JP4537524B2 - How to detect oil flowing in a pipe - Google Patents

How to detect oil flowing in a pipe Download PDF

Info

Publication number
JP4537524B2
JP4537524B2 JP2000039366A JP2000039366A JP4537524B2 JP 4537524 B2 JP4537524 B2 JP 4537524B2 JP 2000039366 A JP2000039366 A JP 2000039366A JP 2000039366 A JP2000039366 A JP 2000039366A JP 4537524 B2 JP4537524 B2 JP 4537524B2
Authority
JP
Japan
Prior art keywords
pipe
light
oil
light emitting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000039366A
Other languages
Japanese (ja)
Other versions
JP2001227996A (en
Inventor
昇 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lube Corp
Original Assignee
Lube Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lube Corp filed Critical Lube Corp
Priority to JP2000039366A priority Critical patent/JP4537524B2/en
Publication of JP2001227996A publication Critical patent/JP2001227996A/en
Application granted granted Critical
Publication of JP4537524B2 publication Critical patent/JP4537524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、透光性のパイプにオイルをエアによって流すシステムにおいて、パイプを流れるオイルを検出するパイプを流れるオイルの検出方法に関する。
【0002】
【従来の技術】
一般に、透光性のパイプにオイルをエアによって流すシステムとして、例えば、エア源から供給されるエアを利用しオイルをパイプに供給するオイル供給部と、エア源から供給されるエアをパイプに供給するエア供給部とを備え、オイル供給部から供給されたオイルをエア供給部から供給されたエアでパイプ中を流してパイプ先端に設けたノズルからエアが混合したオイルを吐出させるようにした潤滑システムが知られている。
このようなシステムにおいて、パイプを流れるオイルを検出することを行なうことがある。この検出方法としては、従来、例えば、図6に示すように、パイプPの外側にパイプP内に発光面4から光を照射する発光部2と発光部2の発光面4から照射されパイプPを通過した光を受光面5で受光する受光部3とを設け、受光部3が受光した受光量の変化に基づいてパイプPを流れるオイルLを検出する方法が知られている。
このパイプを流れるオイルの検出方法においては、光は発光面4から常時照射されているので、パイプPを流れるオイルLが存在しない場合、受光面5は発光面4から照射された光に応じた所定の光量を受光する一方、パイプPを流れるオイルLが存在する場合には、発光面4から照射された光がオイルLを通過し、その際、光の進路が屈折したり光が吸収等されたりするため、受光面5は所定の光量を受光できなくなることから、受光面5が受光する光量の変化を感知することによりパイプPを流れるオイルLの検出の判断を行なっている。
【0003】
【発明が解決しようとする課題】
ところで、この従来のパイプを流れるオイルの検出方法にあっては、図7に示すように、パイプPを流れるオイルLは、パイプPの内壁面をエアの吹きつけ圧に応じて、粒状またはさざなみ状になって流れ、そのオイルLの軌跡が不定となることから、オイルLに対する光の反射や吸収等がばらついてしまい、あるいは、オイルLが内壁面全面に亘ってさざなみ状になって流れる場合には、所望の光量の変化を受光面5に与えることができないことがあり、そのため、オイルLが流れているにもかかわらずこの流れを検知できないときがあり、検知の確実性に劣り検知精度が悪くなっているという問題があった。
【0004】
本発明は、このような問題点に鑑みてなされたもので、パイプ内を微小量のオイルがエアとともに流れる際、オイルをその検知量が多くなるようにしかも一定の軌道上を流れるようにして光の反射や吸収を一定化できるようにし、パイプを流れるオイルの検出を確実に行なうことができるようにして検知精度の向上を図ったパイプを流れるオイルの検出方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような課題を解決するための本発明の技術的手段は、透光性で断面円を形成する内壁面を有したパイプに、オイルをエアによって該パイプの内壁面に沿わせて流すシステムにおける当該パイプを流れるオイルを検出するパイプを流れるオイルの検出方法であって、上記パイプの外側であって1つの断面円の中心を中心とする円周上に該パイプ内に光を照射する発光部と該発光部から照射され該パイプを通過した光を受光する受光部とを設け、該受光部の光の受光に基づいて該パイプを流れるオイルを検出するパイプを流れるオイルの検出方法において、上記パイプの上記発光部及び受光部の位置する部分を弧状に曲げ、上記オイルを該曲げられた該パイプの最も曲率半径の小さい内側の内壁面の軌道上に沿って主に流れるようにして検出する構成とした。
この構成によれば、パイプにおいては、発光部及び受光部の位置する部分を弧状に曲げているので、オイルは、曲げられたパイプの最も曲率半径の小さい内側の内壁面の軌道上に沿って主に流れるようになる。
この流れるオイルがパイプの最も曲率半径の小さい内側の内壁面の軌道上に沿って主に流れる理由は、エアがパイプを弧状に曲げた箇所を通るとき、エアの風圧が内壁面の曲げの外側に強く作用するため、曲げの外側にオイルが付着できず、オイルが風圧の小さい曲げの内側に集中すること等に起因するものと考えられる。
このことから、発光部と受光部が設けられた箇所のパイプにおいてはオイルの軌道が特定され、そのため、オイルの粒どうしが結合しオイル粒の体積が大きくなり、発光面から照射された光がオイル粒を通過する度合いが高くなり、オイル粒による光の屈折,反射,吸収作用等の影響が一定になる。この結果、オイルが流れているときに受光面が受ける光量の変化が略一定になり、パイプを流れるオイルの検出が確実に行なわれ、検知精度の向上が図られる。
また、オイルを感知するためのしきい値を大きくすることができるので、しきい値が大きくなると受光量の変化を感知することが容易になる。
【0006】
また、必要に応じ、上記発光部の発光面に対して垂直関係にありかつ上記断面円の中心を通る発光面垂線と、上記受光部の受光面に対して垂直関係にありかつ上記断面円の中心を通る受光面垂線とのなす角度θが60°〜110°の内角範囲になるようにするとともに、上記発光面垂線と上記受光面垂線との上記内角範囲の間に、上記断面円上の上記軌道の軌道点を位置させて、上記発光部及び上記受光部を配置した構成とした。
このように発光部と受光部とを配置すると、受光面が受ける光量の変化を確実に大きくすることができ、より一層しきい値を大きくすることができる。換言すれば、受光量の変化を感知するためのしきい値が大きくなるので、受光量の変化を感知することが容易になる。
【0007】
