の辺に向けて延びる平行な2枚の電極から構成するか、又は、対向する2つの辺のそれぞれから他方の辺に向けて延びる平行かつ等間隔な3枚以上の電極から構成することが好ましい。図5は、この態様に従い、一対の電極の一方を構成する電極aとして4枚、一対の他方を構成する電極bとして4枚の電極を櫛状に配置した例である。   The material of the electrode is not particularly limited as long as it is a conductive member and is a chemically stable member, such as metals such as platinum, gold, and copper, alloys such as stainless steel, and ITO (Indium Tin Oxide). A transparent conductive material or the like can also be used. In particular, when the electrode substrate is made of transparent glass or the like for the purpose of monitoring the behavior of the fine particles in the container when the suspension is supplied to the apparatus of the present invention, ITO is used for its transparency and composition. This is a particularly preferable material in terms of film properties. A pair of electrodes 31 composed of electrodes 29 and 30 arranged on the electrode substrate is connected to an AC power source 4 (hereinafter, in this specification, one of the pair of electrodes is an electrode a for convenience and the other is an electrode. b). Electrodes a and b (FIG. 5 shows an example in which four electrodes a and four electrodes b are arranged) correspond to all the through holes of the housing portion. Of course, there may be a plurality of independent electrodes a and b corresponding to the number of through-holes (a + b = the number of through-holes), but usually a large number to enable manipulation of a large number of fine particles simultaneously. It is preferable to use an accommodating portion in which a through hole is formed. Therefore, if a plurality of independent electrodes a and b are arranged so as to correspond to each of them, the configuration of the apparatus becomes complicated, and the maintenance of each electrode is also possible. It becomes complicated. Therefore, in the present invention, as shown in FIG. 5, the pair of electrodes is composed of two parallel electrodes extending from each of two opposing sides toward the other side, or two opposing sides. It is preferable to comprise three or more parallel and equidistant electrodes extending from each of them toward the other side. FIG. 5 shows an example in which four electrodes are arranged in a comb shape as electrodes a constituting one of the pair of electrodes and four electrodes b constituting the pair other in accordance with this embodiment.

図6は、図5に示した微粒子操作装置のA−A’断面図を示した概略図である。上蓋14、スペーサー16、絶縁体8から構成される収容部と、一対の櫛状電極31(電極a29と電極b30)を配置した電極基板15を張り合わせる手段としては、それぞれを接着剤で貼り合わせる方法、加圧した状態で過熱して融着させる方法、スペーサーとしてPDMS(poly−dimethylsiloxane)やシリコンシートのような表面粘着性のある樹脂を用いてこれらを作製し、圧着して貼り合わせる方法等が例示できる。   FIG. 6 is a schematic view showing a cross-sectional view taken along the line A-A ′ of the fine particle manipulating apparatus shown in FIG. 5. As a means for bonding the accommodating portion composed of the upper lid 14, the spacer 16, and the insulator 8 and the electrode substrate 15 on which the pair of comb-shaped electrodes 31 (electrodes a 29 and b 30) are arranged, each is bonded with an adhesive. A method, a method of heating and fusing under pressure, a method using a surface-adhesive resin such as PDMS (poly-dimethylsiloxane) or a silicon sheet as a spacer, and a method of bonding by pressure bonding Can be illustrated.

図7は、図5に示した微粒子操作装置の電極基板15と一対の電極31及び貫通孔9の配置の関係を、収容部の上部から観察した様子を示す図である。図7に示すように本発明の微粒子操作装置は、垂直方向に貫通した貫通孔9の真下に櫛状電極31の電極a29又は電極b30のいずれかが配置されており、貫通孔の列または行毎に、電極a29と電極b30が交互に配置されている点に特徴がある。このような構成において、貫通孔の真下に形成される電極の幅は、隣の電極と重ならなければ特に制限はないが、貫通孔内に均等に電気力線が集中するよう、貫通孔の直径以上とすることが好ましい。また、貫通孔の上から見える電極の位置にも特に制限はないが、貫通孔内に均等に電気力線が集中するよう、図7に示すように、貫通孔の中心軸32と電極を形成する導電部材の中心軸35が重複するように配置することが好ましい。   FIG. 7 is a view showing a state in which the relationship between the arrangement of the electrode substrate 15, the pair of electrodes 31 and the through holes 9 of the fine particle manipulating apparatus shown in FIG. As shown in FIG. 7, in the fine particle manipulating apparatus of the present invention, either the electrode a29 or the electrode b30 of the comb-like electrode 31 is disposed directly below the through-hole 9 penetrating in the vertical direction, and the column or row of the through-holes is arranged. Each is characterized in that the electrodes a29 and b30 are alternately arranged. In such a configuration, the width of the electrode formed immediately below the through hole is not particularly limited as long as it does not overlap with the adjacent electrode, but the through hole is formed so that the lines of electric force are evenly concentrated in the through hole. It is preferable that the diameter be equal to or greater than the diameter. Further, the position of the electrode seen from above the through hole is not particularly limited, but the central axis 32 and the electrode of the through hole are formed as shown in FIG. 7 so that the electric lines of force are evenly concentrated in the through hole. It is preferable to arrange so that the central axes 35 of the conductive members to be overlapped.

図10は、従来の微粒子操作装置を、そして図11は図10の装置のC−C’断面を示すものであり、本発明の微粒子操作装置の優位性を説明するために記載したものである。図10の装置では、一対の電極の一方が上蓋としても機能する上部の電極基板47の下面に配置され、一対の電極の他方が下部の電極基板48の上面に配置されている。そして、これら一対の電極により、スペーサー16、上蓋(上部の電極基板48)、貫通孔を有する平板の絶縁体8で構成される収容部を挟みこむような構成となっている。図10に示した装置では、一対の電極が収容部を挟んでいるため、上蓋として機能する上部の電極基板47を容易に取り外すことができず、貫通孔に微粒子を移動させ、捕捉した後、貫通孔から捕捉された任意の微粒子をマイクロピペット等の微粒子採取手段を用いて採取する際に困難を伴う。これに対して本発明の装置は、収容部の一部に貫通孔を形成し、これを一対の電極を同一面上に配置した電極基板で塞ぐような構成としているため、上蓋そのものを省くことすら可能である。懸濁液の蒸発を防ぐ等の目的で、図5に例示したような構成とした場合でも、本発明の装置は、一対の電極全て(図5における電極a29及び電極b30)を櫛状等にして一枚の電極基板上に配置するため、上蓋を取り外すことも可能であるし、なによりも、電極に交流電圧を印加して微粒子に誘電泳動力を作用させ、貫通孔に捕捉しつつ、捕捉された微粒子のうちの任意のものをマイクロピペット等で採取することが容易にできるのである。   FIG. 10 shows a conventional fine particle manipulating apparatus, and FIG. 11 shows a CC ′ cross section of the apparatus of FIG. 10, which is described for explaining the superiority of the fine particle manipulating apparatus of the present invention. . In the apparatus of FIG. 10, one of the pair of electrodes is disposed on the lower surface of the upper electrode substrate 47 that also functions as an upper lid, and the other of the pair of electrodes is disposed on the upper surface of the lower electrode substrate 48. The pair of electrodes is configured so as to sandwich a housing 16 composed of a spacer 16, an upper lid (upper electrode substrate 48), and a flat plate insulator 8 having a through hole. In the apparatus shown in FIG. 10, since the pair of electrodes sandwich the accommodating portion, the upper electrode substrate 47 functioning as an upper lid cannot be easily removed, and after moving and capturing the fine particles in the through holes, It is difficult to collect arbitrary fine particles captured from the through-hole using a fine particle collecting means such as a micropipette. On the other hand, the apparatus of the present invention has a structure in which a through hole is formed in a part of the accommodating portion and is closed with an electrode substrate in which a pair of electrodes are arranged on the same surface, and thus the upper lid itself is omitted. Even it is possible. Even when the configuration illustrated in FIG. 5 is used for the purpose of preventing the evaporation of the suspension, the apparatus of the present invention makes all the pair of electrodes (electrode a29 and electrode b30 in FIG. 5) comb-like or the like. It is possible to remove the upper lid because it is placed on a single electrode substrate, and above all, while applying an AC voltage to the electrode to cause the dielectrophoretic force to act on the fine particles, Any of the captured fine particles can be easily collected with a micropipette or the like.

本発明の装置では、上記に加え、一枚の電極基板に一対の電極全てを設置していることから、対となる電極同士の間隔を微粒子の粒子径と等の数μmから数十μmと微小にすることが可能である。この結果、一対の電極間に印加する交流電圧が低くとも、この微小な電極間距離によって電極間に大きな電界を発生させて微粒子に大きな誘電泳動力を作用させることが可能になる。例えば図10に示した従来の微粒子操作装置では、一対の電極を上部の電極基板47の下面と下部の電極基板48の上面に配置し、これらでスペーサー16を挟み込んで収容部としていため、電極間の距離はスペーサーの厚みで制限されるが、一般にスペーサーの厚みが1mm未満になると、収容部に微粒子の懸濁液を導入することが困難となるため、両電極基板の離間距離を1mm未満とすることはできない。ここで電界は、電極間に印加する電圧を電極間距離で割った値であるので、電極間の離間距離を数μmから数十μmにすることができる本発明の装置(例えば図5の装置)では、同距離を1mm未満とすることができない図10に示した従来の装置と比較して、同一電圧を印加するならば数十倍の強度の電界を得ることができ、同一強度の電界を得るならば数十分の一の電圧で済むことになる。この結果、小型で安価な交流電源を使用しても、従来の装置以上に効果的な微粒子操作を可能とする装置を提供することが可能となる。   In the apparatus of the present invention, in addition to the above, since all the pair of electrodes are installed on one electrode substrate, the distance between the pair of electrodes is several μm to several tens μm such as the particle diameter of the fine particles. It is possible to make it minute. As a result, even if the alternating voltage applied between the pair of electrodes is low, it is possible to generate a large electric field between the electrodes due to the minute distance between the electrodes and to apply a large dielectrophoretic force to the fine particles. For example, in the conventional fine particle manipulating apparatus shown in FIG. 10, a pair of electrodes are disposed on the lower surface of the upper electrode substrate 47 and the upper surface of the lower electrode substrate 48, and the spacer 16 is sandwiched between them to serve as an accommodating portion. The distance is limited by the thickness of the spacer. Generally, if the spacer thickness is less than 1 mm, it is difficult to introduce a suspension of fine particles into the accommodating portion. Therefore, the distance between the electrode substrates is less than 1 mm. I can't do it. Here, since the electric field is a value obtained by dividing the voltage applied between the electrodes by the distance between the electrodes, the device of the present invention (for example, the device shown in FIG. 5) that can make the separation distance between the electrodes several μm to several tens μm. ), It is possible to obtain an electric field several tens of times stronger if the same voltage is applied as compared with the conventional apparatus shown in FIG. 10 where the same distance cannot be less than 1 mm. If it is obtained, a voltage of several tenths is sufficient. As a result, it is possible to provide a device that enables more effective particle manipulation than conventional devices even when a small and inexpensive AC power supply is used.

