JP7016683B2 - Static induction electric device - Google Patents

Static induction electric device Download PDF

Info

Publication number
JP7016683B2
JP7016683B2 JP2017234775A JP2017234775A JP7016683B2 JP 7016683 B2 JP7016683 B2 JP 7016683B2 JP 2017234775 A JP2017234775 A JP 2017234775A JP 2017234775 A JP2017234775 A JP 2017234775A JP 7016683 B2 JP7016683 B2 JP 7016683B2
Authority
JP
Japan
Prior art keywords
pressure winding
static induction
induction electric
electric device
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234775A
Other languages
Japanese (ja)
Other versions
JP2019102739A (en
Inventor
大吾 米須
智 市村
裕 森田
晋二 藤田
莉 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017234775A priority Critical patent/JP7016683B2/en
Priority to TW107142591A priority patent/TWI689952B/en
Publication of JP2019102739A publication Critical patent/JP2019102739A/en
Application granted granted Critical
Publication of JP7016683B2 publication Critical patent/JP7016683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Insulating Of Coils (AREA)

Description

本発明は、静止誘導電器に関するものであり、特に絶縁性能を考慮した静止誘導電器に関する。 The present invention relates to a static induction electric device, and more particularly to a static induction electric device in consideration of insulation performance.

電力用変圧器の大きさは、低圧巻線と高圧巻線の間の絶縁(主絶縁と呼ぶ)の寸法に大きく支配される。油入変圧器の場合、この主絶縁は絶縁油と固体絶縁物であるプレスボードの繰返し構造となっていることが多い。そして低圧巻線と高圧巻線の間に電圧が印加されると、絶縁油の方がプレスボードより誘電率が小さいために、内部電界が高くなる。一方、絶縁油の方がプレスボードに比べて絶縁耐力(許容電界)は小さいことから、この絶縁油の部分が主絶縁における弱点と成り、全体の必要寸法を支配している。 The size of a power transformer is largely dominated by the size of the insulation (called main insulation) between the low voltage and high voltage windings. In the case of oil-immersed transformers, this main insulation is often a repeating structure of insulating oil and a press board, which is a solid insulator. When a voltage is applied between the low-voltage winding and the high-voltage winding, the insulating oil has a smaller dielectric constant than the press board, so that the internal electric field becomes higher. On the other hand, since the insulating oil has a smaller dielectric strength (allowable electric field) than the press board, this insulating oil portion becomes a weak point in the main insulation and controls the required dimensions of the whole.

上記に関連し、特開2001-93749号公報(特許文献1)には、対向する電極間におけるそれぞれの電極の近傍に、流体絶縁物が流通する間隔をおいてシールド電極が配置され、シールド電極とその近傍の電極とが互いに電位線で接続され、対向するシールド電極間が固体絶縁物で充たされることにより、高電界強度部が、絶縁破壊強度の高い固体絶縁物内に生じさせられるので、電極間の絶縁寸法を小さくできる旨が開示されている。 In relation to the above, in Japanese Patent Application Laid-Open No. 2001-93749 (Patent Document 1), shield electrodes are arranged in the vicinity of the respective electrodes between the facing electrodes at intervals at which a fluid insulator flows, and the shield electrodes are arranged. And the electrodes in the vicinity thereof are connected to each other by a potential line, and the shield electrodes facing each other are filled with a solid insulator, so that a high electric field strength portion is generated in the solid insulator having a high dielectric breakdown strength. It is disclosed that the insulation size between the electrodes can be reduced.

また、特開2011-100904号公報(特許文献2)には、高圧巻線と低圧巻線との間に導電性シールド材が配置され、導電性シールド材を高圧巻線の長手方向全長に亘って対向させて静止誘導電器を構成させている。これによって高圧巻線の等価静電容量を増加して電位振動を抑制するとともに、低圧巻線と高圧巻線との間の絶縁距離増加を抑制することができることが開示されている。 Further, in Japanese Patent Application Laid-Open No. 2011-100904 (Patent Document 2), a conductive shield material is arranged between the high-pressure winding and the low-pressure winding, and the conductive shield material is applied over the entire length of the high-pressure winding in the longitudinal direction. The stationary conductors are configured so as to face each other. It is disclosed that this can increase the equivalent capacitance of the high-pressure winding to suppress the potential vibration and suppress the increase in the insulation distance between the low-pressure winding and the high-pressure winding.

