JP2001227903A - Telescopically spiraling slip inductor reactor displacement sensor - Google Patents

Telescopically spiraling slip inductor reactor displacement sensor

Info

Publication number
JP2001227903A
JP2001227903A JP2000036785A JP2000036785A JP2001227903A JP 2001227903 A JP2001227903 A JP 2001227903A JP 2000036785 A JP2000036785 A JP 2000036785A JP 2000036785 A JP2000036785 A JP 2000036785A JP 2001227903 A JP2001227903 A JP 2001227903A
Authority
JP
Japan
Prior art keywords
inductor
wire
telescopic spiral
displacement
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000036785A
Other languages
Japanese (ja)
Other versions
JP3315967B2 (en
Inventor
Wahei Inoue
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2000036785A priority Critical patent/JP3315967B2/en
Publication of JP2001227903A publication Critical patent/JP2001227903A/en
Application granted granted Critical
Publication of JP3315967B2 publication Critical patent/JP3315967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a telescopically spiraling slip inductor reactor displacement sensor having enhanced effective length ratio without impairing its linear characteristic. SOLUTION: The telescopically spiraling slip inductor reactor displacement sensor comprises an AC excitation coil 10 and a telescopically spiraling inductor 12. The telescopically spiraling inductor 12 is formed of a double-layer winding coil comprising an inner-layer coil 12b and an outer-layer coil 12a of a circular element wire 10a which are wound in different directions, with the start and end terminals of the inner and outer layers thereof being connected together by short-circuit wires 13 and 13 and electrically shorted to form a closed loop wherein a voltage induced by flux linkage is shorted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、棒状交流励磁線輪
と、該励磁線輪の形成する電磁誘導磁界内に前記線輪と
同方向軸芯に設け該軸芯方向の変位を受ける滑り誘導子
より、該変位を前記交流励磁線輪のリアクタンス変化に
より検出して前記変位を表示する、滑り誘導子リアクタ
において、前記滑り誘導子を伸縮性螺旋構造とすること
により、変位標点間の距離に対する線形特性を害うこと
なく、構造の単純化、有効長比率の向上を図るととも
に、小型化汎用性の拡大を可能とする伸縮螺旋型滑り誘
導子リアクタ変位センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rod-shaped AC exciting wire, and a sliding induction coil provided in an electromagnetic induction magnetic field formed by the exciting wire and having the same axial axis as the wire and subjected to displacement in the axial direction. And detecting the displacement based on a change in the reactance of the AC excitation wire loop and displaying the displacement. In a sliding inductor reactor, the distance between displacement reference points is obtained by forming the sliding inductor into an elastic spiral structure. The present invention relates to a telescopic spiral-type sliding inductor reactor displacement sensor capable of simplifying the structure and improving the effective length ratio without deteriorating the linear characteristics with respect to, and enabling the miniaturization and expansion of versatility.

【0002】[0002]

【従来の技術】従来の滑り誘導子リアクタにおいては、
該リアクタに使用している滑り誘導子の基本構造は、単
一の導電性の金属管が使用され、その場合の出力特性は
理想的な線形特性が得られるものの、変位の有効な標点
間距離と、リアクタ全体の長さに対する割合、即ち有効
長比率が50%以下であり、そのために利用範囲が制限
される場合がある。これは滑り誘導子の形状によるもの
であり、該誘導子の短縮化に対する開発が行なわれてい
るが、その構造が複雑化したり線形性特性が非線形化し
たり、出力低下の問題がある。
2. Description of the Related Art In a conventional sliding inductor reactor,
The basic structure of the sliding inductor used in the reactor is a single conductive metal tube. In this case, the output characteristics are ideal linear characteristics, but the effective displacement between the reference points is effective. The distance and the ratio to the total length of the reactor, that is, the effective length ratio is 50% or less, which may limit the use range. This is due to the shape of the sliding inductor, and developments for shortening the inductor have been made. However, there are problems in that the structure is complicated, the linearity characteristic is nonlinear, and the output is reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題の
解決のためになされたもので、線形特性を害なうことな
く、有効長比率の向上を図った伸縮性螺旋型滑り誘導子
リアクタ変位センサの提供を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and has an object to improve the effective length ratio without deteriorating the linear characteristic. It is intended to provide a displacement sensor.

【0004】[0004]

【課題を解決するための手段】そこで、本発明の伸縮螺
旋型滑り誘導子リアクタ変位センサは、棒状交流励磁線
輪と、該励磁線輪の外周に形成され軸芯方向の変位を受
ける伸縮螺旋誘導子と、よりなる滑り誘導子リアクタ変
位センサであって、前記伸縮螺旋誘導子は、一端に固定
端を持ち他端に変位端を持つ伸縮可能の螺旋部材よりな
る閉ループコイルで構成されるとともに、前記伸縮螺旋
誘導子の変位端の伸張により生じた、前記交流励磁線輪
に対向する対向長さの変位を、交流線輪の未対向部位の
リアクタンスの計測によりに対応表示させる構成とした
ことを特徴とする。
SUMMARY OF THE INVENTION Accordingly, a telescopic spiral-type sliding inductor reactor displacement sensor according to the present invention comprises a rod-shaped AC exciting wire and a telescopic spiral formed on the outer periphery of the exciting wire and subjected to axial displacement. An inductor and a sliding inductor reactor displacement sensor, wherein the telescopic spiral inductor comprises a closed loop coil formed of a telescopic spiral member having a fixed end at one end and a displaceable end at the other end. The displacement of the opposing length facing the AC exciting wire caused by the extension of the displacement end of the telescopic spiral inductor is displayed in correspondence with the measurement of the reactance of the non-opposed portion of the AC wire. It is characterized by.