微粒子操作装置の電極基板15に配置された一対の電極である電極a29と電極b30には、導電線3を介して交流電源4が接続される。交流電源4は、貫通孔に微粒子を移動させ、捕捉し、又は貫通孔から微粒子を脱離させる電界を発生させるのに十分な交流電圧を電極aとbの間に印加できれば特に制限はない。具体的に例えば、ピーク電圧が1Vから20V程度で、周波数100kHzから3MHz程度の正弦波、矩形波、三角波、台形波等の波形の交流電圧を印加できる電源が例示できるが、中でも、微粒子を移動させ、1つの貫通孔に1個の微粒子のみを捕捉し得るようにできる波形の交流電圧を電極a29と電極b30の電極間に印加することが特に好ましい。かかる波形の交流電圧としては、矩形波を使用することが好ましい。図12から図15に示すように、交流電圧の波形が正弦波(図12)、三角波(図13)、台形波(図14)である場合に比べて、矩形波(図15)である場合は、瞬時に設定したピーク電圧36に到達するため、微粒子を貫通孔に向けて速やかに移動させることが可能となり、2個以上の微粒子が重なるように貫通孔に入る確率を低くできる(1つの貫通孔に1個の微粒子のみを捕捉し得る確率が高くなる)のである。微粒子は電気的にコンデンサーと見なすことができるが、矩形波のピーク電圧が変化しない間は、貫通孔に捕捉された微粒子には電流が流れ難くなって電気力線が生じ難くなり、この結果微粒子を捕捉した貫通孔には誘電泳動力が発生し難くなる。従って、一度貫通孔に微粒子が捕捉されると、別の微粒子がその貫通孔に捕捉される確率は低くなり、代わりに電気力線が生じ誘電泳動力が発生している貫通孔(微粒子を捕捉していない、空の貫通孔)に、順次、微粒子が捕捉されるためである。なお、本発明の微粒子操作装置では、直流成分を有しない交流電圧を発生する電源を採用することが好ましい。直流成分を有する交流電圧を印加すると、直流成分により発生した静電気力により微粒子が特定の方向に偏った力を受けて移動し、誘電泳動力によって貫通孔に捕捉し難くなるからである。また直流成分を有する交流電圧を印加すると、微粒子を含有する懸濁液に含まれるイオンが電極表面で電気反応を生じて発熱し、それによって微粒子が熱運動を起こすため誘電泳動力によって動きを制御できなくなり、貫通孔に移動させて捕捉することが困難になるからである。   The AC power supply 4 is connected to the electrode a29 and the electrode b30, which are a pair of electrodes disposed on the electrode substrate 15 of the fine particle manipulation device, through the conductive wire 3. The AC power supply 4 is not particularly limited as long as it can apply an AC voltage between the electrodes a and b sufficient to move and trap the fine particles into the through hole and generate an electric field that causes the fine particles to be removed from the through hole. Specifically, for example, a power source that can apply an AC voltage having a peak voltage of about 1 V to 20 V and a frequency of about 100 kHz to 3 MHz such as a sine wave, a rectangular wave, a triangular wave, a trapezoidal wave, etc. It is particularly preferable to apply a waveform alternating voltage between the electrodes a29 and b30 so that only one fine particle can be captured in one through-hole. A rectangular wave is preferably used as the AC voltage having such a waveform. As shown in FIGS. 12 to 15, when the waveform of the AC voltage is a rectangular wave (FIG. 15) compared to a sine wave (FIG. 12), a triangular wave (FIG. 13), and a trapezoidal wave (FIG. 14). Since the peak voltage 36 set instantaneously is reached, the fine particles can be quickly moved toward the through hole, and the probability of entering the through hole so that two or more fine particles overlap each other can be reduced (one The probability that only one fine particle can be trapped in the through hole is increased). The fine particles can be regarded as electrical capacitors. However, while the peak voltage of the rectangular wave does not change, it is difficult for current to flow through the fine particles trapped in the through-holes, and it is difficult to generate electric lines of force. The dielectrophoretic force is less likely to be generated in the through-hole that has captured Therefore, once a fine particle is trapped in a through hole, the probability that another fine particle is trapped in that through hole is low, and instead a through hole (capturing a fine particle) in which electric force lines are generated and a dielectrophoretic force is generated. This is because the fine particles are sequentially captured in the empty through holes). In the fine particle manipulating apparatus of the present invention, it is preferable to employ a power source that generates an AC voltage having no DC component. This is because, when an alternating voltage having a direct current component is applied, the fine particles move by receiving a force biased in a specific direction due to the electrostatic force generated by the direct current component, and are difficult to be captured in the through hole by the dielectrophoretic force. In addition, when an AC voltage having a DC component is applied, ions contained in the suspension containing fine particles cause an electrical reaction on the electrode surface and generate heat, which causes thermal movement of the fine particles, thereby controlling movement by dielectrophoretic force. This is because it becomes impossible to move to the through hole and capture it.

本発明の微粒子操作装置では、上記したように、印加する交流電圧の波形を好ましくは矩形とすることにより、1つの貫通孔に1個の微粒子のみを捕捉し得るようにすることが好ましいが、かかる目的を達成するために、更に、貫通孔の配置や、貫通孔の寸法、形状を、1つの貫通孔に1個の微粒子のみを捕捉し得るのに適した配置、寸法、形状とすることが好ましい。例えば、本発明において、貫通孔を好ましくアレイ状に配置する場合、隣接する貫通孔同士の間隔が狭すぎても広すぎても、上記目的を達成するのは困難になる。隣接する貫通孔同士の間隔が狭い場合は、1つの貫通孔に複数の微粒子が捕捉されてしまう確率が高くなり、反対に隣接する貫通孔同士の間隔が広い場合は、貫通孔と貫通孔の間に微粒子が残されてしまい、微粒子を捕捉できない貫通孔が生じる確率が高くなるからである。これらを回避するためには、隣接する貫通孔同士の間隔を、捕捉しようとする微粒子の粒径の0.5倍以上6倍以下の範囲であることが好ましく、更には1倍以上2倍未満とすることが特に好ましい。また更に、1つの貫通孔に1個の微粒子のみを捕捉し得るようにするため、貫通孔の収容部側開口に内接する最大円の直径を、捕捉しようとする微粒子の粒径未満とすること、又は、微粒子の粒径の1倍以上2倍未満の範囲でありかつ貫通孔の深さを微粒子の粒径の2倍未満とすること、が好ましい。これは、貫通孔開口の内径が微粒子の粒径より大きいと、微粒子は貫通孔を塞ぐことができずに電気力線が集中してしまい、他の微粒子が誘電泳動力により引き寄せられて1つの貫通孔に2個以上の微粒子が捕捉される確率が高くなるからである。従って、1つの貫通孔に1個の微粒子のみを捕捉するためには、貫通孔の収容部側開口に内接する最大円の直径が、貫通孔に捕捉しようとする微粒子の粒径未満とすることが最も好ましいのである。この他に、貫通孔に捕捉する微粒子の粒径の1倍以上2倍未満倍の範囲でありかつ貫通孔の深さが微粒子の粒径の2倍未満としても、1個の微粒子が貫通孔に捕捉されると他の微粒子は引き寄せられても貫通孔に入れないため、捕捉される確率を低くすることができる。また、貫通孔の収容部側の開口形状(平面的な形状)を、1以上の角を有する形状とすることも、1つの貫通孔に1個の微粒子のみを捕捉するために好ましく、貫通孔の開口形状を四辺形とすることが特に好ましい。ここで、角とは貫通孔の形状を構成する2辺が鋭角あるいは鈍角で交わる部分であり、角の先端が若干丸みを帯びた形状も含む。図16に、貫通孔の開口形状が少なくとも1以上の角を有する代表的な形状を例示する。またここで四辺形とは、前記貫通孔の形状が前記角(その先端が若干丸みを帯びた形状を含む)4つ有するものである。なお4本の辺は直線であってもよいし、4本全ての辺あるいは4本のうち任意の辺が貫通孔の中心あるいは外側に向かって若干湾曲していてもよい。図17に、四辺形の貫通孔の代表的な形状を例示する。このように、貫通孔の開口形状が一部に角を有するものであれば、前記角の部分において電気力線の集中が生じて誘電泳動力が強くなり、より強く微粒子を移動させる(引き寄せる)結果、微粒子が貫通孔に捕捉される確率が向上するのである。角は貫通孔に少なくとも1箇所存在すればよいが、複数存在していた方がより好ましい。ただし、角は鈍角よりも鋭角の方が電気力線の集中が生じやすく誘電泳動力を強くできるため、五角形以上の多角形よりも四角形以下の多角形がより好ましい。また、仮に四角形であっても、その具体的な形状には特に制限はなく、例えば図17に示したような台形や菱形、平行四辺形など、種々の形状を選択し得る。中でも、四辺形の貫通孔の形状が4つの角を結ぶ4辺の長さがほぼ等しく、貫通孔の中心において90度の角度で点対称となる形状は、四辺形の貫通孔の4つの辺に生じる誘電泳動力が等しく、4つの角に生じる誘電泳動力も等しくなり、誘電泳動力の分布が点対称となって貫通孔に対する微粒子の位置によらず、偏りの少ない誘電泳動力を作用させることが可能となり、特に好ましい。かかる形状としては、図17の(a)から(d)のような正方形又は正方形に近い形状を例示することができる。
次に、本発明の微粒子操作装置を用いた微粒子操作方法について、図18から図22を用いて説明する。図18に示したように、微粒子操作装置を形成する電極基板15の上面(収容部を形成するスペーサー16に形成された空間34側の面)には、電極a29と電極b30からなる一対の電極が櫛状に配置され、電極aと電極bの間に交流電源4により交流電圧を印加すると、電極の真上に位置し、垂直方向に貫通した貫通孔9に電気力線12が集中し、微粒子18に誘電泳動力が作用する(特許文献2参照)。ここで、誘電泳動力には、図19に示すように微粒子18を貫通孔9に移動させ、捕捉するように作用する誘電泳動力(以下、正の誘電泳動力37とする)と、図21に示すように微粒子18を貫通孔9から脱離するように移動させる誘電泳動力(以下、負の誘電泳動力38とする)がある。なお、正の誘電泳動力37が作用した場合、図20に示すように微粒子18は貫通孔9に捕捉され、負の誘電泳動力38が作用した場合、図22に示すように微粒子18は、収容部の貫通孔と貫通孔の間の部分(図5に示した装置においては、絶縁体8上)に捕捉される。
In the fine particle manipulating device of the present invention, as described above, it is preferable that only one fine particle can be captured in one through-hole by making the waveform of the applied AC voltage preferably rectangular. In order to achieve such an object, the arrangement, size, and shape of the through-holes and the size and shape of the through-holes are suitable for capturing only one fine particle in one through-hole. Is preferred. For example, in the present invention, when the through holes are preferably arranged in an array, it is difficult to achieve the above object even if the interval between adjacent through holes is too narrow or too wide. When the interval between adjacent through holes is narrow, the probability that a plurality of fine particles will be trapped in one through hole is high. Conversely, when the interval between adjacent through holes is wide, the interval between the through holes and the through holes is high. This is because there is a high probability that fine particles are left between them and a through hole that cannot capture the fine particles is generated. In order to avoid these, it is preferable that the interval between adjacent through holes is in the range of 0.5 to 6 times the particle size of the fine particles to be captured, and more preferably 1 to less than 2 times. It is particularly preferable that Furthermore, in order to be able to capture only one fine particle in one through hole, the diameter of the maximum circle inscribed in the opening on the accommodation portion side of the through hole is made smaller than the particle diameter of the fine particle to be captured. Alternatively, it is preferable that the diameter is in the range of 1 to 2 times the particle size of the fine particles and the depth of the through hole is less than 2 times the particle size of the fine particles. This is because if the inner diameter of the through-hole opening is larger than the particle size of the fine particles, the fine particles cannot close the through-holes, and the electric lines of force concentrate, and the other fine particles are attracted by the dielectrophoretic force. This is because the probability that two or more fine particles are trapped in the through hole is increased. Therefore, in order to capture only one fine particle in one through hole, the diameter of the maximum circle inscribed in the opening on the housing portion side of the through hole should be smaller than the particle diameter of the fine particle to be captured in the through hole. Is most preferred. In addition to this, even if the particle diameter is in the range of 1 to 2 times the particle diameter of the fine particles trapped in the through-hole and the depth of the through-hole is less than twice the particle diameter of the fine particle, one fine particle will be When trapped by, other fine particles are not drawn into the through hole even if they are attracted, so that the probability of trapping can be lowered. In addition, it is preferable that the opening shape (planar shape) of the through hole accommodating portion side is a shape having one or more corners in order to capture only one fine particle in one through hole. It is particularly preferable that the opening shape is a quadrilateral. Here, the corner is a portion where two sides constituting the shape of the through-hole intersect at an acute angle or an obtuse angle, and includes a shape in which the tip of the corner is slightly rounded. FIG. 16 illustrates a typical shape in which the opening shape of the through hole has at least one corner. Here, the quadrilateral means that the shape of the through hole has four corners (including a shape whose tip is slightly rounded). The four sides may be straight lines, or any of the four sides or any of the four sides may be slightly curved toward the center or outside of the through hole. FIG. 17 illustrates a typical shape of a quadrilateral through hole. In this way, if the opening shape of the through hole has a corner in part, the electric force lines are concentrated in the corner portion, the dielectrophoretic force is increased, and the fine particles are moved (pulled) more strongly. As a result, the probability that the fine particles are trapped in the through holes is improved. Although it is sufficient that at least one corner exists in the through hole, it is more preferable that a plurality of corners exist. However, an acute angle is easier to concentrate electric lines of force than an obtuse angle, and the dielectrophoretic force can be increased. Therefore, a polygon with a square or less is more preferable than a polygon with a pentagon or more. Further, even if it is a quadrangle, the specific shape is not particularly limited, and various shapes such as a trapezoid, a rhombus, and a parallelogram as shown in FIG. 17 can be selected. Among them, the shape of the quadrilateral through hole is almost equal in length of the four sides connecting the four corners, and the shape that is point symmetric at an angle of 90 degrees at the center of the through hole is the four sides of the quadrilateral through hole. The dielectrophoretic forces generated in the four corners are equal, and the dielectrophoretic forces generated in the four corners are also equal, and the distribution of the dielectrophoretic forces is point-symmetric so that the dielectrophoretic force with less bias is applied regardless of the position of the fine particles with respect to the through holes. Is particularly preferable. As such a shape, a square or a shape close to a square as shown in FIGS. 17A to 17D can be exemplified.
Next, a fine particle manipulation method using the fine particle manipulation device of the present invention will be described with reference to FIGS. As shown in FIG. 18, on the upper surface (surface on the side of the space 34 formed in the spacer 16 forming the accommodating portion) of the electrode substrate 15 forming the fine particle manipulating device, a pair of electrodes composed of an electrode a29 and an electrode b30 Are arranged in a comb shape, and when an AC voltage is applied between the electrode a and the electrode b by the AC power source 4, the electric lines of force 12 are concentrated in the through-hole 9 that is located directly above the electrode and penetrates in the vertical direction. Dielectrophoretic force acts on the fine particles 18 (see Patent Document 2). Here, the dielectrophoretic force includes a dielectrophoretic force (hereinafter referred to as a positive dielectrophoretic force 37) that acts to move the fine particles 18 to the through-holes 9 as shown in FIG. As shown in FIG. 4, there is a dielectrophoretic force (hereinafter referred to as a negative dielectrophoretic force 38) that moves the fine particles 18 so as to be detached from the through hole 9. When the positive dielectrophoretic force 37 acts, the fine particles 18 are trapped in the through-hole 9 as shown in FIG. 20, and when the negative dielectrophoretic force 38 acts, the fine particles 18 as shown in FIG. It is captured by the portion between the through hole and the through hole of the housing portion (on the insulator 8 in the apparatus shown in FIG. 5).

正の誘電泳動力と負の誘電泳動力は、対象とする微粒子の誘電率とその微粒子を含有する微粒子懸濁液17の誘電率及び使用する交流電圧の周波数によって制御することができる。例えば、微粒子が粒径10μm程度のマウスミエローマ細胞であり、懸濁液が300mMのマンニトール水溶液である場合は、交流電圧の周波数が50kHz以上であれば正の誘電泳動力がマウスミエローマ細胞に作用し、10kHz未満であれば負の誘電泳動力がマウスミエローマ細胞に作用する。また例えば、微粒子が粒径6μm程度のポリスチレン微粒子であり、懸濁液が純水である場合は、交流電圧の周波数が1MHz以上で負の誘電泳動力がポリスチレン微粒子に作用し、10Hz未満で正の誘電泳動力がポリスチレン微粒子に作用する。   The positive dielectrophoretic force and the negative dielectrophoretic force can be controlled by the dielectric constant of the target fine particles, the dielectric constant of the fine particle suspension 17 containing the fine particles, and the frequency of the alternating voltage used. For example, when the microparticles are mouse myeloma cells having a particle size of about 10 μm and the suspension is a 300 mM mannitol aqueous solution, the positive dielectrophoretic force acts on the mouse myeloma cells if the AC voltage frequency is 50 kHz or more. If it is less than 10 kHz, a negative dielectrophoretic force acts on mouse myeloma cells. Further, for example, when the fine particles are polystyrene fine particles having a particle diameter of about 6 μm and the suspension is pure water, the negative dielectrophoretic force acts on the polystyrene fine particles when the frequency of the AC voltage is 1 MHz or more and is positive at less than 10 Hz. The dielectrophoretic force acts on the polystyrene microparticles.

ある周波数で正の誘電泳動力と負の誘電泳動力が切り換わる理由を説明する。本発明の貫通孔における誘電泳動力は、微粒子半径、交流電圧、電極間距離、微粒子の誘電率、懸濁液の誘電率により、一般に以下の式1で示される。   The reason why the positive dielectrophoretic force and the negative dielectrophoretic force are switched at a certain frequency will be described. The dielectrophoretic force in the through-hole of the present invention is generally expressed by the following formula 1 depending on the particle radius, the AC voltage, the distance between the electrodes, the dielectric constant of the fine particle, and the dielectric constant of the suspension.

