JP2001227996A - Detection method for oil flowing through pipe - Google Patents

Detection method for oil flowing through pipe

Info

Publication number
JP2001227996A
JP2001227996A JP2000039366A JP2000039366A JP2001227996A JP 2001227996 A JP2001227996 A JP 2001227996A JP 2000039366 A JP2000039366 A JP 2000039366A JP 2000039366 A JP2000039366 A JP 2000039366A JP 2001227996 A JP2001227996 A JP 2001227996A
Authority
JP
Japan
Prior art keywords
light
pipe
oil
flowing
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000039366A
Other languages
Japanese (ja)
Other versions
JP4537524B2 (en
Inventor
Noboru Ozeki
昇 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lube Corp
Original Assignee
Lube Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lube Corp filed Critical Lube Corp
Priority to JP2000039366A priority Critical patent/JP4537524B2/en
Publication of JP2001227996A publication Critical patent/JP2001227996A/en
Application granted granted Critical
Publication of JP4537524B2 publication Critical patent/JP4537524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly detect oil flowing through a pipe to improve detection precision by increasing a detection amount of the oil and making the oil flow along a constant track to equalize reflection and absorption of light. SOLUTION: In a system letting the oil L run along a translucent inner wall surface 6 having a circular cross section of the pipe P by air, a light emission part 2 emitting light into the pipe P and a light reception part 3 receiving the light emitted from the light emission part 2 passing through the pipe P are provided outside the pipe P on a circumference with the center of the circular cross section as the center. When detecting the oil L flowing through the pipe P on the basis of light reception of the light reception part 3, a portion of the pipe P facing the light emission part 2 and the light reception part 3 is bent in an arc shape, and the oil L is detected such that the oil L mainly flows along the track A of the inner wall face 6 of the bent pipe P having a smallest curvature radius.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透光性のパイプに
オイルをエアによって流すシステムにおいて、パイプを
流れるオイルを検出するパイプを流れるオイルの検出方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting oil flowing through a pipe in a system for flowing oil through a light-transmitting pipe by air.

【0002】[0002]

【従来の技術】一般に、透光性のパイプにオイルをエア
によって流すシステムとして、例えば、エア源から供給
されるエアを利用しオイルをパイプに供給するオイル供
給部と、エア源から供給されるエアをパイプに供給する
エア供給部とを備え、オイル供給部から供給されたオイ
ルをエア供給部から供給されたエアでパイプ中を流して
パイプ先端に設けたノズルからエアが混合したオイルを
吐出させるようにした潤滑システムが知られている。こ
のようなシステムにおいて、パイプを流れるオイルを検
出することを行なうことがある。この検出方法として
は、従来、例えば、図6に示すように、パイプPの外側
にパイプP内に発光面4から光を照射する発光部2と発
光部2の発光面4から照射されパイプPを通過した光を
受光面5で受光する受光部3とを設け、受光部3が受光
した受光量の変化に基づいてパイプPを流れるオイルL
を検出する方法が知られている。このパイプを流れるオ
イルの検出方法においては、光は発光面4から常時照射
されているので、パイプPを流れるオイルLが存在しな
い場合、受光面5は発光面4から照射された光に応じた
所定の光量を受光する一方、パイプPを流れるオイルL
が存在する場合には、発光面4から照射された光がオイ
ルLを通過し、その際、光の進路が屈折したり光が吸収
等されたりするため、受光面5は所定の光量を受光でき
なくなることから、受光面5が受光する光量の変化を感
知することによりパイプPを流れるオイルLの検出の判
断を行なっている。
2. Description of the Related Art In general, as a system for flowing oil through a light-transmitting pipe by air, for example, an oil supply unit for supplying oil to the pipe using air supplied from an air source, and an oil supply unit for supplying oil to the pipe from the air source An air supply unit that supplies air to the pipe is provided.The oil supplied from the oil supply unit flows through the pipe with the air supplied from the air supply unit, and the mixed oil is discharged from the nozzle provided at the pipe tip. Known lubrication systems are known. In such a system, detection of oil flowing through a pipe may be performed. As a detection method, conventionally, as shown in FIG. 6, for example, as shown in FIG. 6, a light emitting section 2 that irradiates light from a light emitting surface 4 into the pipe P outside the pipe P and a pipe P that is irradiated from the light emitting surface 4 of the light emitting section 2 A light receiving portion 3 for receiving the light passing through the light receiving surface 5, and the oil L flowing through the pipe P based on a change in the amount of light received by the light receiving portion 3.
There is a known method for detecting the In the method of detecting oil flowing through the pipe, light is constantly emitted from the light emitting surface 4. Therefore, when the oil L flowing through the pipe P does not exist, the light receiving surface 5 responds to the light emitted from the light emitting surface 4. While receiving a predetermined amount of light, the oil L flowing through the pipe P
Is present, the light emitted from the light emitting surface 4 passes through the oil L, and at this time, the light path is refracted or the light is absorbed, so that the light receiving surface 5 receives a predetermined amount of light. Therefore, the detection of the oil L flowing through the pipe P is determined by sensing a change in the amount of light received by the light receiving surface 5.

【0003】[0003]

【発明が解決しようとする課題】ところで、この従来の
パイプを流れるオイルの検出方法にあっては、図7に示
すように、パイプPを流れるオイルLは、パイプPの内
壁面をエアの吹きつけ圧に応じて、粒状またはさざなみ
状になって流れ、そのオイルLの軌跡が不定となること
から、オイルLに対する光の反射や吸収等がばらついて
しまい、あるいは、オイルLが内壁面全面に亘ってさざ
なみ状になって流れる場合には、所望の光量の変化を受
光面5に与えることができないことがあり、そのため、
オイルLが流れているにもかかわらずこの流れを検知で
きないときがあり、検知の確実性に劣り検知精度が悪く
なっているという問題があった。
According to this conventional method for detecting oil flowing through a pipe, as shown in FIG. 7, oil L flowing through a pipe P blows air on the inner wall surface of the pipe P. Depending on the applied pressure, the oil L flows in a granular or rippled shape, and the trajectory of the oil L becomes indefinite. Therefore, the reflection or absorption of light to the oil L varies, or the oil L spreads over the entire inner wall surface. In the case of ripples flowing over the light receiving surface 5, a desired change in the amount of light may not be given to the light receiving surface 5.
In some cases, this flow cannot be detected despite the flow of the oil L, and there has been a problem that the detection accuracy is poor and the detection accuracy is poor.