【0005】上記請求項1記載の発明は、直線運動する
可動体の変位方向を軸芯方向とする棒状交流励磁線輪
と、該励磁線輪の外周に形成され、前記可動体に付随し
て変位する滑り誘導子リアクタ変位センサであって、一
端を固定して他端に変位端を持つ伸縮可能の伸縮螺旋誘
導子を設け、該線輪を電気的閉ループコイルで形成し鎖
交磁束による誘起電圧を短絡する構成にさせ、単一の導
電性金属管に代わる構造としたものである。即ち、変位
により生ずる交流励磁線輪と対向する部分の長さは、交
流励磁線輪の対向部分のリアクタンスを減少させること
になるので、残余のリアクタンス値の計測により対向す
る部分を線形的に表示できる。また、螺旋型部材による
構成のため、圧縮時には短小となり有効長比率の向上を
図ることができる。
According to the first aspect of the present invention, there is provided a rod-shaped AC excitation wire loop whose axial direction is the displacement direction of a movable body that moves linearly, and is formed on the outer periphery of the excitation wire loop, and is attached to the movable body. A displaceable sliding inductor reactor displacement sensor, comprising a telescopic spiral inductor having one end fixed and a displaceable end at the other end, and the wire loop formed by an electrically closed-loop coil and induced by linkage flux. In this configuration, the voltage is short-circuited, and the structure is replaced with a single conductive metal tube. That is, since the length of the portion facing the AC excitation wire loop caused by the displacement decreases the reactance of the opposite portion of the AC excitation wire loop, the opposed portion is linearly displayed by measuring the remaining reactance value. it can. In addition, because of the configuration using the helical member, the length becomes shorter when compressed, and the effective length ratio can be improved.

【0006】また、請求項1記載の伸縮螺旋誘導子は、
互いに捲き方向を異にした伸縮性螺旋部材よりなる2層
捲き線輪よりなり、内外2層の捲き始め同志と捲き終わ
り同志をそれぞれ接続し閉ループコイルを形成する構成
としたことを特徴とする。
The telescopic spiral inductor according to claim 1 is
It is composed of a two-layer winding wire made of a stretchable spiral member having different winding directions, and a structure in which the inner and outer two layers of a winding start and a winding end are connected to each other to form a closed loop coil.

【0007】上記請求項2記載の発明は、請求項記載の
伸縮螺旋誘導子を捲き方向を異にする2層捲き線輪より
構成し、前記2層の線輪の捲き始め同志と捲き終わり同
志をそれぞれ接続して閉ループコイルを形成させ、鎖交
磁束により誘起電圧を短絡する構成にしたものである。
According to a second aspect of the present invention, the telescopic spiral inductor according to the second aspect is constituted by a two-layer winding wire having different winding directions, and the two-layer wire loop starts and ends with each other. Are connected to each other to form a closed loop coil, and the induced voltage is short-circuited by the interlinkage magnetic flux.

【0008】前記2層捲きの場合巻き方向を異にするこ
とにより伸張時には上下の素線同志が鎖交状態に置かれ
るため、上下の素線同志の絡み合いを皆無とし円滑な伸
縮を行なうことができる。
In the case of the two-layer winding, since the upper and lower wires are placed in a linked state at the time of extension by extending the winding direction, the upper and lower wires are not entangled and smooth expansion and contraction can be performed. it can.

【0009】また、請求項1、請求項2記載の伸縮螺旋
誘導子は、捲き線輪の軸方向に扁平面を持つ偏平状断面
の素線により構成したことを特徴とする。
The telescopic spiral inductor according to the first and second aspects is characterized in that it is constituted by a wire having a flat cross section having a flat surface in the axial direction of the winding wire.

【0010】上記請求項3記載の発明は、請求項1、請
求項2記載の螺旋型誘導子を形成する素線の断面形状を
円形断面より螺旋の半径方向に細長い軸方向に扁平面を
持つようにしたもので、この扁平化により螺旋の長さを
短縮化させたもので、円形断面よりの扁平化の比率を例
えば30%程度としても断面積に変化が無ければ閉路の
電気抵抗にも変化が無く、出力特性の変化を伴うことな
く伸縮螺旋誘導子の長さはそれだけ短縮化でき、有効長
比率の向上が図れる。特に、2層捲き線輪の場合は、伸
縮時に交流励磁線輪の外周面を滑動する際上下の層間の
滑動を必要とするが、そのための素線の面取り作業を行
なうことなく、円形断面の押圧または引き抜きにより扁
平化し、煩雑な面取り作業を省略することができる。
According to a third aspect of the present invention, the cross-sectional shape of the wire forming the helical inductor according to the first and second aspects has a flat surface in the axial direction which is longer in the radial direction of the spiral than the circular cross-section. The length of the spiral is shortened by this flattening. Even if the flattening ratio from the circular cross section is, for example, about 30%, if there is no change in the cross sectional area, the electric resistance of the closed circuit is also reduced. There is no change and the length of the telescopic spiral inductor can be shortened accordingly without changing the output characteristics, and the effective length ratio can be improved. In particular, in the case of a two-layer wound wire loop, when sliding on the outer peripheral surface of the AC excitation wire loop during expansion and contraction, it is necessary to slide between upper and lower layers. It can be flattened by pressing or pulling out, and a complicated chamfering operation can be omitted.