Figure 2011104487
ここで、微粒子の誘電率と懸濁液の誘電率は、一般に交流電圧の周波数に依存して変化する。従って、交流電圧の周波数を変化させたときの微粒子の誘電率と懸濁液の誘電率の大小により、誘電泳動力の符号が決まる(変化する)。すなわち、交流電圧の周波数を変化させたとき、微粒子の誘電率が懸濁液の誘電率よりも大きくなれば、微粒子には正の誘電泳動力が作用し、微粒子の誘電率が懸濁液の誘電率よりも小さくなれば微粒子には負の誘電泳動力が作用する。このように、理論的には計算によって微粒子の誘電率と懸濁液の誘電率が等しくなる周波数(正の誘電泳動力と負の誘電泳動力が変化する境界の周波数、以下、境界周波数という)を求めることができる。しかし、微粒子の誘電率や懸濁液の誘電率を周波数ごとに測定することは煩雑であるため、微粒子の移動する方向の変化を観察することで、境界周波数を実験的に決定することが簡便である。このようにして決定される境界周波数は、当然、微粒子の種類や懸濁液の種類によって異なるものとなる。本発明の微粒子操作装置では、操作しようとする微粒子が貫通孔に捕捉されるように移動させるか、又は、微粒子が貫通孔から脱離するように移動させるように誘電泳動力が作用する方向を変化させるべく、適宜、電極に付加する交流の周波数を変えることが好ましい。この意味において、本発明の微粒子操作装置に採用する交流電源は、その周波数を任意に変更し得るものが好ましい。なお本発明の微粒子操作装置において、電極aと電極bの間に、貫通孔から微粒子を脱離させる方向の負の誘電泳動力が作用するような周波数の交流電圧を印加すると、貫通孔ではなく、貫通孔と貫通孔の間、即ち収容部内壁を構成する部分に微粒子を捕捉することが可能となる。
Figure 2011104487
Here, the dielectric constant of the fine particles and the dielectric constant of the suspension generally vary depending on the frequency of the AC voltage. Therefore, the sign of the dielectrophoretic force is determined (changed) depending on the dielectric constant of the fine particles and the dielectric constant of the suspension when the frequency of the AC voltage is changed. That is, when the frequency of the AC voltage is changed, if the dielectric constant of the fine particles becomes larger than the dielectric constant of the suspension, a positive dielectrophoretic force acts on the fine particles, and the dielectric constant of the fine particles becomes smaller than that of the suspension. If it becomes smaller than the dielectric constant, a negative dielectrophoretic force acts on the fine particles. Thus, theoretically, the frequency at which the dielectric constant of the fine particles and the dielectric constant of the suspension become equal by calculation (the boundary frequency where the positive and negative dielectrophoretic forces change, hereinafter referred to as the boundary frequency) Can be requested. However, since it is complicated to measure the dielectric constant of the fine particles and the dielectric constant of the suspension for each frequency, it is easy to experimentally determine the boundary frequency by observing changes in the moving direction of the fine particles. It is. The boundary frequency determined in this way naturally varies depending on the type of fine particles and the type of suspension. In the fine particle manipulating apparatus of the present invention, the direction in which the dielectrophoretic force acts so that the fine particle to be manipulated is moved so as to be captured by the through hole or the fine particle is moved so as to be detached from the through hole. In order to change, it is preferable to change the frequency of the alternating current applied to the electrode as appropriate. In this sense, the AC power source employed in the fine particle manipulation device of the present invention is preferably one that can arbitrarily change its frequency. In the fine particle manipulator of the present invention, when an AC voltage having a frequency at which a negative dielectrophoretic force in the direction of detaching the fine particles from the through hole is applied between the electrode a and the electrode b, not the through hole. The fine particles can be captured between the through holes, that is, in the portion constituting the inner wall of the accommodating portion.

本発明の微粒子操作装置を用いれば、前記したように、交流の周波数を適宜選択することによって雑多の微粒子を含む懸濁液の中から所定の誘電率を有する微粒子のみを選別し、貫通孔に捕捉することが可能となる。しかも、本発明の微粒子操作装置は、好ましくは収容部の下部に電極基板を設置しているため、交流電圧を付加して微粒子を貫通孔に捕捉した状態で、当該貫通孔からマイクロピペット等を用いて捕捉された微粒子を採取することが可能となる。図23は、本発明の微粒子操作装置と、貫通孔9に捕捉された微粒子18を採取する微粒子採取手段21として、マイクロピペットを採用した場合の概念図である。目的の微粒子を選んで採取する場合は、図23に示すように顕微鏡22を設置し、顕微鏡での観察下でマイクロピペット21を操作して微粒子を採取する。顕微鏡のステージ40として、1μm前後で精密に位置決めできるものを採用すれば、顕微鏡で観察しながら採取しようとする微粒子を確実にマイクロピペット21で採取することができる。また微粒子を採取する際には、電極aと電極bの間に、微粒子を貫通孔に捕捉する正の誘電泳動力が作用する周波数の交流電圧を電源4から印加しておけば、目的の微粒子だけをマイクロピペットで採取し、他の微粒子は貫通孔に捕捉したままにしておくことが可能である。   By using the fine particle manipulating apparatus of the present invention, as described above, by selecting the AC frequency as appropriate, only fine particles having a predetermined dielectric constant are selected from the suspension containing various fine particles, and the through holes are formed. It becomes possible to capture. Moreover, since the fine particle manipulation device of the present invention preferably has an electrode substrate installed in the lower part of the housing portion, a micropipette or the like is inserted from the through hole in a state where the fine particles are captured in the through hole by applying an AC voltage. It is possible to collect the fine particles captured by using. FIG. 23 is a conceptual diagram when a micropipette is employed as the fine particle manipulating device of the present invention and the fine particle collecting means 21 for collecting the fine particles 18 captured in the through holes 9. When selecting and collecting the target fine particles, the microscope 22 is installed as shown in FIG. 23, and the micropipette 21 is operated under the observation with the microscope to collect the fine particles. By adopting a microscope stage 40 that can be precisely positioned around 1 μm, the micropipette 21 can reliably collect fine particles to be collected while observing with a microscope. Further, when collecting the fine particles, if an AC voltage having a frequency at which a positive dielectrophoretic force that traps the fine particles in the through-hole acts between the electrodes a and b is applied from the power source 4, the target fine particles are obtained. It is possible to collect only the micropipette and leave other fine particles captured in the through-holes.

図24は、本発明の微粒子操作装置の応用例を示すものである。例えば癌などの異常細胞41の存在が疑われる懸濁液を微粒子操作装置に供し、細胞を貫通孔に捕捉する。一方で当該検出の目的となる異常細胞41の表面に特異的に結合するマーカー分子42を蛍光色素43等で修飾しておき、収容部に当該マーカー分子を導入し、マーカー分子と異常細胞を特異的に結合反応させる。細胞を貫通孔に捕捉したまま、収容部中の懸濁液を未反応のマーカー分子とともに排出した後、貫通孔に捕捉された細胞にマーカー分子が導入されたか否かをそのままの状態で、又は、微粒子採取手段で採取した後、顕微鏡等で検出したり、蛍光色素等を検出するための公知の試薬と光学装置等を用いて検出する。これにより、癌などの異常細胞を採取し、又は、検出することが本発明の微粒子操作装置により可能となる。   FIG. 24 shows an application example of the particulate manipulation device of the present invention. For example, a suspension in which the presence of abnormal cells 41 such as cancer is suspected is applied to a fine particle manipulation device, and the cells are captured in the through holes. On the other hand, the marker molecule 42 that specifically binds to the surface of the abnormal cell 41 to be detected is modified with a fluorescent dye 43 or the like, and the marker molecule is introduced into the accommodating portion to specifically identify the marker molecule and the abnormal cell. The binding reaction. After discharging the suspension in the container together with unreacted marker molecules while capturing the cells in the through-holes, whether or not the marker molecules have been introduced into the cells captured in the through-holes, or Then, after being collected by the fine particle collecting means, it is detected by using a microscope or the like, or by using a known reagent and an optical device for detecting a fluorescent dye or the like. This makes it possible to collect or detect abnormal cells such as cancer by the fine particle manipulation device of the present invention.

上記では微粒子採取手段としてマイクロピペットを説明したが、微粒子採取手段は微粒子を採取することができれば特に制限はなく、マイクロピペット以外にも、電気浸透流を利用して精密に微粒子を採取可能な微粒子採取手段を用いることができる。   In the above description, the micropipette has been described as the fine particle collecting means. However, the fine particle collecting means is not particularly limited as long as the fine particles can be collected. In addition to the micropipette, fine particles that can accurately collect fine particles using an electroosmotic flow. Collection means can be used.

本発明の微粒子操作装置は、以下の効果を奏するものである。
(1)本発明の微粒子操作装置は、一枚の電極基板に一対の電極全てを設置することから装置構成を簡便にでき、また、簡便であるために安価に提供できる。また構成が簡便であるために、その維持、管理に費用や熟練を要することがない。
(2)本発明の微粒子操作装置は、1つの貫通孔に概ね1つの微粒子を速やかに捕捉することができる。特に、収容部の一部をアレイ状に形成した複数の貫通孔を有する絶縁体で構成した態様では、複数の微粒子を1つずつ速やかにアレイ状に配置した貫通孔に捕捉することができる。
(3)本発明の微粒子操作装置は、1つの貫通孔に概ね1つの微粒子を捕捉できる確率を向上することができる。特に、収容部の一部をアレイ状に形成した複数の貫通孔を有する絶縁体で構成した態様では、複数の微粒子を1つずつアレイ状に配置した貫通孔に捕捉する確率を向上することができる。
(4)本発明の微粒子操作装置は、貫通孔に捕捉した微粒子を速やかに貫通孔から脱離する(取り出す)ことができる。
(5)本発明の微粒子操作装置は、貫通孔に微粒子を捕捉したまま、貫通孔から任意の微粒子を容易に脱離させ、採取する事ができる。
(6)本発明の微粒子操作装置は、電極の距離を短くできるため、比較的小型で安価な交流電源でも十分に微粒子操作を可能とする電界を得る事ができる。
The fine particle manipulation device of the present invention has the following effects.
(1) The fine particle manipulating device of the present invention can be provided at low cost because the device configuration can be simplified because all of the pair of electrodes are installed on one electrode substrate, and because it is simple. In addition, since the configuration is simple, there is no need for cost and skill for maintenance and management.
(2) The fine particle manipulating apparatus of the present invention can quickly capture approximately one fine particle in one through hole. In particular, in an aspect in which a part of the housing portion is configured by an insulator having a plurality of through holes formed in an array, a plurality of fine particles can be quickly captured in the through holes arranged in an array.
(3) The fine particle manipulating apparatus of the present invention can improve the probability that approximately one fine particle can be captured in one through hole. In particular, in an aspect in which a part of the housing portion is formed of an insulator having a plurality of through holes formed in an array shape, the probability of capturing a plurality of fine particles in the through holes arranged in an array one by one can be improved. it can.
(4) The fine particle manipulating apparatus of the present invention can quickly detach (take out) the fine particles trapped in the through hole from the through hole.
(5) The fine particle manipulating apparatus of the present invention can easily desorb and collect arbitrary fine particles from the through hole while capturing the fine particles in the through hole.
(6) Since the fine particle manipulating apparatus of the present invention can shorten the distance between the electrodes, an electric field capable of sufficiently manipulating the fine particles can be obtained even with a relatively small and inexpensive AC power source.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to an Example.

実施例1においては、装置本体13が、収容部(スペーサー16と貫通孔9を形成した絶縁体8とから構成される)及び電極基板15とから構成される、図8に示した微粒子操作装置を使用した。   In Example 1, the apparatus main body 13 includes an accommodating portion (configured by the spacer 16 and the insulator 8 having the through holes 9 formed therein) and the electrode substrate 15, and the particulate manipulation apparatus shown in FIG. It was used.