更に、必要に応じ、上記発光面垂線と上記受光面垂線とのなす角度θを90°に設定し、上記断面円の中心と該断面円上の上記軌道の軌道点とを結ぶ線を基準線として、該基準線と上記発光面垂線とのなす角度αを20°〜80°に設定した構成とした。
角度θを90°にすれば、オイルを通過する光の受光面に到達する割合が略半分になり、パイプを流れるオイルの有無により受光面の受光量の変化が大きくなる。角度θを90°より小さくすれば、受光量は多くなるがオイルを通過する光の受光面に到達する割合が多くなりすぎてオイルの有無による受光面の受光量の変化は小さくなる。また、角度θを90°より大きくすれば、受光量が少なくなるとともに、オイルを通過する光の受光面に到達する割合が小さくなるのでオイルの有無による受光面の受光量の変化も小さくなる。
即ち、適度の受光量が得られ、オイルの有無による受光面の受光量の変化を大きくすることができる角度θが90°の場合には、受光部は受光量の変化を感知し易くなりオイルの検出精度が向上する。このとき、角度αを20°〜80°に設定すれば、オイルの有無による受光面の受光量の変化をより大きくすることができ、受光量の変化を感知するためのしきい値が大きくなるので、受光量の変化を感知することが容易になる。
更にまた、必要に応じ、上記発光部の発光面をパイプの直径よりも小さい幅を有した構成とした。
発光面の幅が小さくなった分、発光面から照射される光がオイルを通過する度合いが増大し、受光面の受光量の変化がオイルの有無に大きく依存するようになり受光量の変化が大きくなり、受光量の変化を感知するためのしきい値が大きくなるので、受光量の変化を感知することが容易になる。
【0008】
【発明の実施の形態】
以下、添付図面に基づいて本発明の実施の形態に係るパイプを流れるオイルの検出方法を説明する。尚、上記と同様のものには同一の符号を付して説明する。
図1に示す本発明の実施の形態に係るパイプを流れるオイルの検出方法は、例えば、図2に示すように、微小量のオイルLをエアを用いて供給部17へ供給させる給油システムSにおいて、検出装置1を用いて実現される。
給油システムSは、エア源10からレギュレータ11を介して通路管12に供給されるエアによって駆動されオイルLを定量吐出するプランジャポンプ13aを備えたオイル供給部13と、オイル供給部13に至るエア管路から分岐して設けられエア源10から別のレギュレータ11を介してエアを供給するエア供給管路14と、オイル供給部13のプランジャポンプ13aから吐出されるオイルのオイル管路15とエア供給管路14とが接続されオイルとエアとを混合して送給可能にする3方向継ぎ手状のミキシングブロック16と、該ミキシングブロック16からオイル供給部17に至りエアが混合したオイルが流されるパイプPと、パイプPの先端に接続され供給部17へオイルLを噴出するノズル18とを備えて構成されている。
この給油システムSにおいては、プランジャポンプ13aの一回の供給油量は、例えば、0.01〜0.05ccで1分〜10分の休止時間を有して間欠運転される。
また、エア圧は、例えば、0.1MPa〜0.5MPaに設定される。
更に、パイプPは、図1,図3乃至図5にも示すように、透光性で断面円Qを形成する内壁面6を有した例えば内径が2.5mm(外径が4mm)のナイロンチューブ等の樹脂パイプで構成される。
【0009】
そして、検出装置1は、給油システムSのパイプPの所定の位置に設けられている。この検出装置1は、図3乃至図5にも示すように、パイプPの外側であって1つの断面円Qの中心Oを中心とする円周上にパイプP内に光を照射する発光部2と、発光部2から照射されパイプPを通過した光を受光する受光部3とを備え、受光部3での光の受光に基づいてパイプPを流れるオイルLを検出するものである。
図1に示すように、発光部2は、図示しない発光ダイオード等からなる光源を内部に備え、給油システムSが稼動中に、発光面4を介して光をパイプP内に照射し続けている。受光部3は、内部に感光素子を備え受光面5を介して光を感知する。受光部3では、パイプP内にオイルLが流れていないときに受光する光量を基準値(例えば100)とし、この基準値に対してしきい値(例えば100±30)が設定されている。このしきい値の設定によって、受光部3は、受光する受光量が130以上あるいは70未満のときオイルLを検知できるように構成されている。
また、発光部2の発光面4は、パイプPの直径よりも小さい幅を有して構成されている。
尚、図3乃至図5においては、説明の都合上、発光部2の発光面4は、パイプPの直径よりも大きく記載してある。
【0010】
次に、この検出装置1を用いて実現される本発明の実施の形態に係るパイプを流れるオイルの検出方法について、詳しく説明する。
実施の形態に係る検出方法は、パイプPを流れるオイルLを検出するオイルの検出方法であり、この検出方法においては、図1に示すように、パイプPの発光部2及び受光部3の位置する部分を弧状に曲げ、オイルLを曲げられたパイプPの最も曲率半径の小さい内側の内壁面6の軌道A上に沿って主に流れるようにしている。この場合、曲率半径は適宜に定めて良く、また、重力方向にとらわれず、曲げ方向は上下左右どの方向でも良い。
この流れるオイルLがパイプPの最も曲率半径の小さい内側の内壁面6の軌道A上に沿って主に流れる理由は、エアがパイプPを弧状に曲げた箇所を通るとき、エアの風圧が内壁面6の曲げの外側に強く作用するため、曲げの外側にオイルLが付着できず、オイルLが風圧の小さい曲げの内側に集中すること等に起因するものと考えられる。
【0011】
また、本発明の実施の形態に係る検出方法において、発光部2と受光部3の位置関係は以下のように定められている。
図3乃至図5に示すように、発光部2と受光部3とは、発光部2の発光面4に対して垂直関係にありかつ内壁面6の断面円Qの中心Oを通る発光面垂線Nと、受光部3の受光面5に対して垂直関係にありかつ内壁面6の断面円Qの中心Oを通る受光面垂線Mとのなす角度θが60°〜110°の内角範囲になるようにするとともに、発光面垂線Nと受光面垂線Mとの内角θ範囲の間に、断面円Q上の軌道Aの軌道点aを位置させるように配置されている。図3は、角度θが60°の場合を示し、図4は角度θが110°の場合を示す。図5は角度θが90°の場合を示す。
【0012】
図5に示すように、発光面垂線Nと受光面垂線Mとのなす角度θを90°に設定した場合においては、断面円Qの中心Oと断面円上の軌道Aの軌道点aとを結ぶ線を基準線Xとして、基準線Xと発光面垂線Nとのなす角度αを20°〜80°に設定するのがより好ましい。
また、図3乃至図5に示すように、特に、発光部2と受光部3の位置関係は、発光面4及び受光面5がパイプPに当接するようにしている。
【0013】
従って、この給油システムSによれば、エア源10からエアが供給されオイル供給部13のプランジャポンプ13aからオイルが吐出されると、ミキシングブロック16でオイルとエアとが混合され、このエアが混合したオイルがパイプPを通ってオイル供給部17に至りノズル18から噴出される。
この状態においては、常時、検出装置1において、パイプPを流れるオイルLが検出されており、この検出によりシステムの異常が認知できるようになる。
この検出装置1を用いたオイルの検出方法によれば、図1に示すように、パイプPにおいて、発光部2及び受光部3の位置する部分を弧状に曲げているので、オイルLは、曲げられたパイプPの最も曲率半径の小さい内側の内壁面6の軌道A上に沿って主に流れるようになることから、オイルLの軌道Aが特定され、しかも、この軌道Aが特定されることにより、オイルLの粒どうしが結合しオイルL粒の体積が大きくなり、発光面4から照射された光がオイルL粒を通過する度合いが高くなり、オイルL粒による光の屈折,反射,吸収作用等の影響を一定化できるようになり、そのため、パイプPを流れるオイルLの検出を確実に行なうことができるようになり、検出精度の向上が図られる。
【0014】
