JP2019102739A - Stationary induction appliance - Google Patents

Stationary induction appliance Download PDF

Info

Publication number
JP2019102739A
JP2019102739A JP2017234775A JP2017234775A JP2019102739A JP 2019102739 A JP2019102739 A JP 2019102739A JP 2017234775 A JP2017234775 A JP 2017234775A JP 2017234775 A JP2017234775 A JP 2017234775A JP 2019102739 A JP2019102739 A JP 2019102739A
Authority
JP
Japan
Prior art keywords
voltage winding
stationary induction
winding
low voltage
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017234775A
Other languages
Japanese (ja)
Other versions
JP7016683B2 (en
Inventor
大吾 米須
Daigo Yonesu
大吾 米須
市村 智
Satoshi Ichimura
智 市村
裕 森田
Yutaka Morita
森田  裕
晋二 藤田
Shinji Fujita
晋二 藤田
莉 呂
Li Lu
莉 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017234775A priority Critical patent/JP7016683B2/en
Priority to TW107142591A priority patent/TWI689952B/en
Publication of JP2019102739A publication Critical patent/JP2019102739A/en
Application granted granted Critical
Publication of JP7016683B2 publication Critical patent/JP7016683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Insulating Of Coils (AREA)

Abstract

To make it possible to provide a highly reliable stationary induction appliance in consideration of insulation performance.SOLUTION: The stationary induction appliance 500 includes: an iron core 1; and a low voltage winding 400 wound around the iron core 1; a high voltage winding 2 wound around an outer periphery of the low voltage winding 400; and a shield unit 10 disposed between the low voltage winding 400 and the high voltage winding 2. The shield unit 10 is composed of a dielectric 10a and an insulator 10b.SELECTED DRAWING: Figure 4

Description

本発明は、静止誘導電器に関するものであり、特に絶縁性能を考慮した静止誘導電器に関する。   The present invention relates to a stationary induction battery, and more particularly to a stationary induction battery considering insulation performance.

電力用変圧器の大きさは、低圧巻線と高圧巻線の間の絶縁(主絶縁と呼ぶ)の寸法に大きく支配される。油入変圧器の場合、この主絶縁は絶縁油と固体絶縁物であるプレスボードの繰返し構造となっていることが多い。そして低圧巻線と高圧巻線の間に電圧が印加されると、絶縁油の方がプレスボードより誘電率が小さいために、内部電界が高くなる。一方、絶縁油の方がプレスボードに比べて絶縁耐力(許容電界)は小さいことから、この絶縁油の部分が主絶縁における弱点と成り、全体の必要寸法を支配している。   The size of the power transformer is largely governed by the size of the insulation (referred to as the main insulation) between the low and high voltage windings. In the case of an oil-filled transformer, this main insulation often has a repeating structure of insulating oil and a pressboard which is a solid insulation. When a voltage is applied between the low voltage winding and the high voltage winding, the dielectric constant of the insulating oil is smaller than that of the press board, so the internal electric field becomes high. On the other hand, since the insulating oil has a smaller dielectric strength (permissible electric field) than the press board, the portion of the insulating oil is a weak point in the main insulation and controls the overall required size.

上記に関連し、特開2001−93749号公報(特許文献1)には、対向する電極間におけるそれぞれの電極の近傍に、流体絶縁物が流通する間隔をおいてシールド電極が配置され、シールド電極とその近傍の電極とが互いに電位線で接続され、対向するシールド電極間が固体絶縁物で充たされることにより、高電界強度部が、絶縁破壊強度の高い固体絶縁物内に生じさせられるので、電極間の絶縁寸法を小さくできる旨が開示されている。   In relation to the above, in Japanese Patent Application Laid-Open No. 2001-93749 (Patent Document 1), shield electrodes are disposed in the vicinity of the respective electrodes between the facing electrodes, at intervals through which the fluid insulator flows, The high electric field strength portion is generated in the solid insulator with high dielectric breakdown strength by connecting the two and the electrodes in the vicinity with potential lines and filling the space between the opposing shield electrodes with the solid insulator. It is disclosed that the insulation dimension between the electrodes can be reduced.

また、特開2011−100904号公報(特許文献2)には、高圧巻線と低圧巻線との間に導電性シールド材が配置され、導電性シールド材を高圧巻線の長手方向全長に亘って対向させて静止誘導電器を構成させている。これによって高圧巻線の等価静電容量を増加して電位振動を抑制するとともに、低圧巻線と高圧巻線との間の絶縁距離増加を抑制することができることが開示されている。   Moreover, in JP-A-2011-100904 (Patent Document 2), a conductive shield material is disposed between a high voltage winding and a low voltage winding, and the conductive shield material is extended over the entire length in the longitudinal direction of the high voltage winding. The stationary induction appliance is configured to face each other. It is disclosed that the equivalent capacitance of the high voltage winding can be increased to thereby suppress the potential oscillation and the increase in insulation distance between the low voltage winding and the high voltage winding can be suppressed.

特開2001−93749号公報JP 2001-93749 A 特開2011−100904号公報Unexamined-Japanese-Patent No. 2011-100904

しかし、特許文献1に記載の手段を低圧巻線と高圧巻線の間の主絶縁に適用しようとする場合、低圧巻線と高圧巻線の間のみならず、巻線の上下端部にて電位差が大きくなる。また、特許文献2に記載の手段の場合、導電性シールド材端部に電界集中が起きる可能性がある。   However, when the means described in Patent Document 1 is applied to main insulation between a low voltage winding and a high voltage winding, not only between the low voltage winding and the high voltage winding but also at the upper and lower ends of the winding. The potential difference increases. Further, in the case of the means described in Patent Document 2, electric field concentration may occur at the end portion of the conductive shield material.

そこで本発明の目的は、絶縁性能を考慮した高信頼の静止誘導電器を提供することである。   Therefore, an object of the present invention is to provide a highly reliable stationary induction battery in consideration of the insulation performance.

上記目的を達成するために、本発明の実施形態は、鉄心と、前記鉄心に巻回される低圧巻線と、前記低圧巻線の外周に巻回される高圧巻線と、前記低圧巻線と前記高圧巻線との間に配置されたシールドユニットと、を有する静止誘導電器において、前記シールドユニットは絶縁体とシールド電極で構成されている。   In order to achieve the above object, an embodiment of the present invention comprises an iron core, a low voltage winding wound around the iron core, a high voltage winding wound around the outer periphery of the low voltage winding, and the low voltage winding And a shield unit disposed between the high voltage winding and the high voltage winding, wherein the shield unit comprises an insulator and a shield electrode.

本発明によれば、絶縁性能を考慮した高信頼の静止誘導電器を提供することが可能になる。   According to the present invention, it is possible to provide a highly reliable stationary induction battery in consideration of insulation performance.

実施例1における静止誘導電器の正面図Front view of stationary induction appliance in embodiment 1 実施例1における静止誘導電器の平面断面図Plane sectional view of the stationary induction battery in the first embodiment 実施例1における静止誘導電器の側面断面図Side cross-sectional view of the stationary induction battery in the first embodiment 実施例1における静止誘導電器の側面断面模式図Side cross-sectional schematic view of the stationary induction battery in the first embodiment 実施例1におけるシールドユニットの側面断面図Side cross-sectional view of the shield unit in the first embodiment 実施例1におけるシールドユニットの平面図Plan view of the shield unit in the first embodiment 実施例1における上下方向の電位分布図Potential distribution map in the vertical direction in Example 1 実施例1における径方向の電位分布図Potential distribution chart in the radial direction in Example 1 実施例2における静止誘導電器の側面断面模式図Side cross-sectional schematic view of the stationary induction battery in the second embodiment 実施例2における径方向の電位分布図Potential distribution chart in the radial direction in Example 2 実施例3のシールドユニットの側面断面模式図Side cross-sectional schematic drawing of the shield unit of Example 3

以下、図面を用いて本発明の静止誘導電器の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, preferred embodiments of the stationary induction battery of the present invention will be described in detail using the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof will be omitted.

実施例1について図1乃至8を用いて説明する。   The first embodiment will be described with reference to FIGS.

図1乃至4は各々、本実施例における静止誘導電器の正面図、平面断面図、側面断面図、側面断面模式図である。図5はシールドユニット中央部の側面断面模式図、図6はシールドユニットの上面模式図である。図7、図8は各々、本実施例の静止誘導電器における上下方向、径方向の電位分布図である。   1 to 4 are respectively a front view, a plan sectional view, a side sectional view, and a side sectional schematic view of the stationary induction battery in the present embodiment. FIG. 5 is a schematic side view of the shield unit central portion, and FIG. 6 is a schematic top view of the shield unit. 7 and 8 are potential distribution diagrams in the vertical direction and in the radial direction, respectively, of the stationary induction battery of the present embodiment.

図1、図2に示した静止誘導電器500は、電力用三相変圧器であり、巻線ユニット5001、5002、及び5003が、三相三脚の鉄心1の各脚の周囲に巻回されている。鉄心や巻線ユニットを冷却する流体絶縁物として大気以外のもの、例えば絶縁油や六フッ化硫黄ガスを用いる場合、これらは図示していないタンクの内部に収納される。   The stationary induction battery 500 shown in FIGS. 1 and 2 is a three-phase power transformer, and winding units 5001, 5002, and 5003 are wound around the respective legs of the iron core 1 of the three-phase tripod. There is. When other than the air, such as insulating oil or sulfur hexafluoride gas, is used as a fluid insulator for cooling the iron core and the winding unit, these are accommodated inside a tank (not shown).

次に、図2乃至4を用いて本実施例における巻線ユニット5001の構成を詳細に説明する。なお、巻線ユニット5002、5003についても巻線ユニット5001と同一の構成である。   Next, the configuration of the winding unit 5001 in this embodiment will be described in detail with reference to FIGS. The winding units 5002 and 5003 have the same configuration as the winding unit 5001.

図3に示した通り、本実施例における巻線ユニット5001は、鉄心の周囲に巻回された低圧巻線400、低圧巻線の外周を取り囲む形状に構成されたシールドユニット10、シールドユニットの外周に巻回された高圧巻線2とで構成されている。図4に示した通り、高圧巻線2は、上下方向の中央断面で鏡像となる様に上下パーツ2b、2aに分割されている。各々のパーツは、円板コイルを上下方向に偶数段積み重ねた形状をしており、上側パーツ2bの最上段の円板コイルは、接地された最外周のターン2001bから開始して上方から見て時計回りに、外側から内側に向けて4ターン、即ち、ターン2001b、2002b、2003b、2004bの順に巻回されている。そして、ターン2004bから下段に亘り、今度は上方から見て時計回りに、内側から外側に向けて4ターン巻回されている。そして、下段に亘って、以降同様に巻回すことで円板コイルが偶数段積み重なったものとして上側パーツ2bが構成される。最下段について述べると、上方から見て時計回りに、内側から外側に向けて4ターン、即ち、ターン2397b、2398b、2399b、2400bの順に巻回されて、外部電圧印加端100に電気的に接続されている。そして本実施例においては合計400ターンが巻回されて上側パーツ2bを構成している。下側パーツ2aは前記中央断面で上側パーツ2bと鏡像となる様に構成されている。すなわち下段に亘って、以降同様に巻回すことで円板コイルが偶数段積み重なったものとして下側パーツ2aが構成される。従って最上段の円板コイルは、外部電圧印加端100に電気的に接続された最外周のターン2400aから開始して上方から見て反時計回りに、外側から内側に向けて4ターン、即ち、ターン2400a、2399a、2398a、2397aの順に巻回され、最下段については上方から見て反時計回りに、内側から外側に向けて4ターン、即ち、ターン2004a、2003a、2002a、2001aの順に巻回されて、ターン2001aが接地されている。   As shown in FIG. 3, the winding unit 5001 in this embodiment includes a low voltage winding 400 wound around an iron core, a shield unit 10 configured to surround the outer periphery of the low voltage winding, and an outer periphery of the shield unit. And a high-voltage winding 2 wound around. As shown in FIG. 4, the high-voltage winding 2 is divided into upper and lower parts 2 b and 2 a so as to be mirror images in the center cross section in the vertical direction. Each part has a shape in which the disc coil is stacked in an even number of steps in the vertical direction, and the top disc coil of the upper part 2b starts from the outermost turn 2001b connected to ground and is viewed from above Clockwise, four turns from the outside to the inside, that is, the turns 2001b, 2002b, 2003b, 2004b are wound in this order. Then, from the turn 2004b to the lower part, four turns from the inside to the outside are wound clockwise, as viewed from above. Then, the upper part 2b is configured as a disc coil stacked in an even number of stages by winding similarly in the same manner throughout the lower part. As for the lowermost stage, when viewed from above, four turns from the inside to the outside clockwise, that is, turns 2397b, 2398b, 2399b, 2400b are wound in this order and electrically connected to the external voltage application terminal 100 It is done. In the present embodiment, a total of 400 turns are wound to constitute the upper part 2b. The lower part 2a is configured to be a mirror image of the upper part 2b in the central cross section. That is, the lower part 2a is configured as a disk coil stacked in an even number of stages by winding the lower layer in the same manner. Therefore, the top stage disc coil starts from the outermost turn 2400a electrically connected to the external voltage application end 100, and as viewed from above, turns counterclockwise from the outside to the inside by four turns, ie, Winding is in order of turns 2400a, 2399a, 2398a, 2397a, and the lowermost stage is 4 turns from the inside to the outside counterclockwise as viewed from above, that is, winding in order of turns 2004a, 2003a, 2002a, 2001a And the turn 2001a is grounded.

シールドユニット10は、図4に示した通り、低圧巻線400と高圧巻線2の間に配設され、同心円状に巻回され、上下端部を斜めに切り落とした形で配設されている。図5に示した通り、このシールドユニット10の絶縁物1001b、1002b、1319b、1320bとこれに接合されたシールド電極部1001a、1002a、1319a、1320aにより絶縁部とシールド電極部が交互になるように巻き回し、構成されている。そしてシールド電極部1001aの最上端部と最下端部は接地されている。図6に示すように、絶縁物10bにシールド電極10bが接合されており、鉄心と同心円状に巻回した構成となっており、計320ターンが巻回されているが、図では便宜上5ターンとしている。シールドユニット10の高圧巻線側の上下端部を斜めに切断することでシールドユニット端部における電界の集中を抑制することができる。   As shown in FIG. 4, the shield unit 10 is disposed between the low voltage winding 400 and the high voltage winding 2, wound concentrically, and obliquely disposed at upper and lower ends. . As shown in FIG. 5, the insulating portions and the shield electrode portions are alternated by the insulators 1001b, 1002b, 1319b, 1320b of the shield unit 10 and the shield electrode portions 1001a, 1002a, 1319a, 1320a joined thereto. Winding is configured. The uppermost end and the lowermost end of the shield electrode portion 1001a are grounded. As shown in FIG. 6, the shield electrode 10b is joined to the insulator 10b and wound concentrically with the iron core, and a total of 320 turns are wound. And By obliquely cutting the upper and lower end portions of the high-voltage winding side of the shield unit 10, the concentration of the electric field at the end portion of the shield unit can be suppressed.

次に、図7、図8を用いて本実施例の静止誘導電器の動作を説明する。   Next, the operation of the stationary induction battery of this embodiment will be described with reference to FIGS. 7 and 8.

図4に示した外部電圧印加端100に、商用周波数50Hzまたは60Hzの交流電圧が印加されると、電圧の大きさに応じた交流励磁電流が高圧巻線2a、2bに上下対称に流れるが、各々の巻回しの方向が逆であるために鉄心1には同一方向の交番磁界が励磁される。そしてこの交番磁界により、金属電極10aには誘導起電力が生じる。その大きさは概略、各々のターン数と、高圧巻線のターン数の比を、入力電圧に乗じたものとなる。従って、前述の通り各々が構成されていることにより、低圧巻線と高圧巻線の間の領域に形成される電位分布は図7、図8に示したものとなる。図7に示した通り、上下中央座標位置z=0の水平方向の電位変化を、絶縁物内部(x2とx3の間で)で急峻とすることで絶縁物に高電界を負担させ、その内側や外側の流体絶縁物の領域で電界を小さくしている。この様に流体絶縁物より誘電率が大きく、絶縁耐力が高い固体絶縁物に高電界を負担させられるので、水平方向の絶縁性能を向上できる。   When an AC voltage with a commercial frequency of 50 Hz or 60 Hz is applied to the external voltage application terminal 100 shown in FIG. 4, an AC excitation current corresponding to the magnitude of the voltage flows up and down symmetrically in the high voltage windings 2a and 2b. An alternating magnetic field in the same direction is excited in the iron core 1 because the direction of each winding is opposite. The alternating magnetic field generates an induced electromotive force on the metal electrode 10a. The size is roughly obtained by multiplying the ratio of the number of turns and the number of turns of the high-voltage winding by the input voltage. Therefore, the potential distribution formed in the region between the low voltage winding and the high voltage winding is as shown in FIG. 7 and FIG. As shown in FIG. 7, by making the horizontal potential change at the upper and lower center coordinate position z = 0 steep in the insulator (between x2 and x3), the insulator is made to bear a high electric field, and the inner side thereof And reduce the electric field in the area of the outer fluid insulation. As described above, since a high electric field can be borne by a solid insulator having a dielectric constant larger than that of a fluid insulator and a high dielectric strength, the insulation performance in the horizontal direction can be improved.

一方、上下方向の電位分布は中央で高く、端へ向かって接地電位まで緩やかに減少する電位部分が実現される。一般的に絶縁物の沿面は絶縁上の弱点となるのであるが、本実施例のように電位勾配(電界)を緩やかとすることで絶縁を保持することが容易となる。そして、上下端が接地電位となり、鉄心との間の絶縁を考慮不要となっている。   On the other hand, the potential distribution in the vertical direction is high at the center, and a potential portion gradually decreasing to the ground potential toward the end is realized. Generally, the creeping surface of the insulator is a weak point on the insulation, but it is easy to maintain the insulation by making the potential gradient (electric field) gentle as in this embodiment. The upper and lower ends are at the ground potential, and the insulation between the core and the core is not necessary.

本発明により誘電体の厚さが薄いほど許容電界が大きくなる特性を活かし、絶縁性能を向上可能な静止誘導電器を提供することができる。また、固体絶縁物に電界を集中させるとともに、巻線の上下端部における電位差を抑制した静止誘導電器を提供することができる。   According to the present invention, it is possible to provide a stationary induction device capable of improving the insulation performance by utilizing the characteristic that the allowable electric field increases as the thickness of the dielectric decreases. In addition, it is possible to provide a stationary induction battery in which the electric field is concentrated on the solid insulator and the potential difference at the upper and lower ends of the winding is suppressed.

本発明の実施例について図9、図10を用いて説明する。   An embodiment of the present invention will be described with reference to FIG. 9 and FIG.

図9は、本実施例における静止誘導電器の側面断面模式図である。図10は、本実施例の静止誘導電器における径方向の電位分布図である。本実施例の形態はほぼ実施例1と同様の構成であるが、図9に示した通り、シールドユニットの内周側中心部をくりぬかれている点が実施例1と異なっている。   FIG. 9 is a side cross-sectional schematic view of the stationary induction battery in the present embodiment. FIG. 10 is a potential distribution chart in the radial direction in the stationary induction battery of this embodiment. The configuration of the present embodiment is substantially the same as that of the first embodiment, but differs from the first embodiment in that the inner peripheral center portion of the shield unit is hollowed out as shown in FIG.

低圧巻線400が十分に低い電圧であり、絶縁距離を要しない場合においては、実施例1の構成で良い。しかし、低圧巻線400の電圧が高い場合、低圧巻線400とシールドユニット10間における絶縁を保つため、径方向に距離を開ける必要がある。   In the case where the low voltage winding 400 has a sufficiently low voltage and the insulation distance is not required, the configuration of the first embodiment may be used. However, when the voltage of the low voltage winding 400 is high, in order to maintain the insulation between the low voltage winding 400 and the shield unit 10, it is necessary to increase the distance in the radial direction.

このような問題を解消するため、図9に示すように、シールドユニット10の低圧巻線400側の部分を、望ましい電位となる巻数の部分までくりぬいている。これにより、シールドユニット10を径方向に動かすことなく、低圧巻線400側との間における電位分布の制御と絶縁距離の確保が可能となる。   In order to solve such a problem, as shown in FIG. 9, the portion on the low voltage winding 400 side of the shield unit 10 is cut out to the portion of the number of turns at which a desired potential is obtained. As a result, without moving the shield unit 10 in the radial direction, it is possible to control the potential distribution between the low voltage winding 400 side and secure the insulation distance.

上記の構成により高圧巻線と低圧巻線間における電位分布は図10に示したものとなり、電位勾配(電界)を緩やかとすることで絶縁を保持することが容易となる。本発明の構成とすることで絶縁距離増加が抑制され、静止誘導電気の小型化が可能となる。   With the above configuration, the potential distribution between the high voltage winding and the low voltage winding is as shown in FIG. 10, and by making the potential gradient (electric field) gentle, it becomes easy to maintain the insulation. By adopting the configuration of the present invention, an increase in insulation distance is suppressed, and miniaturization of stationary induction electricity can be achieved.

本発明の実施例について図11を用いて説明する。   An embodiment of the present invention will be described with reference to FIG.

図11は、本実施例におけるシールドユニット端部における側面断面模式図である。本実施例の形態はほぼ実施例1と同様の構成であるが、図11に示した通り、シールドユニットのシールド電極部10a端部を丸めた構造としている。   FIG. 11 is a schematic side sectional view of an end portion of the shield unit in the present embodiment. The configuration of this embodiment is substantially the same as that of Embodiment 1, but as shown in FIG. 11, the end of the shield electrode portion 10a of the shield unit is rounded.

シールド電極部10aの先端の角部では局所的に電界が集中し、放電の起点となりえる。そのため、シールドユニット10の層間、つまりシールド電極1001aと1002aなどの隣接するシールド電極間における絶縁を確保するため、絶縁物10bを厚くする必要がある。   At the corner of the tip of the shield electrode portion 10a, the electric field is locally concentrated and can be the starting point of the discharge. Therefore, it is necessary to make the insulator 10b thick in order to ensure insulation between the layers of the shield unit 10, that is, adjacent shield electrodes such as the shield electrodes 1001a and 1002a.

この問題を解決するため、シールド電極端部を丸めた構造とし、角部を処理することで局所的な電界集中を緩和することができる。   In order to solve this problem, it is possible to reduce the local electric field concentration by forming the shield electrode end in a rounded structure and processing the corner.

上記の構成により、絶縁物10bの厚みを抑制することが可能となり、シールドユニット10の小型化が可能となる。   According to the above configuration, the thickness of the insulator 10b can be suppressed, and the shield unit 10 can be miniaturized.

以上、本実施例によれば、小型な静止誘導電器を提供することができる。   As described above, according to this embodiment, a compact stationary induction battery can be provided.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.

1…鉄心
2、2a、2b…高圧巻線
10…シールドユニット
10a、1001a、1002a、1319a、1320a…シールド電極
10b、1001b、1002b、1319b、1320b…絶縁物
100…外部電圧印加端
400…低圧巻線
500…静止誘導電器
5001、5002、5003…巻線ユニット
1 ... iron core
2, 2a, 2b ... high voltage winding
10 ... Shield unit
10a, 1001a, 1002a, 1319a, 1320a ... shield electrode
10b, 1001b, 1002b, 1319b, 1320b ... insulator
100 ... external voltage application terminal
400 ... low voltage winding
500 ... stationary induction device
5001, 5002, 5003 ... Winding unit

Claims (5)

鉄心と、
前記鉄心に巻回される低圧巻線と、
前記低圧巻線の外周に巻回される高圧巻線と、
前記低圧巻線と前記高圧巻線との間に配置されたシールドユニットと、を有する静止誘導電器において、
前記シールドユニットは絶縁体とシールド電極で構成されており、前記シールド電極は前記巻線導体の何れかの部位と電気的に接続したことを特徴とする静止誘導電器。
Iron core,
A low voltage winding wound around the iron core;
A high voltage winding wound around an outer periphery of the low voltage winding;
In a stationary induction appliance having a shield unit disposed between the low voltage winding and the high voltage winding,
The said shielding unit is comprised with an insulator and a shielding electrode, The said shielding electrode was electrically connected with any site | part of the said winding conductor, The stationary induction battery characterized by the above-mentioned.
請求項1に記載の静止誘導電器であって、
前記シールドユニットは前記絶縁体と前記シールド電極を層状に巻き回し、外周方向へ交互に配置されて構成されていることを特徴とした静止誘導電器。
The stationary induction appliance according to claim 1, wherein
A stationary induction battery characterized in that the shield unit is configured by winding the insulator and the shield electrode in layers and alternately arranging in the outer peripheral direction.
請求項1または2に記載の静止誘導電器であって、
前記シールドユニットの外周端部が斜めに形成されていることを特徴とする静止誘導電器。
The stationary induction battery according to claim 1 or 2, wherein
An outer peripheral end portion of the shield unit is formed obliquely.
請求項1ないし3のいずれか1項に記載の静止誘導電器にあって、
前記シールドユニットの前記低圧巻線側の中心部が凹形状であることを特徴とする静止誘導電器。
A stationary induction battery according to any one of claims 1 to 3,
The center portion of the low voltage winding side of the shield unit has a concave shape.
請求項1ないし4のいずれか1項に記載の静止誘導電器において、
前記シールド電極の端部が丸みを有することを特徴とする静止誘導電器。
The stationary induction battery according to any one of claims 1 to 4,
An end of the shield electrode has a roundness.
JP2017234775A 2017-12-07 2017-12-07 Static induction electric device Active JP7016683B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017234775A JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device
TW107142591A TWI689952B (en) 2017-12-07 2018-11-29 Static induction appliances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234775A JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device

Publications (2)

Publication Number Publication Date
JP2019102739A true JP2019102739A (en) 2019-06-24
JP7016683B2 JP7016683B2 (en) 2022-02-07

Family

ID=66974181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234775A Active JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device

Country Status (2)

Country Link
JP (1) JP7016683B2 (en)
TW (1) TWI689952B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020479B2 (en) * 2014-01-29 2016-11-02 Jfeスチール株式会社 Cold rolling equipment and cold rolling method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511284B1 (en) * 1970-12-17 1976-01-16
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN
JPS53127632A (en) * 1977-04-13 1978-11-08 Hitachi Ltd Transformer winding
US4176334A (en) * 1975-08-25 1979-11-27 Hughes Aircraft Company High voltage transformer and process for making same
JPS56124219A (en) * 1980-03-05 1981-09-29 Hitachi Ltd High series capacity transformer winding
JPS58162615U (en) * 1983-03-10 1983-10-29 ソニー株式会社 Trance
JPS59108308A (en) * 1982-12-14 1984-06-22 Toshiba Corp Foil wound transformer
JPS6057116U (en) * 1984-06-25 1985-04-20 オリジン電気株式会社 Transformer shielding device
JPS6085821U (en) * 1983-11-17 1985-06-13 三菱電機株式会社 molded transformer
JPS6153922U (en) * 1984-09-13 1986-04-11
JPH0677061A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Stationary induction apparatus
JP2001093749A (en) * 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2001307931A (en) * 2000-04-21 2001-11-02 Hitachi Ltd Transformer
US20170169938A1 (en) * 2015-12-09 2017-06-15 Mitsubishi Electric Corporation Stationary induction apparatus
JP2017108102A (en) * 2015-12-09 2017-06-15 三菱電機株式会社 Stationary induction apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173836A (en) * 1998-12-01 2000-06-23 Mitsubishi Electric Corp Electrostatic induction equipment
JP6417189B2 (en) * 2014-11-06 2018-10-31 株式会社日立製作所 Static induction machine

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511284B1 (en) * 1970-12-17 1976-01-16
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN
US4176334A (en) * 1975-08-25 1979-11-27 Hughes Aircraft Company High voltage transformer and process for making same
JPS53127632A (en) * 1977-04-13 1978-11-08 Hitachi Ltd Transformer winding
JPS56124219A (en) * 1980-03-05 1981-09-29 Hitachi Ltd High series capacity transformer winding
JPS59108308A (en) * 1982-12-14 1984-06-22 Toshiba Corp Foil wound transformer
JPS58162615U (en) * 1983-03-10 1983-10-29 ソニー株式会社 Trance
JPS6085821U (en) * 1983-11-17 1985-06-13 三菱電機株式会社 molded transformer
JPS6057116U (en) * 1984-06-25 1985-04-20 オリジン電気株式会社 Transformer shielding device
JPS6153922U (en) * 1984-09-13 1986-04-11
JPH0677061A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Stationary induction apparatus
JP2001093749A (en) * 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2001307931A (en) * 2000-04-21 2001-11-02 Hitachi Ltd Transformer
US20170169938A1 (en) * 2015-12-09 2017-06-15 Mitsubishi Electric Corporation Stationary induction apparatus
JP2017108102A (en) * 2015-12-09 2017-06-15 三菱電機株式会社 Stationary induction apparatus

Also Published As

Publication number Publication date
JP7016683B2 (en) 2022-02-07
TWI689952B (en) 2020-04-01
TW201926372A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
KR20080007311A (en) Multilayer inductor
TW201933389A (en) Electronic device and the method to make the same
JP2008053735A (en) High-voltage transformer
JP7016683B2 (en) Static induction electric device
JP2016115864A (en) Coil component
JP7029920B2 (en) Transformer
JP6830419B2 (en) Static induction electric device
JP2007035690A (en) Transformer
US11915856B2 (en) Electromagnetic induction device having a low losses winding
KR101995216B1 (en) Bobbin and Toroidal Inductor Comprising the Same
EP2573781B1 (en) High voltage current coil
WO2014181497A1 (en) Transformer
JP7269699B2 (en) core, transformer
JP2010283061A (en) Transformer
JP5462335B1 (en) High frequency high voltage transformer
JP5885898B1 (en) Stationary induction equipment
JP2014056970A (en) Reactor
JP2001093749A (en) Electric apparatus
KR102067389B1 (en) Structure of connection wiring widing and electrostatic ring of transformer
WO2018173604A1 (en) Stationary induction apparatus
JP2014165431A (en) Superconducting coil and superconducting transformer
JP2000331844A (en) Stationary electromagnetic induction apparatus
JP2008098305A (en) Inductance element
JP2011100904A (en) Stationary induction apparatus
JP2019091829A (en) Transformer and DC-DC converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126