【0011】また、請求項2記載の2層捲き線輪よりな
る伸縮螺旋誘導子は、その可動側端末部と複数の中間部
位に内外線輪の素線を固着するとともに前記励磁線輪の
外周を滑動可能とする端末鍔付き滑り管と中間鍔付き滑
り管を設け、前記滑り管の各長さの総和を内外2層捲き
線輪の最短縮長さ以下に設定する構成としたことを特徴
とする。
According to a second aspect of the present invention, there is provided a telescopic spiral inductor comprising a two-layer wound wire loop, wherein the wires of the inner and outer wire loops are fixed to the movable end and a plurality of intermediate portions, and the outer circumference of the exciting wire loop is fixed. A sliding tube with a terminal flange and a sliding tube with an intermediate flange are provided so that the sliding tube can slide, and the sum of the respective lengths of the sliding tube is set to be equal to or less than the minimum shortened length of the inner and outer two-layer winding wire. And

【0012】上記請求項4記載の発明は、2層捲き線輪
よりなる伸縮螺旋誘導子の中間部に必要数の中間鍔付き
滑り管と可動側端末部には端末鍔付き滑り管を設け、こ
れら鍔付き滑り管の合計長さを、前記伸縮螺旋誘導子の
最短縮長さ以下に選定する。中間鍔付き滑り管は前記伸
縮螺旋誘導子が伸張した場合には振動などで交流励磁線
輪に対する偏心で変位に対する出力の不安定を防止し、
内外線輪の橋絡で電気抵抗値を減少させて変位に対する
出力の増大に貢献している。また、端末鍔付き滑り管
は、前記伸縮螺旋誘導子が外力による伸縮時に際し、交
流励磁線輪の外周面に対し傾斜偏心することなく円滑に
滑動させるとともに、前記励磁線輪位に対し正確な対向
位置を得るようにしたものである。
The invention according to claim 4 is characterized in that a required number of intermediate flanged slide tubes are provided at an intermediate portion of a telescopic spiral inductor formed of a two-layer winding wire and a terminal flanged slide tube is provided at a movable end portion. The total length of these flanged slide tubes is selected to be less than or equal to the minimum shortened length of the telescopic spiral inductor. The intermediate flanged slide tube prevents the output from becoming unstable with respect to displacement due to eccentricity with respect to the AC excitation wire loop due to vibration when the telescopic spiral inductor is extended,
The bridge between the inner and outer wires reduces the electrical resistance and contributes to an increase in output against displacement. In addition, when the telescopic spiral inductor expands and contracts due to external force, the sliding tube with a terminal flange smoothly slides without tilting and eccentricity with respect to the outer peripheral surface of the AC excitation wire loop, and accurately moves with respect to the excitation wire loop position. The opposing position is obtained.

【0013】なお、これら鍔付き滑り管の合計長を前記
伸縮螺旋誘導子の最短長さ以下に選定することは、リア
クタの有効長比率向上の点からも必然的な要件である。
上記したように、それぞれの鍔付滑り管は構造上、作
動、出力特性の向上に寄与するものであり、特に恒長の
長いリアクタでは中間鍔付き滑り管は中間に複数個の設
置を必要としている。
It is an essential requirement that the total length of the flanged slide tubes be selected to be equal to or less than the shortest length of the telescopic spiral inductor from the viewpoint of improving the effective length ratio of the reactor.
As described above, each flanged slide tube contributes to the improvement of the operation and output characteristics in terms of structure, and especially in a reactor having a constant length, the intermediate flanged slide tube requires a plurality of intermediate installations. I have.

【0014】また、請求項1、請求項2記載の伸縮螺旋
誘導子の固定端を交流励磁線輪の一方の端末面に設け、
変位端を前記交流励磁線輪の他端側に向けて設けて滑動
する構成としたことを特徴とする。
Further, the fixed end of the telescopic spiral inductor according to claim 1 or 2 is provided on one end surface of the AC excitation wire loop,
It is characterized in that a displacement end is provided toward the other end side of the AC excitation wire loop and slides.

【0015】上記請求項5記載の発明は、滑り誘導子リ
アクタ変位センサの線形特性を有効に利用すべく、本願
の伸縮螺旋誘導子により短小化された誘導子の設定にお
いて、伸張前の伸縮螺旋誘導子を当該リアクタの出力特
性の非線形部に設け、出力特性の線形部分を有効使用す
るようにして有効長比率の向上を図ったものである。
According to the fifth aspect of the present invention, in order to effectively utilize the linear characteristic of the sliding inductor reactor displacement sensor, the setting of the inductor shortened by the expansion and contraction spiral inductor of the present invention provides the expansion and contraction spiral before extension. The inductor is provided in a non-linear portion of the output characteristic of the reactor, and the linear portion of the output characteristic is effectively used to improve the effective length ratio.

【0016】[0016]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的な記載が無い限り、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は本発明の伸縮螺旋型滑り誘導子リアクタ変位センサの
一実施例の概略の構成を示す図であり、図2は図1の別
の実施例の概略の構成を示す図で、図3は図1の伸縮螺
旋誘導子に鍔付き滑り管を設けた図である。図4は図
1、図2に示す伸縮螺旋型誘導子リアクタ変位センサの
特性曲線で横軸に伸縮螺旋誘導子の変位端先端の変位値
を示し、縦軸に交流励磁線輪のインピーダンス値として
の端子電圧を示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples unless otherwise specified. Absent. FIG.
FIG. 3 is a diagram showing a schematic configuration of an embodiment of a telescopic spiral type slip inductor reactor displacement sensor of the present invention, FIG. 2 is a diagram showing a schematic configuration of another embodiment of FIG. 1, and FIG. It is the figure which provided the slide tube with a flange in 1 expansion-contraction spiral inductor. FIG. 4 is a characteristic curve of the telescopic spiral inductor reactor displacement sensor shown in FIGS. 1 and 2, wherein the horizontal axis represents the displacement value of the distal end of the distal end of the telescopic spiral inductor, and the vertical axis represents the impedance value of the AC excitation wire loop. Are shown.

【0017】図1には、本発明の伸縮螺旋型滑り誘導子
リアクタ変位センサの一実施例の概略の構成を示してあ
る。図に見るように、本発明の伸縮螺旋型滑り誘導子リ
アクタ変位センサは、交流励磁線輪10と伸縮螺旋誘導
子12とより構成する。交流励磁線輪10は、磁性金属
11aを充填した金属管11よりなる棒状磁芯に1層ま
たは2層の密接捲きされ、端子15を介して約5KHz
の定電流可聴周波数電源により励磁されている。伸縮螺
旋誘導子12は、捲き方向を異にする内層線輪12bと
外層線輪12aとよりなる円形断面の円形素線10aに
よる2層捲き線輪で形成され、前記内層と外層の捲き始
め端子同志と捲き終わり端子同志を短絡ワイヤ13、1
3で接続し電気的に短絡して閉ループを形成して鎖交磁
束により誘起される電圧を短絡する構成にしてある。
FIG. 1 shows a schematic configuration of one embodiment of a telescopic spiral type sliding inductor reactor displacement sensor according to the present invention. As shown in the figure, the telescopic spiral type sliding inductor reactor displacement sensor of the present invention includes an AC exciting wire loop 10 and a telescopic spiral inductor 12. The AC excitation wire loop 10 is wound tightly with one or two layers around a rod-shaped magnetic core made of a metal tube 11 filled with a magnetic metal 11a, and is connected through a terminal 15 to about 5 KHz.
Is excited by a constant current audio frequency power supply. The telescopic spiral inductor 12 is formed by a two-layer winding wire composed of a circular element wire 10a having a circular cross-section and having an inner layer wire 12b and an outer layer wire 12a having different winding directions, and a winding start terminal of the inner layer and the outer layer. Short-circuit wires 13, 1
3 and electrically short-circuited to form a closed loop to short-circuit the voltage induced by the linkage magnetic flux.

【0018】なお、伸縮螺旋誘導子12は、固定端16
bを介して少なくとも先端の変位端16aが交流励磁線
輪10の一方の端末位置O(図4参照)に位置するよ
うこ配置し、前記変位端16aが図示してない可動体の
変位に対応した外力pを受け、矢印A方向に伸張しなが
ら交流励磁線輪10の外周を滑動変位する構成にしてあ
る。
The telescopic spiral inductor 12 has a fixed end 16
b so that at least the displacement end 16a of the tip is located at one terminal position O 1 (see FIG. 4) of the AC excitation wire loop 10, and the displacement end 16a corresponds to the displacement of a movable body (not shown). In response to the external force p, the outer circumference of the AC excitation wire loop 10 is slidably displaced while extending in the direction of arrow A.

【0019】なお、図に示すように、伸縮螺旋誘導子1
2の固定端16bは、前記交流励磁線輪10の一方の端
末部位Oに固定する構成にしてあり、且つ伸縮螺旋誘
導子12の長さtは円形断面の円形素線10aの使用
により図4に示す特性曲線非線形部Sより大となり、
図に見るように、交流励磁線輪10の非線形部Sを含
む端末部位tを除く中央部で、前記伸縮螺旋誘導子1
2が伸縮することになり、交流励磁線輪10の端子15
には伸縮螺旋誘導子12の変位に対応した線形値が出力
される。しかし、有効長比率を減少させる結果になる。
It should be noted that as shown in FIG.
2 fixed end 16b is Yes in the configuration for fixing to one of the terminal portions O 1 of the AC excitation line wheels 10, and the length t 0 of the telescopic spiral inductor 12 by use of a circular wire 10a of circular cross-section large next from the characteristic curve non-linear section S 1 shown in FIG. 4,
As seen in the figure, at the center portion excluding the terminal portion t 0, including non-linear portion S 1 of the AC excitation line wheels 10, the extendable helical inductor 1
2 expands and contracts, and the terminal 15 of the AC excitation wire loop 10
, A linear value corresponding to the displacement of the telescopic spiral inductor 12 is output. However, this results in a reduction in the effective length ratio.

【0020】図2には、図1の別の実施例の概略の構成
をしめしてある。図に見るように、別の実施例の伸縮螺
旋型滑り誘導子リアクタ変位センサは、交流励磁線輪1
0と伸縮螺旋誘導子14とより構成する。交流励磁線輪
10は、磁性金属11aを充填した金属管11よりなる
棒状磁芯に1層または2層の密接捲きされ、端子15を
介して約5KHzの定電流可聴周波数電源により励磁さ
れている。伸縮螺旋誘導子14は、捲き方向を異にする
内層線輪14bと外層線輪14aとよりなる螺旋半径方
向に細長の偏平状断面の扁平素線14cによる2層捲き
線輪で形成され、前記内層と外層の捲き始め端子同志と
捲き終わり端子同志を短絡ワイヤ13、13で接続し電
気的に短絡して閉ループを形成して鎖交磁束により誘起
される電圧を短絡する構成にしてある。
FIG. 2 shows a schematic configuration of another embodiment of FIG. As shown in the figure, a telescopic spiral-type sliding inductor reactor displacement sensor according to another embodiment includes an AC excitation wire ring 1.
0 and a telescopic spiral inductor 14. The AC excitation wire loop 10 is wound tightly with one or two layers around a rod-shaped magnetic core made of a metal tube 11 filled with a magnetic metal 11a, and is excited via a terminal 15 by a constant current audio frequency power supply of about 5 KHz. . The telescopic spiral inductor 14 is formed of a two-layer wound wire composed of a flat wire 14c having a flat cross section elongated in the radial direction of the spiral and including an inner layer wire 14b and an outer layer wire 14a having different winding directions. The winding start terminal and the winding end terminal of the inner layer and the outer layer are connected by short-circuit wires 13 and 13 and electrically short-circuited to form a closed loop, thereby short-circuiting the voltage induced by the interlinkage magnetic flux.

【0021】前記偏平状断面を持つ厚さtの扁平素線1
4cは円形断面を持つ素線の引抜きにより前記円形素線
10aと同一断面積を持たせ同一電気抵抗を持つように
してある。そして前記扁平素線14cの厚さは円形素線
10aより薄く、そのため、同一捲き数の伸縮螺旋誘導
子14の捲き長さは前記円形素線10aよりなる伸縮螺
旋誘導子12に比べ、捲き線の電気的性能を害なうこと
なく適当長さに縮小できる。図ではその長さtを前記
非線形部の長さSと等長に構成することができ、外力
pによる矢印A方向の変位は特性曲線の線形部で行なわ
れる構成にしてある。
The flat wire 1 having the flat cross section and a thickness t
4c has the same cross-sectional area and the same electric resistance as the circular wire 10a by drawing out a wire having a circular cross section. The thickness of the flat wire 14c is smaller than that of the circular wire 10a. Therefore, the winding length of the telescopic spiral inductor 14 having the same number of turns is smaller than that of the telescopic spiral inductor 12 made of the circular wire 10a. Can be reduced to an appropriate length without deteriorating the electrical performance of the device. In the figure, the length t S can be configured to be equal to the length S 1 of the non-linear portion, and the displacement in the direction of arrow A due to the external force p is performed in the linear portion of the characteristic curve.

【0022】また、上記実施例により、伸縮螺旋誘導子
14の軸方向の長さの短縮化、最大伸張に対する最短短
縮との伸縮倍率の拡大と、張力の減少を可能にすること
ができる。なお、前記2層捲き線輪の伸縮倍率が10倍
程度の範囲でも素線の疎密に関係なく線形作動する。
Further, according to the above embodiment, it is possible to shorten the length of the telescopic spiral inductor 14 in the axial direction, to increase the telescopic magnification to be the shortest with respect to the maximum elongation, and to reduce the tension. In addition, even if the expansion / contraction ratio of the two-layer winding wire is in the range of about 10 times, the linear operation is performed regardless of the density of the wires.

【0023】なお、上記図1、図2の伸縮螺旋誘導子1
2、14は、捲き方向を異にする2層捲き線輪12a、
12b、14a、14bにより形成されているため、外
力pを介して伸縮させた場合内外層の線輪を形成する素
線は互いに鎖交するため、お互いの間で絡みを起こす事
なく円滑に伸縮する。また、前記2層捲きを形成する素
線の外周は曲面によりなる円形素線10a、または扁平
素線14cにより構成されているため、伸縮する場合の
交流励磁線輪の外周表面の滑動は円滑に行なうことがで
きる。
The telescopic spiral inductor 1 shown in FIGS.
Reference numerals 2 and 14 denote a two-layer wound wire loop 12a having a different winding direction.
When formed by 12b, 14a, and 14b, the wires forming the inner and outer layers are interlinked with each other when expanded and contracted via an external force p, so that the wires can smoothly expand and contract without causing entanglement between each other. I do. In addition, since the outer periphery of the wire forming the two-layer winding is constituted by the circular wire 10a having a curved surface or the flat wire 14c, the outer circumferential surface of the AC excitation wire loop when expanding and contracting smoothly moves. Can do it.

【0024】図3は図1の伸縮螺旋誘導子に鍔付き滑り
管を設けた図である。図に見るように、中間鍔付き滑り
管18を複数個備えるとともに、変位端16aに端末鍔
付き滑り管19を備えた2層捲きの伸縮螺旋誘導子12
を引き伸ばされた状況が示され、中間鍔付き滑り管18
は外力pにより引き伸ばされた場合の振動に対する振れ
止めと、内層、外層の螺旋を橋絡させることで、螺旋誘
導子の電気抵抗を減少させ、端末鍔付き滑り管19は伸
縮に伴う滑動時に滑動する交流励磁線輪の外周面に対し
螺旋誘導子が傾斜または偏心する滑動が円滑に行なわれ
るようにしてある。なお図中の溶接点18a、19aで
切断した捲き線を滑り管の鍔に溶接一体化してある。な
お、鍔付き滑り管は、前記伸縮螺旋誘導子12に限らず
伸縮螺旋誘導子14にも付設してある。
FIG. 3 is a diagram in which a flanged slide tube is provided on the telescopic spiral inductor of FIG. As shown in the drawing, a two-layered telescopic spiral inductor 12 having a plurality of intermediate flanged slide tubes 18 and a terminal flanged slide tube 19 at a displacement end 16a is provided.
Is shown, the intermediate flanged slide tube 18 is shown.
Reduces the electric resistance of the spiral inductor by blocking the vibration against vibration when it is stretched by an external force p and bridging the spirals of the inner layer and the outer layer, and the sliding tube 19 with the terminal flange slides when sliding due to expansion and contraction. The spiral inductor is inclined or eccentric with respect to the outer peripheral surface of the AC exciting wire loop to be smoothly slid. The windings cut at the welding points 18a and 19a in the figure are welded and integrated with the flange of the slide tube. The flanged slide tube is provided not only for the telescopic spiral inductor 12 but also for the telescopic spiral inductor 14.

【0025】図4は図1、図2に示す伸縮螺旋型滑り誘
導子リアクタ変位センサの特性曲線で、伸縮螺旋誘導子
12、14の変位端16a、17aの変位と、交流励磁
線輪20のインピーダンス値としての端子15よりの出
力値との間の関係を示してある。交流励磁線輪20に
は、約5KHz程度の可聴周波数の定電流励磁電源によ
り励磁を行なうように構成してある。
FIG. 4 is a characteristic curve of the telescopic spiral type sliding inductor reactor displacement sensor shown in FIGS. 1 and 2, and shows the displacement of the displacing ends 16 a and 17 a of the telescopic spiral inductors 12 and 14 and the AC excitation wire loop 20. The relationship between the impedance value and the output value from the terminal 15 is shown. The AC excitation wire ring 20 is configured to be excited by a constant current excitation power supply having an audible frequency of about 5 KHz.

【0026】図において、交流励磁線輪20の両端末部
分のSは変位に対し磁束の漏洩のために非線形部位を
形成し、この部分を除いた中間部では変位に対する出力
特性は線形を形成し、この線形部位が特に変位の標点間
の変位表示に使用されている。
[0026] In Figure, the output characteristics with respect to the displacement in the intermediate portion forms a non-linear portion, excluding the portion for the S 1 is the magnetic flux leakage to the displacement of both end portions of the AC excitation line wheels 20 form a linear However, this linear portion is used particularly for displaying displacement between reference points of displacement.

【0027】図の伸縮螺旋誘導子12は、誘導子最短長
を持ち、且つ円形素線10aにより形成され、交流
励磁線輪20との相対位置関係は、交流励磁線輪20の
端末位置Oに前記誘導子12の変位端16aが位置す
るように配設し、外力pで矢印A方向に前記変位端16
aを伸張させるものである。そこで、線形部分のみを使
用するものとすれば、下記有効長比率が得られる。 変位の有効長; S−(S+S) 本誘導子リアクタの全長; S+t 有効長比率 ; S−(S+S)/(S+t)×
100(%)
The telescopic spiral inductor 12 shown in FIG.
t0And is formed by the circular element wire 10a.
The relative positional relationship with the exciting coil 20 is
Terminal position O1The displacement end 16a of the inductor 12 is located at
The displacement end 16 is moved in the direction of arrow A by an external force p.
a is extended. Therefore, only the linear part is used.
If used, the following effective length ratio is obtained. Effective length of displacement; S- (S1+ S2) Total length of the inductor reactor; S + t0  Effective length ratio; S- (S1+ S2) / (S + t)0) ×
100 (%)

【0028】また、前記円形素線10aを扁平に押圧し
扁平素線14cを形成し、該素線により伸縮螺旋誘導子
14を形成し、その誘導子最短長tを交流励磁線輪2
0の端末の非線形部分Sと等長に加工し、該非線形部
分に前記伸縮螺旋誘導子14を配設させると、 変位の有効長; S−(S+S) 誘導子リアクタの全長は; t=Sとすることがで
き 有効長比率; S−(S+S)/S×100(%) が得られる。ちなみに従来の単一管導電体よりなる誘電
子を使用し、交流励磁線輪の長さと等長とすれば、 有効長比率; (S−2S)/2S×100(%) となり、扁平素線14cの場合は有効長比率は上記従来
の単一誘導子に比較し特に改善され、短小化され、滑り
誘導子の活用の分野や拡大される。
Further, the circular wire 10a to form a flat pressed and flattened wire 14c, an elastic spiral inductor 14 is formed by the plain line, AC excitation line wheels 2 the inductor shortest t S
Processed nonlinearly portion S 1 and equal length of the terminal 0, when disposed said elastic spiral inductor 14 to the non-linear portion, the effective length of the displacement; S- (S 1 + S 2 ) the total length of the inductor reactor ; t S = effective length ratio can be S 1; S- (S 1 + S 2) / S × 100 (%) is obtained. Incidentally, if a conventional dielectric made of a single-tube conductor is used and the length is the same as the length of the AC excitation wire ring, the effective length ratio becomes: (S-2S 1 ) / 2S × 100 (%). In the case of the line 14c, the effective length ratio is particularly improved and shortened as compared with the conventional single inductor, and the field of use of the sliding inductor is expanded.

【0029】[0029]

【発明の効果】本発明の伸縮螺旋型滑り誘導子リアクタ
変位センサは、上記構成であるので、線形特性を害なう
ことなく、有効長比率の向上を図ることが出来、流体圧
シリンダのノンロッド型シリンダの場合等の、有効長比
率に問題のある場合には有効である。
Since the telescopic spiral-type sliding inductor reactor displacement sensor of the present invention has the above-described structure, the effective length ratio can be improved without deteriorating the linear characteristics, and the non-rod of the hydraulic cylinder can be improved. This is effective when there is a problem with the effective length ratio, such as in the case of a mold cylinder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の伸縮螺旋型滑り誘導子リアクタ変位
センサの一実施例の概略の構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a telescopic spiral type slip inductor reactor displacement sensor of the present invention.

【図2】 図1の別の実施例の概略の構成を示す図であ
る。
FIG. 2 is a diagram showing a schematic configuration of another embodiment of FIG. 1;

【図3】 図1の伸縮螺旋誘導子に鍔付き滑り管を設け
た図である。
FIG. 3 is a view in which a flanged slide tube is provided on the telescopic spiral inductor of FIG. 1;

【図4】 図1、図2に示す伸縮螺旋誘導子リアクタ変
位センサの特性曲線で横軸に伸縮螺旋誘導子の変位端の
変位値を示し、縦軸に交流励磁線輪のインピーダンス値
としての端子電圧を示している図である。
FIG. 4 is a characteristic curve of the telescopic spiral inductor reactor displacement sensor shown in FIGS. 1 and 2, wherein the horizontal axis indicates the displacement value of the displacement end of the telescopic spiral inductor, and the vertical axis indicates the impedance value of the AC excitation wire loop. It is a figure showing a terminal voltage.

【符号の説明】[Explanation of symbols]

10、20 交流励磁線輪 10a 円形素線 11 金属管 12、14 伸縮螺旋誘導子 13 短絡ワイヤ 14c 扁平素線 15 端子 16a、17a 変位端 16b、17b 固定端 18 中間鍔付き滑り管 19 端末鍔付き滑り管 10, 20 AC excitation wire loop 10a Circular wire 11 Metal tube 12, 14 Telescopic spiral inductor 13 Short circuit wire 14c Flat wire 15 Terminal 16a, 17a Displacement end 16b, 17b Fixed end 18 Intermediate flanged slide tube 19 With terminal flange Slide tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 棒状交流励磁線輪と、該励磁線輪の外周
に形成され軸芯方向の変位を受ける伸縮螺旋誘導子より
なる滑り誘導子リアクタであって、 前記伸縮螺旋誘導子は、一端に固定端を持ち他端に変位
端を持つ伸縮可能の螺旋部材よりなる閉ループコイルで
構成されるとともに、 前記伸縮螺旋誘導子の変位端の伸張により生じた、前記
交流励磁線輪に対向する対向長さの変位を、交流線輪の
未対向部位のリアクタンスの計測によりに対応表示させ
る構成としたことを特徴とする伸縮螺旋型滑り誘導子リ
アクタ変位センサ。
1. A sliding inductor reactor comprising a rod-shaped AC exciting wire and a telescopic spiral inductor formed on the outer periphery of the exciting wire and receiving displacement in an axial direction, wherein the telescopic spiral inductor has one end. A closed loop coil made of an extendable spiral member having a fixed end and a displacement end at the other end, and facing the AC excitation wire loop, generated by extension of the displacement end of the telescopic spiral inductor. A telescopic spiral-type sliding inductor reactor displacement sensor, characterized in that the length displacement is displayed in correspondence with the measurement of the reactance of the non-opposed portion of the AC wire loop.
【請求項2】 前記伸縮螺旋誘導子は、互いに捲き方向
を異にした伸縮性螺旋部材よりなる2層捲き線輪よりな
り、内外2層の捲き始め端と捲き終わり端をそれぞれ接
続し閉ループコイルを形成する構成としたことを特徴と
する請求項1記載の伸縮螺旋型滑り誘導子リアクタ変位
センサ。
2. The retractable spiral inductor comprises a two-layer winding wire composed of elastic spiral members having winding directions different from each other, and connects a winding start end and a winding end end of inner and outer two layers, respectively, to form a closed loop coil. The telescopic spiral-type sliding inductor reactor displacement sensor according to claim 1, characterized in that:
【請求項3】 前記伸縮螺旋誘導子は、捲き線輪の軸方
向に扁平面を持つ偏平状断面の素線により構成したこと
を特徴とする請求項1、請求項2記載の伸縮螺旋型滑り
誘導子リアクタ変位センサ。
3. The telescopic spiral-type slide according to claim 1, wherein the telescopic spiral inductor is constituted by a wire having a flat cross section having a flat surface in the axial direction of the winding loop. Inductor reactor displacement sensor.
【請求項4】 前記2層捲き線輪よりなる伸縮螺旋誘導
子は、その可動側端末部と複数の中間部位に内外線輪の
素線を固着するとともに、前記交流励磁線輪の外周を滑
動する端末鍔付き滑り管と中間鍔付き滑り管を設け、前
記滑り管の各長さの総和を内外2層捲き線輪の最短縮長
さ以下に設定する構成としたことを特徴とする請求項2
記載の伸縮螺旋型滑り誘導子リアクタ変位センサ。
4. A telescopic spiral inductor comprising a two-layer winding wire loop, wherein a wire of an inner and outer wire loop is fixed to a movable end portion and a plurality of intermediate portions, and the outer circumference of the AC excitation wire loop is slid. A sliding tube with a terminal flange and a sliding tube with an intermediate flange are provided, and the sum of the respective lengths of the sliding tube is set to be equal to or less than the shortest length of the inner and outer two-layer winding wire loop. 2
A telescopic spiral-type slip inductor reactor displacement sensor as described.
【請求項5】 前記伸縮螺旋誘導子の固定端を交流励磁
線輪の一方端面に設け、変位端を前記交流励磁線輪の他
端側に向けて設けて滑動させる構成としたことを特徴と
する請求項1、請求項2記載に伸縮螺旋型滑り誘導子リ
アクタ変位センサ。
5. A structure in which a fixed end of the telescopic spiral inductor is provided on one end surface of an AC exciting wire, and a displacement end is provided toward the other end of the AC exciting wire and slidable. The telescopic spiral-type sliding inductor reactor displacement sensor according to claim 1 or 2, wherein:
JP2000036785A 2000-02-15 2000-02-15 Telescopic spiral sliding inductor reactor displacement sensor Expired - Fee Related JP3315967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036785A JP3315967B2 (en) 2000-02-15 2000-02-15 Telescopic spiral sliding inductor reactor displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036785A JP3315967B2 (en) 2000-02-15 2000-02-15 Telescopic spiral sliding inductor reactor displacement sensor

Publications (2)

Publication Number Publication Date
JP2001227903A true JP2001227903A (en) 2001-08-24
JP3315967B2 JP3315967B2 (en) 2002-08-19

Family

ID=18560783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036785A Expired - Fee Related JP3315967B2 (en) 2000-02-15 2000-02-15 Telescopic spiral sliding inductor reactor displacement sensor

Country Status (1)

Country Link
JP (1) JP3315967B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506050A (en) * 2008-10-14 2012-03-08 プロクシュ,ロジャー Integrated microactuator and linear variable differential transformer for high precision position measurement
CN104729544A (en) * 2015-01-28 2015-06-24 上海兰宝传感科技股份有限公司 HALIOS-based eddy current sensor resistant to strong magnetic interference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506050A (en) * 2008-10-14 2012-03-08 プロクシュ,ロジャー Integrated microactuator and linear variable differential transformer for high precision position measurement
CN104729544A (en) * 2015-01-28 2015-06-24 上海兰宝传感科技股份有限公司 HALIOS-based eddy current sensor resistant to strong magnetic interference

Also Published As

Publication number Publication date
JP3315967B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
TWI490895B (en) Coil device, compaction inductor, electronic device and winding method of the coil device
US10186365B2 (en) Inductor
JP4795427B2 (en) High voltage generation transformer for discharge lamp lighting device
US20090289750A1 (en) Sheet type transformer and discharge lamp lighting apparatus
JPH06181135A (en) Transformer for power distribution
WO2008007705A1 (en) Layered inductor
JP2013501369A (en) Current compensation choke and method of manufacturing current compensation choke
JP3315967B2 (en) Telescopic spiral sliding inductor reactor displacement sensor
WO2006126289A1 (en) High voltage transformer
JP3499844B2 (en) Displacement detection method and its displacement sensor
WO2001015181A1 (en) Transformer winding
JP6238257B1 (en) Power converter
JP2011229202A (en) Wireless power transmission coil
CN110098032A (en) Inductance component
JP2007165623A (en) Choke coil
JP2010245456A (en) Reactor assembly
JP6122904B2 (en) Leakage flux type transformer
JP3846794B2 (en) Displacement meter structure with folding telescopic inductors
JP2018125399A (en) Electronic component, method of manufacturing electronic component, and electronic module
JP2002050523A (en) Transformer and its manufacturing method
JP2019102739A (en) Stationary induction appliance
JPH0334643B2 (en)
US20210118600A1 (en) Linear variable differential transducer
JP4277485B2 (en) Trance
RU2009133949A (en) ELECTRIC HIGH FREQUENCY RESONANT TRANSFORMER

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees