JP2002005726A - Liquid detector - Google Patents

Liquid detector

Info

Publication number
JP2002005726A
JP2002005726A JP2000187860A JP2000187860A JP2002005726A JP 2002005726 A JP2002005726 A JP 2002005726A JP 2000187860 A JP2000187860 A JP 2000187860A JP 2000187860 A JP2000187860 A JP 2000187860A JP 2002005726 A JP2002005726 A JP 2002005726A
Authority
JP
Japan
Prior art keywords
light
liquid
pipe
unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000187860A
Other languages
Japanese (ja)
Other versions
JP3548092B2 (en
Inventor
Sadao Noda
貞雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2000187860A priority Critical patent/JP3548092B2/en
Publication of JP2002005726A publication Critical patent/JP2002005726A/en
Application granted granted Critical
Publication of JP3548092B2 publication Critical patent/JP3548092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid detector facilitating an optical axis adjustment and never performing a wrong detection even in the presence of a foreign matter in a liquid. SOLUTION: In this liquid detector, the light from a projection part 50 is made into a radial light in a cross sectional view of a pipe 30 by a projecting lens 80. The light receiving intensity of a light receiving part 51 is varied depending on the presence of the liquid L in the pipe 31, whereby the presence of the liquid L is detected. The light receiving intensity is varied depending on the presence of the liquid L even if the projection and light receiving parts 50 and 51 are slightly shifted in the cross sectional view of the pipe 31 without being linearly arranged. Accordingly, the detection of the liquid L can be performed without strictly performing the optical axis adjustment. Since the light from the projection part 50 is made to a parallel light in the vertical sectional view of the pipe 31, the shadow of a foreign matter, even if present in the liquid L, is never extended in a wide range on the light receiving part 51 side, and the wrong detection by the foreign matter can be thus prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上下方向に延びた
透明又は半透明な配管の内部で、液体のレベルが所定の
基準水位に達しているか否かを検出する液体検出装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid detecting apparatus for detecting whether or not a liquid level has reached a predetermined reference water level in a transparent or translucent pipe extending vertically.

【0002】[0002]

【従来の技術】一般に、液体を貯蔵したタンクには、タ
ンク内の液体のレベルを外部から見えるようにするため
に、タンクに連通した透明な配管を上下方向に延ばして
備える。そして、この配管内の液体レベルが、所定の基
準水位に達しているか否かを検出するために、液体検出
装置が用いられる。
2. Description of the Related Art In general, a tank for storing a liquid is provided with a transparent pipe extending in a vertical direction communicating with the tank in order to make the level of the liquid in the tank visible from the outside. Then, a liquid detecting device is used to detect whether or not the liquid level in the pipe has reached a predetermined reference water level.

【0003】この種の液体検出装置の従来の一例とし
て、図11〜図13には、実開昭55−112223号
公報に掲載されたものが示されており、このものは、配
管4を間に挟んで投光器1と受光器2とを対向状態に備
える。投光器1は、図12に示すように、投光素子11
から出射した光を投光用凸レンズ12を介して平行光に
し、さらにスリット61を通して配管4に照射する。一
方、受光器2は、前記スリット61に対向した遮蔽板6
2の後方に、受光用凸レンズ22及び受光素子21を備
える。そして、液体5が所定レベルに達して投受光器
1,2間に液体5が有ると、図12(a)に示すよう
に、投光器1から出射された平行光が、液体5のレンズ
効果によって遮蔽板62へと集光され、その後方の受光
用凸レンズ22及び受光素子21には光が受光されなく
なる。一方、液体5が投受光器1,2間から無くなる
と、図12(b)に示すように、光は集光されず、受光
用凸レンズ22を介して受光素子21に受光され、その
受光素子21の出力信号に基づき、液体5が検出され
る。
FIGS. 11 to 13 show a conventional example of this type of liquid detection apparatus disclosed in Japanese Utility Model Laid-Open Publication No. 55-112223. The light emitting device 1 and the light receiving device 2 are provided to face each other. As shown in FIG. 12, the light projector 1 includes a light emitting element 11.
The light emitted from the lens is converted into parallel light via the light projecting convex lens 12, and is further applied to the pipe 4 through the slit 61. On the other hand, the light receiver 2 includes a shielding plate 6 facing the slit 61.
2, a light receiving convex lens 22 and a light receiving element 21 are provided. When the liquid 5 reaches a predetermined level and the liquid 5 exists between the light emitting and receiving devices 1 and 2, the parallel light emitted from the light emitting device 1 is changed by the lens effect of the liquid 5 as shown in FIG. The light is condensed on the shielding plate 62, and no light is received by the light-receiving convex lens 22 and the light-receiving element 21 behind the light-shielding plate 62. On the other hand, when the liquid 5 disappears from between the light emitting and receiving devices 1 and 2, the light is not condensed, but is received by the light receiving element 21 via the light receiving convex lens 22, as shown in FIG. The liquid 5 is detected based on the output signal of 21.

【0004】[0004]

【発明が解決しようとする課題】ところで、図12に示
すように、配管4は横割り面で見ると湾曲した形状をな
し、液体が満たされたときにレンズ効果を奏する。ま
た、配管の直径が異なる場合にはそれぞれレンズ効果に
よる焦点距離が異なることがわかる。即ち、具体的に
は、図14(A)に示すように、例えば、直径d1=φ
4mmの配管で液体が満たされている場合において、そ
の屈折率を1.35とすると、その焦点距離はa1=
3.9mmでその主点は−2mmである。一方、例え
ば、直径d2=φ10mmの配管ではその焦点距離はa
2=9.6である。これらより、d1+a1<d2だか
ら、直径d1=φ4mmと直径d2=φ10mmの配管
では、投受光の位置関係を調整する必要がある。つま
り、平行光を配管に入射させると下図の様に液体の無い
場合に比較して液体の有る場合の受光信号が大きくなる
位置(範囲a,範囲A)に受光部を設置するとき、小さ
い直径の場合と大きい直径の場合でその位置が異なり、
その都度受光位置を変更しなければならないというわず
らわしさが生じる。そして、投受光の位置関係を調整し
ないで使用できる条件はd1+a1>d2 および d
1+a1<d2+a2 である。この条件を満たし、d
2−d1をできるだけ大きくするためには投光の光は発
散させるのが好ましい。また、投光部は管の接近した位
置から放射させるのがよい。図15(B)において、液
の無い場合に比較して液の有る場合に受光信号が大きく
得られる範囲a,Aは、図15(A)に比べて図15
(B)の方が広く、調整が容易であり、異なる直径の配
管にも調整を要せず容易に取り付けることができる。
By the way, as shown in FIG. 12, the pipe 4 has a curved shape when viewed from the side, and has a lens effect when filled with liquid. Also, it can be seen that when the diameters of the pipes are different, the focal lengths due to the lens effect are different. That is, specifically, as shown in FIG. 14A, for example, the diameter d1 = φ
Assuming that the refractive index is 1.35 in a case where the liquid is filled in a 4 mm pipe, the focal length is a1 =
At 3.9 mm, its principal point is -2 mm. On the other hand, for example, in a pipe having a diameter d2 = φ10 mm, the focal length is a
2 = 9.6. From these, since d1 + a1 <d2, it is necessary to adjust the positional relationship between the light emitting and receiving light in the pipe having the diameter d1 = φ4 mm and the diameter d2 = φ10 mm. In other words, when the parallel light is incident on the pipe, the light receiving unit is set at a position (range a, range A) where the light receiving signal when there is liquid is larger than when there is no liquid as shown in the figure below. The position differs between the case of large diameter and the case of
Each time, the light receiving position has to be changed, which causes annoyance. The conditions that can be used without adjusting the positional relationship between the light emitting and receiving are d1 + a1> d2 and d
1 + a1 <d2 + a2. Satisfying this condition, d
In order to make 2-d1 as large as possible, it is preferable that the emitted light be diverged. Further, it is preferable that the light emitting section emits light from a position near the tube. In FIG. 15B, the ranges a and A in which a light receiving signal can be obtained larger when there is a liquid than when there is no liquid are shown in FIG.
(B) is wider and easier to adjust, and can be easily attached to pipes of different diameters without adjustment.

【0005】一方、図11に示すように、配管4は縦割
り面で見ると湾曲形状をなさず、レンズ効果を奏しな
い。従って、投光器1から出射される光は、配管4の縦
割り面で見たときには、平行光であっても、単に2つの
凸レンズ12,22の光軸を合わせるだけでよいので、
光軸調整が困難ではない。ところが、仮に、配管4の縦
割り面で見て放射光を配管4に与えると、例えば液体に
気泡が生じたときに、その気泡の射影が受光器2側に広
い範囲に亘り、受光強度を下げ、液体があるにも関わら
ず液体がないとの誤差検出を行う原因になり得る。或い
は、配管内に液体が無いにもかかわらず、配管内に水滴
が付着している場合には、水滴が凸レンズ効果を奏し、
受光器2側に広い範囲に亘り受光強度を上げ、液体が無
いにもかかわらず、液他があると誤検出を行う原因にも
なりうる。
On the other hand, as shown in FIG. 11, the pipe 4 does not have a curved shape when viewed in a vertically divided plane, and does not have a lens effect. Therefore, when the light emitted from the light projector 1 is parallel light when viewed from the vertical split surface of the pipe 4, it is only necessary to match the optical axes of the two convex lenses 12, 22,
Optical axis adjustment is not difficult. However, if radiated light is given to the pipe 4 as viewed on the vertically divided surface of the pipe 4, for example, when bubbles are generated in the liquid, the projection of the bubbles over a wide range on the light receiver 2 side, and the received light intensity is reduced. This may cause an error detection that there is no liquid despite the presence of the liquid. Alternatively, even if there is no liquid in the pipe, when water droplets are attached to the pipe, the water drop has a convex lens effect,
The light receiving intensity can be increased over a wide range on the light receiver 2 side, which may cause erroneous detection if there is a liquid or the like even though there is no liquid.