特開2001-93749号公報Japanese Unexamined Patent Publication No. 2001-93749 特開2011-100904号公報Japanese Unexamined Patent Publication No. 2011-100904

しかし、特許文献1に記載の手段を低圧巻線と高圧巻線の間の主絶縁に適用しようとする場合、低圧巻線と高圧巻線の間のみならず、巻線の上下端部にて電位差が大きくなる。また、特許文献2に記載の手段の場合、導電性シールド材端部に電界集中が起きる可能性がある。 However, when the means described in Patent Document 1 is to be applied to the main insulation between the low pressure winding and the high pressure winding, not only between the low pressure winding and the high pressure winding but also at the upper and lower ends of the winding. The potential difference becomes large. Further, in the case of the means described in Patent Document 2, electric field concentration may occur at the end of the conductive shield material.

そこで本発明の目的は、絶縁性能を考慮した高信頼の静止誘導電器を提供することである。 Therefore, an object of the present invention is to provide a highly reliable static induction electric device in consideration of insulation performance.

上記目的を達成するために、本発明の実施形態は、鉄心と、前記鉄心に巻回される低圧巻線と、前記低圧巻線の外周に巻回される高圧巻線と、前記低圧巻線と前記高圧巻線との間に配置されたシールドユニットと、を有する静止誘導電器において、前記シールドユニットは絶縁体とシールド電極で構成されており、前記シールド電極は前記高圧巻線の何れかの部位と電気的に接続されており、前記シールドユニットの上下端部は、断面を見た時に、前記高圧巻線側から前記低圧巻線側に向かって薄くなる形状を有するIn order to achieve the above object, an embodiment of the present invention comprises an iron core, a low pressure winding wound around the iron core, a high pressure winding wound around the outer periphery of the low pressure winding, and the low pressure winding. In a static induction electric device having a shield unit arranged between the high-pressure winding and the high-pressure winding, the shield unit is composed of an insulator and a shield electrode, and the shield electrode is any one of the high-pressure windings. The upper and lower ends of the shield unit are electrically connected to the portion, and have a shape that becomes thinner from the high pressure winding side to the low pressure winding side when the cross section is viewed .

本発明によれば、絶縁性能を考慮した高信頼の静止誘導電器を提供することが可能になる。 According to the present invention, it becomes possible to provide a highly reliable static induction electric device in consideration of insulation performance.

実施例1における静止誘導電器の正面図Front view of the static induction electric appliance in the first embodiment 実施例1における静止誘導電器の平面断面図A plan sectional view of the static induction electric appliance in the first embodiment. 実施例1における静止誘導電器の側面断面図Side sectional view of the static induction electric appliance in Example 1. 実施例1における静止誘導電器の側面断面模式図Schematic diagram of the side sectional view of the static induction electric appliance in Example 1. 実施例1におけるシールドユニットの側面断面図Side sectional view of the shield unit according to the first embodiment 実施例1におけるシールドユニットの平面図Top view of the shield unit according to the first embodiment 実施例1における上下方向の電位分布図Vertical potential distribution diagram in Example 1 実施例1における径方向の電位分布図Radial potential distribution diagram in Example 1 実施例2における静止誘導電器の側面断面模式図Schematic diagram of the side sectional view of the static induction electric appliance in Example 2. 実施例2における径方向の電位分布図Radial potential distribution diagram in Example 2 実施例3のシールドユニットの側面断面模式図Schematic cross-sectional view of the side surface of the shield unit of the third embodiment

以下、図面を用いて本発明の静止誘導電器の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 Hereinafter, preferred embodiments of the static induction electric appliance of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiment of the invention, those having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.

実施例1について図1乃至8を用いて説明する。 The first embodiment will be described with reference to FIGS. 1 to 8.

図1乃至4は各々、本実施例における静止誘導電器の正面図、平面断面図、側面断面図、側面断面模式図である。図5はシールドユニット中央部の側面断面模式図、図6はシールドユニットの上面模式図である。図7、図8は各々、本実施例の静止誘導電器における上下方向、径方向の電位分布図である。 1 to 4 are a front view, a plan sectional view, a side sectional view, and a schematic side sectional view of the static induction electric appliance in this embodiment, respectively. FIG. 5 is a schematic side sectional view of the central portion of the shield unit, and FIG. 6 is a schematic top view of the shield unit. 7 and 8 are vertical and radial potential distribution maps of the static induction electric device of this embodiment, respectively.