電極基板15には、縦70mm×横40mm×厚さ1mmのガラス基板を用いた。スペーサー16は、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央(34)を縦20mm×横20mmにくりぬいた形状にして用いた。また、図8に示すように、微粒子が含有した懸濁液を導入、排出するための導入口19と排出口20を設けた。複数の貫通孔9を有する絶縁体8と櫛状電極31は、図25及び図26に示すフォトリソグラフィーとエッチングによる方法により電極基板15上に一体的に形成した。   As the electrode substrate 15, a glass substrate having a length of 70 mm × width of 40 mm × thickness of 1 mm was used. The spacer 16 was used by hollowing out the center (34) of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm. Moreover, as shown in FIG. 8, the inlet 19 and the outlet 20 for introducing and discharging the suspension containing the fine particles were provided. The insulator 8 having the plurality of through holes 9 and the comb-like electrode 31 were integrally formed on the electrode substrate 15 by the photolithography and etching methods shown in FIGS.

図25に示すように、ガラス24の片面に、スパッタにより膜厚1nmのCrを成膜し(44)、さらにその上にスパッタにより膜厚150nmのAuを成膜した(45)。なおCrは、Auとガラスの密着性を高めるために成膜している。次に、成膜したAuの上にスピンコーターを用いて1μmの膜厚になるようレジスト(25)を塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(105℃、15分)を行った。レジストにはポジ型のものを用いた。   As shown in FIG. 25, Cr having a thickness of 1 nm was formed on one surface of glass 24 by sputtering (44), and Au having a thickness of 150 nm was further formed thereon by sputtering (45). Note that Cr is deposited to increase the adhesion between Au and glass. Next, a resist (25) is applied on the formed Au using a spin coater so as to have a film thickness of 1 μm, naturally dried for 1 minute, and then pre-baked (105 ° C., 15 minutes) using a hot plate. went. A positive resist was used.

次に、縦30mm×横30mmのエリアに、幅10μmの電極aと幅10μmの電極bを50μm間隔で形成した櫛状電極パターンを描いた露光用フォトマスク26を用いて、UV露光機にてレジストを露光27し、現像液33で現像した。露光時間と現像時間は、現像により剥離する膜厚がレジストの膜厚と等しい1μmになるように調整し、貫通孔の底面にAuが露出するようにした。現像後、3%ヨウ素ヨウ化アンモニウム液49により露出したAu膜を剥離し、次に30%硝酸二アンモニアセリウム液50によりAu膜剥離後に露出したCr膜を剥離した。最後に、レジストをリムーバーにより剥離し、櫛状電極31を形成した。   Next, using an exposure photomask 26 in which a comb-like electrode pattern is formed in which an electrode a having a width of 10 μm and an electrode b having a width of 10 μm are formed at an interval of 50 μm in an area of 30 mm in length × 30 mm in width, using a UV exposure machine The resist was exposed to light 27 and developed with developer 33. The exposure time and development time were adjusted so that the film thickness peeled off by development was 1 μm, which was equal to the resist film thickness, so that Au was exposed on the bottom surface of the through hole. After the development, the exposed Au film was stripped with 3% ammonium iodide iodide solution 49, and then the Cr film exposed after stripping the Au film with 30% diammonium cerium nitrate solution 50 was stripped. Finally, the resist was peeled off with a remover to form a comb-like electrode 31.

このようにして作製した電極基板上の櫛状電極31の上に、図26に示すようにレジスト25を5μmの膜厚になるようスピンコーターを用いて塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(65℃、1分 → 95℃、3分)を行った。レジストにはエポキシ系のネガタイプレジストを用いた。次に、縦30mm×横30mmのエリアに、貫通孔と貫通孔の縦と横の間隔が30μmで、縦1000個×横1000個のアレイ状に並べた直径8.5μmの円形の貫通孔パターンを描いた露光用フォトマスク46を用いて、UV露光機にてレジストを露光27し、現像液33で現像した。露光時間と現像時間は、貫通孔の深さがレジストの膜厚と等しい5μmになるように調整し、貫通孔の底面の櫛状電極が露出するようにした。現像後、ホットプレートを用いてポストベーク(150℃、15分)を行い、レジストを固め、貫通孔を形成した絶縁体と一体型となった櫛状電極を形成した下部基板を製作した。   On the comb-shaped electrode 31 on the electrode substrate thus fabricated, a resist 25 is applied using a spin coater so as to have a film thickness of 5 μm as shown in FIG. Was pre-baked (65 ° C., 1 minute → 95 ° C., 3 minutes). An epoxy negative resist was used as the resist. Next, a circular through-hole pattern with a diameter of 8.5 μm arranged in an array of 1000 vertical × 1000 horizontal in an area of 30 mm long × 30 mm wide with a vertical and horizontal interval between the through holes of 30 μm. The resist was exposed to light 27 with a UV exposure machine using the photomask 46 for exposure, and developed with the developer 33. The exposure time and the development time were adjusted so that the depth of the through hole was 5 μm, which was equal to the film thickness of the resist, so that the comb-like electrode on the bottom surface of the through hole was exposed. After development, post-baking (150 ° C., 15 minutes) was performed using a hot plate, the resist was hardened, and a lower substrate on which a comb-like electrode integrated with an insulator having a through hole was formed was manufactured.

このようにして作製した電極基板15、スペーサー16を図9のように積層し圧着した。図9は、図8に示した細胞融合容器のB−B’断面図である。シリコンシートの表面は粘着性があり、圧着することで各部品は密着し、微粒子を含有した懸濁液を漏れなく本体13の中に入れることができた。スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間34に存在する貫通孔の数は約40万個である。また、電極間に電圧を印加する電源(信号発生器)をリード線で接続した。   The electrode substrate 15 and the spacer 16 produced in this way were laminated and pressure bonded as shown in FIG. FIG. 9 is a B-B ′ sectional view of the cell fusion container shown in FIG. 8. The surface of the silicon sheet was sticky, and each component was brought into close contact by pressure bonding, and the suspension containing fine particles could be put into the main body 13 without leakage. Since the area formed by hollowing out the spacer is 20 mm long × 20 mm wide, the number of through holes existing in the space 34 is about 400,000. Moreover, the power supply (signal generator) which applies a voltage between electrodes was connected with the lead wire.

微粒子には、マウスミエローマ細胞(粒径約10μm)を用い、300mMの濃度のマンニトール水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the microparticles, mouse myeloma cells (particle size: about 10 μm) were used, suspended in an aqueous mannitol solution having a concentration of 300 mM, and the cell suspension was adjusted to a density of 0.7 × 10 6 cells / mL.

収容部の一部を構成する貫通孔を形成した絶縁体8の親水性を評価するために、その表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約74°で、疎水性であった。そこで、貫通孔を形成した絶縁体8を親水化するために、電極基板15(貫通孔を形成した絶縁体8は、電極基板15上に一体に形成されている)をBSA(1mg/mL)含有の300mM濃度のマンニトール水溶液に約1時間浸し、絶縁体表面にBSAを物理吸着させた。BSAを物理吸着させた後、同様に、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約37°であり、親水性化されたことを確認した。この場合、絶縁体表面と操作対象であるマウスミエローマ細胞(親水性を有する)との親和性は比較的高い。   In order to evaluate the hydrophilicity of the insulator 8 formed with a through hole constituting a part of the housing portion, pure water is dropped on the surface, and the droplets and the insulator formed on the surface of the insulator at that time As a result of measuring the contact angle with the surface, the contact angle was about 74 ° and was hydrophobic. Therefore, in order to hydrophilize the insulator 8 in which the through hole is formed, the electrode substrate 15 (the insulator 8 in which the through hole is formed is integrally formed on the electrode substrate 15) is replaced with BSA (1 mg / mL). The BSA was physically adsorbed on the surface of the insulator by immersing in the contained 300 mM mannitol aqueous solution for about 1 hour. Similarly, after BSA is physically adsorbed, pure water is dropped on the surface of the insulator, and the contact angle between the droplet formed on the surface of the insulator and the surface of the insulator is measured. Was about 37 °, confirming that it was made hydrophilic. In this case, the affinity between the insulator surface and the mouse myeloma cell (having hydrophilicity) to be manipulated is relatively high.

上記細胞懸濁液600μL(細胞数:約40万個)をスペーサー16の導入口よりシリンジを用いて注入し、交流電圧として信号発生器により電圧2Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2から3秒程度の極めて短い時間でアレイ状に形成した貫通孔1つに、1つの細胞を捕捉することができ、細胞をアレイ状に配置させることができた。なお、「捕捉することができた」とは、貫通孔に微粒子が入った場合及び、貫通孔の縁に微粒子が留まった場合の両方を意味し、以下の実施例と比較例でも同じ定義とした。このときの、1つの貫通孔に概ね1つの細胞が入る微粒子捕捉率は約90%であった。なお微粒子捕捉率とは、顕微鏡の視野に縦15個×横15個の225個の貫通孔が見えるようにし、微粒子を導入して捕捉したときの、1個の微粒子が入った貫通孔数を225個の貫通孔数で割った値で定義し、以下の実施例と比較例でも同じである。   600 μL of the cell suspension (number of cells: about 400,000) is injected from the introduction port of the spacer 16 using a syringe, and a rectangular wave AC voltage having a voltage of 2 Vpp and a frequency of 3 MHz is applied between the electrodes as an AC voltage by a signal generator. When applied, one cell could be captured in one through-hole formed in an array in an extremely short time of about 2 to 3 seconds, and the cells could be arranged in an array. Note that “captured” means both the case where fine particles enter the through-hole and the case where fine particles remain at the edge of the through-hole, and the same definition applies to the following examples and comparative examples. did. At this time, the capture rate of fine particles in which approximately one cell enters one through-hole was about 90%. The fine particle capture rate is the number of through-holes containing one fine particle when the fine particle is introduced and captured so that 225 through holes of 15 vertical x 15 horizontal are visible in the field of view of the microscope. It is defined by a value divided by the number of 225 through holes, and the same applies to the following examples and comparative examples.