【0004】本発明は、このような問題点に鑑みてなさ
れたもので、パイプ内を微小量のオイルがエアとともに
流れる際、オイルをその検知量が多くなるようにしかも
一定の軌道上を流れるようにして光の反射や吸収を一定
化できるようにし、パイプを流れるオイルの検出を確実
に行なうことができるようにして検知精度の向上を図っ
たパイプを流れるオイルの検出方法を提供することを目
的とする。
The present invention has been made in view of such a problem, and when a very small amount of oil flows in a pipe together with air, the oil flows on a fixed orbit so that the amount of the detected oil increases. Thus, it is possible to provide a method of detecting oil flowing through a pipe so that the reflection and absorption of light can be made constant, and the detection of oil flowing through the pipe can be reliably performed to improve the detection accuracy. Aim.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るための本発明の技術的手段は、透光性で断面円を形成
する内壁面を有したパイプに、オイルをエアによって該
パイプの内壁面に沿わせて流すシステムにおける当該パ
イプを流れるオイルを検出するパイプを流れるオイルの
検出方法であって、上記パイプの外側であって1つの断
面円の中心を中心とする円周上に該パイプ内に光を照射
する発光部と該発光部から照射され該パイプを通過した
光を受光する受光部とを設け、該受光部の光の受光に基
づいて該パイプを流れるオイルを検出するパイプを流れ
るオイルの検出方法において、上記パイプの上記発光部
及び受光部の位置する部分を弧状に曲げ、上記オイルを
該曲げられた該パイプの最も曲率半径の小さい内側の内
壁面の軌道上に沿って主に流れるようにして検出する構
成とした。この構成によれば、パイプにおいては、発光
部及び受光部の位置する部分を弧状に曲げているので、
オイルは、曲げられたパイプの最も曲率半径の小さい内
側の内壁面の軌道上に沿って主に流れるようになる。こ
の流れるオイルがパイプの最も曲率半径の小さい内側の
内壁面の軌道上に沿って主に流れる理由は、エアがパイ
プを弧状に曲げた箇所を通るとき、エアの風圧が内壁面
の曲げの外側に強く作用するため、曲げの外側にオイル
が付着できず、オイルが風圧の小さい曲げの内側に集中
すること等に起因するものと考えられる。このことか
ら、発光部と受光部が設けられた箇所のパイプにおいて
はオイルの軌道が特定され、そのため、オイルの粒どう
しが結合しオイル粒の体積が大きくなり、発光面から照
射された光がオイル粒を通過する度合いが高くなり、オ
イル粒による光の屈折,反射,吸収作用等の影響が一定
になる。この結果、オイルが流れているときに受光面が
受ける光量の変化が略一定になり、パイプを流れるオイ
ルの検出が確実に行なわれ、検知精度の向上が図られ
る。また、オイルを感知するためのしきい値を大きくす
ることができるので、しきい値が大きくなると受光量の
変化を感知することが容易になる。
The technical means of the present invention for solving the above-mentioned problem is that oil is applied to a pipe having an inner wall surface which is translucent and has a circular cross section by air. A method for detecting oil flowing through a pipe for detecting oil flowing through the pipe in a system flowing along an inner wall surface, wherein the oil is located on a circumference centered on the center of one cross-sectional circle outside the pipe. A light emitting unit for irradiating light in a pipe and a light receiving unit for receiving light emitted from the light emitting unit and passing through the pipe, and a pipe for detecting oil flowing through the pipe based on light reception of the light receiving unit In the method for detecting oil flowing through the pipe, a portion of the pipe where the light-emitting portion and the light-receiving portion are located is bent in an arc shape, and the oil follows the orbit of the bent inner pipe on the inner wall surface having the smallest radius of curvature. Te and configured to detect as the main flows. According to this configuration, in the pipe, the portion where the light emitting unit and the light receiving unit are located is bent in an arc shape,
The oil mainly flows along the trajectory of the inner wall surface of the bent pipe having the smallest radius of curvature. The main reason why this flowing oil flows along the orbit of the inner wall surface with the smallest radius of curvature of the pipe is that when the air passes through the place where the pipe is bent in an arc shape, the wind pressure of the air is outside the bending of the inner wall surface This is considered to be caused by the fact that oil cannot adhere to the outside of the bend and the oil concentrates inside the bend having a small wind pressure. From this, the trajectory of the oil is specified in the pipe where the light-emitting part and the light-receiving part are provided, so that the oil particles combine to increase the volume of the oil particles, and the light emitted from the light-emitting surface The degree of passage through the oil particles is increased, and the effects of light refraction, reflection, absorption and the like by the oil particles become constant. As a result, the change in the amount of light received by the light receiving surface when the oil is flowing is substantially constant, the oil flowing through the pipe is reliably detected, and the detection accuracy is improved. In addition, since the threshold value for detecting oil can be increased, it becomes easier to detect a change in the amount of received light when the threshold value is increased.

【0006】また、必要に応じ、上記発光部の発光面に
対して垂直関係にありかつ上記断面円の中心を通る発光
面垂線と、上記受光部の受光面に対して垂直関係にあり
かつ上記断面円の中心を通る受光面垂線とのなす角度θ
が60°〜110°の内角範囲になるようにするととも
に、上記発光面垂線と上記受光面垂線との上記内角範囲
の間に、上記断面円上の上記軌道の軌道点を位置させ
て、上記発光部及び上記受光部を配置した構成とした。
このように発光部と受光部とを配置すると、受光面が受
ける光量の変化を確実に大きくすることができ、より一
層しきい値を大きくすることができる。換言すれば、受
光量の変化を感知するためのしきい値が大きくなるの
で、受光量の変化を感知することが容易になる。
If necessary, the light emitting surface of the light emitting portion is perpendicular to the light emitting surface passing through the center of the sectional circle, and the light emitting surface of the light receiving portion is perpendicular to the light receiving surface. Angle θ with the light-receiving surface perpendicular passing through the center of the cross-section circle
The angle of the orbit of the orbit on the cross-sectional circle is located between the inner angle range between the light emitting surface normal and the light receiving surface normal while the inner angle range of 60 ° to 110 ° is set. The light emitting section and the light receiving section were arranged.
By arranging the light emitting unit and the light receiving unit in this manner, the change in the amount of light received by the light receiving surface can be reliably increased, and the threshold value can be further increased. In other words, the threshold value for detecting the change in the amount of received light increases, so that it is easy to detect the change in the amount of received light.

【0007】更に、必要に応じ、上記発光面垂線と上記
受光面垂線とのなす角度θを90°に設定し、上記断面
円の中心と該断面円上の上記軌道の軌道点とを結ぶ線を
基準線として、該基準線と上記発光面垂線とのなす角度
αを20°〜80°に設定した構成とした。角度θを9
0°にすれば、オイルを通過する光の受光面に到達する
割合が略半分になり、パイプを流れるオイルの有無によ
り受光面の受光量の変化が大きくなる。角度θを90°
より小さくすれば、受光量は多くなるがオイルを通過す
る光の受光面に到達する割合が多くなりすぎてオイルの
有無による受光面の受光量の変化は小さくなる。また、
角度θを90°より大きくすれば、受光量が少なくなる
とともに、オイルを通過する光の受光面に到達する割合
が小さくなるのでオイルの有無による受光面の受光量の
変化も小さくなる。即ち、適度の受光量が得られ、オイ
ルの有無による受光面の受光量の変化を大きくすること
ができる角度θが90°の場合には、受光部は受光量の
変化を感知し易くなりオイルの検出精度が向上する。こ
のとき、角度αを20°〜80°に設定すれば、オイル
の有無による受光面の受光量の変化をより大きくするこ
とができ、受光量の変化を感知するためのしきい値が大
きくなるので、受光量の変化を感知することが容易にな
る。更にまた、必要に応じ、上記発光部の発光面をパイ
プの直径よりも小さい幅を有した構成とした。発光面の
幅が小さくなった分、発光面から照射される光がオイル
を通過する度合いが増大し、受光面の受光量の変化がオ
イルの有無に大きく依存するようになり受光量の変化が
大きくなり、受光量の変化を感知するためのしきい値が
大きくなるので、受光量の変化を感知することが容易に
なる。
Further, if necessary, the angle θ between the perpendicular to the light emitting surface and the perpendicular to the light receiving surface is set to 90 °, and a line connecting the center of the cross section circle and the orbit point of the orbit on the cross section circle. , And the angle α between the reference line and the perpendicular to the light emitting surface is set to 20 ° to 80 °. Angle θ is 9
If the angle is set to 0 °, the ratio of the light passing through the oil to the light receiving surface is substantially halved, and the amount of light received on the light receiving surface becomes large depending on the presence or absence of the oil flowing through the pipe. Angle θ is 90 °
If it is smaller, the amount of received light increases, but the ratio of light passing through the oil to the light receiving surface becomes too large, and the change in the amount of light received on the light receiving surface due to the presence or absence of oil becomes small. Also,
If the angle θ is larger than 90 °, the amount of received light decreases and the rate of light passing through the oil reaching the light receiving surface decreases, so that the change in the amount of light received on the light receiving surface due to the presence or absence of oil also decreases. That is, when the angle θ at which an appropriate amount of received light can be obtained and the change in the amount of received light on the light receiving surface due to the presence or absence of oil is 90 ° is 90 °, the light receiving unit can easily sense the change in the amount of received light, and Detection accuracy is improved. At this time, if the angle α is set to 20 ° to 80 °, the change in the amount of received light on the light receiving surface due to the presence or absence of oil can be made larger, and the threshold value for sensing the change in the amount of received light becomes larger. Therefore, it becomes easy to detect a change in the amount of received light. Furthermore, if necessary, the light emitting surface of the light emitting section has a configuration having a width smaller than the diameter of the pipe. As the width of the light-emitting surface decreases, the degree of light emitted from the light-emitting surface passing through the oil increases, and the change in the amount of light received on the light-receiving surface greatly depends on the presence or absence of oil. As the threshold value for detecting the change in the amount of received light increases, it becomes easy to detect the change in the amount of received light.

【0008】[0008]

【発明の実施の形態】以下、添付図面に基づいて本発明
の実施の形態に係るパイプを流れるオイルの検出方法を
説明する。尚、上記と同様のものには同一の符号を付し
て説明する。図1に示す本発明の実施の形態に係るパイ
プを流れるオイルの検出方法は、例えば、図2に示すよ
うに、微小量のオイルLをエアを用いて供給部17へ供
給させる給油システムSにおいて、検出装置1を用いて
実現される。給油システムSは、エア源10からレギュ
レータ11を介して通路管12に供給されるエアによっ
て駆動されオイルLを定量吐出するプランジャポンプ1
3aを備えたオイル供給部13と、オイル供給部13に
至るエア管路から分岐して設けられエア源10から別の
レギュレータ11を介してエアを供給するエア供給管路
14と、オイル供給部13のプランジャポンプ13aか
ら吐出されるオイルのオイル管路15とエア供給管路1
4とが接続されオイルとエアとを混合して送給可能にす
る3方向継ぎ手状のミキシングブロック16と、該ミキ
シングブロック16からオイル供給部17に至りエアが
混合したオイルが流されるパイプPと、パイプPの先端
に接続され供給部17へオイルLを噴出するノズル18
とを備えて構成されている。この給油システムSにおい
ては、プランジャポンプ13aの一回の供給油量は、例
えば、0.01〜0.05ccで1分〜10分の休止時
間を有して間欠運転される。また、エア圧は、例えば、
0.1MPa〜0.5MPaに設定される。更に、パイ
プPは、図1,図3乃至図5にも示すように、透光性で
断面円Qを形成する内壁面6を有した例えば内径が2.
5mm(外径が4mm)のナイロンチューブ等の樹脂パ
イプで構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for detecting oil flowing through a pipe according to an embodiment of the present invention will be described below with reference to the accompanying drawings. Note that the same components as described above are denoted by the same reference numerals and described. The method of detecting oil flowing through a pipe according to the embodiment of the present invention shown in FIG. 1 is performed, for example, in an oil supply system S that supplies a small amount of oil L to a supply unit 17 using air as shown in FIG. , Using the detection device 1. The lubrication system S is driven by air supplied from an air source 10 to a passage pipe 12 via a regulator 11, and the plunger pump 1 discharges a fixed amount of oil L.
An oil supply section 13 having an oil supply section 3a, an air supply pipe 14 branched from an air pipe leading to the oil supply section 13 and supplying air from an air source 10 through another regulator 11; Oil line 15 and air supply line 1 for oil discharged from plunger pump 13a
A three-way joint-like mixing block 16 which is connected to the mixing block 4 to allow oil and air to be mixed and supplied; and a pipe P through which the mixed oil flows from the mixing block 16 to the oil supply section 17. , A nozzle 18 connected to the tip of the pipe P and ejecting the oil L to the supply unit 17
It is comprised including. In the refueling system S, the plunger pump 13a is operated intermittently with a single oil supply amount of, for example, 0.01 to 0.05 cc and a downtime of 1 minute to 10 minutes. The air pressure is, for example,
It is set to 0.1 MPa to 0.5 MPa. Further, as shown in FIGS. 1, 3 to 5, the pipe P has a light-transmitting inner wall surface 6 forming a cross-section circle Q.
It is composed of a resin pipe such as a 5 mm (outer diameter 4 mm) nylon tube.

【0009】そして、検出装置1は、給油システムSの
パイプPの所定の位置に設けられている。この検出装置
1は、図3乃至図5にも示すように、パイプPの外側で
あって1つの断面円Qの中心Oを中心とする円周上にパ
イプP内に光を照射する発光部2と、発光部2から照射
されパイプPを通過した光を受光する受光部3とを備
え、受光部3での光の受光に基づいてパイプPを流れる
オイルLを検出するものである。図1に示すように、発
光部2は、図示しない発光ダイオード等からなる光源を
内部に備え、給油システムSが稼動中に、発光面4を介
して光をパイプP内に照射し続けている。受光部3は、
内部に感光素子を備え受光面5を介して光を感知する。
受光部3では、パイプP内にオイルLが流れていないと
きに受光する光量を基準値(例えば100)とし、この
基準値に対してしきい値(例えば100±30)が設定
されている。このしきい値の設定によって、受光部3
は、受光する受光量が130以上あるいは70未満のと
きオイルLを検知できるように構成されている。また、
発光部2の発光面4は、パイプPの直径よりも小さい幅
を有して構成されている。尚、図3乃至図5において
は、説明の都合上、発光部2の発光面4は、パイプPの
直径よりも大きく記載してある。
The detecting device 1 is provided at a predetermined position of the pipe P of the refueling system S. As shown in FIGS. 3 to 5, the detecting device 1 emits light into the pipe P on the circumference around the center O of one cross-section circle Q outside the pipe P. 2 and a light receiving unit 3 for receiving light emitted from the light emitting unit 2 and passing through the pipe P, and detects the oil L flowing through the pipe P based on the light received by the light receiving unit 3. As shown in FIG. 1, the light emitting unit 2 includes a light source such as a light emitting diode (not shown) therein, and keeps irradiating light into the pipe P via the light emitting surface 4 while the refueling system S is operating. . The light receiving unit 3
A light-sensitive element is provided inside and light is sensed through a light-receiving surface 5.
In the light receiving unit 3, a light amount received when the oil L is not flowing in the pipe P is set as a reference value (for example, 100), and a threshold value (for example, 100 ± 30) is set for this reference value. By setting this threshold value, the light receiving unit 3
Is configured such that the oil L can be detected when the amount of received light is 130 or more or less than 70. Also,
The light emitting surface 4 of the light emitting unit 2 is configured to have a width smaller than the diameter of the pipe P. 3 to 5, the light emitting surface 4 of the light emitting unit 2 is larger than the diameter of the pipe P for convenience of explanation.

【0010】次に、この検出装置1を用いて実現される
本発明の実施の形態に係るパイプを流れるオイルの検出
方法について、詳しく説明する。実施の形態に係る検出
方法は、パイプPを流れるオイルLを検出するオイルの
検出方法であり、この検出方法においては、図1に示す
ように、パイプPの発光部2及び受光部3の位置する部
分を弧状に曲げ、オイルLを曲げられたパイプPの最も
曲率半径の小さい内側の内壁面6の軌道A上に沿って主
に流れるようにしている。この場合、曲率半径は適宜に
定めて良く、また、重力方向にとらわれず、曲げ方向は
上下左右どの方向でも良い。この流れるオイルLがパイ
プPの最も曲率半径の小さい内側の内壁面6の軌道A上
に沿って主に流れる理由は、エアがパイプPを弧状に曲
げた箇所を通るとき、エアの風圧が内壁面6の曲げの外
側に強く作用するため、曲げの外側にオイルLが付着で
きず、オイルLが風圧の小さい曲げの内側に集中するこ
と等に起因するものと考えられる。
Next, a method of detecting oil flowing through a pipe according to an embodiment of the present invention, which is realized by using the detection device 1, will be described in detail. The detection method according to the embodiment is an oil detection method for detecting oil L flowing through a pipe P. In this detection method, as shown in FIG. The bent portion is bent in an arc shape so that the oil L flows mainly along the trajectory A of the inner wall surface 6 on the inner side having the smallest radius of curvature of the bent pipe P. In this case, the radius of curvature may be appropriately determined, and is not limited to the direction of gravity, and the bending direction may be any direction of up, down, left, and right. The reason that the flowing oil L flows mainly along the trajectory A of the inner inner wall surface 6 having the smallest radius of curvature of the pipe P is that when the air passes through a place where the pipe P is bent in an arc shape, the wind pressure of the air is It is considered that the oil L strongly adheres to the outside of the bend of the wall surface 6 so that the oil L cannot adhere to the outside of the bend, and the oil L concentrates on the inside of the bend having a small wind pressure.

【0011】また、本発明の実施の形態に係る検出方法
において、発光部2と受光部3の位置関係は以下のよう
に定められている。図3乃至図5に示すように、発光部
2と受光部3とは、発光部2の発光面4に対して垂直関
係にありかつ内壁面6の断面円Qの中心Oを通る発光面
垂線Nと、受光部3の受光面5に対して垂直関係にあり
かつ内壁面6の断面円Qの中心Oを通る受光面垂線Mと
のなす角度θが60°〜110°の内角範囲になるよう
にするとともに、発光面垂線Nと受光面垂線Mとの内角
θ範囲の間に、断面円Q上の軌道Aの軌道点aを位置さ
せるように配置されている。図3は、角度θが60°の
場合を示し、図4は角度θが110°の場合を示す。図
5は角度θが90°の場合を示す。
In the detection method according to the embodiment of the present invention, the positional relationship between the light emitting unit 2 and the light receiving unit 3 is determined as follows. As shown in FIGS. 3 to 5, the light emitting unit 2 and the light receiving unit 3 are perpendicular to the light emitting surface 4 of the light emitting unit 2 and pass through the center O of the cross-section circle Q of the inner wall surface 6. The angle θ between N and the light receiving surface perpendicular M that is perpendicular to the light receiving surface 5 of the light receiving portion 3 and that passes through the center O of the cross-section circle Q of the inner wall surface 6 is within the range of 60 ° to 110 °. In addition, the trajectory point a of the trajectory A on the cross-sectional circle Q is arranged within the range of the inner angle θ between the light-emitting surface perpendicular N and the light-receiving surface perpendicular M. FIG. 3 shows a case where the angle θ is 60 °, and FIG. 4 shows a case where the angle θ is 110 °. FIG. 5 shows a case where the angle θ is 90 °.