図1、図2に示した静止誘導電器500は、電力用三相変圧器であり、巻線ユニット5001、5002、及び5003が、三相三脚の鉄心1の各脚の周囲に巻回されている。鉄心や巻線ユニットを冷却する流体絶縁物として大気以外のもの、例えば絶縁油や六フッ化硫黄ガスを用いる場合、これらは図示していないタンクの内部に収納される。 The static induction transformer 500 shown in FIGS. 1 and 2 is a three-phase transformer for electric power, and winding units 5001, 5002, and 5003 are wound around each leg of the iron core 1 of the three-phase tripod. There is. When a fluid insulator other than the atmosphere, such as insulating oil or sulfur hexafluoride gas, is used as the fluid insulator for cooling the iron core or the winding unit, these are housed inside a tank (not shown).

次に、図2乃至4を用いて本実施例における巻線ユニット5001の構成を詳細に説明する。なお、巻線ユニット5002、5003についても巻線ユニット5001と同一の構成である。 Next, the configuration of the winding unit 5001 in this embodiment will be described in detail with reference to FIGS. 2 to 4. The winding units 5002 and 5003 have the same configuration as the winding unit 5001.

図3に示した通り、本実施例における巻線ユニット5001は、鉄心の周囲に巻回された低圧巻線400、低圧巻線の外周を取り囲む形状に構成されたシールドユニット10、シールドユニットの外周に巻回された高圧巻線2とで構成されている。図4に示した通り、高圧巻線2は、上下方向の中央断面で鏡像となる様に上下パーツ2b、2aに分割されている。各々のパーツは、円板コイルを上下方向に偶数段積み重ねた形状をしており、上側パーツ2bの最上段の円板コイルは、接地された最外周のターン2001bから開始して上方から見て時計回りに、外側から内側に向けて4ターン、即ち、ターン2001b、2002b、2003b、2004bの順に巻回されている。そして、ターン2004bから下段に亘り、今度は上方から見て時計回りに、内側から外側に向けて4ターン巻回されている。そして、下段に亘って、以降同様に巻回すことで円板コイルが偶数段積み重なったものとして上側パーツ2bが構成される。最下段について述べると、上方から見て時計回りに、内側から外側に向けて4ターン、即ち、ターン2397b、2398b、2399b、2400bの順に巻回されて、外部電圧印加端100に電気的に接続されている。そして本実施例においては合計400ターンが巻回されて上側パーツ2bを構成している。下側パーツ2aは前記中央断面で上側パーツ2bと鏡像となる様に構成されている。すなわち下段に亘って、以降同様に巻回すことで円板コイルが偶数段積み重なったものとして下側パーツ2aが構成される。従って最上段の円板コイルは、外部電圧印加端100に電気的に接続された最外周のターン2400aから開始して上方から見て反時計回りに、外側から内側に向けて4ターン、即ち、ターン2400a、2399a、2398a、2397aの順に巻回され、最下段については上方から見て反時計回りに、内側から外側に向けて4ターン、即ち、ターン2004a、2003a、2002a、2001aの順に巻回されて、ターン2001aが接地されている。 As shown in FIG. 3, the winding unit 5001 in this embodiment includes a low pressure winding 400 wound around an iron core, a shield unit 10 configured to surround the outer circumference of the low pressure winding, and an outer circumference of the shield unit. It is composed of a high-pressure winding 2 wound around. As shown in FIG. 4, the high-pressure winding 2 is divided into upper and lower parts 2b and 2a so as to form a mirror image in the central cross section in the vertical direction. Each part has a shape in which disk coils are stacked in an even number in the vertical direction, and the uppermost disk coil of the upper part 2b starts from the grounded outermost turn 2001b and is viewed from above. Clockwise, it is wound four turns from the outside to the inside, that is, turns 2001b, 2002b, 2003b, 2004b in this order. Then, from turn 2004b to the lower stage, this time, it is wound clockwise for 4 turns from the inside to the outside when viewed from above. Then, the upper part 2b is configured as an even-numbered stack of disk coils by winding the lower stage in the same manner thereafter. Speaking of the bottom row, it is wound clockwise from the top for 4 turns from the inside to the outside, that is, turns 2397b, 2398b, 2399b, 2400b in this order, and is electrically connected to the external voltage application end 100. Has been done. Then, in this embodiment, a total of 400 turns are wound to form the upper part 2b. The lower part 2a is configured to be a mirror image of the upper part 2b in the central cross section. That is, the lower part 2a is configured as if the disk coils are stacked in an even number of stages by winding the lower stage in the same manner thereafter. Therefore, the uppermost disk coil starts from the outermost turn 2400a electrically connected to the external voltage application end 100, counterclockwise when viewed from above, and four turns from the outside to the inside, that is, Turns 2400a, 2399a, 2398a, 2397a are wound in this order, and the bottom row is wound counterclockwise when viewed from above, and four turns from the inside to the outside, that is, turns 2004a, 2003a, 2002a, 2001a. And turn 2001a is grounded.