【0006】本発明は、上記事情に鑑みてなされたもの
で、径の異なる配管に取り付けることができ、光軸調整
が容易でかつ液体内に異物があっても、誤検出を行わな
い液体検出装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can be attached to pipes having different diameters, so that the optical axis can be easily adjusted and liquid detection that does not perform erroneous detection even when foreign substances exist in the liquid. The purpose is to provide the device.

【0007】[0007]

【課題を解決するための手段及び作用・効果】<請求項
1の発明>上記目的を達成するため、請求項1の発明に
係る液体検出装置は、上下方向に延びかつ内部で液体の
レベルが推移する透明又は半透明な配管を間に挟んで配
置された投光部及び受光部と、受光部が出力した受光信
号と所定の基準値との大小関係を判別する比較部とを備
え、その比較部による判別結果に基づき、投光部及び受
光部の間の液体の有無を検出する液体検出装置におい
て、投光部と配管との間には、投光用レンズが設けら
れ、その投光用レンズは、発光部から出射された光を、
配管の縦割り面で見たときには、平行光にする一方、配
管の横割り面で見たときには、放射光にするように構成
されたところに特徴を有する。
<Means for Solving the Problems and Functions / Effects><Invention of Claim 1> In order to achieve the above object, a liquid detecting device according to the invention of Claim 1 extends vertically and has a liquid level inside. A light-emitting unit and a light-receiving unit arranged with a translucent or translucent pipe that transitions therebetween, and a comparison unit that determines the magnitude relationship between a light-receiving signal output by the light-receiving unit and a predetermined reference value, In a liquid detection device that detects the presence or absence of a liquid between a light projecting unit and a light receiving unit based on a result of determination by the comparing unit, a light projecting lens is provided between the light projecting unit and the pipe, and the light projecting lens is provided. Lens for the light emitted from the light emitting unit,
It is characterized in that it is configured such that it is parallel light when viewed on the vertical split surface of the pipe, while it is emitted light when viewed on the horizontal split surface of the pipe.

【0008】この構成によれば、投光部からの光は、投
光用レンズによって、配管の横割り面で見たときには、
放射光とされる。そして、配管内に液体があるときに
は、そのレンズ効果によって、光が集光されて、受光部
の受光強度が大きくなる一方、液体がないときには、レ
ンズ効果を奏さず、放射光のまま受光部が受光して、受
光強度が小さくなる。そして、これら受光強度の相違に
よって、液体の有無を検出することができる。このと
き、投受光部に対して配管の大きさが異なっても液体の
有無によって受光強度は相違する。したがって配管の大
きさが異なるものにも光軸調整や投受光部の位置関係を
調整しなくても液体の検出を行うことができ、従来のも
のよりも用途が拡大し、配管サイズのばらつきを気にす
る必要も無い。しかも、投受光部からの光は投光用レン
ズによって、配管の縦割り面で見たときには、平行光と
されるから、液体内に異物があっても、その異物の射影
が受光部側に広い範囲に亘ることがなくなり、受光強度
への影響を抑えることができる。これにより、液体内の
異物による誤検出を防ぐことができる。
[0008] According to this configuration, the light from the light projecting portion is viewed by the light projecting lens on the horizontal split surface of the pipe.
Synchrotron radiation. When there is a liquid in the pipe, the light is condensed by the lens effect and the light receiving intensity of the light receiving unit is increased. On the other hand, when there is no liquid, the light receiving unit does not exhibit the lens effect and the light receiving unit remains radiated light. Upon receiving the light, the received light intensity decreases. The presence or absence of the liquid can be detected based on the difference between the light receiving intensities. At this time, even if the size of the pipe differs from that of the light emitting and receiving unit, the light receiving intensity differs depending on the presence or absence of the liquid. Therefore, liquids can be detected without adjusting the optical axis or adjusting the positional relationship between the light emitting and receiving sections even for pipes with different sizes. No need to worry. In addition, since the light from the light emitting and receiving unit is collimated by the light projecting lens when viewed on the vertically split surface of the pipe, even if there is a foreign matter in the liquid, the projection of the foreign matter is directed to the light receiving unit side. It does not cover a wide range, and the influence on the received light intensity can be suppressed. This can prevent erroneous detection due to foreign matter in the liquid.

【0009】なお、具体的に、投光用レンズは、上下左
右前後にそれぞれ一対ずつの対向面を有した6面体で構
成され、それら6面のうち配管に対面する投光用レンズ
の前端面は、前記配管の縦割り面で見ると、配管に向か
って中央部分が突出した凸面構造をなし、前記配管の横
割り面で見ると、配管に向かって中央部分が窪んだ凹面
構造又は平坦になった平面構造をなした構成にすること
で、その投光用レンズが、発光部から出射された光を、
配管の縦割り面で見たときに、平行光にし、配管の横割
り面で見たときに、放射光にすることができる。
More specifically, the light projecting lens is constituted by a hexahedron having a pair of opposing surfaces in each of up, down, left, right and front, and of the six surfaces, the front end face of the light projecting lens facing the pipe. When viewed on the vertical split surface of the pipe, it has a convex structure in which the central portion protrudes toward the pipe, and when viewed on the horizontal split surface of the pipe, has a concave structure or flat surface in which the central portion is depressed toward the pipe. By having a configuration having a planar structure, the light projecting lens emits light emitted from the light emitting unit,
When viewed on the vertical split surface of the pipe, parallel light can be obtained, and when viewed on the horizontal split surface of the pipe, emitted light can be generated.

【0010】<請求項2>請求項2の発明に係る液体検
出装置は、上下方向に延びかつ内部で液体のレベルが推
移する透明又は半透明な配管を間に挟んで配置された投
光部及び受光部と、受光部が出力した受光信号と所定の
基準値との大小関係を判別する比較部とを備え、その比
較部による判別結果に基づき、投光部及び受光部の間の
液体の有無を検出する液体検出装置において、投光部
は、放射光を出射する複数の発光部を、配管の長手方向
に沿って配列してなるところに特徴を有する。
A liquid detecting device according to a second aspect of the present invention is a light projecting unit that is disposed with a transparent or translucent pipe extending vertically and in which the level of the liquid changes within the pipe. And a light receiving unit, and a comparing unit that determines a magnitude relationship between a light receiving signal output by the light receiving unit and a predetermined reference value, and based on a result of the determination by the comparing unit, a liquid between the light emitting unit and the light receiving unit. In the liquid detection device for detecting the presence or absence, the light projecting unit is characterized in that a plurality of light emitting units that emit emitted light are arranged along the longitudinal direction of the pipe.

【0011】この構成によれば、投光部を構成する複数
の発光部からの光は、放射光だから、配管内に液体があ
るときには、配管の横割り面で見たときに、レンズ効果
によって、光が集光されて、受光部の受光強度が大きく
なる。一方、液体がないときには、レンズ効果を奏さ
ず、放射光のまま受光部が受光して、受光強度が小さく
なる。そして、この相違によって、液体の有無を検出す
ることができる。このとき、投受光部に対して配管の大
きさが異なっても液体の有無によって受光強度は相違す
る。したがって配管の大きさが異なるものにも光軸調整
や投受光部の位置関係を調整しなくても液体の検出を行
うことができ、従来のものよりも用途が拡大し、配管サ
イズのばらつきを気にする必要も無い。しかも、発光部
は、配管の長手方向に沿って複数配列されているから、
かりに、液体内に異物が生じて1つの発光部の前方に位
置しても、他の発光部からの光が受光部側に与えられ、
異物による受光強度への影響を抑えることができる。こ
れにより、液体内の異物による誤検出を防ぐことができ
る。
According to this configuration, since the light from the plurality of light emitting units constituting the light projecting unit is radiated light, when there is a liquid in the pipe, when viewed from the horizontal split surface of the pipe, the lens effect is applied. The light is condensed, and the light receiving intensity of the light receiving unit increases. On the other hand, when there is no liquid, the light receiving portion receives light without emitting a lens effect and emits light, and the light receiving intensity is reduced. Then, from this difference, the presence or absence of the liquid can be detected. At this time, even if the size of the pipe differs from that of the light emitting and receiving unit, the light receiving intensity differs depending on the presence or absence of the liquid. Therefore, liquids can be detected without adjusting the optical axis or adjusting the positional relationship between the light emitting and receiving sections even for pipes with different sizes. No need to worry. Moreover, since a plurality of light emitting units are arranged along the longitudinal direction of the pipe,
In addition, even if a foreign substance occurs in the liquid and is located in front of one light emitting unit, light from another light emitting unit is given to the light receiving unit side,
The influence of the foreign matter on the light receiving intensity can be suppressed. This can prevent erroneous detection due to foreign matter in the liquid.

【0012】なお、上記請求項1および請求項2の発明
において、前記比較部には、前記液体が有るときの受光
強度に対応した第1基準値と、前記受光部が出力した受
光信号との大小関係を判別する第1比較部と、前記液体
が無いときの受光強度に対応した第2基準値と前記受光
信号との大小関係を判別する第2比較部とが備えられ、
前記第1及び第2の比較部による判別結果に基づき、前
記受光信号が前記第2基準値を下回ったときには、異常
を検出し、前記受光信号が前記第2基準値を上回りかつ
前記第1基準値を下回ったときには、前記液体が無いこ
とを検出し、さらに、前記受光信号が前記第1基準値を
上回ったときには、前記液体が有ることを検出する判別
手段を備えた構成してもよい。これにより、液体の有無
以外に、液体検出装置の異常をも検出することができる
ようになり、液体検出の正確性が増す。
In the first and second aspects of the present invention, the comparing section may include a first reference value corresponding to a light receiving intensity when the liquid is present, and a light receiving signal output by the light receiving section. A first comparing unit that determines a magnitude relationship, and a second comparing unit that determines a magnitude relationship between a second reference value corresponding to the received light intensity when the liquid is not present and the received light signal,
When the light receiving signal falls below the second reference value based on the determination result by the first and second comparing units, an abnormality is detected, and the light receiving signal exceeds the second reference value and the first reference value is exceeded. When the value is below the value, it is possible to detect that there is no liquid, and when the light receiving signal exceeds the first reference value, there may be provided a determination means for detecting the presence of the liquid. This makes it possible to detect an abnormality in the liquid detection device in addition to the presence / absence of liquid, thereby increasing the accuracy of liquid detection.

【0013】<請求項3の発明>請求項3の発明に係る
液体検出装置は、上下方向に延びかつ内部で液体のレベ
ルが推移する透明又は半透明な配管を間に挟んで配置さ
れた投光部及び受光部と、受光部が出力した受光信号と
所定の基準値との大小関係を判別する比較部とを備え、
その比較部による判別結果に基づき、投光部及び受光部
の間の液体の有無を検出する液体検出装置において、投
光部と配管との間には、投光用レンズが設けられ、その
投光用レンズは、発光部から出射された光を、配管の縦
割り面で見たとき、及び、配管の横割り面で見たとき
に、平行光にするように構成されたところに特徴を有す
る。
<Invention of Claim 3> The liquid detecting device according to the invention of claim 3 is a projection device which is disposed with a transparent or translucent pipe extending vertically and in which the level of the liquid changes inside. An optical unit and a light receiving unit, and a comparison unit that determines a magnitude relationship between a light receiving signal output by the light receiving unit and a predetermined reference value,
In a liquid detection device that detects the presence or absence of liquid between the light projecting unit and the light receiving unit based on the determination result by the comparing unit, a light projecting lens is provided between the light projecting unit and the pipe, and the light projecting lens is provided. The lens for light is characterized in that the light emitted from the light emitting unit is configured to be parallel light when viewed on the vertical split surface of the pipe and when viewed on the horizontal split surface of the pipe. Have.

【0014】この構成によれば、投光部からの光は、投
光用レンズによって、配管の横割り面で見たときには、
平行光とされる。そして、配管内に液体があるときに
は、そのレンズ効果によって、光が集光されて、受光部
の受光強度が大きくなる一方、液体がないときには、レ
ンズ効果を奏さず、平行光のまま受光部が受光して、受
光強度が小さくなる。そして、これら受光強度の相違に
よって、液体の有無を検出することができる。このと
き、投受光部に対して配管の大きさが異なっても液体の
有無によって受光強度は相違する。したがって配管の大
きさが異なるものにも光軸調整や投受光部の位置関係を
調整しなくても液体の検出を行うことができ、従来のも
のよりも用途が拡大し、配管サイズのばらつきを気にす
る必要も無い。しかも、投受光部からの光は投光用レン
ズによって、配管の縦割り面で見たときには、平行光と
されるから、液体内に異物があっても、その異物の射影
が受光部側に広い範囲に亘ることがなくなり、受光強度
への影響を抑えることができる。これにより、液体内の
異物による誤検出を防ぐことができる。
According to this configuration, when the light from the light projecting portion is viewed from the horizontal split surface of the pipe by the light projecting lens,
It is considered as parallel light. When there is a liquid in the pipe, the light is condensed by the lens effect and the light receiving intensity of the light receiving unit is increased. On the other hand, when there is no liquid, the light receiving unit does not have the lens effect and the light receiving unit remains in parallel light. Upon receiving the light, the received light intensity decreases. The presence or absence of the liquid can be detected based on the difference between the light receiving intensities. At this time, even if the size of the pipe differs from that of the light emitting and receiving unit, the light receiving intensity differs depending on the presence or absence of the liquid. Therefore, liquids can be detected without adjusting the optical axis or adjusting the positional relationship between the light emitting and receiving sections even for pipes with different sizes. No need to worry. In addition, since the light from the light emitting and receiving unit is collimated by the light projecting lens when viewed on the vertically split surface of the pipe, even if there is a foreign matter in the liquid, the projection of the foreign matter is directed to the light receiving unit side. It does not cover a wide range, and the influence on the received light intensity can be suppressed. This can prevent erroneous detection due to foreign matter in the liquid.

【0015】なお、具体的に、投光用レンズは、上下左
右前後にそれぞれ一対ずつの対向面を有した6面体で構
成され、それら6面のうち配管に対面する投光用レンズ
の前端面は、前記配管の縦割り面で見ると、配管に向か
って中央部分が突出した凸面構造をなした構成にするこ
とで、その投光用レンズが、発光部から出射された光
を、配管の縦割り面で見たとき、及び、配管の横割り面
で見たときに、平行光にすることができる。
Specifically, the light projecting lens is composed of a hexahedron having a pair of opposing surfaces in each of up, down, left, right and front, and of the six surfaces, the front end face of the light projecting lens facing the pipe. When viewed in a vertically divided plane of the pipe, the light emitting lens of the pipe has a convex structure in which a central portion protrudes toward the pipe. Parallel light can be obtained when viewed on the vertical split surface and when viewed on the horizontal split surface of the pipe.

【発明の実施の形態】<第1実施形態>以下、本発明の
第1実施形態を図1〜図8に基づいて説明する。図1に
おいて、符号30は、タンクであって、その側部にはタ
ンク30内の液体Lのレベルを外部から見えるようにす
るために、透明で断面円形の配管31が、タンク30に
連通しかつ上下方向に延ばして備えられている。そし
て、本実施形態の液体検出装置は、配管31内の液体L
のレベルが、所定の基準水位に達しているか否かを検出
するために用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> A first embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, reference numeral 30 denotes a tank, and a transparent pipe 31 having a circular cross section communicates with the tank 30 on the side thereof so that the level of the liquid L in the tank 30 can be seen from the outside. And it is provided extending vertically. The liquid detection device according to the present embodiment is configured such that the liquid L
Is used to detect whether or not the level has reached a predetermined reference water level.

【0016】液体検出装置は、配管31の途中部分に取
り付けられるセンサヘッド部40(図1参照)と、配管
31とは離して配置された電気回路部70(図7参照)
とを、一対の光ファイバー55,56(図3参照)で連
絡してなる。
The liquid detecting device includes a sensor head section 40 (see FIG. 1) which is attached at an intermediate portion of a pipe 31, and an electric circuit section 70 (see FIG. 7) which is arranged apart from the pipe 31.
Are connected by a pair of optical fibers 55 and 56 (see FIG. 3).

【0017】電気回路部70には、図示しない投光素子
と受光素子とが備えられており、投光素子には、一方の
ファイバー55(これを、以下、適宜、「投光用光ファ
イバー55」という)の基端面が突き合わされている。
そして、この投光用光ファイバー55の先端部が本発明
の投光部50(図3参照)を構成し、投光素子が駆動回
路にて駆動されると、投光部50(より詳細には、投光
用光ファイバー55の先端面55A)から光が出射され
る。また、受光素子には、他方の光ファイバー56(こ
れを、以下、適宜、「受光用光ファイバー56」とい
う)の基端面が突き合わされている。そして、この受光
用光ファイバー56の先端部が本発明の受光部51を構
成し、受光部51(より詳細には、受光用光ファイバー
56の先端面56A)に受光された光が、前記受光素子
に与えられる。
The electric circuit section 70 is provided with a light projecting element and a light receiving element (not shown), and the light projecting element has one fiber 55 (hereinafter referred to as “light projecting optical fiber 55” as appropriate). ) Are abutted against each other.
The distal end of the light emitting optical fiber 55 constitutes the light emitting part 50 (see FIG. 3) of the present invention, and when the light emitting element is driven by the drive circuit, the light emitting part 50 (more specifically, The light is emitted from the front end face 55A) of the light projecting optical fiber 55. In addition, the base end face of the other optical fiber 56 (hereinafter, appropriately referred to as “optical fiber 56 for light reception”) is abutted on the light receiving element. The distal end of the light receiving optical fiber 56 constitutes the light receiving section 51 of the present invention, and the light received by the light receiving section 51 (more specifically, the distal end surface 56A of the light receiving optical fiber 56) is transmitted to the light receiving element. Given.