図23に示すように、本体13に微粒子採取手段21を設置した。微粒子採取手段には、電気浸透流を利用して精密に微粒子を採取可能なピペットを用いることで、顕微鏡22で観察しながら、貫通孔に捕捉した特定の細胞を採取する事ができた。また、電源4により櫛状電極間に交流電圧(2Vpp、3MHz)を印加しつづけ、細胞を貫通孔に捕捉する方向に誘電泳動力を作用し続けさせることで、採取した以外の細胞は貫通孔に捕捉したままで脱離は確認されなかった。   As shown in FIG. 23, the fine particle collecting means 21 is installed in the main body 13. As the fine particle collecting means, using a pipette capable of accurately collecting fine particles using electroosmotic flow, it was possible to collect specific cells captured in the through-hole while observing with the microscope 22. Further, by continuously applying an alternating voltage (2 Vpp, 3 MHz) between the comb electrodes by the power source 4 and causing the dielectrophoretic force to continue to act in the direction of capturing the cells in the through-holes, cells other than the collected cells can pass through the through-holes. However, no desorption was confirmed.

引き続き、交流電圧として信号発生器により電圧2Vpp、周波数1kHzの正弦波交流電圧を電極間に印加したところ、2から3秒程度の極めて短い時間でアレイ状の貫通孔に捕捉していた細胞を貫通孔から容易に取り出すことができた。本体を傾けて細胞懸濁液を取り出したところ、取り出した細胞数は、導入した細胞数の約80%であった。   Subsequently, when a sine wave AC voltage having a voltage of 2 Vpp and a frequency of 1 kHz was applied between the electrodes as an AC voltage by a signal generator, the cells trapped in the arrayed through holes were penetrated in an extremely short time of about 2 to 3 seconds. It was easily removed from the hole. When the cell suspension was taken out by tilting the main body, the number of taken out cells was about 80% of the number of introduced cells.

(比較例)
比較のため、図10に示した微粒子操作装置を用いて操作を行った。図10の微粒子操作装置では、本体13は、収容部(スペーサー16と貫通孔を形成した絶縁体8から構成される)を、上部の電極基板47と下部の電極基板48で挟み込んだ構成である。上部の電極基板と下部の極基板には、縦70mm×横40mm×厚さ1mmのガラス基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサー16は、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央(34)を縦20mm×横20mmにくりぬいた形状にして用いた。また図10に示すように、微粒子が含有した懸濁液を導入、排出するための導入口19と排出口20を設けた。複数の貫通孔9を有する絶縁体8と電極は、図25及び図26に示すフォトリソグラフィーとエッチングによる方法により、電極基板上に一体成形した。
(Comparative example)
For comparison, operation was performed using the fine particle manipulating apparatus shown in FIG. In the fine particle manipulation device of FIG. 10, the main body 13 has a configuration in which a housing portion (consisting of an insulator 8 having a spacer 16 and a through hole) is sandwiched between an upper electrode substrate 47 and a lower electrode substrate 48. . As the upper electrode substrate and the lower electrode substrate, a glass substrate having a length of 70 mm, a width of 40 mm, and a thickness of 1 mm was formed by depositing ITO (film thickness: 150 nm). The spacer 16 was used by hollowing out the center (34) of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm. Further, as shown in FIG. 10, an introduction port 19 and a discharge port 20 for introducing and discharging a suspension containing fine particles were provided. The insulator 8 having the plurality of through holes 9 and the electrode were integrally formed on the electrode substrate by the photolithography and etching methods shown in FIGS.

まずガラス24の片面にITO(23)を成膜し、その成膜面にスピンコーターを用いて5μmの膜厚になるようにレジスト(25)を塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(65℃、1分 → 95℃、3分)を行った。レジストにはエポキシ系のネガタイプレジストを用いた。   First, ITO (23) is formed on one surface of the glass 24, and a resist (25) is applied to the film forming surface so as to have a film thickness of 5 μm using a spin coater. After naturally drying for 1 minute, a hot plate is attached. And prebaked (65 ° C., 1 minute → 95 ° C., 3 minutes). An epoxy negative resist was used as the resist.

次に、縦30mm×横30mmのエリアに、貫通孔と貫通孔の縦と横の間隔が30μmで、縦1000個×横1000個のアレイ状に並べた直径8.5μmの円形の貫通孔パターンを描いた露光用フォトマスク46を用いて、UV露光機にてレジストを露光27し、現像液33で現像した。露光時間と現像時間は、貫通孔の深さがレジストの膜厚と等しい5μmになるように調整し、貫通孔の底面にITOが露出するようにした。現像後、ホットプレートを用いてポストベーク(150℃、15分)を行い、レジストを固め、貫通孔を形成した絶縁体8を一体に形成した下部の電極基板48を製作した。   Next, a circular through-hole pattern with a diameter of 8.5 μm arranged in an array of 1000 vertical × 1000 horizontal in an area of 30 mm long × 30 mm wide with a vertical and horizontal interval between the through holes of 30 μm. The resist was exposed to light 27 with a UV exposure machine using the photomask 46 for exposure, and developed with the developer 33. The exposure time and development time were adjusted so that the depth of the through hole was 5 μm, which was equal to the resist film thickness, so that ITO was exposed on the bottom surface of the through hole. After the development, post baking (150 ° C., 15 minutes) was performed using a hot plate, the resist was hardened, and the lower electrode substrate 48 integrally formed with the insulator 8 having the through holes was manufactured.

このようにして作製した下部の電極基板48とスペーサー16を図11のように積層し圧着した。また圧着物と上部の電極基板47は金具により取り外し可能に圧着した。図11は、図10に示した細胞融合容器のC−C’断面図である。シリコンシートの表面は粘着性があり、圧着することで各部品は密着し、微粒子を含有した懸濁液を漏れなく本体13の中に入れることができた。スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間34に存在する貫通孔の数は約40万個である。また、電極間に電圧を印加する電源(信号発生器)をリード線で接続した。   The lower electrode substrate 48 and the spacer 16 produced in this way were laminated and pressure bonded as shown in FIG. Further, the pressure-bonded product and the upper electrode substrate 47 were detachably pressed with a metal fitting. FIG. 11 is a C-C ′ cross-sectional view of the cell fusion container shown in FIG. 10. The surface of the silicon sheet was sticky, and each component was brought into close contact by pressure bonding, and the suspension containing fine particles could be put into the main body 13 without leakage. Since the area formed by hollowing out the spacer is 20 mm long × 20 mm wide, the number of through holes existing in the space 34 is about 400,000. Moreover, the power supply (signal generator) which applies a voltage between electrodes was connected with the lead wire.

微粒子には、マウスミエローマ細胞(粒径約10μm)を用い、300mMの濃度のマンニトール水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the microparticles, mouse myeloma cells (particle size: about 10 μm) were used, suspended in an aqueous mannitol solution having a concentration of 300 mM, and the cell suspension was adjusted to a density of 0.7 × 10 6 cells / mL.

収容部の一部を構成する貫通孔を形成した絶縁体8の親水性を評価するために、その表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約74°で疎水性であった。そこで、貫通孔を形成した絶縁体8を親水化するために、下部の電極基板48(貫通孔を形成した絶縁体8は、下部の電極基板48上に一体に形成されている)をBSA(1mg/mL)含有の300mM濃度のマンニトール水溶液に約1時間浸し、絶縁体表面にBSAを物理吸着させた。BSAを物理吸着させた後、同様に、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約37°であり、親水化されたことを確認した。この場合、絶縁体表面と操作対象であるマウスミエローマ細胞(親水性を有する)との親和性は比較的高い。   In order to evaluate the hydrophilicity of the insulator 8 formed with a through hole constituting a part of the housing portion, pure water is dropped on the surface, and the droplets and the insulator formed on the surface of the insulator at that time As a result of measuring the contact angle with the surface, the contact angle was about 74 ° and was hydrophobic. Therefore, in order to hydrophilize the insulator 8 in which the through hole is formed, the lower electrode substrate 48 (the insulator 8 in which the through hole is formed is integrally formed on the lower electrode substrate 48) is replaced with BSA ( The BSA was physically adsorbed on the surface of the insulator by immersing in a 300 mM mannitol aqueous solution containing 1 mg / mL for about 1 hour. Similarly, after BSA is physically adsorbed, pure water is dropped on the surface of the insulator, and the contact angle between the droplet formed on the surface of the insulator and the surface of the insulator is measured. Was about 37 °, confirming that it was hydrophilic. In this case, the affinity between the insulator surface and the mouse myeloma cell (having hydrophilicity) to be manipulated is relatively high.

上記細胞懸濁液600μL(細胞数:約40万個)をスペーサー16の導入口よりシリンジを用いて注入し、交流電圧として信号発生器により電圧2Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したが、貫通孔に細胞を捕捉する事はできなかった。これは、上部の電極基板と下部の電極基板間の距離が1.5mmと長く、2Vppの電圧では細胞を貫通孔に捕捉するための誘電泳動力を発生するための電界を十分に与えることができなかったためである。   600 μL of the cell suspension (number of cells: about 400,000) is injected from the introduction port of the spacer 16 using a syringe, and a rectangular wave AC voltage having a voltage of 2 Vpp and a frequency of 3 MHz is applied between the electrodes as an AC voltage by a signal generator. Although applied, cells could not be trapped in the through hole. This is because the distance between the upper electrode substrate and the lower electrode substrate is as long as 1.5 mm, and a voltage of 2 Vpp can provide a sufficient electric field for generating a dielectrophoretic force for trapping cells in the through-hole. It was because it was not possible.

次に、交流電圧として信号発生器により電圧10Vpp、周波数3MHzの矩形波交流電圧を印加したところ、2から3秒程度でアレイ状に形成した貫通孔1つに、1つの細胞を捕捉することができた。しかしながら本比較例に用いた本体13には上部基板が存在するため、貫通孔に捕捉した任意の細胞を採取する際には、電圧の印可を止め、かつ、金具をはずして上部の電極基板を取り除く必要があり、いったん捕捉した細胞が貫通孔から脱離する例が発生した。   Next, when a rectangular wave AC voltage having a voltage of 10 Vpp and a frequency of 3 MHz is applied as an AC voltage by a signal generator, one cell can be captured in one through-hole formed in an array in about 2 to 3 seconds. did it. However, since there is an upper substrate in the main body 13 used in this comparative example, when collecting any cell trapped in the through-hole, the application of voltage is stopped and the upper electrode substrate is removed by removing the metal fittings. There was an example in which a cell that had been trapped once detached from the through-hole had to be removed.

実施例1と同様の微粒子操作装置を用い、微粒子操作領域に実施例1と同様のマウスミエローマ細胞を導入し、電圧および矩形波交流電圧印加時間は上記のままで周波数だけを小さくした。その結果、図31のように50kHzでは細胞の捕捉率は約81%を示し、30kHzで約50%の細胞を捕捉できた。しかし10kHzでは細胞はほとんど捕捉できなかった。この結果から、細胞を貫通孔に捕捉するための交流電源の交流周波数は30kHz以上、好ましくは50kHz以上が望ましいことが分かる。   Using the same fine particle manipulation apparatus as in Example 1, mouse myeloma cells similar to those in Example 1 were introduced into the fine particle manipulation region, and the frequency and the rectangular wave AC voltage application time were kept as described above, and only the frequency was reduced. As a result, as shown in FIG. 31, the cell capture rate was about 81% at 50 kHz, and about 50% of cells could be captured at 30 kHz. However, almost no cells could be captured at 10 kHz. From this result, it can be seen that the AC frequency of the AC power source for capturing cells in the through-hole is 30 kHz or more, preferably 50 kHz or more.

また、同様の手法を用いて細胞脱離率の測定を行った。細胞脱離率とは、懸濁液を導入して第1の交流電源を用いて捕捉されたマウスミエローマ細胞のうち貫通孔から取り出された細胞数を、捕捉された細胞数で割った値で定義した。交流電源により電圧2Vpp、周波数10kHzの矩形波交流電圧を10秒間電極間に印加したところ、アレイ状に形成した複数の貫通孔に捕捉されていた細胞を取り出すことができた。このときの、細胞の脱離率は約100%であった。電圧および矩形波交流電圧印加時間は上記のままで周波数だけを大きくしたところ、図32のように10kHzでは脱離率は約100%を示し、20kHzでは約50%が脱離した。しかし100kHzではほとんど脱離しなかった。この結果から、細胞を貫通孔から脱離させるための交流電源の交流周波数は20kHz未満、好ましくは10kHz未満であることが望ましいことが分かる。   In addition, the cell detachment rate was measured using the same method. The cell detachment rate is a value obtained by dividing the number of cells extracted from the through-hole among mouse myeloma cells captured using the first AC power supply after introducing the suspension, and divided by the number of captured cells. Defined. When a rectangular wave AC voltage having a voltage of 2 Vpp and a frequency of 10 kHz was applied between the electrodes by an AC power source for 10 seconds, cells captured in the plurality of through holes formed in an array could be taken out. At this time, the detachment rate of the cells was about 100%. When the voltage and the rectangular wave AC voltage application time were kept as described above, only the frequency was increased. As shown in FIG. 32, the desorption rate was about 100% at 10 kHz, and about 50% was desorbed at 20 kHz. However, it hardly desorbed at 100 kHz. From this result, it can be seen that the AC frequency of the AC power source for detaching cells from the through-hole is desirably less than 20 kHz, preferably less than 10 kHz.

実施例1と同じ微粒子操作装置を用い、微粒子には市販のポリスチレン微粒子(粒径約6μm、ポリスチレン微粒子濃度2.5%)を用い、純水に懸濁させて0.8×10個/mLの密度になるようにポリスチレン微粒子懸濁液を調整した。ただし、実施例1と異なり、貫通孔を形成した絶縁体8の親水化処理は行わなかった。即ち、絶縁体8は疎水性であるため、疎水性を示すポリスチレン微粒子と絶縁体との親和性は比較的高い。 Using the same fine particle manipulating apparatus as in Example 1, commercially available polystyrene fine particles (particle size: about 6 μm, polystyrene fine particle concentration: 2.5%) were used as fine particles, suspended in pure water and 0.8 × 10 6 particles / The polystyrene fine particle suspension was adjusted to a density of mL. However, unlike Example 1, the hydrophilic treatment of the insulator 8 in which the through holes were formed was not performed. That is, since the insulator 8 is hydrophobic, the affinity between the polystyrene fine particles exhibiting hydrophobicity and the insulator is relatively high.

上記ポリスチレン微粒子懸濁液500μL(微粒子数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、交流電圧として信号発生器により電圧2Vpp、周波数9Hzの矩形波交流電圧を電極間に印加したところ、2から3秒程度の極めて短い時間でアレイ状に形成した貫通孔1つに、概ね1つのポリスチレン微粒子を捕捉することができ、微粒子捕捉率は約60%であった。   500 μL of the above-mentioned polystyrene fine particle suspension (number of fine particles: about 400,000) is injected from the introduction port of the spacer using a syringe, and a rectangular wave AC voltage with a voltage of 2 Vpp and a frequency of 9 Hz is applied between the electrodes as an AC voltage by a signal generator. When applied, approximately one polystyrene microparticle could be captured in one through-hole formed in an array in an extremely short time of about 2 to 3 seconds, and the microparticle capture rate was about 60%.

次に、交流電圧として信号発生器により電圧2Vpp、周波数100kHzの正弦波交流電圧を電極間に印加したところ、2から3秒程度の極めて短い時間でアレイ状の貫通孔に捕捉されていたポリスチレン微粒子を、貫通孔から脱離させることができた。引き続き、本体13を傾けてポリスチレン微粒子懸濁液を取り出したところ、取り出したポリスチレン微粒子数は、導入したポリスチレン微粒子数の約78%であった。   Next, when a sine wave AC voltage having a voltage of 2 Vpp and a frequency of 100 kHz was applied between the electrodes as an AC voltage by a signal generator, the polystyrene fine particles captured in the arrayed through-holes in an extremely short time of about 2 to 3 seconds. Could be removed from the through hole. Subsequently, when the main body 13 was tilted and the polystyrene fine particle suspension was taken out, the number of polystyrene fine particles taken out was about 78% of the number of introduced polystyrene fine particles.

なお、本実施例3で用いた微粒子操作措置を用いて、交流電圧の周波数とポリスチレン微粒子の貫通孔への捕捉と取り出しをさらに検討した結果、交流電圧(電圧2Vpp)の周波数が約100Hz未満で貫通孔にポリスチレン微粒子が捕捉されはじめ、10Hz未満になると、約50から60%のポリスチレン微粒子が貫通孔に捕捉された。また、交流電圧の周波数が約1kHz以上で貫通孔からポリスチレン微粒子が脱離しはじめ、1MHz以上になると、貫通孔に捕捉されたポリスチレン微粒子のうちほぼ90%以上のポリスチレン微粒子を貫通孔から脱離させることができた。   As a result of further examination of the frequency of the alternating voltage and the capture and removal of polystyrene fine particles in the through holes using the fine particle manipulation measures used in Example 3, the frequency of the alternating voltage (voltage 2 Vpp) is less than about 100 Hz. The polystyrene fine particles started to be captured in the through holes, and when the frequency became less than 10 Hz, about 50 to 60% of the polystyrene fine particles were captured in the through holes. Further, when the frequency of the AC voltage is about 1 kHz or more, polystyrene fine particles begin to be desorbed from the through hole. When the frequency becomes 1 MHz or higher, approximately 90% or more of the polystyrene fine particles trapped in the through hole are desorbed from the through hole. I was able to.

特許文献2に記載された発明を説明するための図である。It is a figure for demonstrating the invention described in patent document 2. FIG. 特許文献2に記載された発明を説明するための図である。It is a figure for demonstrating the invention described in patent document 2. FIG. 特許文献2に記載された発明を説明するための図である。It is a figure for demonstrating the invention described in patent document 2. FIG. 特許文献2に記載された発明を説明するための図である。It is a figure for demonstrating the invention described in patent document 2. FIG. 本発明の微粒子操作装置を説明するための図である。It is a figure for demonstrating the fine particle operating device of this invention. 図5に示した微粒子操作装置の本体13のAA’断面図である。It is AA 'sectional drawing of the main body 13 of the microparticle operation apparatus shown in FIG. 図5に示した装置を構成する電極基板上の一対の電極と貫通孔の配置を上側から見た図である。It is the figure which looked at arrangement | positioning of a pair of electrode and through-hole on the electrode substrate which comprises the apparatus shown in FIG. 5 from the upper side. 本発明の微粒子操作装置を説明するための図である。It is a figure for demonstrating the fine particle operating device of this invention. 図8に示した微粒子操作装置の本体13のBB’断面図である。It is BB 'sectional drawing of the main body 13 of the microparticle operation apparatus shown in FIG. 比較例として用いた微粒子操作装置を説明するための図である。It is a figure for demonstrating the fine particle operation apparatus used as a comparative example. 図10に示した微粒子操作装置の本体13のCC’断面図である。It is CC 'sectional drawing of the main body 13 of the microparticle operation apparatus shown in FIG. 本発明に用いる交流電圧の波形のうち正弦波を示す図である。It is a figure which shows a sine wave among the waveforms of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形のうち三角波を示す図である。It is a figure which shows a triangular wave among the waveforms of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形のうち台形波を示す図である。It is a figure which shows a trapezoid wave among the waveforms of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形のうち矩形波を示す図である。It is a figure which shows a rectangular wave among the waveforms of the alternating voltage used for this invention. 本発明における貫通孔形状の例を示す図である。It is a figure which shows the example of the through-hole shape in this invention. 本発明における貫通孔形状の例を示す図である。It is a figure which shows the example of the through-hole shape in this invention. 本発明の微粒子操作装置による操作を説明するための図である。It is a figure for demonstrating operation by the fine particle operating device of this invention. 本発明の微粒子操作装置による操作を説明するための図である。It is a figure for demonstrating operation by the fine particle operating device of this invention. 本発明の微粒子操作装置による操作を説明するための図である。It is a figure for demonstrating operation by the fine particle operating device of this invention. 本発明の微粒子操作装置による操作を説明するための図である。It is a figure for demonstrating operation by the fine particle operating device of this invention. 本発明の微粒子操作装置による操作を説明するための図である。It is a figure for demonstrating operation by the fine particle operating device of this invention. 本発明の微粒子操作装置と、貫通孔に捕捉した特定の微粒子を採取する微粒子採取手段として、マイクロピペットを設置した装置の図である。It is the figure of the apparatus which installed the micropipette as a microparticles | fine-particles operation apparatus of this invention, and the microparticles | fine-particles collection means which extract | collects the specific microparticles | fine-particles caught by the through-hole. 本発明の微粒子操作装置を異常細胞の検出装置として応用した例を示す図である。It is a figure which shows the example which applied the fine particle operation apparatus of this invention as a detection apparatus of an abnormal cell. 一般的なフォトリソグラフィーとエッチングを用いて、櫛状電極を作製する工程の概略図である。It is the schematic of the process of producing a comb-shaped electrode using general photolithography and etching. 一般的なフォトリソグラフィーとエッチングを用いて、貫通孔を作製する工程の概略図である。It is the schematic of the process of producing a through-hole using common photolithography and etching.

1:融合領域
2:電極
3:導電線
4:電源
5:交流電源
6:直流パルス電源
7:スイッチ
8:絶縁体
9:貫通孔
10:細胞A
11:細胞B
12:電気力線
13:本体
14:上蓋
15:電極基板
16:スペーサー
17:微粒子懸濁液
18:微粒子
19:導入口
20:排出口
21:微粒子操作手段
22:顕微鏡
23:ITO
24:ガラス
25:レジスト
26:櫛状電極パターンを描いた露光用フォトマスク
27:露光
28:貫通孔を形成した絶縁体と一体的に形成した下部の電極
29:電極a
30:電極b
31:櫛状電極
32:貫通孔の中心軸
33:現像液
34:スペーサー16に形成された空間
35:導電部材の中心軸
36:ピーク電圧
37:正の誘電泳動力
38:負の誘電泳動力
39:微粒子操作装置
40:ステージ
41:異常細胞
42:マーカー分子
43:蛍光色素
44:Cr
45:Au
46:貫通孔パターンを描いた露光用フォトマスク
47:上部の電極基板
48:下部の電極基板
49:3%ヨウ素ヨウ化アンモニウム液
50:30%硝酸二アンモニアセリウム液
51:融合細胞
1: Fusion area 2: Electrode 3: Conductive wire 4: Power supply 5: AC power supply 6: DC pulse power supply 7: Switch 8: Insulator 9: Through hole 10: Cell A
11: Cell B
12: Electric field line 13: Main body 14: Upper lid 15: Electrode substrate 16: Spacer 17: Fine particle suspension 18: Fine particle 19: Inlet 20: Discharge port 21: Fine particle operating means 22: Microscope 23: ITO
24: Glass 25: Resist 26: Photomask for exposure depicting a comb-like electrode pattern 27: Exposure 28: Lower electrode formed integrally with an insulator having a through hole 29: Electrode a
30: Electrode b
31: Comb electrode 32: Center axis of through-hole 33: Developer 34: Space formed in spacer 16 35: Center axis of conductive member 36: Peak voltage 37: Positive dielectrophoretic force 38: Negative dielectrophoretic force 39: Fine particle manipulation device 40: Stage 41: Abnormal cell 42: Marker molecule 43: Fluorescent dye 44: Cr
45: Au
46: Photomask for exposure depicting a through-hole pattern 47: Upper electrode substrate 48: Lower electrode substrate 49: 3% ammonium iodide iodide solution 50: 30% diammonium nitrate cerium solution 51: Fusion cell

Claims (9)

微粒子懸濁液を収容する収容部、一対の電極が配置された電極基板及び電極に接続された交流電源とから構成され、前記収容部の一部は絶縁体の材料で構成されるとともに前記懸濁液を前記各電極に接触可能とする貫通孔を有することを特徴とする、微粒子操作装置。 A housing part for housing the fine particle suspension; an electrode substrate on which a pair of electrodes are arranged; and an AC power source connected to the electrodes. A part of the housing part is made of an insulating material and has the suspension. A fine particle manipulating apparatus having a through-hole that allows a suspended liquid to contact each electrode. 前記一対の電極は、対向する2つの辺のそれぞれから他方の辺に向けて延びる平行な2枚の電極から構成されるか、又は、対向する2つの辺のそれぞれから他方の辺に向けて延びる平行かつ等間隔な3枚以上の電極から構成される、請求項1に記載の微粒子操作装置。 The pair of electrodes is composed of two parallel electrodes extending from each of the two opposing sides toward the other side, or extends from each of the two opposing sides toward the other side. The fine particle manipulating apparatus according to claim 1, comprising three or more parallel and equally spaced electrodes. 前記電極基板は前記収容部の下部に配置され、前記収容部の下部は絶縁体の材料で構成されるとともに前記懸濁液を前記各電極に接触可能とする垂直方向の貫通孔を有することを特徴とする、請求項1に記載の微粒子操作装置。 The electrode substrate is disposed at a lower portion of the housing portion, and the lower portion of the housing portion is made of an insulating material and has a vertical through hole that allows the suspension to contact the electrodes. The fine particle manipulating apparatus according to claim 1, characterized in that it is characterized in that: 前記収容部は、前記懸濁液を保持する枠体と、当該枠体の下部に配置される、垂直方向の貫通孔を有する絶縁体とによって構成されることを特徴とする、請求項1から3項のいずれかに記載の微粒子操作装置。 The said accommodating part is comprised by the insulator which has the through-hole of a perpendicular direction arrange | positioned under the frame which hold | maintains the said suspension, and the said frame, From the Claim 1 characterized by the above-mentioned. 4. The fine particle manipulation device according to any one of items 3. 前記収容部の孔は、1つの微粒子を捕捉できる形状・寸法であることを特徴とする、請求項1から4項のいずれかに記載の微粒子操作装置。 The fine particle manipulating apparatus according to any one of claims 1 to 4, wherein the hole of the accommodating portion has a shape and a dimension capable of capturing one fine particle. 前記孔の開口に内接する最大円の直径が、微粒子の粒径未満であることを特徴とする請求項5に記載の微粒子操作装置。 6. The fine particle manipulating apparatus according to claim 5, wherein a diameter of a maximum circle inscribed in the opening of the hole is smaller than a particle diameter of the fine particles. 前記孔の開口に内接する最大円の直径が、微粒子の粒径の1倍以上2倍未満の範囲であり、かつその深さが微粒子の粒径の2倍未満であることを特徴とする請求項5に記載の微粒子操作装置。 The diameter of the maximum circle inscribed in the opening of the hole is in the range of 1 to 2 times the particle size of the fine particles, and the depth is less than 2 times the particle size of the fine particles. Item 6. The fine particle manipulation device according to Item 5. 前記貫通孔は、アレイ状に配置されていることを特徴とする請求項1から7項のいずれかに記載の微粒子操作装置。 The fine particle manipulation device according to any one of claims 1 to 7, wherein the through holes are arranged in an array. 前記収容部の一部を構成する絶縁体の材料は微粒子と親和性を有する材料であることを特徴とする、請求項1から8項のいずれかに記載の微粒子操作装置。 9. The fine particle manipulating apparatus according to claim 1, wherein a material of the insulator constituting a part of the housing portion is a material having affinity for the fine particles.
JP2009260378A 2009-11-13 2009-11-13 Apparatus for treating fine particle Pending JP2011104487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260378A JP2011104487A (en) 2009-11-13 2009-11-13 Apparatus for treating fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260378A JP2011104487A (en) 2009-11-13 2009-11-13 Apparatus for treating fine particle

Publications (1)

Publication Number Publication Date
JP2011104487A true JP2011104487A (en) 2011-06-02

Family

ID=44228617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260378A Pending JP2011104487A (en) 2009-11-13 2009-11-13 Apparatus for treating fine particle

Country Status (1)

Country Link
JP (1) JP2011104487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JP2016116485A (en) * 2014-12-22 2016-06-30 東ソー株式会社 Fine particles capturing device
JP2020074722A (en) * 2018-11-08 2020-05-21 国立大学法人 東京大学 Cell capture device
JP7404396B2 (en) 2019-04-23 2023-12-25 メコノス,インコーポレイテッド Dielectrophoretic immobilization of particles in close proximity to cavities for interfacing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JP2016116485A (en) * 2014-12-22 2016-06-30 東ソー株式会社 Fine particles capturing device
JP2020074722A (en) * 2018-11-08 2020-05-21 国立大学法人 東京大学 Cell capture device
JP7191370B2 (en) 2018-11-08 2022-12-19 国立大学法人 東京大学 Cell trapping device
JP7404396B2 (en) 2019-04-23 2023-12-25 メコノス,インコーポレイテッド Dielectrophoretic immobilization of particles in close proximity to cavities for interfacing

Similar Documents

Publication Publication Date Title
JP4932066B2 (en) Flow path device and sample processing apparatus including the same
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
US9496125B2 (en) Interfacing with a digital microfluidic device
Hwang et al. Interactive manipulation of blood cells using a lens‐integrated liquid crystal display based optoelectronic tweezers system
KR100813254B1 (en) An apparatus for separating a polarizable analyte using dielectrophoresis and a method of separating a polarizable analyte using the same
WO2011149032A1 (en) Biological-sample affixing device
CN108728328A (en) The micro-current controlled cell for integrating unicellular capture sorts chip
EP1734111B1 (en) Cell fusion device, and method for cell fusion using the same
KR20100122953A (en) Cell selection apparatus, and cell selection method using the same
JP5720129B2 (en) Particle fixing structure, particle analysis apparatus, and analysis method
JP2011104487A (en) Apparatus for treating fine particle
JP2007296510A (en) Fine particle operation apparatus and fine particle operation method
WO2008018390A1 (en) Cell patterning method
JP2012013550A (en) Particle fixing structure, particle analyzing device, and analyzing method
KR100723427B1 (en) Device and method for printing bio-drop on a substrate
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
JP2012013551A (en) Particle fixing structure, particle analyzing device, and analyzing method
JP6421589B2 (en) Fine particle capture device
US9689829B2 (en) Nanoprobe and methods of use
Lau et al. Antifouling coatings for optoelectronic tweezers
JP2017187443A (en) Polymer film for analyzer, substrate for analyzer, method of manufacturing polymer film for analyzer, and method of manufacturing substrate for analyzer
JP2011111373A (en) Method for producing member with hydrophilized surface
Hashimoto et al. Monitoring of orientation of cells by electric impedance: test on oriented cells using micro striped grooves pattern by photolithography
JP2008260008A (en) Fine-particle operation apparatus and fine-particle operation method using it
Hashimoto et al. Design of Flow Channel with Surface Electrodes to Detect Dielectrophoretic Movement of Floating Myoblast