シールドユニット10は、図4に示した通り、低圧巻線400と高圧巻線2の間に配設され、同心円状に巻回され、上下端部を斜めに切り落とした形で配設されている。図5に示した通り、このシールドユニット10の絶縁物1001b、1002b、1319b、1320bとこれに接合されたシールド電極部1001a、1002a、1319a、1320aにより絶縁部とシールド電極部が交互になるように巻き回し、構成されている。そしてシールド電極部1001aの最上端部と最下端部は接地されている。図6に示すように、絶縁物10bにシールド電極10bが接合されており、鉄心と同心円状に巻回した構成となっており、計320ターンが巻回されているが、図では便宜上5ターンとしている。シールドユニット10の高圧巻線側の上下端部を斜めに切断することでシールドユニット端部における電界の集中を抑制することができる。 As shown in FIG. 4, the shield unit 10 is arranged between the low-pressure winding 400 and the high-pressure winding 2, wound concentrically, and the upper and lower ends thereof are cut off diagonally. .. As shown in FIG. 5, the insulators 1001b, 1002b, 1319b, 1320b of the shield unit 10 and the shield electrode portions 1001a, 1002a, 1319a, 1320a bonded to the insulators make the insulation portion and the shield electrode portion alternate. It is wound and configured. The uppermost end portion and the lowermost end portion of the shield electrode portion 1001a are grounded. As shown in FIG. 6, the shield electrode 10b is bonded to the insulator 10b and wound concentrically with the iron core, and a total of 320 turns are wound, but in the figure, 5 turns for convenience. It is supposed to be. By diagonally cutting the upper and lower ends of the shield unit 10 on the high-pressure winding side, it is possible to suppress the concentration of the electric field at the end of the shield unit.

次に、図7、図8を用いて本実施例の静止誘導電器の動作を説明する。 Next, the operation of the static induction electric appliance of this embodiment will be described with reference to FIGS. 7 and 8.

図4に示した外部電圧印加端100に、商用周波数50Hzまたは60Hzの交流電圧が印加されると、電圧の大きさに応じた交流励磁電流が高圧巻線2a、2bに上下対称に流れるが、各々の巻回しの方向が逆であるために鉄心1には同一方向の交番磁界が励磁される。そしてこの交番磁界により、金属電極10aには誘導起電力が生じる。その大きさは概略、各々のターン数と、高圧巻線のターン数の比を、入力電圧に乗じたものとなる。従って、前述の通り各々が構成されていることにより、低圧巻線と高圧巻線の間の領域に形成される電位分布は図7、図8に示したものとなる。図7に示した通り、上下中央座標位置z=0の水平方向の電位変化を、絶縁物内部(x2とx3の間で)で急峻とすることで絶縁物に高電界を負担させ、その内側や外側の流体絶縁物の領域で電界を小さくしている。この様に流体絶縁物より誘電率が大きく、絶縁耐力が高い固体絶縁物に高電界を負担させられるので、水平方向の絶縁性能を向上できる。 When an AC voltage with a commercial frequency of 50 Hz or 60 Hz is applied to the external voltage application terminal 100 shown in FIG. 4, an AC exciting current according to the magnitude of the voltage flows vertically symmetrically in the high-voltage windings 2a and 2b. Since the directions of winding are opposite to each other, an alternating magnetic field in the same direction is excited to the iron core 1. Then, due to this alternating magnetic field, an induced electromotive force is generated in the metal electrode 10a. Its magnitude is roughly the ratio of the number of turns of each to the number of turns of the high-voltage winding, multiplied by the input voltage. Therefore, since each of them is configured as described above, the potential distribution formed in the region between the low pressure winding and the high pressure winding is as shown in FIGS. 7 and 8. As shown in FIG. 7, the horizontal potential change at the vertical center coordinate position z = 0 is made steep inside the insulator (between x2 and x3), thereby causing the insulator to bear a high electric field, and inside the insulator. The electric field is reduced in the area of the outer fluid insulation. As described above, a solid electric field having a higher dielectric constant and a higher dielectric strength than a fluid insulator can bear a high electric field, so that the insulation performance in the horizontal direction can be improved.

一方、上下方向の電位分布は中央で高く、端へ向かって接地電位まで緩やかに減少する電位部分が実現される。一般的に絶縁物の沿面は絶縁上の弱点となるのであるが、本実施例のように電位勾配(電界)を緩やかとすることで絶縁を保持することが容易となる。そして、上下端が接地電位となり、鉄心との間の絶縁を考慮不要となっている。 On the other hand, the potential distribution in the vertical direction is high in the center, and a potential portion that gradually decreases to the ground potential toward the end is realized. Generally, the surface of the insulation is a weak point in insulation, but it becomes easy to maintain insulation by making the potential gradient (electric field) gentle as in this embodiment. The upper and lower ends are at the ground potential, and it is not necessary to consider the insulation between the upper and lower ends.

本発明により誘電体の厚さが薄いほど許容電界が大きくなる特性を活かし、絶縁性能を向上可能な静止誘導電器を提供することができる。また、固体絶縁物に電界を集中させるとともに、巻線の上下端部における電位差を抑制した静止誘導電器を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a static induction electric device capable of improving insulation performance by utilizing the characteristic that the allowable electric field increases as the thickness of the dielectric becomes thinner. Further, it is possible to provide a static induction electric field in which an electric field is concentrated on a solid insulator and the potential difference at the upper and lower ends of the winding is suppressed.

本発明の実施例について図9、図10を用いて説明する。 Examples of the present invention will be described with reference to FIGS. 9 and 10.

図9は、本実施例における静止誘導電器の側面断面模式図である。図10は、本実施例の静止誘導電器における径方向の電位分布図である。本実施例の形態はほぼ実施例1と同様の構成であるが、図9に示した通り、シールドユニットの内周側中心部をくりぬかれている点が実施例1と異なっている。 FIG. 9 is a schematic side sectional view of the static induction electric appliance in this embodiment. FIG. 10 is a radial potential distribution diagram of the static induction electric device of this embodiment. The embodiment of this embodiment has almost the same configuration as that of the first embodiment, but is different from the first embodiment in that the central portion on the inner peripheral side of the shield unit is hollowed out as shown in FIG.

低圧巻線400が十分に低い電圧であり、絶縁距離を要しない場合においては、実施例1の構成で良い。しかし、低圧巻線400の電圧が高い場合、低圧巻線400とシールドユニット10間における絶縁を保つため、径方向に距離を開ける必要がある。 When the low voltage winding 400 has a sufficiently low voltage and does not require an insulation distance, the configuration of the first embodiment may be used. However, when the voltage of the low voltage winding 400 is high, it is necessary to increase the distance in the radial direction in order to maintain the insulation between the low voltage winding 400 and the shield unit 10.

このような問題を解消するため、図9に示すように、シールドユニット10の低圧巻線400側の部分を、望ましい電位となる巻数の部分までくりぬいている。これにより、シールドユニット10を径方向に動かすことなく、低圧巻線400側との間における電位分布の制御と絶縁距離の確保が可能となる。 In order to solve such a problem, as shown in FIG. 9, the portion of the shield unit 10 on the low-voltage winding 400 side is hollowed out to the portion of the number of turns at which the desired potential is obtained. This makes it possible to control the potential distribution between the shield unit 10 and the low-voltage winding 400 side and secure the insulation distance without moving the shield unit 10 in the radial direction.

上記の構成により高圧巻線と低圧巻線間における電位分布は図10に示したものとなり、電位勾配(電界)を緩やかとすることで絶縁を保持することが容易となる。本発明の構成とすることで絶縁距離増加が抑制され、静止誘導電気の小型化が可能となる。 With the above configuration, the potential distribution between the high-voltage winding and the low-voltage winding is as shown in FIG. 10, and the insulation can be easily maintained by making the potential gradient (electric field) gentle. With the configuration of the present invention, the increase in the insulation distance is suppressed, and the static induction electricity can be miniaturized.

本発明の実施例について図11を用いて説明する。 Examples of the present invention will be described with reference to FIG.

図11は、本実施例におけるシールドユニット端部における側面断面模式図である。本実施例の形態はほぼ実施例1と同様の構成であるが、図11に示した通り、シールドユニットのシールド電極部10a端部を丸めた構造としている。 FIG. 11 is a schematic side sectional view of the end of the shield unit in this embodiment. The embodiment of this embodiment has almost the same configuration as that of the first embodiment, but has a structure in which the end portion of the shield electrode portion 10a of the shield unit is rounded as shown in FIG.

シールド電極部10aの先端の角部では局所的に電界が集中し、放電の起点となりえる。そのため、シールドユニット10の層間、つまりシールド電極1001aと1002aなどの隣接するシールド電極間における絶縁を確保するため、絶縁物10bを厚くする必要がある。 An electric field is locally concentrated at the corner of the tip of the shield electrode portion 10a, which can be the starting point of discharge. Therefore, it is necessary to increase the thickness of the insulator 10b in order to secure insulation between the layers of the shield unit 10, that is, between the shield electrodes 1001a and the adjacent shield electrodes such as 1002a.

この問題を解決するため、シールド電極端部を丸めた構造とし、角部を処理することで局所的な電界集中を緩和することができる。 In order to solve this problem, it is possible to alleviate the local electric field concentration by forming a structure in which the end portion of the shield electrode is rounded and treating the corner portion.

上記の構成により、絶縁物10bの厚みを抑制することが可能となり、シールドユニット10の小型化が可能となる。 With the above configuration, it is possible to suppress the thickness of the insulating material 10b, and it is possible to reduce the size of the shield unit 10.

以上、本実施例によれば、小型な静止誘導電器を提供することができる。 As described above, according to this embodiment, it is possible to provide a small static induction electric device.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…鉄心
2、2a、2b…高圧巻線
10…シールドユニット
10a、1001a、1002a、1319a、1320a…シールド電極
10b、1001b、1002b、1319b、1320b…絶縁物
100…外部電圧印加端
400…低圧巻線
500…静止誘導電器
5001、5002、5003…巻線ユニット
1 ... Iron core
2, 2a, 2b ... High pressure winding
10 ... Shield unit
10a, 1001a, 1002a, 1319a, 1320a ... Shielded electrode
10b, 1001b, 1002b, 1319b, 1320b ... Insulation
100 ... External voltage application end
400 ... Low pressure winding
500 ... Static induction electric device
5001, 5002, 5003 ... Winding unit

Claims (4)

鉄心と、
前記鉄心に巻回される低圧巻線と、
前記低圧巻線の外周に巻回される高圧巻線と、
前記低圧巻線と前記高圧巻線との間に配置されたシールドユニットと、を有する静止誘導電器において、
前記シールドユニットは絶縁体とシールド電極で構成されており、前記シールド電極は前記高圧巻線の何れかの部位と電気的に接続されており、
前記シールドユニットの上下端部は、断面を見た時に、前記高圧巻線側から前記低圧巻線側に向かって薄くなる形状を有することを特徴とする静止誘導電器。
With the iron core
The low-pressure winding wound around the iron core and
The high-pressure winding wound around the outer circumference of the low-pressure winding,
In a static induction electric device having a shield unit arranged between the low pressure winding and the high pressure winding.
The shield unit is composed of an insulator and a shield electrode, and the shield electrode is electrically connected to any part of the high -pressure winding.
The upper and lower end portions of the shield unit have a shape that becomes thinner from the high pressure winding side toward the low pressure winding side when the cross section is viewed .
請求項1に記載の静止誘導電器であって、
前記シールドユニットは前記絶縁体と前記シールド電極を層状に巻き回し、外周方向へ交互に配置されて構成されていることを特徴とした静止誘導電器。
The stationary induction electric device according to claim 1.
The shield unit is a static induction electric device characterized in that the insulator and the shield electrode are wound in a layered manner and alternately arranged in the outer peripheral direction.
請求項1または2に記載の静止誘導電器にあって、
前記シールドユニットの前記低圧巻線側の中心部が凹形状であることを特徴とする静止誘導電器。
In the static induction electric device according to claim 1 or 2 ,
A static induction electric device having a concave shape at the center of the shield unit on the low pressure winding side.
請求項1ないしのいずれか1項に記載の静止誘導電器において、
前記シールド電極の端部が丸みを有することを特徴とする静止誘導電器。
In the static induction electric device according to any one of claims 1 to 3 ,
A static induction electric device having a rounded end portion of the shield electrode.
JP2017234775A 2017-12-07 2017-12-07 Static induction electric device Active JP7016683B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017234775A JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device
TW107142591A TWI689952B (en) 2017-12-07 2018-11-29 Static induction appliances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234775A JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device

Publications (2)

Publication Number Publication Date
JP2019102739A JP2019102739A (en) 2019-06-24
JP7016683B2 true JP7016683B2 (en) 2022-02-07

Family

ID=66974181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234775A Active JP7016683B2 (en) 2017-12-07 2017-12-07 Static induction electric device

Country Status (2)

Country Link
JP (1) JP7016683B2 (en)
TW (1) TWI689952B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780618B1 (en) * 2014-01-29 2017-09-21 제이에프이 스틸 가부시키가이샤 Cold-rolling facility and cold-rolling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093749A (en) 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2001307931A (en) 2000-04-21 2001-11-02 Hitachi Ltd Transformer
JP2017108102A (en) 2015-12-09 2017-06-15 三菱電機株式会社 Stationary induction apparatus
US20170169938A1 (en) 2015-12-09 2017-06-15 Mitsubishi Electric Corporation Stationary induction apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511284B1 (en) * 1970-12-17 1976-01-16
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN
US4176334A (en) * 1975-08-25 1979-11-27 Hughes Aircraft Company High voltage transformer and process for making same
JPS53127632A (en) * 1977-04-13 1978-11-08 Hitachi Ltd Transformer winding
JPS609650B2 (en) * 1980-03-05 1985-03-12 株式会社日立製作所 High series capacity transformer winding
JPS59108308A (en) * 1982-12-14 1984-06-22 Toshiba Corp Foil wound transformer
JPS6015306Y2 (en) * 1983-03-10 1985-05-14 ソニー株式会社 Trance
JPS6085821U (en) * 1983-11-17 1985-06-13 三菱電機株式会社 molded transformer
JPS6057116U (en) * 1984-06-25 1985-04-20 オリジン電気株式会社 Transformer shielding device
JPH0314028Y2 (en) * 1984-09-13 1991-03-28
JP2860009B2 (en) * 1992-08-27 1999-02-24 株式会社日立製作所 Stationary induction device
JP2000173836A (en) * 1998-12-01 2000-06-23 Mitsubishi Electric Corp Electrostatic induction equipment
JP6417189B2 (en) * 2014-11-06 2018-10-31 株式会社日立製作所 Static induction machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093749A (en) 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2001307931A (en) 2000-04-21 2001-11-02 Hitachi Ltd Transformer
JP2017108102A (en) 2015-12-09 2017-06-15 三菱電機株式会社 Stationary induction apparatus
US20170169938A1 (en) 2015-12-09 2017-06-15 Mitsubishi Electric Corporation Stationary induction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780618B1 (en) * 2014-01-29 2017-09-21 제이에프이 스틸 가부시키가이샤 Cold-rolling facility and cold-rolling method

Also Published As

Publication number Publication date
JP2019102739A (en) 2019-06-24
TWI689952B (en) 2020-04-01
TW201926372A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
CN105304287B (en) Integrated transformer
KR20080007311A (en) Multilayer inductor
JP2008053735A (en) High-voltage transformer
JP7016683B2 (en) Static induction electric device
EP3018665A1 (en) Low inter-winding capacitance coil form
JP7029920B2 (en) Transformer
JP6830419B2 (en) Static induction electric device
US20240055173A1 (en) Transformer
US11915856B2 (en) Electromagnetic induction device having a low losses winding
US10714258B2 (en) Stationary induction apparatus
JP5462335B1 (en) High frequency high voltage transformer
KR20210065179A (en) Electrical components, especially transformers or inductors
JP2010283061A (en) Transformer
JP3522290B2 (en) Disk winding
KR102067389B1 (en) Structure of connection wiring widing and electrostatic ring of transformer
JP6789862B2 (en) Rest inducer
JP6681323B2 (en) Stationary induction
JP2000331844A (en) Stationary electromagnetic induction apparatus
JP6341684B2 (en) High frequency transformer
JP4380532B2 (en) High frequency high voltage air core coil
JP2008098305A (en) Inductance element
JP2018160644A (en) Stationary induction machine
JPS62241316A (en) Gas insulated voltage transformer
JPS62156805A (en) Winding for stationary induction electric apparatus
JP2012253218A (en) Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126