【0018】上記両光ファイバー55,56は、それら
の先端側が、ブラケット41に固定されている。ブラケ
ット41は、図3に示すように、所定の間隔を開けて対
向配置された一対の脚部42,43の一端同士を連絡壁
44で架橋してなる。その一方の脚部42(以下、適
宜、「投光側脚部42」という)の先端部のうち、相手
側の脚部43(以下、適宜、「受光側脚部43」とい
う)との対向面には、V字溝45が形成されている。ま
た、図2に示すように、投光側脚部42には、配管31
に沿って上下に延びた被巻回壁46,46が形成され、
さらに、それら被巻回壁46,46の先端を、投光側脚
部42の基端側から屈曲して延びた補強壁47,47に
繋げて補強してある。そして、図3に示すように、前記
V字溝45の内側面を配管31の周面に押し当て、図2
に示すように、配管31ごと被巻回壁46,46の外面
にワイヤWを巻回して、ブラケット41が配管31に固
定されている。なお、図3の符号31X,31Yで示す
ように、配管の径が異なっても、それら配管31X、3
1Yの周面をやはりV字溝45の内側面を押し当てて、
ワイヤWで固定することができる。
The optical fibers 55 and 56 have their distal ends fixed to the bracket 41. As shown in FIG. 3, the bracket 41 is formed by bridging one end of a pair of leg portions 42 and 43 that are opposed to each other with a predetermined space therebetween with a communication wall 44. The tip of one leg 42 (hereinafter, appropriately referred to as “light-projecting side leg 42”) opposes the other leg 43 (hereinafter, appropriately referred to as “light-receiving side leg 43”). A V-shaped groove 45 is formed on the surface. Also, as shown in FIG.
The winding walls 46, 46 extending vertically along are formed,
Further, the distal ends of the wound walls 46, 46 are reinforced by being connected to reinforcing walls 47, 47 which are bent and extend from the base end side of the light emitting side leg 42. Then, as shown in FIG. 3, the inner surface of the V-shaped groove 45 is pressed against the peripheral surface of the pipe 31, and FIG.
As shown in the figure, the wire W is wound around the outer surfaces of the wound walls 46, 46 together with the pipe 31, and the bracket 41 is fixed to the pipe 31. In addition, as shown by reference numerals 31X and 31Y in FIG.
Again press the inner surface of the V-shaped groove 45 against the peripheral surface of 1Y,
It can be fixed with the wire W.

【0019】さて、投光側脚部42には、図3に示すよ
うに、投光用レンズ80が埋設されている。投光用レン
ズ80の基端面80Bには、隙間を隔てて投光部50に
突き合わされ、また、前端面80Fは、前記V字溝45
の底部で露出されている。一方、受光側脚部43には、
受光用レンズ90が埋設され、その基端面90Bには、
受光部51に突き合わされ、また、前端面90Fは、受
光側脚部43のうち投光用レンズ80の前端面80Fと
対向位置で露出している。
A light projecting lens 80 is embedded in the light projecting side leg 42 as shown in FIG. The base end face 80B of the light projecting lens 80 is abutted against the light projecting portion 50 with a gap therebetween, and the front end face 80F is provided with the V-shaped groove 45.
Is exposed at the bottom. On the other hand, the light receiving side leg 43 has
A light receiving lens 90 is embedded, and its proximal end face 90B has
The front end face 90 </ b> F is exposed at a position facing the front end face 80 </ b> F of the light projecting lens 80 in the light receiving side leg 43.

【0020】これら両レンズ80,90は、それぞれの
途中に、光の向きを90度変えるプリズム部80A,9
0Aを備えているが、説明のために、図4には、プリズ
ム部80A,90Aを無くして簡略化した両レンズ8
0,90が示されている。以下、図4〜図7に示基づい
て説明する。まず、図4に示すように、両レンズ80,
90は、共に、上下前後左右にそれぞれ一対ずつの対向
面を有した6面体で構成されている。また、上下方向
(配管31の長手方向)と左右方向で対向する各対向面
が平行になっており、さらに、上下より左右に扁平とな
って、その横方向の寸法は、配管31の直径より小さ
い。
The two lenses 80 and 90 are provided in the middle of each of them with prism portions 80A and 9 that change the direction of light by 90 degrees.
4A, for the sake of simplicity, FIG. 4 shows both lenses 8 simplified by omitting the prism portions 80A and 90A.
0,90 are shown. Hereinafter, a description will be given based on FIGS. First, as shown in FIG.
Numeral 90 is a hexahedron having a pair of opposing surfaces in each of the upper, lower, front, rear, right and left directions. In addition, the opposing surfaces facing each other in the up-down direction (longitudinal direction of the pipe 31) and in the left-right direction are parallel to each other. small.

【0021】さて、両レンズ80,90は、図5に示す
ように配管31の縦割り面で見ると、共に、配管31に
対向した前端面80F,90Fが、配管31に向かって
中央部分が突出した凸面構造をなし、基端面80B,9
0Bが、上下方向に真っ直ぐ延びた平面構造をなす。こ
れにより、同図に示すように、配管31の縦割り面で見
たときには、投光部50から出射された放射光は、投光
用レンズ80の前端面80Fで平行光にされて配管31
を通過し、受光用レンズ90の前端面90Fがこれを受
けて、受光部51に集光する。
As shown in FIG. 5, both lenses 80 and 90 have a front end face 80F and 90F facing the pipe 31 at a central portion toward the pipe 31 when viewed from a vertical split surface of the pipe 31. The base end faces 80B, 9 have a protruding convex structure.
0B has a planar structure extending straight in the up-down direction. As a result, as shown in the figure, when viewed from the vertical split surface of the pipe 31, the radiated light emitted from the light projecting unit 50 is converted into parallel light by the front end face 80F of the light projecting lens 80, and the pipe 31
, And the front end face 90 </ b> F of the light receiving lens 90 receives the light and condenses it on the light receiving unit 51.

【0022】一方、図6に示すように、両レンズ80,
90を、配管31の横割り面で見ると、両レンズ80,
90は異なる構造をなす。即ち、投光用レンズ80は、
その前端面80Fが、配管31に向かって中央部分が窪
んだ凹面構造をなし、基端面80Bが、配管31に向か
って中央部分が突出した凸面構造をなす。一方、受光用
レンズ90は、前端面90F及び基端面90Bが共に、
横方向に平坦になっている。これにより、同図に示すよ
うに、配管31の横割り面で見たときには、投光部50
から出射した放射光は、投光用レンズ80の基端面80
Bで平行光にされて、投光用レンズ80から出射される
ときに、前端面80Fの凹形状によって、放射状に発散
して配管31に照射される。
On the other hand, as shown in FIG.
When 90 is viewed from the side of the pipe 31, the two lenses 80,
90 has a different structure. That is, the projection lens 80 is
The front end face 80F has a concave structure in which a central portion is depressed toward the pipe 31, and the base end face 80B has a convex structure in which a central portion protrudes toward the pipe 31. On the other hand, in the light receiving lens 90, both the front end face 90F and the base end face 90B
It is flat in the horizontal direction. As a result, as shown in FIG.
Radiation emitted from the light source 80 is projected onto the base end face 80 of the projection lens 80.
When the light is collimated at B and emitted from the projection lens 80, it is radiated and radiated to the pipe 31 by the concave shape of the front end face 80 </ b> F.

【0023】そして、図6(A)及び図6(B)に対比
したように、投光部50から投光用レンズ80を介して
放射状に出射された光は、配管31内に液体Lが有る無
しに関わらず、受光部51に受光されるが、液体Lによ
るレンズ効果の有無により、受光部51の受光強度は、
液体Lが有るときより、無いときの方が小さくなる。
As shown in FIGS. 6A and 6B, the light emitted radially from the light projecting unit 50 through the light projecting lens 80 is formed by the liquid L in the pipe 31. Irrespective of the presence or absence, the light is received by the light receiving unit 51. Depending on the presence or absence of the lens effect by the liquid L, the light receiving intensity of the light receiving unit 51 is:
When there is no liquid L, it is smaller when there is no liquid L.

【0024】次に、本実施形態の電気的構成を説明す
る。受光部51が受光した光は、光ファイバー55を介
して図示しない受光素子に与えられ、受光素子は、受け
た光の受光量に応じた受光信号を、図7に示した電気回
路部70の受光回路71に出力する。受光回路71は増
幅回路を内蔵しており、受光素子から受けた受光信号を
増幅して、比較回路72に与える。
Next, the electrical configuration of the present embodiment will be described. The light received by the light receiving section 51 is supplied to a light receiving element (not shown) via an optical fiber 55, and the light receiving element receives a light receiving signal corresponding to a received light amount of the received light by the electric circuit section 70 shown in FIG. Output to the circuit 71. The light receiving circuit 71 has a built-in amplifier circuit, amplifies the light receiving signal received from the light receiving element, and supplies the amplified signal to the comparing circuit 72.

【0025】本実施形態では、比較回路72は、一対の
コンパレータ1,2を備えてなる。そして、コンパレー
タ1は、第1基準値と受光信号との大小関係を判別し
て、その大小関係に応じた2値信号を出力し、コンパレ
ータ2は、第2基準値と、受光信号との大小関係を判別
して、その大小関係に応じた2値信号を出力する。ここ
で、第1基準値は、前述したように、液体Lが有るとき
の受光強度に対応した電位に設定され、第2基準値は、
液体Lが無いときの受光強度に対応した電位に設定され
ている。また、図7において、符号73は、出力回路で
あって、前記コンパレータ1,2の出力結果に基づき、
「液体有り」、「液体無し」及び「異常発生」に応じた
3値の検出信号を出力する。
In this embodiment, the comparison circuit 72 includes a pair of comparators 1 and 2. Then, the comparator 1 determines the magnitude relationship between the first reference value and the received light signal, and outputs a binary signal corresponding to the magnitude relationship. The comparator 2 determines the magnitude relationship between the second reference value and the received light signal. The relationship is determined, and a binary signal corresponding to the magnitude relationship is output. Here, as described above, the first reference value is set to a potential corresponding to the received light intensity when the liquid L is present, and the second reference value is
The potential is set to a potential corresponding to the received light intensity when there is no liquid L. In FIG. 7, reference numeral 73 denotes an output circuit, which is based on the output results of the comparators 1 and 2.
It outputs ternary detection signals corresponding to "liquid present", "liquid not present" and "abnormal".

【0026】次に、上記構成からなる本実施形態の動作
を説明する。本実施形態の液体検出装置を配管31に取
り付け、起動スイッチ(図示せず)をオンする。する
と、投光部50から放射光が出射され、これが、投光用
レンズ80に入光するときに、配管31の横割り面で見
たときには、入光面となる基端面80Bにて平行光に変
えられ(図6参照)、投光用レンズ80の前端面80F
まで進む。ここで、投光用レンズ80の前端面80F
は、配管31の横割り方向で、凹面構造をなすから、そ
の前端面80Fから出射した光は、配管31の横割り方
向で、放射光にされて配管31に与えられる。そして、
配管31内の液体Lがあるときには、図6(B)に示す
ように、そのレンズ効果によって、光が集光されて、受
光部51の受光強度が大きくなる。一方、液体Lがない
ときには、図6(A)に示すように、レンズ効果を奏さ
ないから放射光が集光されず、受光強度が小さくなる。
このとき、投受光レンズ80,90および投受光部5
0,51に対して配管31の直径が異なるものについて
も、液体の有無によって受光強度は相違する。したがっ
て光軸調整や投受光部の位置関係を厳密に行わなくても
液体Lの検出を行うことができ、従来のものよりも用途
が拡大し、配管サイズのばらつきを気にする必要も無
い。
Next, the operation of this embodiment having the above configuration will be described. The liquid detection device of the present embodiment is attached to the pipe 31, and a start switch (not shown) is turned on. Then, radiated light is emitted from the light projecting unit 50, and when the radiated light enters the light projecting lens 80, when viewed from the horizontal split surface of the pipe 31, parallel light is emitted at the base end surface 80 B serving as a light incident surface. (See FIG. 6), and the front end face 80F of the projection lens 80.
Continue to. Here, the front end face 80F of the projection lens 80
Has a concave structure in the transverse direction of the pipe 31, the light emitted from the front end face 80F is converted into radiated light in the transverse direction of the pipe 31 and provided to the pipe 31. And
When the liquid L in the pipe 31 exists, as shown in FIG. 6B, the light is condensed by the lens effect, and the light receiving intensity of the light receiving unit 51 increases. On the other hand, when there is no liquid L, as shown in FIG. 6 (A), since the lens effect is not exhibited, the emitted light is not condensed, and the light receiving intensity is reduced.
At this time, the light emitting and receiving lenses 80 and 90 and the light emitting and receiving unit 5
Even when the diameter of the pipe 31 is different from that of the pipes 0 and 51, the light receiving intensity is different depending on the presence or absence of the liquid. Therefore, the liquid L can be detected without strictly adjusting the optical axis and strictly the positional relationship between the light emitting and receiving portions, and the application is expanded as compared with the conventional one, and there is no need to worry about the variation in the pipe size.

【0027】また、本実施形態では、投光部50からの
放射光を、一度、基端面80Bで平行光にしてから、再
度、放射光に戻しているが、これにより、配管31に接
近した位置から放射光を出射することができ、以下のよ
うな作用効果を奏する。即ち、配管31から離れた位置
から放射光を与えると、図8(A)と図8(B)とに対
比して示すように、配管31の直径の大きさの相違によ
って、配管31を通過した光の集光点P1が異なる。こ
のため、図8(B)に示すように、小さい径の配管31
Yでは、受光部51の手前に集光点P1が位置して、受
光部51には、その集光点P1から放射した光が与えら
れ、受光強度が液体Lの有無によって相違しなくなり、
液体Lを検出できなくなる。あるいは、それを回避すべ
く、投受光部50,51の配置を逐一変える必要が生じ
る。しかし、配管31に接近した位置から放射光を出射
した場合には、そのようなことはなく、本実施形態で
は、投光部50からの放射光を、一度、基端面80Bで
平行光にしてから、再度放射光に戻すことで、配管31
に接近した位置から放射光を出射したから、配管31の
径の大小に関わらず、液体Lの有無を検出することがで
きる。
In the present embodiment, the light emitted from the light projecting unit 50 is once converted into parallel light on the base end face 80B, and then returned to the emitted light again. The emitted light can be emitted from the position, and the following operational effects can be obtained. That is, when radiated light is given from a position distant from the pipe 31, the radiated light passes through the pipe 31 due to the difference in the diameter of the pipe 31 as shown in comparison with FIGS. 8A and 8B. The light converging point P1 is different. For this reason, as shown in FIG.
In Y, the light-collecting point P1 is located in front of the light-receiving part 51, the light radiated from the light-collecting point P1 is given to the light-receiving part 51, and the light receiving intensity does not differ depending on the presence or absence of the liquid L,
The liquid L cannot be detected. Alternatively, in order to avoid this, it is necessary to change the arrangement of the light emitting and receiving units 50 and 51 one by one. However, this is not the case when the emitted light is emitted from a position close to the pipe 31. In the present embodiment, the emitted light from the light projecting unit 50 is once converted into parallel light at the base end face 80B. To return to the emitted light again.
Since the emitted light is emitted from a position close to, the presence or absence of the liquid L can be detected regardless of the diameter of the pipe 31.

【0028】上述の如く、液体Lの有無によって受光部
51の受光強度が変わると、これら受光強度に対応した
大きさの受光信号が、受光素子から出力される。する
と、受光回路71を介して、この受光信号が、コンパレ
ータ1,2に取り込まれる。そして、各コンパレータ
1,2において、受光信号が、第1及び第2の基準値よ
り大きいか否かを判断いて、出力回路73から、「液体
有り」又は「液体無し」に対応した検出信号が出力され
る。ここで、本実施形態では、投光部50からの光は、
配管31の縦割り面で見たときには、投光用レンズ80
によって平行光とされるから、図5に示すように、液体
Lに気泡や凝固物等の異物Zが生じたときに、その異物
Zが受光部51側に広い範囲の射影になることはなく、
受光強度への影響を抑えることができる。これにより、
液体L内の異物Zによる誤検出を防ぐことができる。
As described above, when the light receiving intensity of the light receiving section 51 changes depending on the presence or absence of the liquid L, a light receiving signal having a magnitude corresponding to the light receiving intensity is output from the light receiving element. Then, the light receiving signal is taken into the comparators 1 and 2 via the light receiving circuit 71. Then, in each of the comparators 1 and 2, it is determined whether the light receiving signal is larger than the first and second reference values, and a detection signal corresponding to “liquid present” or “liquid not present” is output from the output circuit 73. Is output. Here, in the present embodiment, the light from the light projecting unit 50 is
When viewed from the vertical split surface of the pipe 31, the light emitting lens 80
As shown in FIG. 5, when a foreign substance Z such as a bubble or a solidified substance is generated in the liquid L, the foreign substance Z is not projected onto the light receiving unit 51 in a wide range as shown in FIG. ,
The effect on the received light intensity can be suppressed. This allows
Erroneous detection due to foreign matter Z in liquid L can be prevented.

【0029】さらに、例えば、光ファイバー55が途中
で断線した場合には、投光部50から光が出射されず、
受光部51は光を受光できなくなり、受光素子からの受
光信号のレベルが、所定値以下(例えば、0[V])に
なる。すると、この受光信号がコンパレータ2に取り込
まれて、第2基準値を下回ったと判別されて、異常検出
信号が出力回路73から出力される。
Further, for example, when the optical fiber 55 is disconnected halfway, no light is emitted from the light projecting unit 50,
The light receiving unit 51 cannot receive light, and the level of the light receiving signal from the light receiving element becomes equal to or lower than a predetermined value (for example, 0 [V]). Then, this light receiving signal is taken into the comparator 2, it is determined that the light receiving signal has fallen below the second reference value, and an abnormality detection signal is output from the output circuit 73.