【0012】図5に示すように、発光面垂線Nと受光面
垂線Mとのなす角度θを90°に設定した場合において
は、断面円Qの中心Oと断面円上の軌道Aの軌道点aと
を結ぶ線を基準線Xとして、基準線Xと発光面垂線Nと
のなす角度αを20°〜80°に設定するのがより好ま
しい。また、図3乃至図5に示すように、特に、発光部
2と受光部3の位置関係は、発光面4及び受光面5がパ
イプPに当接するようにしている。
As shown in FIG. 5, when the angle θ between the light emitting surface normal N and the light receiving surface normal M is set to 90 °, the center O of the sectional circle Q and the orbital point of the orbit A on the sectional circle Q It is more preferable to set the angle α between the reference line X and the light-emitting surface perpendicular N to 20 ° to 80 °, with the line connecting “a” as the reference line X. In addition, as shown in FIGS. 3 to 5, in particular, the positional relationship between the light emitting unit 2 and the light receiving unit 3 is such that the light emitting surface 4 and the light receiving surface 5 abut on the pipe P.

【0013】従って、この給油システムSによれば、エ
ア源10からエアが供給されオイル供給部13のプラン
ジャポンプ13aからオイルが吐出されると、ミキシン
グブロック16でオイルとエアとが混合され、このエア
が混合したオイルがパイプPを通ってオイル供給部17
に至りノズル18から噴出される。この状態において
は、常時、検出装置1において、パイプPを流れるオイ
ルLが検出されており、この検出によりシステムの異常
が認知できるようになる。この検出装置1を用いたオイ
ルの検出方法によれば、図1に示すように、パイプPに
おいて、発光部2及び受光部3の位置する部分を弧状に
曲げているので、オイルLは、曲げられたパイプPの最
も曲率半径の小さい内側の内壁面6の軌道A上に沿って
主に流れるようになることから、オイルLの軌道Aが特
定され、しかも、この軌道Aが特定されることにより、
オイルLの粒どうしが結合しオイルL粒の体積が大きく
なり、発光面4から照射された光がオイルL粒を通過す
る度合いが高くなり、オイルL粒による光の屈折,反
射,吸収作用等の影響を一定化できるようになり、その
ため、パイプPを流れるオイルLの検出を確実に行なう
ことができるようになり、検出精度の向上が図られる。
Therefore, according to the oil supply system S, when the air is supplied from the air source 10 and the oil is discharged from the plunger pump 13a of the oil supply section 13, the oil and the air are mixed by the mixing block 16, and The oil mixed with the air passes through the pipe P and is supplied to the oil supply unit 17.
And is ejected from the nozzle 18. In this state, the detection device 1 always detects the oil L flowing through the pipe P, and this detection allows the abnormality of the system to be recognized. According to the oil detecting method using the detecting device 1, as shown in FIG. 1, the portion where the light emitting unit 2 and the light receiving unit 3 are located is bent in an arc shape in the pipe P, so that the oil L is bent. Since the flow mainly flows along the trajectory A of the inner wall surface 6 having the smallest radius of curvature of the pipe P, the trajectory A of the oil L is specified, and the trajectory A is specified. By
The oil L particles are combined with each other to increase the volume of the oil L particles, so that the light emitted from the light-emitting surface 4 passes through the oil L particles, and the refraction, reflection, absorption, etc. of the light by the oil L particles. Of the oil L flowing through the pipe P can be reliably detected, and the detection accuracy is improved.

【0014】即ち、発光部2と受光部3との位置関係
を、角度θが60°〜110°の内角範囲になるように
するとともに、発光面垂線Nと受光面垂線Mとの内角θ
範囲の間に、断面円Q上の軌道Aの軌道点aを位置させ
ることにより、発光面4から照射された光のオイルLを
通過する度合いが増大し、オイルLが流れていないとき
の受光量と、オイルLが流れているときの受光量との間
に大きな差(受光量の変化)が生じる。この受光量の変
化が大きくなることにより、受光量の変化を感知するた
めのしきい値を大きくし、オイルLの検出を容易にする
ことができる。換言すれば、しきい値が大きくなるの
で、感度の低い受光素子を用いて受光量の変化を感知さ
せることができる。
That is, the positional relationship between the light-emitting portion 2 and the light-receiving portion 3 is set so that the angle θ is within the range of 60 ° to 110 ° and the internal angle θ between the light-emitting surface normal N and the light-receiving surface normal M.
By locating the trajectory point a of the trajectory A on the cross-section circle Q within the range, the degree of light emitted from the light emitting surface 4 passing through the oil L increases, and the light received when the oil L does not flow is received. A large difference (a change in the received light amount) occurs between the amount and the received light amount when the oil L is flowing. By increasing the change in the amount of received light, the threshold value for sensing the change in the amount of received light can be increased, and the oil L can be easily detected. In other words, since the threshold value becomes large, a change in the amount of received light can be sensed using a light-receiving element having low sensitivity.

【0015】また、この場合、発光部2の発光面4は、
パイプPの直径よりも小さい幅を有して構成されている
ので、発光面4から照射される光が軌道A上のオイルL
を通過するように発光面4を位置させた。発光面4が小
さくなった分、発光面4から照射される光がオイルLを
通過する度合いが増大し、オイルLの有無に受光面5の
光量の変化が大きく依存するため、オイルLの有無によ
り受光量の変化が大きくなるので受光部3はその変化を
感知し易くなり、オイルLの検出精度を向上することが
できる。また、発光面4の面積が小さくなれば同じ照度
比において消費熱量を減少させるので経済性にも優れ
る。更に、図3乃至図5に示すように、発光部2の発光
面4をパイプPに当接するようにし、受光部3の受光面
5もパイプPに当接するようにしているので、発光面4
から照射される光がオイルLを通過する度合がより増大
し、受光面5の受光量の変化がより大きくなるので、オ
イルLの検出精度を向上することができる。
In this case, the light emitting surface 4 of the light emitting section 2 is
Since it is configured to have a width smaller than the diameter of the pipe P, the light emitted from the light emitting surface 4 is
The light emitting surface 4 was positioned so as to pass through. As the light emitting surface 4 becomes smaller, the degree of light emitted from the light emitting surface 4 passing through the oil L increases, and the change in the amount of light on the light receiving surface 5 greatly depends on the presence or absence of the oil L. As a result, the change in the amount of received light increases, so that the light receiving unit 3 can easily detect the change, and the accuracy of detecting the oil L can be improved. Further, when the area of the light emitting surface 4 is reduced, the amount of heat consumed is reduced at the same illuminance ratio, so that the economy is excellent. Further, as shown in FIGS. 3 to 5, the light emitting surface 4 of the light emitting unit 2 is in contact with the pipe P, and the light receiving surface 5 of the light receiving unit 3 is also in contact with the pipe P.
Therefore, the degree of passage of the light irradiated from the oil L through the oil L increases, and the change in the amount of light received on the light receiving surface 5 increases, so that the detection accuracy of the oil L can be improved.

【0016】また、図5に示すように、発光面垂線Nと
受光面垂線Mとのなす角度θを90°に設定した場合に
おいて、断面円Qの中心Oと断面円上の軌道Aの軌道点
aとを結ぶ線を基準線Xとして、基準線Xと発光面垂線
Nとのなす角度αを20°〜80°に設定した場合に
は、角度θが90°の位置関係なので、パイプPを流れ
るオイルLの有無による受光量の変化を大きくできるこ
とがわかった。角度θを90°より小さくすれば、受光
量は多くなるがオイルLを通過する光の受光面5に到達
する割合も大きくなりすぎてオイルLの有無による受光
量の変化は小さくなる。また、角度θを90°より大き
くすれば、受光量が少なくなるとともに、オイルLを通
過する光の受光面5に到達する割合が小さくなるのでオ
イルLの有無による受光量の変化も小さくなる。このよ
うに、受光面5における受光量の変化を最大にすること
ができるのは、角度θが90°のときである。更に、角
度θが90°のとき、角度αを20°〜80°にするこ
とにより、オイルLを通過した発光面4から照射された
光の受光面5で受光する光量の変化がより大きくなる。
このような配置条件にすれば、オイルLが流れていると
きといないときとで受光面5が受光する光量に大きな差
を生じさせることができるので、感知のためのしきい値
を大きくすることができ、高感度の高価な感光素子を用
いることなく、通常の感光素子を用いてオイルLを確実
に検出させることができる。
As shown in FIG. 5, when the angle θ between the light emitting surface normal N and the light receiving surface normal M is set to 90 °, the center O of the cross-section circle Q and the trajectory of the trajectory A on the cross-section circle If the angle α between the reference line X and the light-emitting surface normal N is set to 20 ° to 80 ° with the line connecting the point a as the reference line X, since the angle θ is 90 °, the pipe P It can be seen that the change in the amount of received light depending on the presence or absence of the oil L flowing through the can be increased. If the angle θ is smaller than 90 °, the amount of received light increases, but the ratio of light passing through the oil L to the light receiving surface 5 becomes too large, and the change in the amount of received light due to the presence or absence of the oil L decreases. If the angle θ is larger than 90 °, the amount of received light decreases, and the ratio of light passing through the oil L to the light receiving surface 5 decreases, so that the change in the amount of received light due to the presence or absence of the oil L also decreases. As described above, the change in the amount of received light on the light receiving surface 5 can be maximized when the angle θ is 90 °. Further, when the angle θ is 90 °, by setting the angle α to 20 ° to 80 °, the change in the amount of light received by the light receiving surface 5 of the light emitted from the light emitting surface 4 that has passed through the oil L becomes larger. .
With such an arrangement condition, it is possible to cause a large difference in the amount of light received by the light receiving surface 5 when the oil L is flowing and when the oil L is not flowing, so that the threshold value for sensing is increased. Thus, the oil L can be reliably detected using a normal photosensitive element without using a sensitive and expensive photosensitive element.

【0017】尚、上記実施の形態に係るパイプを流れる
オイルの検出方法において、オイルLがパイプPを流れ
たときに受光部3で受光する光量を変化させてオイルL
を検出させたが、発光部2と受光部3との位置関係を調
整してオイルLがパイプPを流れたときに受光部3で受
光する光量を増加するように、あるいは減少させるよう
にして、光量の増加から、あるいは減少からオイルLを
検出させることもできる。
In the method of detecting oil flowing through a pipe according to the above-described embodiment, the amount of light received by the light receiving section 3 when the oil L flows through the pipe P is changed.
Is detected, but the positional relationship between the light emitting unit 2 and the light receiving unit 3 is adjusted so that the amount of light received by the light receiving unit 3 when the oil L flows through the pipe P is increased or decreased. The oil L can be detected from an increase or a decrease in the amount of light.

【0018】[0018]

【発明の効果】以上説明したように、本発明のパイプを
流れるオイルの検出方法によれば、パイプの発光部及び
受光部の位置する部分を弧状に曲げ、曲げられたパイプ
の最も曲率半径の小さい内側の内壁面の軌道上に沿って
微小量のオイルが主に流れるようにし、オイルが流れる
内壁面の軌道に対して光を照射してオイルを通過した光
の作用により、受光部の受光量に一定の変化を与えるの
で、その変化を感知してパイプを流れるオイルを確実に
検出することができる。また、発光部の発光面に対して
垂直関係にありかつ内壁面の断面円の中心を通る発光面
垂線と、受光部の受光面に対して垂直関係にありかつ内
壁面の断面円の中心を通る受光面垂線とのなす角度θが
60°〜110°の内角範囲になるようにするととも
に、発光面垂線と受光面垂線との内角側の間に、断面円
上の軌道の軌道点を位置させて、発光部及び受光部を配
置した場合には、受光面が受ける光量の変化を確実に大
きくすることができ、より一層しきい値を大きくするこ
とができるので、受光量の変化を感知することが容易に
なることから、オイルの検出精度を向上することができ
る。
As described above, according to the method for detecting oil flowing through a pipe according to the present invention, the portion where the light emitting portion and the light receiving portion of the pipe are located is bent in an arc shape, and the radius of curvature of the bent pipe is the largest. A small amount of oil mainly flows along the trajectory of the small inner wall surface, and the light is irradiated on the trajectory of the inner wall surface through which the oil flows, and the light received by the light receiving unit Since a constant change is given to the amount, the change can be sensed to reliably detect the oil flowing through the pipe. In addition, the light emitting surface perpendicular to the light emitting surface of the light emitting portion and passing through the center of the cross section circle of the inner wall surface, and the vertical relationship to the light receiving surface of the light receiving portion and the center of the cross sectional circle of the inner wall surface are The angle θ formed by the perpendicular to the light-receiving surface passing therethrough is set to be within the inner angle range of 60 ° to 110 °, and the orbit point of the trajectory on the cross-sectional circle is located between the inner angles of the perpendicular to the light-emitting surface and the light-receiving surface perpendicular When the light emitting unit and the light receiving unit are arranged, the change in the amount of light received by the light receiving surface can be reliably increased, and the threshold value can be further increased. This makes it easier to carry out, so that the oil detection accuracy can be improved.

【0019】更に、発光面垂線と受光面垂線とのなす角
度θを90°に設定し、断面円の中心と断面円上の軌道
の軌道点とを結ぶ線を基準線として、基準線と発光面垂
線とのなす角度αを20°〜80°に設定した場合に
は、オイルの有無による受光面の受光量の変化をより大
きくすることができる適度の受光量が得られ、受光部が
その変化を感知し易くなるので、オイルの検出精度を向
上させることができる。更にまた、発光部の発光面をパ
イプの直径よりも小さい幅にした場合には、発光面から
照射される光がオイルを通過する度合いが増大するた
め、受光面の光量の変化はオイルの有無に大きく依存す
ることになり、受光部はその変化を感知し易くなるの
で、オイルの検出精度を向上させることができる。
Further, the angle θ between the perpendicular to the light-emitting surface and the perpendicular to the light-receiving surface is set to 90 °, and the line connecting the center of the cross-sectional circle and the orbital point of the orbit on the cross-sectional circle is used as the reference line, and When the angle α formed with the surface perpendicular is set to 20 ° to 80 °, an appropriate amount of received light that can further increase the change in the amount of received light on the light receiving surface due to the presence or absence of oil is obtained. Since the change can be easily sensed, the accuracy of oil detection can be improved. Furthermore, if the light emitting surface of the light emitting section is made smaller in width than the diameter of the pipe, the degree of light passing through the oil from the light emitting surface increases, so that the change in the amount of light on the light receiving surface depends on the presence or absence of oil. , And the light receiving unit can easily detect the change, so that the oil detection accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るパイプを流れるオイ
ルの検出方法を示す図である。
FIG. 1 is a diagram showing a method for detecting oil flowing through a pipe according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るパイプを流れるオイ
ルの検出方法が利用される給油システムの一例を示す図
である。
FIG. 2 is a diagram illustrating an example of an oil supply system in which a method for detecting oil flowing through a pipe according to an embodiment of the present invention is used.

【図3】本発明の実施の形態に係るパイプを流れるオイ
ルの検出方法を示す断面図であり、θが60°の場合を
示す。
FIG. 3 is a cross-sectional view showing a method for detecting oil flowing through a pipe according to the embodiment of the present invention, showing a case where θ is 60 °.

【図4】本発明の実施の形態に係るパイプを流れるオイ
ルの検出方法を示す断面図であり、θが110°の場合
を示す。
FIG. 4 is a cross-sectional view showing a method for detecting oil flowing through a pipe according to the embodiment of the present invention, showing a case where θ is 110 °.

【図5】本発明の実施の形態に係るパイプを流れるオイ
ルの検出方法を示す断面図である。
FIG. 5 is a cross-sectional view illustrating a method for detecting oil flowing through a pipe according to the embodiment of the present invention.

【図6】従来のパイプを流れるオイルの検出方法の一例
を示す断面図である。
FIG. 6 is a sectional view showing an example of a conventional method for detecting oil flowing through a pipe.

【図7】直線状のパイプを流れるオイルの状態を示す断
面図である。
FIG. 7 is a sectional view showing a state of oil flowing through a straight pipe.

【符号の説明】[Explanation of symbols]

P パイプ L オイル N 発光面垂線 M 受光面垂線 Q 断面円 O 中心 α 角度 θ 角度 X 基準線 A 軌道 a 軌道点 1 検出装置 2 発光部 3 受光部 4 発光面 5 受光面 6 内壁面 P pipe L oil N perpendicular to light emitting surface M perpendicular to light receiving surface Q section circle O center α angle θ angle X reference line A orbit a orbit point 1 detector 2 light emitting unit 3 light receiving unit 4 light emitting surface 5 light receiving surface 6 inner wall surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性で断面円を形成する内壁面を有し
たパイプに、オイルをエアによって該パイプの内壁面に
沿わせて流すシステムにおける当該パイプを流れるオイ
ルを検出するパイプを流れるオイルの検出方法であっ
て、 上記パイプの外側であって1つの断面円の中心を中心と
する円周上に該パイプ内に光を照射する発光部と該発光
部から照射され該パイプを通過した光を受光する受光部
とを設け、該受光部の光の受光に基づいて該パイプを流
れるオイルを検出するパイプを流れるオイルの検出方法
において、 上記パイプの上記発光部及び受光部の位置する部分を弧
状に曲げ、上記オイルを該曲げられた該パイプの最も曲
率半径の小さい内側の内壁面の軌道上に沿って主に流れ
るようにして検出することを特徴とするパイプを流れる
オイルの検出方法。
An oil flowing through a pipe for detecting oil flowing through a pipe in a system in which oil flows along the inner wall of the pipe by air through a pipe having an inner wall surface that forms a circular cross section and is transparent. A light-emitting unit that irradiates light into the pipe on a circumference around the center of one cross-section circle outside the pipe and a light-emitting unit that is irradiated from the light-emitting unit and passes through the pipe. A light receiving unit for receiving light; a method for detecting oil flowing through the pipe based on light reception of the light from the light receiving unit, wherein a portion of the pipe where the light emitting unit and the light receiving unit are located; An oil flowing through the pipe, wherein the oil is detected by flowing the oil mainly along the trajectory of the inner wall surface having the smallest radius of curvature of the bent pipe. The method of detection.
【請求項2】 上記発光部の発光面に対して垂直関係に
ありかつ上記断面円の中心を通る発光面垂線と、上記受
光部の受光面に対して垂直関係にありかつ上記断面円の
中心を通る受光面垂線とのなす角度θが60°〜110
°の内角範囲になるようにするとともに、上記発光面垂
線と上記受光面垂線との上記内角範囲の間に、上記断面
円上の上記軌道の軌道点を位置させて、上記発光部及び
上記受光部を配置したことを特徴とする請求項1記載の
パイプを流れるオイルの検出方法。
2. A light emitting surface perpendicular to the light emitting surface of the light emitting portion and passing through the center of the cross section circle, and perpendicular to the light receiving surface of the light receiving portion and the center of the cross sectional circle. Between the light receiving surface perpendicular passing through and
°, and the orbital point of the orbit on the cross-sectional circle is located between the inner angle range between the light-emitting surface normal and the light-receiving surface normal, and The method for detecting oil flowing through a pipe according to claim 1, wherein a portion is disposed.
【請求項3】 上記発光面垂線と上記受光面垂線とのな
す角度θを90°に設定し、 上記断面円の中心と該断面円上の上記軌道の軌道点とを
結ぶ線を基準線として、該基準線と上記発光面垂線との
なす角度αを20°〜80°に設定したことを特徴とす
る請求項2記載のパイプを流れるオイルの検出方法。
3. An angle θ between the perpendicular to the light emitting surface and the perpendicular to the light receiving surface is set to 90 °, and a line connecting the center of the sectional circle and the orbital point of the orbit on the sectional circle is used as a reference line. 3. The method for detecting oil flowing through a pipe according to claim 2, wherein an angle α between the reference line and the perpendicular to the light emitting surface is set to 20 ° to 80 °.
【請求項4】 上記発光部の発光面をパイプの直径より
も小さい幅を有して構成したことを特徴とする請求項2
または3記載のパイプを流れるオイルの検出方法。
4. A light-emitting surface of said light-emitting portion has a width smaller than a diameter of a pipe.
Or the method for detecting oil flowing through a pipe according to 3.
JP2000039366A 2000-02-17 2000-02-17 How to detect oil flowing in a pipe Expired - Lifetime JP4537524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039366A JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039366A JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Publications (2)

Publication Number Publication Date
JP2001227996A true JP2001227996A (en) 2001-08-24
JP4537524B2 JP4537524B2 (en) 2010-09-01

Family

ID=18562940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039366A Expired - Lifetime JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Country Status (1)

Country Link
JP (1) JP4537524B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024721A (en) * 2005-07-19 2007-02-01 Lube Corp Flow rate detection device for flowing oil
JP2007024722A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil detection device
JP2007024720A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil monitoring device
JP2008026152A (en) * 2006-07-21 2008-02-07 Lube Corp Flow detecting device of flowing liquid
JP2008133886A (en) * 2006-11-28 2008-06-12 Taco Co Ltd Oil mist detecting system
JP2009024763A (en) * 2007-07-19 2009-02-05 Daido Metal Co Ltd Oil air lubrication system
CN107631160A (en) * 2016-07-18 2018-01-26 德罗普萨股份公司 Oily flow monitoring device and its method and air/oil lubricating system
WO2020160911A1 (en) * 2019-02-07 2020-08-13 Robert Bosch Gmbh Machine tool device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579197U (en) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 Lubricant supply amount detection mechanism for air-oil lubricator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579197U (en) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 Lubricant supply amount detection mechanism for air-oil lubricator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024721A (en) * 2005-07-19 2007-02-01 Lube Corp Flow rate detection device for flowing oil
JP2007024722A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil detection device
JP2007024720A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil monitoring device
JP2008026152A (en) * 2006-07-21 2008-02-07 Lube Corp Flow detecting device of flowing liquid
JP2008133886A (en) * 2006-11-28 2008-06-12 Taco Co Ltd Oil mist detecting system
JP4533368B2 (en) * 2006-11-28 2010-09-01 Taco株式会社 Oil mist detection system
JP2009024763A (en) * 2007-07-19 2009-02-05 Daido Metal Co Ltd Oil air lubrication system
CN107631160A (en) * 2016-07-18 2018-01-26 德罗普萨股份公司 Oily flow monitoring device and its method and air/oil lubricating system
WO2020160911A1 (en) * 2019-02-07 2020-08-13 Robert Bosch Gmbh Machine tool device
CN113661029A (en) * 2019-02-07 2021-11-16 罗伯特·博世有限公司 Machine tool device
CN113661029B (en) * 2019-02-07 2024-06-11 罗伯特·博世有限公司 Machine tool device

Also Published As

Publication number Publication date
JP4537524B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US4673820A (en) Drop detecting system with focusing mirror element and vibrator
CA1205543A (en) Bubble detecting infusion apparatus
US7062953B2 (en) Sampling tube-type smoke detector
EP0196822B1 (en) Air-in-line detector
US20080051732A1 (en) Drop sensing device for monitoring intravenous fluid flow
JP2001227996A (en) Detection method for oil flowing through pipe
EP1211484A3 (en) Deviation detection device, rotary laser apparatus with the same, and position determining system with deviation detecting/correcting device
CN112313720B (en) Scatter detector and aspirated fire detection system with scatter detector
FR2680416A1 (en) FLUIDIZED POWDER FLOW RATE MEASUREMENT METHOD AND FLOW MEASURING DEVICE IMPLEMENTING SUCH A METHOD.
WO2006055272A3 (en) Apparatus and method for detecting liquid flow from a spray device
WO2005068944A3 (en) Coriolis mass flow sensor with optical vibration detectors
EP1049059A3 (en) Fire detector
US10465846B2 (en) Monitoring device and method of an oil flow mixed with air
JP3501178B2 (en) Liquid particle concentration detector
JPH0682566A (en) Liquid sensor for pipeline
JP3347013B2 (en) Oil mist sensor
US6534778B1 (en) Apparatus for detecting balls carried in tube
CN110973707A (en) Smog concentration detection device and electronic atomization equipment
WO2023013314A1 (en) Density measurement device
JP2003083779A (en) Flow detector for light transmitting pipe
CN214970347U (en) Detection device
JPS63317723A (en) Detecting apparatus for flow rate in flowmeter
EP0125122A2 (en) Parenteral solution delivery system
JP2002005726A (en) Liquid detector
JP2003147823A (en) Automatic faucet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term