即ち、発光部2と受光部3との位置関係を、角度θが60°〜110°の内角範囲になるようにするとともに、発光面垂線Nと受光面垂線Mとの内角θ範囲の間に、断面円Q上の軌道Aの軌道点aを位置させることにより、発光面4から照射された光のオイルLを通過する度合いが増大し、オイルLが流れていないときの受光量と、オイルLが流れているときの受光量との間に大きな差(受光量の変化)が生じる。この受光量の変化が大きくなることにより、受光量の変化を感知するためのしきい値を大きくし、オイルLの検出を容易にすることができる。換言すれば、しきい値が大きくなるので、感度の低い受光素子を用いて受光量の変化を感知させることができる。
【0015】
また、この場合、発光部2の発光面4は、パイプPの直径よりも小さい幅を有して構成されているので、発光面4から照射される光が軌道A上のオイルLを通過するように発光面4を位置させた。発光面4が小さくなった分、発光面4から照射される光がオイルLを通過する度合いが増大し、オイルLの有無に受光面5の光量の変化が大きく依存するため、オイルLの有無により受光量の変化が大きくなるので受光部3はその変化を感知し易くなり、オイルLの検出精度を向上することができる。また、発光面4の面積が小さくなれば同じ照度比において消費熱量を減少させるので経済性にも優れる。
更に、図3乃至図5に示すように、発光部2の発光面4をパイプPに当接するようにし、受光部3の受光面5もパイプPに当接するようにしているので、発光面4から照射される光がオイルLを通過する度合がより増大し、受光面5の受光量の変化がより大きくなるので、オイルLの検出精度を向上することができる。
【0016】
また、図5に示すように、発光面垂線Nと受光面垂線Mとのなす角度θを90°に設定した場合において、断面円Qの中心Oと断面円上の軌道Aの軌道点aとを結ぶ線を基準線Xとして、基準線Xと発光面垂線Nとのなす角度αを20°〜80°に設定した場合には、角度θが90°の位置関係なので、パイプPを流れるオイルLの有無による受光量の変化を大きくできることがわかった。角度θを90°より小さくすれば、受光量は多くなるがオイルLを通過する光の受光面5に到達する割合も大きくなりすぎてオイルLの有無による受光量の変化は小さくなる。また、角度θを90°より大きくすれば、受光量が少なくなるとともに、オイルLを通過する光の受光面5に到達する割合が小さくなるのでオイルLの有無による受光量の変化も小さくなる。このように、受光面5における受光量の変化を最大にすることができるのは、角度θが90°のときである。
更に、角度θが90°のとき、角度αを20°〜80°にすることにより、オイルLを通過した発光面4から照射された光の受光面5で受光する光量の変化がより大きくなる。
このような配置条件にすれば、オイルLが流れているときといないときとで受光面5が受光する光量に大きな差を生じさせることができるので、感知のためのしきい値を大きくすることができ、高感度の高価な感光素子を用いることなく、通常の感光素子を用いてオイルLを確実に検出させることができる。
【0017】
尚、上記実施の形態に係るパイプを流れるオイルの検出方法において、オイルLがパイプPを流れたときに受光部3で受光する光量を変化させてオイルLを検出させたが、発光部2と受光部3との位置関係を調整してオイルLがパイプPを流れたときに受光部3で受光する光量を増加するように、あるいは減少させるようにして、光量の増加から、あるいは減少からオイルLを検出させることもできる。
【0018】
【発明の効果】
以上説明したように、本発明のパイプを流れるオイルの検出方法によれば、パイプの発光部及び受光部の位置する部分を弧状に曲げ、曲げられたパイプの最も曲率半径の小さい内側の内壁面の軌道上に沿って微小量のオイルが主に流れるようにし、オイルが流れる内壁面の軌道に対して光を照射してオイルを通過した光の作用により、受光部の受光量に一定の変化を与えるので、その変化を感知してパイプを流れるオイルを確実に検出することができる。
また、発光部の発光面に対して垂直関係にありかつ内壁面の断面円の中心を通る発光面垂線と、受光部の受光面に対して垂直関係にありかつ内壁面の断面円の中心を通る受光面垂線とのなす角度θが60°〜110°の内角範囲になるようにするとともに、発光面垂線と受光面垂線との内角側の間に、断面円上の軌道の軌道点を位置させて、発光部及び受光部を配置した場合には、受光面が受ける光量の変化を確実に大きくすることができ、より一層しきい値を大きくすることができるので、受光量の変化を感知することが容易になることから、オイルの検出精度を向上することができる。
【0019】
更に、発光面垂線と受光面垂線とのなす角度θを90°に設定し、断面円の中心と断面円上の軌道の軌道点とを結ぶ線を基準線として、基準線と発光面垂線とのなす角度αを20°〜80°に設定した場合には、オイルの有無による受光面の受光量の変化をより大きくすることができる適度の受光量が得られ、受光部がその変化を感知し易くなるので、オイルの検出精度を向上させることができる。
更にまた、発光部の発光面をパイプの直径よりも小さい幅にした場合には、発光面から照射される光がオイルを通過する度合いが増大するため、受光面の光量の変化はオイルの有無に大きく依存することになり、受光部はその変化を感知し易くなるので、オイルの検出精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るパイプを流れるオイルの検出方法を示す図である。
【図2】本発明の実施の形態に係るパイプを流れるオイルの検出方法が利用される給油システムの一例を示す図である。
【図3】本発明の実施の形態に係るパイプを流れるオイルの検出方法を示す断面図であり、θが60°の場合を示す。
【図4】本発明の実施の形態に係るパイプを流れるオイルの検出方法を示す断面図であり、θが110°の場合を示す。
【図5】本発明の実施の形態に係るパイプを流れるオイルの検出方法を示す断面図である。
【図6】従来のパイプを流れるオイルの検出方法の一例を示す断面図である。
【図7】直線状のパイプを流れるオイルの状態を示す断面図である。
【符号の説明】
P パイプ
L オイル
N 発光面垂線
M 受光面垂線
Q 断面円
O 中心
α 角度
θ 角度
X 基準線
A 軌道
a 軌道点
1 検出装置
2 発光部
3 受光部
4 発光面
5 受光面
6 内壁面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting oil flowing through a pipe for detecting oil flowing through the pipe in a system in which oil flows through the light-transmitting pipe by air.
[0002]
[Prior art]
In general, as a system for flowing oil into a light-transmitting pipe by air, for example, an oil supply unit that supplies air to the pipe using air supplied from an air source and air supplied from the air source to the pipe The air supply unit that performs the lubrication is configured such that the oil supplied from the oil supply unit flows through the pipe with the air supplied from the air supply unit, and the oil mixed with the air is discharged from the nozzle provided at the end of the pipe. The system is known.