【0030】このように、本実施形態の液体検出装置に
よれば、配管31を通過させる光を、配管31の横割り
面で見たときに、放射光にすることで、配管が異なるも
のにも光軸調整や投受光部の位置関係を調整しなくても
液体の検出を行うことができ、従来のものよりも用途が
拡大し、配管サイズのばらつきを気にする必要もない。
縦割り面で見たときに平行光としたから、液体内に気泡
等の異物があっても、液体がないときの配管内に水滴が
付着しても、その影響を抑え、誤検出を除くことができ
る。しかも、光ファイバー55,56の断線等の異常を
検出可能としたことで、液体検出の正確性が増す。
As described above, according to the liquid detection device of the present embodiment, the light passing through the pipe 31 is radiated when viewed from the horizontal split surface of the pipe 31, so that the pipe can be different. Also, the liquid can be detected without adjusting the optical axis or the positional relationship between the light emitting and receiving sections, and the application is expanded as compared with the conventional one, and there is no need to worry about the variation in the pipe size.
Since parallel light is used when viewed on the vertically split surface, even if there is foreign matter such as air bubbles in the liquid, even if water droplets adhere to the piping when there is no liquid, the effect is suppressed and false detection is eliminated. be able to. In addition, since the abnormality such as disconnection of the optical fibers 55 and 56 can be detected, the accuracy of liquid detection increases.

【0031】<第2実施形態>本実施形態は、図9及び
図10に示されており、以下、第1実施形態と異なる構
成についてのみ説明し、同一の構成に関しては、同一符
号を付して重複説明は省略する。
<Second Embodiment> This embodiment is shown in FIG. 9 and FIG. 10. Hereinafter, only the configuration different from the first embodiment will be described, and the same reference numerals will be given to the same configuration. Therefore, a duplicate description will be omitted.

【0032】本実施形態の液体検出装置における投光部
50は、複数の投光用光ファイバー55の各先端部を発
光部100として、これら発光部100を、配管31の
長手方向に沿って、互いに所定の間隔を開けて配列して
なる。一方、受光部51は、複数の受光用光ファイバー
56の各先端部を小受光部101として、これら小受光
部101を、配管31を間に挟んで前記各発光部100
に対向させてなる。
The light projecting unit 50 in the liquid detecting apparatus of the present embodiment is configured such that each of the tips of the plurality of light projecting optical fibers 55 serves as a light emitting unit 100, and these light emitting units 100 are mutually connected along the longitudinal direction of the pipe 31. They are arranged at predetermined intervals. On the other hand, the light receiving section 51 is configured such that each of the distal ends of the plurality of light receiving optical fibers 56 serves as a small light receiving section 101, and the small light receiving sections 101 are sandwiched between the light emitting sections 100 with the pipe 31 interposed therebetween.
Facing.

【0033】このような構成としても、図10に示すよ
うに、投光部50からの光を、配管31の横割り面で見
て放射光とすることができるから、配管31の直径が異
なるものについても、液体の有無によって受光強度が相
違する。従って、光軸調整や投受光部の位置関係の調整
を厳密に行わなくても、液体の検出を行うことができ、
従来のものよりも用途が拡大し、配管サイズのばらつき
を気にする必要も無い。しかも、投光部50を構成する
複数の発光部100は、配管31の長手方向に沿って配
列されているから、図9に示すように、かりに、液体L
に気泡や凝固物等の異物が生じ、あるいは、気体内に水
滴などが付着して、1つの発光部100の前方に異物Z
が位置していても、それ以外の発光部100からの光が
受光部51側に与えられ、異物Zによる受光強度への影
響を抑えることができる。これにより、液体内に気泡等
の異物があっても、液体がな無いときの配管に水滴が付
着していても、その影響を抑えて誤検出を防ぐことがで
きる。
Even with such a configuration, as shown in FIG. 10, the light from the light projecting portion 50 can be converted into radiation when viewed from the horizontal split surface of the pipe 31, so that the diameter of the pipe 31 is different. The light receiving intensity differs depending on the presence or absence of the liquid. Therefore, the liquid can be detected without strictly adjusting the optical axis or adjusting the positional relationship between the light emitting and receiving units,
Applications are wider than conventional ones, and there is no need to worry about variations in piping size. In addition, since the plurality of light emitting units 100 constituting the light projecting unit 50 are arranged along the longitudinal direction of the pipe 31, the liquid L is measured as shown in FIG.
Foreign matter such as air bubbles and coagulated matter is generated on the surface, or water droplets and the like adhere to the gas, and the foreign matter Z
Is located, the other light from the light emitting unit 100 is given to the light receiving unit 51 side, and the influence of the foreign matter Z on the light receiving intensity can be suppressed. Accordingly, even if foreign matter such as air bubbles is present in the liquid, or even if water droplets adhere to the pipe when there is no liquid, the influence thereof can be suppressed and erroneous detection can be prevented.

【0034】<第2実施形態>本実施形態は、図16及
び図17に示されており、以下、第1実施形態と異なる
構成についてのみ説明し、同一の構成に関しては、同一
符号を付して重複説明は省略する。
<Second Embodiment> This embodiment is shown in FIG. 16 and FIG. 17. Hereinafter, only the configuration different from the first embodiment will be described, and the same reference numerals will be given to the same configuration. Therefore, a duplicate description will be omitted.

【0035】本実施形態の投光用及び受光用の両レンズ
81,91は、配管31の縦割り面で見ると、共に、配
管31に対向した前端面81F,91Fが、配管31に
向かって中央部分が突出した凸面構造をなし、基端面8
1B,91Bが、上下方向に真っ直ぐ延びた平面構造を
なす。これにより、配管31の縦割り面で見たときに
は、前記第1実施形態と同様に(図5参照)、投光部5
0から出射された放射光は、投光用レンズ81の前端面
81Fで平行光にされて配管31を通過し、受光用レン
ズ91の前端面91Fがこれを受けて、受光部51に集
光する。
When both the light projecting and light receiving lenses 81 and 91 of this embodiment are viewed from the vertical split surface of the pipe 31, both front end faces 81 F and 91 F facing the pipe 31 face toward the pipe 31. The central portion has a protruding surface structure, and the base end surface 8
1B and 91B form a planar structure extending straight in the vertical direction. Thereby, when viewed from the vertical split surface of the pipe 31, similarly to the first embodiment (see FIG. 5), the light emitting unit 5
The radiated light emitted from 0 is made parallel by the front end face 81F of the light projecting lens 81 and passes through the pipe 31, and the front end face 91F of the light receiving lens 91 receives the light and is condensed on the light receiving section 51. I do.

【0036】一方、図17に示すように、両レンズ8
1,91を、配管31の横割り面で見ると、両レンズ8
1,91は異なる構造をなす。即ち、投光用レンズ81
は、その前端面81Fが平坦になっていて、基端面81
Bが、配管31に向かって中央部分が突出した凸面構造
をなす。一方、受光用レンズ91は、前端面91F及び
基端面91Bが共に、横方向に平坦になっている。これ
により、同図に示すように、配管31の横割り面で見た
ときには、投光部50から出射した放射光は、投光用レ
ンズ81の基端面81Bで平行光にされて、投光用レン
ズ80から出射されるときに、前端面81Fの平坦面に
よって、平行光のまま配管31に照射される。
On the other hand, as shown in FIG.
When the first lens 91 and the first lens 91 are viewed from the horizontal split surface of the pipe 31, both lenses 8
1, 91 have different structures. That is, the light projecting lens 81
Has a flat front end face 81F and a base end face 81F.
B has a convex structure with a central portion protruding toward the pipe 31. On the other hand, in the light receiving lens 91, both the front end face 91F and the base end face 91B are flat in the lateral direction. As a result, as shown in the figure, when viewed on the horizontal split surface of the pipe 31, the radiated light emitted from the light projecting unit 50 is converted into parallel light by the base end surface 81 </ b> B of the light projecting lens 81. When the light is emitted from the lens 80, the light is radiated to the pipe 31 as parallel light by the flat surface of the front end face 81F.

【0037】そして、図17(A)及び図17(B)に
対比したように、投光部50から投光用レンズ81を介
して平行状に出射された光は、配管31内に液体Lが有
る無しに関わらず、受光部51に受光されるが、液体L
によるレンズ効果の有無により、受光部51の受光強度
は、液体Lが有るときより、無いときの方が小さくな
る。
As shown in FIGS. 17A and 17B, light emitted in parallel from the light projecting unit 50 through the light projecting lens 81 flows into the pipe 31 in the liquid L direction. Is received by the light receiving unit 51 regardless of the presence or absence of
The light receiving intensity of the light receiving unit 51 is smaller when there is no liquid L than when there is liquid L, depending on the presence or absence of the lens effect due to the above.

【0038】次に、本実施形態の電気的構成を説明す
る。受光部51が受光した光は、光ファイバー55を介
して図示しない受光素子に与えられ、受光素子は、受け
た光の受光量に応じた受光信号を、図7に示した電気回
路部70の受光回路71に出力する。受光回路71は増
幅回路を内蔵しており、受光素子から受けた受光信号を
増幅して、比較回路72に与える。
Next, the electrical configuration of this embodiment will be described. The light received by the light receiving section 51 is supplied to a light receiving element (not shown) via an optical fiber 55, and the light receiving element receives a light receiving signal corresponding to a received light amount of the received light by the electric circuit section 70 shown in FIG. Output to the circuit 71. The light receiving circuit 71 has a built-in amplifier circuit, amplifies the light receiving signal received from the light receiving element, and supplies the amplified signal to the comparing circuit 72.