In such a system, the oil flowing through the pipe may be detected. As the detection method, conventionally, for example, as shown in FIG. 6, the pipe P is irradiated from the light emitting surface 4 of the light emitting unit 2 and the light emitting unit 2 that emits light from the light emitting surface 4 to the outside of the pipe P. There is a known method for detecting oil L flowing through a pipe P based on a change in the amount of light received by the light receiving unit 3.
In this method of detecting the oil flowing through the pipe, light is always emitted from the light emitting surface 4, so that when there is no oil L flowing through the pipe P, the light receiving surface 5 corresponds to the light emitted from the light emitting surface 4. When oil L flowing through the pipe P is present while receiving a predetermined amount of light, the light irradiated from the light emitting surface 4 passes through the oil L. At that time, the path of the light is refracted, the light is absorbed, etc. Therefore, the light receiving surface 5 cannot receive a predetermined amount of light. Therefore, the detection of the oil L flowing through the pipe P is determined by sensing a change in the amount of light received by the light receiving surface 5.
[0003]
[Problems to be solved by the invention]
By the way, in this conventional method of detecting the oil flowing through the pipe, as shown in FIG. 7, the oil L flowing through the pipe P is granular or rippled according to the air blowing pressure on the inner wall surface of the pipe P. When the oil L trajectory becomes unstable, the reflection or absorption of light with respect to the oil L varies, or when the oil L flows in a variety of shapes over the entire inner wall surface In some cases, a desired change in the amount of light cannot be applied to the light-receiving surface 5, and therefore there is a case where this flow cannot be detected even though the oil L is flowing. There was a problem that was getting worse.
[0004]
The present invention has been made in view of such problems. When a small amount of oil flows along with air in a pipe, the amount of detected oil is increased and the oil flows on a fixed track. An object of the present invention is to provide a method for detecting oil flowing through a pipe, in which the reflection and absorption of light can be made constant, and the oil flowing through the pipe can be reliably detected to improve detection accuracy. .
[0005]
[Means for Solving the Problems]
The technical means of the present invention for solving such problems is in a system in which oil flows along the inner wall surface of the pipe by air to a pipe having an inner wall surface that is translucent and forms a cross-sectional circle. A method for detecting oil flowing through a pipe for detecting oil flowing through the pipe, the light emitting unit irradiating light in the pipe on a circumference outside the pipe and centered on the center of one cross-sectional circle And a method of detecting the oil flowing through the pipe for detecting the oil flowing through the pipe based on the reception of the light from the light receiving unit. Bending the portion where the light emitting part and light receiving part of the pipe are located in an arc shape, and detecting the oil so that the oil mainly flows along the track of the inner wall surface having the smallest radius of curvature of the bent pipe. It has a configuration that.
According to this configuration, in the pipe, the portion where the light emitting portion and the light receiving portion are located is bent in an arc shape, so that the oil is along the track of the inner wall surface on the inner side having the smallest curvature radius of the bent pipe. It begins to flow mainly.
The reason why this flowing oil mainly flows along the track of the inner wall surface with the smallest radius of curvature of the pipe is that when the air passes through the arc bent part of the pipe, the wind pressure of the air is outside the bend of the inner wall surface. This is considered to be due to the fact that oil cannot adhere to the outside of the bend and the oil concentrates on the inside of the bend with a low wind pressure.
For this reason, the oil trajectory is specified in the pipe where the light emitting part and the light receiving part are provided, so that the oil particles are combined to increase the volume of the oil particles, and the light irradiated from the light emitting surface is The degree of passage through the oil particles increases, and the effects of light refraction, reflection, absorption, and the like due to the oil particles become constant. As a result, the change in the amount of light received by the light receiving surface when oil is flowing becomes substantially constant, so that the oil flowing through the pipe is reliably detected, and the detection accuracy is improved.
Further, since the threshold value for sensing oil can be increased, it becomes easier to detect a change in the amount of received light when the threshold value is increased.
[0006]
Further, if necessary, the light emitting surface normal perpendicular to the light emitting surface of the light emitting portion and passing through the center of the cross sectional circle and the light emitting surface perpendicular to the light receiving surface of the light receiving portion and An angle θ formed with a light-receiving surface normal passing through the center is set to be an inner angle range of 60 ° to 110 °, and between the inner-angle range of the light-emitting surface normal and the light-receiving surface normal, The light emitting part and the light receiving part are arranged with the orbit point of the orbit positioned.
When the light emitting unit and the light receiving unit are arranged in this manner, the change in the amount of light received by the light receiving surface can be reliably increased, and the threshold value can be further increased. In other words, the threshold value for detecting the change in the amount of received light becomes large, so that it becomes easy to detect the change in the amount of received light.
[0007]
Further, if necessary, an angle θ between the light emitting surface normal and the light receiving surface normal is set to 90 °, and a line connecting the center of the cross-sectional circle and the orbit point of the orbit on the cross-sectional circle is a reference line. As described above, the angle α formed by the reference line and the light emitting surface normal is set to 20 ° to 80 °.
If the angle θ is 90 °, the rate of light passing through the oil reaching the light receiving surface is substantially halved, and the amount of light received on the light receiving surface varies greatly depending on the presence or absence of oil flowing through the pipe. If the angle θ is smaller than 90 °, the amount of light received increases, but the rate at which light passing through the oil reaches the light receiving surface increases too much, and the change in the amount of light received on the light receiving surface due to the presence or absence of oil becomes small. Further, if the angle θ is larger than 90 °, the amount of received light decreases, and the rate at which the light passing through the oil reaches the light receiving surface decreases, so the change in the amount of received light on the light receiving surface due to the presence or absence of oil also decreases.
That is, when the angle θ is 90 ° at which a moderate amount of received light can be obtained and the change in the amount of received light on the light receiving surface due to the presence or absence of oil can be increased, the light receiving unit can easily detect the change in the amount of received light. Detection accuracy is improved. At this time, if the angle α is set to 20 ° to 80 °, the change in the amount of light received on the light receiving surface due to the presence or absence of oil can be increased, and the threshold for sensing the change in the amount of received light becomes large. Therefore, it becomes easy to sense a change in the amount of received light.
Furthermore, if necessary, the light emitting surface of the light emitting part has a width smaller than the diameter of the pipe.
As the width of the light emitting surface is reduced, the degree to which light emitted from the light emitting surface passes through oil increases, and the change in the amount of light received on the light receiving surface greatly depends on the presence or absence of oil. Since the threshold value for detecting the change in the amount of received light increases, it becomes easy to detect the change in the amount of received light.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for detecting oil flowing through a pipe according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the same thing as the above.
The method for detecting oil flowing through a pipe according to the embodiment of the present invention shown in FIG. 1 is, for example, in an oil supply system S for supplying a minute amount of oil L to a supply unit 17 using air as shown in FIG. This is realized using the detection device 1.
The oil supply system S includes an oil supply unit 13 including a plunger pump 13a that is driven by air supplied from an air source 10 to a passage pipe 12 via a regulator 11 and discharges a constant amount of oil L, and air that reaches the oil supply unit 13. An air supply line 14 that is branched from the line and supplies air from the air source 10 via another regulator 11, an oil line 15 of oil discharged from the plunger pump 13 a of the oil supply unit 13, and the air A three-way joint-like mixing block 16 that is connected to the supply pipe line 14 to allow the oil and air to be mixed and fed, and the mixed oil flows from the mixing block 16 to the oil supply unit 17. The pipe P is configured to include a pipe 18 and a nozzle 18 that is connected to the tip of the pipe P and ejects oil L to the supply unit 17.
In this oil supply system S, the amount of oil supplied at one time of the plunger pump 13a is, for example, 0.01 to 0.05 cc and is intermittently operated with a pause of 1 minute to 10 minutes.
The air pressure is set to, for example, 0.1 MPa to 0.5 MPa.
Further, as shown in FIGS. 1, 3 to 5, the pipe P has a translucent inner wall surface 6 that forms a cross-sectional circle Q, for example, an inner diameter of 2.5 mm (an outer diameter of 4 mm). It consists of a resin pipe such as a tube.
[0009]
And the detection apparatus 1 is provided in the predetermined position of the pipe P of the oil supply system S. FIG. As shown in FIGS. 3 to 5, the detection device 1 includes a light emitting unit that irradiates light into the pipe P on the circumference outside the pipe P and centered on the center O of one cross-sectional circle Q. 2 and a light receiving unit 3 that receives light emitted from the light emitting unit 2 and passed through the pipe P, and detects oil L flowing through the pipe P based on light reception by the light receiving unit 3.
As shown in FIG. 1, the light emitting unit 2 includes a light source including a light emitting diode (not shown) inside, and continues to irradiate light into the pipe P through the light emitting surface 4 while the fueling system S is in operation. . The light receiving unit 3 includes a photosensitive element therein and senses light through the light receiving surface 5. In the light receiving unit 3, the amount of light received when the oil L is not flowing in the pipe P is set as a reference value (for example, 100), and a threshold value (for example, 100 ± 30) is set for the reference value. By setting the threshold value, the light receiving unit 3 is configured to detect the oil L when the amount of received light is 130 or more or less than 70.
The light emitting surface 4 of the light emitting unit 2 is configured to have a width smaller than the diameter of the pipe P.
3 to 5, the light emitting surface 4 of the light emitting unit 2 is shown larger than the diameter of the pipe P for convenience of explanation.
[0010]
Next, a method for detecting the oil flowing through the pipe according to the embodiment of the present invention realized by using the detection device 1 will be described in detail.
The detection method according to the embodiment is an oil detection method for detecting the oil L flowing through the pipe P. In this detection method, the positions of the light emitting unit 2 and the light receiving unit 3 of the pipe P as shown in FIG. The portion to be bent is bent in an arc shape so that the oil L is mainly flowed along the track A of the inner inner wall surface 6 having the smallest curvature radius of the pipe P bent. In this case, the radius of curvature may be determined as appropriate, and the bending direction may be any direction up, down, left, or right without being limited by the direction of gravity.
The reason why this flowing oil L mainly flows along the track A of the inner inner wall surface 6 with the smallest radius of curvature of the pipe P is that when the air passes through a place where the pipe P is bent in an arc shape, the wind pressure of the air is internal. Since it acts strongly on the outside of the bend of the wall surface 6, it is considered that the oil L cannot adhere to the outside of the bend and the oil L concentrates on the inside of the bend with a low wind pressure.
[0011]
In the detection method according to the embodiment of the present invention, the positional relationship between the light emitting unit 2 and the light receiving unit 3 is determined as follows.
As shown in FIGS. 3 to 5, the light emitting unit 2 and the light receiving unit 3 are perpendicular to the light emitting surface 4 of the light emitting unit 2 and pass through the center O of the cross-sectional circle Q of the inner wall surface 6. The angle θ between N and the light-receiving surface normal M that is perpendicular to the light-receiving surface 5 of the light-receiving portion 3 and passes through the center O of the cross-sectional circle Q of the inner wall surface 6 is in an inner angle range of 60 ° to 110 °. In addition, the trajectory point a of the trajectory A on the cross-sectional circle Q is positioned between the inner angle θ range of the light emitting surface normal N and the light receiving surface normal M. FIG. 3 shows a case where the angle θ is 60 °, and FIG. 4 shows a case where the angle θ is 110 °. FIG. 5 shows a case where the angle θ is 90 °.
[0012]
As shown in FIG. 5, when the angle θ formed by the light emitting surface normal N and the light receiving surface normal M is set to 90 °, the center O of the cross-sectional circle Q and the trajectory point a of the trajectory A on the cross-sectional circle are represented by More preferably, the angle α formed between the reference line X and the light emitting surface normal N is set to 20 ° to 80 °, with the connecting line as the reference line X.
Further, as shown in FIGS. 3 to 5, in particular, the positional relationship between the light emitting unit 2 and the light receiving unit 3 is such that the light emitting surface 4 and the light receiving surface 5 are in contact with the pipe P.
[0013]
Therefore, according to the oil supply system S, when air is supplied from the air source 10 and oil is discharged from the plunger pump 13a of the oil supply unit 13, the oil and air are mixed in the mixing block 16, and the air is mixed. The oil that has passed through the pipe P reaches the oil supply unit 17 and is ejected from the nozzle 18.
In this state, the detection apparatus 1 always detects the oil L flowing through the pipe P, and this detection makes it possible to recognize a system abnormality.
According to the oil detection method using this detection device 1, as shown in FIG. 1, in the pipe P, the portion where the light emitting unit 2 and the light receiving unit 3 are located is bent in an arc shape. Since the pipe P mainly flows along the track A of the inner inner wall surface 6 having the smallest curvature radius, the track A of the oil L is specified, and the track A is specified. As a result, the oil L grains are combined to increase the volume of the oil L grains, and the degree to which the light emitted from the light emitting surface 4 passes through the oil L grains increases, and the light L is refracted, reflected, and absorbed by the oil L grains. The influence of the action and the like can be made constant, so that the oil L flowing through the pipe P can be reliably detected, and the detection accuracy can be improved.
[0014]
That is, the positional relationship between the light emitting unit 2 and the light receiving unit 3 is set so that the angle θ is within an inner angle range of 60 ° to 110 ° and between the inner angle θ range of the light emitting surface normal N and the light receiving surface normal M. By positioning the trajectory point a of the trajectory A on the cross-sectional circle Q, the degree of passage of the light irradiated from the light emitting surface 4 through the oil L increases, and the amount of light received when the oil L is not flowing, A large difference (change in the amount of received light) occurs between the amount of received light when L is flowing. By increasing the change in the amount of received light, the threshold for sensing the change in the amount of received light can be increased, and the detection of the oil L can be facilitated. In other words, since the threshold value is increased, it is possible to sense a change in the amount of received light using a light receiving element with low sensitivity.
[0015]
In this case, since the light emitting surface 4 of the light emitting unit 2 is configured to have a width smaller than the diameter of the pipe P, the light emitted from the light emitting surface 4 passes through the oil L on the track A. Thus, the light emitting surface 4 was positioned. The amount of light emitted from the light emitting surface 4 passes through the oil L and the change in the amount of light on the light receiving surface 5 greatly depends on the presence or absence of the oil L. Since the change in the amount of received light increases, the light receiving unit 3 can easily detect the change, and the detection accuracy of the oil L can be improved. Further, if the area of the light emitting surface 4 is reduced, the amount of heat consumed is reduced at the same illuminance ratio.
Further, as shown in FIGS. 3 to 5, the light emitting surface 4 of the light emitting unit 2 is in contact with the pipe P, and the light receiving surface 5 of the light receiving unit 3 is also in contact with the pipe P. Since the degree to which the light emitted from the light passes through the oil L increases and the change in the amount of light received by the light receiving surface 5 increases, the detection accuracy of the oil L can be improved.
[0016]
In addition, as shown in FIG. 5, when the angle θ formed by the light emitting surface normal N and the light receiving surface normal M is set to 90 °, the center O of the cross-sectional circle Q and the trajectory point a of the trajectory A on the cross-sectional circle If the angle α formed by the reference line X and the light emitting surface normal N is set to 20 ° to 80 ° with the line connecting the two lines as the reference line X, the oil flowing through the pipe P has an angle θ of 90 °. It was found that the change in the amount of received light with or without L can be increased. If the angle θ is smaller than 90 °, the amount of received light increases, but the rate at which light passing through the oil L reaches the light receiving surface 5 becomes too large, and the change in the amount of received light due to the presence or absence of the oil L becomes small. Further, if the angle θ is larger than 90 °, the amount of received light decreases, and the rate at which the light passing through the oil L reaches the light receiving surface 5 decreases, so that the change in the amount of received light due to the presence or absence of the oil L also decreases. Thus, the change in the amount of received light on the light receiving surface 5 can be maximized when the angle θ is 90 °.
Further, when the angle θ is 90 °, the change in the amount of light received by the light receiving surface 5 of the light emitted from the light emitting surface 4 that has passed through the oil L becomes larger by setting the angle α to 20 ° to 80 °. .
If such an arrangement condition is used, a large difference can be generated in the amount of light received by the light receiving surface 5 between when the oil L is flowing and when the oil L is flowing. Therefore, the oil L can be reliably detected using a normal photosensitive element without using an expensive photosensitive element with high sensitivity.
[0017]
In the detection method of the oil flowing through the pipe according to the above embodiment, the oil L is detected by changing the amount of light received by the light receiving unit 3 when the oil L flows through the pipe P. By adjusting the positional relationship with the light receiving unit 3 and increasing the amount of light received by the light receiving unit 3 when the oil L flows through the pipe P, the oil is increased or decreased to decrease the amount of oil. L can also be detected.
[0018]
【The invention's effect】
As described above, according to the method for detecting oil flowing through a pipe according to the present invention, the portion where the light emitting portion and the light receiving portion of the pipe are located is bent in an arc shape, and the inner wall surface of the bent pipe having the smallest radius of curvature is provided. A small amount of oil mainly flows along the trajectory of the oil, and light is applied to the trajectory of the inner wall surface through which the oil flows, and the amount of light received by the light receiving unit is constantly changed by the action of the light passing through the oil. Therefore, the oil flowing through the pipe can be reliably detected by sensing the change.
In addition, the light emitting surface normal perpendicular to the light emitting surface of the light emitting unit and passing through the center of the cross sectional circle of the inner wall surface, and the center of the cross sectional circle of the inner wall surface perpendicular to the light receiving surface of the light receiving unit The angle θ formed with the light-receiving surface normal passing through is set to an inner angle range of 60 ° to 110 °, and the orbit point of the orbit on the cross-sectional circle is positioned between the inner angle side of the light-emitting surface normal and the light-receiving surface normal. Thus, when the light emitting unit and the light receiving unit are arranged, the change in the amount of light received by the light receiving surface can be surely increased, and the threshold value can be further increased, so that the change in the amount of received light is detected. Therefore, the oil detection accuracy can be improved.
[0019]
Further, the angle θ formed between the light emitting surface normal and the light receiving surface normal is set to 90 °, and the reference line and the light emitting surface normal are defined with reference to a line connecting the center of the cross-sectional circle and the orbital point of the orbit on the cross-sectional circle. When the angle α is set to 20 ° to 80 °, an appropriate amount of received light that can increase the change in the amount of light received on the light receiving surface due to the presence or absence of oil is obtained, and the light receiving unit senses the change. Therefore, the oil detection accuracy can be improved.
Furthermore, when the light emitting surface of the light emitting part is made smaller than the diameter of the pipe, the degree of light passing from the light emitting surface increases through oil, so the change in the amount of light on the light receiving surface is the presence or absence of oil. Since the light receiving unit easily senses the change, the oil detection accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for detecting oil flowing through a pipe according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of an oil supply system in which a method for detecting oil flowing through a pipe according to an embodiment of the present invention is used.
FIG. 3 is a cross-sectional view showing a method for detecting oil flowing through a pipe according to an embodiment of the present invention, and shows a case where θ is 60 °.
FIG. 4 is a cross-sectional view showing a method for detecting oil flowing through a pipe according to an embodiment of the present invention, showing a case where θ is 110 °.
FIG. 5 is a cross-sectional view showing a method for detecting oil flowing through a pipe according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing an example of a conventional method for detecting oil flowing through a pipe.
FIG. 7 is a cross-sectional view showing a state of oil flowing through a straight pipe.
[Explanation of symbols]
P Pipe L Oil N Light emitting surface normal M Light receiving surface normal Q Cross-sectional circle O Center α Angle θ Angle X Reference line A Orbit a Orbit point 1 Detector 2 Light emitting unit 3 Light receiving unit 4 Light emitting surface 5 Light receiving surface 6 Inner wall surface

Claims (4)

透光性で断面円を形成する内壁面を有したパイプに、オイルをエアによって該パイプの内壁面に沿わせて流すシステムにおける当該パイプを流れるオイルを検出するパイプを流れるオイルの検出方法であって、
上記パイプの外側であって1つの断面円の中心を中心とする円周上に該パイプ内に光を照射する発光部と該発光部から照射され該パイプを通過した光を受光する受光部とを設け、該受光部の光の受光に基づいて該パイプを流れるオイルを検出するパイプを流れるオイルの検出方法において、
上記パイプの上記発光部及び受光部の位置する部分を弧状に曲げ、上記オイルを該曲げられた該パイプの最も曲率半径の小さい内側の内壁面の軌道上に沿って主に流れるようにして検出することを特徴とするパイプを流れるオイルの検出方法。
This is a method for detecting oil flowing through a pipe, which detects oil flowing through the pipe in a system in which oil flows along the inner wall surface of the pipe by air to a pipe having a translucent inner wall surface that forms a cross-sectional circle. And
A light emitting unit for irradiating light into the pipe on the outer periphery of the pipe and centering on the center of one cross-sectional circle; and a light receiving unit for receiving light emitted from the light emitting unit and passing through the pipe In the method of detecting the oil flowing through the pipe for detecting the oil flowing through the pipe based on the reception of the light of the light receiving unit,
Bending the portion of the pipe where the light emitting portion and the light receiving portion are located in an arc shape, and detecting the oil so that the oil flows mainly along the track of the inner wall surface having the smallest radius of curvature of the pipe. A method for detecting oil flowing through a pipe, characterized in that:
上記発光部の発光面に対して垂直関係にありかつ上記断面円の中心を通る発光面垂線と、上記受光部の受光面に対して垂直関係にありかつ上記断面円の中心を通る受光面垂線とのなす角度θが60°〜110°の内角範囲になるようにするとともに、上記発光面垂線と上記受光面垂線との上記内角範囲の間に、上記断面円上の上記軌道の軌道点を位置させて、上記発光部及び上記受光部を配置したことを特徴とする請求項1記載のパイプを流れるオイルの検出方法。A light emitting surface normal perpendicular to the light emitting surface of the light emitting portion and passing through the center of the cross sectional circle, and a light receiving surface normal perpendicular to the light receiving surface of the light receiving portion and passing through the center of the cross sectional circle And an orbital point of the orbit on the cross-sectional circle between the inner angle range of the light emitting surface normal and the light receiving surface normal. 2. The method for detecting oil flowing through a pipe according to claim 1, wherein the light emitting part and the light receiving part are arranged in a position. 上記発光面垂線と上記受光面垂線とのなす角度θを90°に設定し、
上記断面円の中心と該断面円上の上記軌道の軌道点とを結ぶ線を基準線として、該基準線と上記発光面垂線とのなす角度αを20°〜80°に設定したことを特徴とする請求項2記載のパイプを流れるオイルの検出方法。
An angle θ between the light emitting surface normal and the light receiving surface normal is set to 90 °,
The line α connecting the center of the cross-sectional circle and the trajectory point of the orbit on the cross-sectional circle is used as a reference line, and the angle α formed by the reference line and the light emitting surface normal is set to 20 ° to 80 °. A method for detecting oil flowing through a pipe according to claim 2.
上記発光部の発光面をパイプの直径よりも小さい幅を有して構成したことを特徴とする請求項2または3記載のパイプを流れるオイルの検出方法。4. The method for detecting oil flowing in a pipe according to claim 2, wherein the light emitting surface of the light emitting portion is configured to have a width smaller than the diameter of the pipe.
JP2000039366A 2000-02-17 2000-02-17 How to detect oil flowing in a pipe Expired - Lifetime JP4537524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039366A JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039366A JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Publications (2)

Publication Number Publication Date
JP2001227996A JP2001227996A (en) 2001-08-24
JP4537524B2 true JP4537524B2 (en) 2010-09-01

Family

ID=18562940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039366A Expired - Lifetime JP4537524B2 (en) 2000-02-17 2000-02-17 How to detect oil flowing in a pipe

Country Status (1)

Country Link
JP (1) JP4537524B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024722A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil detection device
JP2007024721A (en) * 2005-07-19 2007-02-01 Lube Corp Flow rate detection device for flowing oil
JP2007024720A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil monitoring device
JP2008026152A (en) * 2006-07-21 2008-02-07 Lube Corp Flow detecting device of flowing liquid
JP4533368B2 (en) * 2006-11-28 2010-09-01 Taco株式会社 Oil mist detection system
JP4920518B2 (en) * 2007-07-19 2012-04-18 大同メタル工業株式会社 Oil-air lubrication system
IT201600075023A1 (en) * 2016-07-18 2018-01-18 Dropsa Spa Device and method of monitoring an oil flow mixed with air
DE102019201532A1 (en) * 2019-02-07 2020-08-13 Robert Bosch Gmbh Machine tool device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579197U (en) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 Lubricant supply amount detection mechanism for air-oil lubricator

Also Published As

Publication number Publication date
JP2001227996A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP4537524B2 (en) How to detect oil flowing in a pipe
EP0121848B1 (en) Apparatus for detecting bubbles in a liquid
EP1211484A3 (en) Deviation detection device, rotary laser apparatus with the same, and position determining system with deviation detecting/correcting device
EP0953843A3 (en) Incremental absorbance scanning of liquid in dispensing tips
KR20070090792A (en) Enteral feeding pump and feeding set therefor
NZ542676A (en) Method and device for nebulization
US8292035B2 (en) Oil/air lubrication system
WO2005068944A3 (en) Coriolis mass flow sensor with optical vibration detectors
US6647808B2 (en) Position-detecting apparatus
JP3501178B2 (en) Liquid particle concentration detector
EP3273135B1 (en) Monitoring device and method of an oil flow mixed with air
JP6295497B2 (en) Rotation detection device and inspection device provided with the rotation detection device
JP2009240898A (en) Misty liquid flow rate measuring apparatus and misty liquid flow rate measuring method
JP4469920B1 (en) Paper sheet transport device
JP2011028471A (en) Paper sheet conveyance device
JP4457172B1 (en) Paper sheet transport device
JP2003083779A (en) Flow detector for light transmitting pipe
US6534778B1 (en) Apparatus for detecting balls carried in tube
JP4533368B2 (en) Oil mist detection system
WO2023013314A1 (en) Density measurement device
JP4485603B1 (en) Paper sheet transport device
JPS63317723A (en) Detecting apparatus for flow rate in flowmeter
JPH0672077U (en) Liquid detector
KR102140838B1 (en) Floor sensor for robot cleaner with image sensor
JP2021167755A (en) Flow rate measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term