【0039】本実施形態では、比較回路72は、一対の
コンパレータ1,2を備えてなる。そして、コンパレー
タ1は、第1基準値と受光信号との大小関係を判別し
て、その大小関係に応じた2値信号を出力し、コンパレ
ータ2は、第2基準値と、受光信号との大小関係を判別
して、その大小関係に応じた2値信号を出力する。ここ
で、第1基準値は、前述したように、液体Lが有るとき
の受光強度に対応した電位に設定され、第2基準値は、
液体Lが無いときの受光強度に対応した電位に設定され
ている。また、図7において、符号73は、出力回路で
あって、前記コンパレータ1,2の出力結果に基づき、
「液体有り」、「液体無し」及び「異常発生」に応じた
3値の検出信号を出力する。
In this embodiment, the comparison circuit 72 includes a pair of comparators 1 and 2. Then, the comparator 1 determines the magnitude relationship between the first reference value and the received light signal, and outputs a binary signal corresponding to the magnitude relationship. The comparator 2 determines the magnitude relationship between the second reference value and the received light signal. The relationship is determined, and a binary signal corresponding to the magnitude relationship is output. Here, as described above, the first reference value is set to a potential corresponding to the received light intensity when the liquid L is present, and the second reference value is
The potential is set to a potential corresponding to the received light intensity when there is no liquid L. In FIG. 7, reference numeral 73 denotes an output circuit, which is based on the output results of the comparators 1 and 2.
It outputs ternary detection signals corresponding to "liquid present", "liquid not present" and "abnormal".

【0040】次に、上記構成からなる本実施形態の動作
を説明する。本実施形態の液体検出装置を配管31に取
り付け、起動スイッチ(図示せず)をオンする。する
と、投光部50から放射光が出射され、これが、投光用
レンズ81に入光するときに、配管31の横割り面で見
たときには、入光面となる基端面81Bにて平行光に変
えられ(図17参照)、投光用レンズ81の前端面81
Fまで進む。ここで、投光用レンズ81の前端面81F
は、配管31の横割り方向で、平坦になっているから、
その前端面81Fから出射した光は、配管31の横割り
方向で、放射光にされて配管31に与えられる。そし
て、配管31内の液体Lがあるときには、図17(B)
に示すように、そのレンズ効果によって、光が集光され
て、受光部51の受光強度が大きくなる。一方、液体L
がないときには、図17(A)に示すように、レンズ効
果を奏さないから平行光が集光されず、受光強度が小さ
くなる。このとき、投受光レンズ81,91および投受
光部50,51に対して配管31の直径が異なるものに
ついても、液体の有無によって受光強度は相違する。し
たがって光軸調整や投受光部の位置関係を厳密に行わな
くても液体Lの検出を行うことができ、従来のものより
も用途が拡大し、配管サイズのばらつきを気にする必要
も無い。
Next, the operation of this embodiment having the above configuration will be described. The liquid detection device of the present embodiment is attached to the pipe 31, and a start switch (not shown) is turned on. Then, radiated light is emitted from the light projecting unit 50, and when the radiated light enters the light projecting lens 81, when viewed from the horizontal split surface of the pipe 31, parallel light is emitted at the base end surface 81 B serving as a light incident surface. (See FIG. 17), and the front end face 81 of the projection lens 81
Proceed to F. Here, the front end face 81F of the projection lens 81
Is flat in the horizontal split direction of the pipe 31,
The light emitted from the front end face 81F is converted into radiated light in the transverse direction of the pipe 31 and provided to the pipe 31. Then, when there is the liquid L in the pipe 31, FIG.
As shown in (2), light is condensed by the lens effect, and the light receiving intensity of the light receiving unit 51 is increased. On the other hand, the liquid L
When there is no light, as shown in FIG. 17 (A), since no lens effect is exhibited, parallel light is not condensed and the light receiving intensity is reduced. At this time, even if the diameter of the pipe 31 differs from the light emitting / receiving lenses 81, 91 and the light emitting / receiving sections 50, 51, the light receiving intensity also differs depending on the presence or absence of the liquid. Therefore, the liquid L can be detected without strictly adjusting the optical axis and strictly the positional relationship between the light emitting and receiving portions, and the application is expanded as compared with the conventional one, and there is no need to worry about the variation in the pipe size.

【0041】また、本実施形態では、投光部50からの
放射光を、一度、基端面81Bで平行光にして、前端面
81Fから平行光のまま出射することができ、以下のよ
うな作用効果を奏する。即ち、投光部50と配管31と
の位置関係を固定し、放射光を与えると、図8(A)と
図8(B)とに対比して示すように、配管31の直径の
大きさの相違によって、配管31を通過した光の集光点
P1が異なる。このため、図8(B)に示すように、小
さい径の配管31Yでは、受光部51の手前に集光点P
1が位置して、受光部51には、その集光点P1から放
射した光が与えられ、受光強度が液体Lの有無によって
相違しなくなり、液体Lを検出できなくなる。あるい
は、それを回避すべく、投受光部50,51の配置を逐
一変える必要が生じる。しかし、配管31に平行光を出
射し、受光部51を配管31から所定位置に固定した場
合には、そのようなことはなく、本実施形態では、投光
部50からの平行光を出射すると共に、配管31に接近
した位置に受光部51を配置したことから、配管31の
径の大小に関わらず、液体Lの有無を検出することがで
きる。
Further, in the present embodiment, the light emitted from the light projecting section 50 can be once converted into parallel light on the base end face 81B and emitted as parallel light from the front end face 81F. It works. That is, when the positional relationship between the light projecting unit 50 and the pipe 31 is fixed and the emitted light is given, as shown in FIGS. 8A and 8B, the size of the diameter of the pipe 31 is increased. , The light condensing point P1 of the light passing through the pipe 31 is different. For this reason, as shown in FIG. 8B, in the pipe 31Y having a small diameter, the focusing point P is located in front of the light receiving section 51.
At position 1, the light radiated from the light condensing point P <b> 1 is given to the light receiving unit 51, and the light receiving intensity does not differ depending on the presence or absence of the liquid L, and the liquid L cannot be detected. Alternatively, in order to avoid this, it is necessary to change the arrangement of the light emitting and receiving units 50 and 51 one by one. However, when the parallel light is emitted to the pipe 31 and the light receiving unit 51 is fixed at a predetermined position from the pipe 31, this is not the case. In the present embodiment, the parallel light is emitted from the light projecting unit 50. In addition, since the light receiving unit 51 is disposed at a position close to the pipe 31, the presence or absence of the liquid L can be detected regardless of the diameter of the pipe 31.

【0042】<他の実施形態>本発明は、前記実施形態
に限定されるものではなく、例えば、以下に説明するよ
うな実施形態も本発明の技術的範囲に含まれ、さらに、
下記以外にも要旨を逸脱しない範囲内で種々変更して実
施することができる。
<Other Embodiments> The present invention is not limited to the above embodiments. For example, the following embodiments are also included in the technical scope of the present invention.
In addition to the following, various changes can be made without departing from the scope of the invention.

【0043】(1)前記各実施形態では、配管31は透
明であったが、配管は半透明なものであってもよい。
(1) In the above embodiments, the pipe 31 is transparent, but the pipe may be translucent.

【0044】(2)前記第1実施形態では、光ファイバ
ー55,56の先端部を投受光部50,51として、ブ
ラケット41に固定した構成であったが、投光素子及び
受光素子を、投光部及び受光部としてブラケットに固定
し、それら投受光素子から配線を延ばして電気回路部に
連絡した構成としてもよい。
(2) In the first embodiment, the distal ends of the optical fibers 55 and 56 are fixed to the bracket 41 as the light emitting and receiving portions 50 and 51. However, the light emitting element and the light receiving element are It is also possible to adopt a configuration in which the unit and the light receiving unit are fixed to a bracket, and wiring is extended from the light emitting and receiving elements and connected to the electric circuit unit.

【0045】(3)前記第1実施形態では、両レンズ8
0,90は、屈曲して途中にプリズム部80A,90A
を備えていたが、図4に簡略して示したもののように、
プリズム部を備えない構成でもよい。
(3) In the first embodiment, both lenses 8
0, 90 are bent and formed in the middle of the prism portions 80A, 90A.
, But as shown in simplified form in FIG.
A configuration without the prism unit may be used.

【0046】(4)前記第1実施形態では、投光用レン
ズ80は、図6に示したように、基端面80Bが凸面形
状をなし、前端面80Fが凹面形状をなしていたが、こ
れら基端面80B及び前端面80Fをともに平面形状に
してもよい。そのようにしても、前端面80Fから放射
光を出射することができるからである。但し、前記第1
実施形態のように基端面80Bを凸面形状、前端面80
Fを凹面形状にすれば、前述したように、配管31に接
近した位置から光を放射させることができる。
(4) In the first embodiment, as shown in FIG. 6, in the light projecting lens 80, the base end face 80B has a convex shape and the front end face 80F has a concave shape. The base end face 80B and the front end face 80F may both have a planar shape. This is because even in such a case, the emitted light can be emitted from the front end face 80F. However, the first
As in the embodiment, the base end face 80B has a convex shape, and the front end face 80B
If F has a concave shape, light can be emitted from a position close to the pipe 31 as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に液体検出装置の側断
面図
FIG. 1 is a side sectional view of a liquid detection device according to a first embodiment of the present invention.

【図2】 液体検出装置の側面図FIG. 2 is a side view of the liquid detection device.

【図3】 液体検出装置の平断面図FIG. 3 is a cross-sectional plan view of the liquid detection device.

【図4】 投光用レンズの斜視図FIG. 4 is a perspective view of a projection lens.

【図5】 配管の縦割り面で見た断面図FIG. 5 is a cross-sectional view of the pipe taken along a vertically divided plane.

【図6】 配管の横割り面で見た断面図FIG. 6 is a cross-sectional view of the pipe taken along a horizontal plane.

【図7】 液体検出装置の電気的構成を示すブロック図FIG. 7 is a block diagram showing an electrical configuration of the liquid detection device.

【図8】 配管の径の相違による問題点を示す概念図FIG. 8 is a conceptual diagram showing a problem due to a difference in pipe diameter.

【図9】 第2実施形態の液体検出装置の側断面図FIG. 9 is a side sectional view of a liquid detection device according to a second embodiment.

【図10】 その液体検出装置の平断面図FIG. 10 is a cross-sectional plan view of the liquid detection device.

【図11】 従来の液体検出装置の側断面図FIG. 11 is a side sectional view of a conventional liquid detection device.

【図12】 液体検出装置の原理を示す概念図FIG. 12 is a conceptual diagram showing the principle of a liquid detection device.

【図13】 液体検出装置のブラケットを示す斜視図FIG. 13 is a perspective view showing a bracket of the liquid detection device.

【図14】 従来の問題点を説明するための概念図FIG. 14 is a conceptual diagram for explaining a conventional problem.

【図15】 従来の問題点を説明するための概念図FIG. 15 is a conceptual diagram for explaining a conventional problem.

【図16】 第3実施形態の投光用レンズの斜視図FIG. 16 is a perspective view of a light projecting lens according to a third embodiment.

【図17】 第3実施形態において配管の縦割り面で見
た断面図
FIG. 17 is a cross-sectional view of the pipe according to the third embodiment, taken along a vertical split plane.

【符号の説明】 31,31X,31Y…配管 41…ブラケット 50…投光部 51…受光部 80…投光用レンズ 80B…基端面 80F…前端面 100…発光部 L…液体[Description of Signs] 31, 31X, 31Y: Piping 41: Bracket 50: Light emitting unit 51: Light receiving unit 80: Light emitting lens 80B: Base end surface 80F: Front end surface 100: Light emitting unit L: Liquid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上下方向に延びかつ内部で液体のレベル
が推移する透明又は半透明な配管を間に挟んで配置され
た投光部及び受光部と、 前記受光部が出力した受光信号と所定の基準値との大小
関係を判別する比較部とを備え、その比較部による判別
結果に基づき、前記投光部及び受光部の間の液体の有無
を検出する液体検出装置において、 前記投光部と前記配管との間には、投光用レンズが設け
られ、その投光用レンズは、前記発光部から出射された
光を、前記配管の縦割り面で見たときには、平行光にす
る一方、前記配管の横割り面で見たときには、放射光に
するように構成されたことを特徴とする液体検出装置。
1. A light projecting unit and a light receiving unit which are arranged vertically with a transparent or translucent pipe in which a liquid level changes inside, and a light receiving signal output by the light receiving unit and a predetermined A comparison unit that determines the magnitude relationship between the light projection unit and the reference value of the reference value, a liquid detection device that detects the presence or absence of liquid between the light projection unit and the light reception unit based on the determination result by the comparison unit; A light projecting lens is provided between the light emitting unit and the pipe, and the light projecting lens converts light emitted from the light emitting unit into parallel light when viewed from a vertically split surface of the pipe. A liquid detection device configured to emit radiation when viewed from a horizontal split surface of the pipe.
【請求項2】 上下方向に延びかつ内部で液体のレベル
が推移する透明又は半透明な配管を間に挟んで配置され
た投光部及び受光部と、 前記受光部が出力した受光信号と所定の基準値との大小
関係を判別する比較部とを備え、その比較部による判別
結果に基づき、前記投光部及び受光部の間の液体の有無
を検出する液体検出装置において、 前記投光部は、放射光を出射する複数の発光部を、前記
配管の長手方向に沿って配列してなることを特徴とする
液体検出装置。
2. A light-transmitting unit and a light-receiving unit which are arranged vertically with a transparent or translucent pipe in which the level of a liquid changes within, and a light-receiving signal output from the light-receiving unit and a predetermined light-receiving unit. A comparison unit that determines the magnitude relationship between the light projection unit and the reference value of the reference value, a liquid detection device that detects the presence or absence of liquid between the light projection unit and the light reception unit based on the determination result by the comparison unit; The liquid detecting device according to claim 1, wherein a plurality of light emitting units for emitting radiation light are arranged along a longitudinal direction of the pipe.
【請求項3】 上下方向に延びかつ内部で液体のレベル
が推移する透明又は半透明な配管を間に挟んで配置され
た投光部及び受光部と、 前記受光部が出力した受光信号と所定の基準値との大小
関係を判別する比較部とを備え、その比較部による判別
結果に基づき、前記投光部及び受光部の間の液体の有無
を検出する液体検出装置において、 前記投光部と前記配管との間には、投光用レンズが設け
られ、その投光用レンズは、前記発光部から出射された
光を、前記配管の縦割り面で見たとき、及び、前記配管
の横割り面で見たときに、平行光にするように構成され
たことを特徴とする液体検出装置。
3. A light projecting unit and a light receiving unit interposed with a transparent or translucent pipe extending vertically and in which a liquid level changes within, a light receiving signal output by the light receiving unit and a predetermined value. A comparison unit that determines the magnitude relationship between the light projection unit and the reference value of the reference value, a liquid detection device that detects the presence or absence of liquid between the light projection unit and the light reception unit based on the determination result by the comparison unit; A light-emitting lens is provided between the pipe and the pipe, and the light-emitting lens, when the light emitted from the light emitting unit is viewed on a vertically split surface of the pipe, and A liquid detection device, which is configured to make parallel light when viewed on a horizontal split surface.
JP2000187860A 2000-06-22 2000-06-22 Liquid detector Expired - Fee Related JP3548092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187860A JP3548092B2 (en) 2000-06-22 2000-06-22 Liquid detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187860A JP3548092B2 (en) 2000-06-22 2000-06-22 Liquid detector

Publications (2)

Publication Number Publication Date
JP2002005726A true JP2002005726A (en) 2002-01-09
JP3548092B2 JP3548092B2 (en) 2004-07-28

Family

ID=18687751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187860A Expired - Fee Related JP3548092B2 (en) 2000-06-22 2000-06-22 Liquid detector

Country Status (1)

Country Link
JP (1) JP3548092B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316041A (en) * 2006-05-23 2007-12-06 Sakata Denki Liquid level position detector
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
JP2010096587A (en) * 2008-10-15 2010-04-30 Diversey Ip Internatl Bv Liquid outage sensor and liquid supply apparatus
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP2018165661A (en) * 2017-03-28 2018-10-25 アサヒビール株式会社 Liquid detection sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316041A (en) * 2006-05-23 2007-12-06 Sakata Denki Liquid level position detector
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP2010096587A (en) * 2008-10-15 2010-04-30 Diversey Ip Internatl Bv Liquid outage sensor and liquid supply apparatus
JP2018165661A (en) * 2017-03-28 2018-10-25 アサヒビール株式会社 Liquid detection sensor

Also Published As

Publication number Publication date
JP3548092B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US20120180564A1 (en) Liquid container and inclination detector including the same
JP6303388B2 (en) Limited-area reflective optical sensor and electronic device
JP3548092B2 (en) Liquid detector
JP2010048575A (en) Optical distance measuring sensor and apparatus with sensor mounted
JP2006300793A (en) Optical liquid-level sensor
JP5317410B2 (en) Liquid detector
JP2005265616A (en) Optical displacement measuring device
JP2002148101A (en) Liquid detector
JP2001336966A (en) Liquid detecting apparatus
JP2013002842A (en) Liquid sensor
JPH0989553A (en) Distance measuring device
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
KR100899088B1 (en) Lensmeter
JP5162832B2 (en) Displacement detector
JP2010256183A (en) Reflection-type photoelectric sensor
JP2021018228A (en) Optical device and on-vehicle system and mobile device having the same
KR101868963B1 (en) Structure to the one direction over the distance by using the detected light
JPH08271320A (en) Method for detecting liquid in pipe or vessel, and device therefor
JP7408147B2 (en) liquid detection sensor
JP2001337006A (en) Leaked liquid sensor
JP2011145157A (en) Vibration sensor
JP7393753B2 (en) concentration measuring device
JP6414351B2 (en) Limited-area reflective optical sensor and electronic device
CN117406198A (en) Distance measurement sensing device and method and distance-related application equipment
JP4087291B2 (en) Tube liquid sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Ref document number: 3548092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees