JP3846794B2 - Displacement meter structure with folding telescopic inductors - Google Patents

Displacement meter structure with folding telescopic inductors Download PDF

Info

Publication number
JP3846794B2
JP3846794B2 JP2002310143A JP2002310143A JP3846794B2 JP 3846794 B2 JP3846794 B2 JP 3846794B2 JP 2002310143 A JP2002310143 A JP 2002310143A JP 2002310143 A JP2002310143 A JP 2002310143A JP 3846794 B2 JP3846794 B2 JP 3846794B2
Authority
JP
Japan
Prior art keywords
inductor
protective tube
wire ring
folding
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002310143A
Other languages
Japanese (ja)
Other versions
JP2004144626A (en
Inventor
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2002310143A priority Critical patent/JP3846794B2/en
Publication of JP2004144626A publication Critical patent/JP2004144626A/en
Application granted granted Critical
Publication of JP3846794B2 publication Critical patent/JP3846794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は誘導子による変位計の構造に関するもので、従来の滑り誘導子の代わりに折畳み型の伸縮誘導子を使用し、円柱状磁芯に設けられた可聴周波励磁線輪の外側に嵌合する保護管に貫通させ、励磁線輪の一端と誘導子の一端を結合し、誘導子の他端は被変位可動体に結合して、前記可動体の変位を計測する折畳み型伸縮誘導子による変位計の構造に関する。
【0002】
【従来の技術】
上記従来の滑り誘導子による変位計構造は、該滑り誘導子を形成する管状の他端を被可動体に結合して、励磁線輪の捲き始め位置より可動体の変位に対応して摺動させ、該摺動に対応して電磁誘導により励磁線輪にリアクタンス変化に基づく励磁電流の変化を起こさせ、可動体の変位は励磁電流の変化として出力させるようにしたものである。
【0003】
上記のような誘導子の変位による変位計測には種々の形式のものが用いられてきた。
例えば、図4に示す、本願発明者等によりなされた発明がある(非公知)。該発明は、磁芯50に巻装された可聴周波励磁線輪52と、その外側に嵌合固定された保護管53と、図示していない被変位可動体に結合して矢印Aに沿い前記保護管53面上を滑動する管状滑り誘導子54より構成され、可聴周波電源に接続端子56を接続させ作動する管状型誘導子変位センサである。
これは構造が簡単であり堅牢で出力特性もよいが、その形状については計測される変位に対して更に等しい長さの空間を必要とするために、長さに対する有効長比率は50%以下になってしまうが、これをシリンダ内のピストンの変位センサ用とすれば、このような場合は特に問題となるところは無い。しかしこのような空間を求めることの出来ない場合にはこれを使用することは出来ない。
【0004】
また、上記問題点解決のために、本願発明者等によりなされた図5に示す螺旋型誘導子センサがある。
該変位センサは、捲き方向を逆にした二重螺旋構造で、その端末を接続し閉回路とした螺旋型誘導子を開発し使用したもので、変位長さに対するセンサ全長の長さの比となる有効長比率は80〜90%にも達し、空間を極めて有効に利用することが可能である。
【0005】
上記変位センサは可聴周波励磁線輪60と螺旋型誘導子62とよりなり、前記可聴周波励磁線輪60は磁芯61上に巻装された二層密接捲きよりなり、端子60aを介して図示していない可聴周波電源に接続され作動する構成にしてある。
前記螺旋型誘導子62は、捲き方向を異にする内層線輪62bと外層線輪62aとよりなる二層捲き線輪で形成され、上記内層と外層のそれぞれの捲き始めと捲き終わりとをワイヤ63、65で結合し電気的に短絡した閉ループを形成して、鎖交磁束で誘起される電圧を短絡する構成にしてある。
そして、前記螺旋型誘導子62の固定端63aは前記可聴周波励磁線輪60の一方の端子の末端部位Oに固定し、前記螺旋型誘導子62の他端を図示していない被変位可動体の可動端に取り付ける構成とし、使用に際しては、前記可動端の移動につれ螺旋型誘導子62を矢印B方向に二点鎖線で示す位置に伸縮させる。
伸縮位置に対応した前記可聴周波励磁線輪60のリアクタンス変化に対応した電流値を読み取り、変位量を検出する。
【0006】
しかし、この水平状態での変位距離の長い場合には螺旋型誘導子の中央部が垂下して保護管、または内外螺旋捲き同志での接触を惹起し易い。
また、上記二重螺旋構造の場合は、内層と外層のそれぞれのコイルは捲き方向を異にするとともに重ね合わせた構造とし、伸縮した場合内層コイルと外層コイルの各素線は逆方向の傾斜で自由に移動できる裕度を持つ緩合構成が必要で、それらの内外コイル素線の接触によりお互いの絶縁被覆を損傷することもあり、特に被可動変位体の変位距離が大であるときは、組立調整にも煩雑な作業を必要とするという問題点を内蔵している。
また、振動の激しい環境内では、螺旋捲きが共振するような現象が発生することもあり、螺旋捲き形状のため安定感を損なう構成である。
【0007】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みなされたもので、
機械的に安定したコンパクトな構成よりなる機構部を構成するとともに、製作コスト、組立コストの削減を可能とした、有効長比率の高い高精度の折畳み型伸縮誘導子による変位計の構造の提供を目的とするものである。
【0008】
【問題を解決するための手段】
そこで、本発明の折畳み型伸縮誘導子による変位計の構造は、
磁芯に巻装された可聴周波励磁線輪上を摺動する誘導子により可動体の変位を検出する変位計の構造において、
前記可聴周波励磁線輪と、その外側に嵌合した非磁性体よりなる保護管と、
該保護管面上で前記可聴周波励磁線輪の捲き始め位置にばね機能のある折畳み型誘導子の一端を固定するとともに、その他端は被変位可動体に結合させて前記保護管に沿い伸縮させるように構成し、該伸縮により前記可聴周波励磁線輪にリアクタンス変化を惹起させ、
更に前記ばね機能のある折畳み型誘導子は、厚みの等しい薄肉帯状の導電性の金属板を交互に折畳み、各誘導素子の素材を形成し、前記保護管が貫通できる貫通孔を前記各誘導素子の素材のそれぞれに設けて、前記誘導子を形成するとともに、前記誘導素子の励磁線輪の保護管が貫通する貫通孔は楕円孔とし、その長軸は前記各誘導素子を形成する折り畳み線に垂直となる方向としたことを特徴とする。
【0009】
上記本発明の折畳み型伸縮誘導子による変位計の構造は、
磁芯に巻装された可聴周波励磁線輪の表面に嵌合した非磁性体よりなる保護管上を摺動する折畳み型伸縮誘導子により可動体の変位を検出する変位計の構造に係わるもので、
前記誘導子は、従来から使用されてきた管状型滑り誘導子または螺旋型誘導子に代わり、金属板の交互折畳みにより形成されたばね性の伸縮型誘導子を使用するようにしたもので、
可聴周波励磁線輪の外側に嵌合した非磁性体よりなる保護管に貫通孔を介して摺動自在に設けられ、一端を前記可聴周波励磁線輪の捲き始め位置に固定するとともに他端を被変位可動体に結合させ、該可動体の変位に対し均一分布する歪み応力のもとに伸縮する前記折畳み型伸縮誘導子の使用により、前記可動体の変位を励磁線輪のリアクタンス変化として正確に表現できるようにしたものである。
【0010】
【0011】
上記発明は、本発明の折畳み型誘導子による変位計の構造に使用するばね機能のある折畳み誘導子の構成について記載したもので、
導電性薄肉帯板状の金属板を交互に折畳み、各誘導素子の素材を形成させ、該素材に前記保護管が貫通する貫通孔を設けて各誘導素子を形成させて、これに保護管を貫通させることにより、伸縮自在の誘導子を形成させている。
【0012】
って折畳まれた各誘導素子の厚みは何れの部分でも等しいので、各誘導素子が結合し折畳められた部分の一枚の誘導素子に限って見れば、これらがそれぞれ結合され、且つ折畳み線の部分の長さは誘導素子面上で、折畳み線に平行な何れの部分の幅より大きく設計することで、撓みは誘導素子面で発生し、折畳まれ貫通孔を穿孔された誘導素子は保護管上で均一の歪み分布のもとに弾性変形をし、伸縮する。
【0013】
従って上記構成よりなる折畳み型伸縮誘導子の最小縮小長さ、則ち積層された全誘導素子の厚みの計測される全長変位に対する有効長比率は極めて高く、95%以上の値を得ることは容易である。
誘導子の最大伸張時には、保護管の貫通部となる誘導素子の穿孔付近で弾性変形が行なわれ、最大縮小時には各誘導素子は撓みのない平板状に戻り、その側面は直線状に復帰する。
【0014】
また、上記本発明の折畳み型誘導素子による変形計の構造における、
前記誘導素子に設けた励磁線輪の保護管が貫通する貫通孔は楕円孔とし、その長軸は前記各誘導素子を形成する折畳み線に垂直となる方向とした。
則ち、保護管の貫通する各誘導素子に設けた貫通孔の形状は誘導子の伸張時には保護管に対し、各誘導子と保護管とが接近してその水平傾斜角度は小さくなる。
従って前記貫通孔の形状は円形でなく、楕円形状に穿孔され、該楕円形状の長軸は各誘導素子を結合する折畳み線を略垂直に二当分する垂直二等分線上に位置する構成にしてある。
【0015】
また、薄肉帯状板を折畳み、方形状折畳み体を形成するが、その隅角は前記可聴周波励磁線輪の短絡環としての機能上から見て不必要で、弾性変形上隅角を切り落とし、八角形状にすることが望ましい。
また、楕円形状の穿孔部の周囲は面取りを行い保護管面上での円滑な摺動を可能とする構成にしてある。
【0016】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の折畳み型伸縮誘導子による変位計の構造に係わる一実施例の概略構成を示す図で、図2(A)は図1の折畳み型誘導子の伸張時の誘導子の側面図で、(B)は(A)のIIIB−IIIB視図である。図3は図1の折畳み型伸縮誘導子の特性曲線を示す図である。
【0017】
図1において、折畳み型伸縮誘導子による変位計構造は、円柱状磁芯11に密接捲きされ、図示していない可聴周波数電源で励磁された可聴周波励磁線輪12と、該励磁線輪12の全長にわたりその外周部位に嵌合する非磁性保護管13と、該保護管13面状を摺動可能に緩合する折畳み型伸縮誘導子10と、被変位可動体14とより構成し、
前記折畳み型伸縮誘導子10の一端10aは、前記保護管13の左端の励磁線輪12の捲き始め端に固定し、他端10bは被変位可動体14の可動端に取り付ける構成にしてある。
そして、前記被変位可動体14の矢印A方向の変位につれ、折畳み型伸縮誘導子10は他端10bを介して矢印A方向に伸張する。
【0018】
前記折畳み型伸縮誘導子10は、導電性薄肉の弾性部材で構成され、例えば燐青銅板ないし硬度を高めた銅板を素材とし、
図2(A)に見るように、前記帯状部材を部材の流れ方向Cに部材の幅と同等の長さSの方形状に折畳み線10cを介して逐次折畳み、形成された方形状折片の(各誘導子素子の素材を形成する)中央部に前記折畳み線10cの垂直二等分線を長軸に持つ楕円状貫通孔15を穿孔し、伸縮自在の引っ張りバネ状に積層し、図2(B)に見るように1辺の長さSの誘導素子群を形成する。
【0019】
前記貫通孔15は、方形状折片の中央部に設けたもので、可聴周波励磁線輪12の全面にわたり嵌合された非磁性保護管13が緩合はめ合い状に貫通できる孔径により構成し、前記保護管13の外周面上を前記誘導子が容易に滑動伸縮可能にする必要があり、例えば充分伸張した場合には、それぞれの方形誘導素子は互いに逆方向に傾くので、このような場合も考慮して前記貫通孔15は楕円形状に穿孔する構成にしてある。
【0020】
なお、図2(B)に示すように、誘導素子群の機能上特に必要のない方形隅部17は切り落とし八角形状にした方が各誘導素子面での弾性機能を持たせることができる。
なお、前記楕円形状の穿孔の内周の厚さに対する面取りは誘導子の伸張時には保護管13に対する水平傾斜角が小さくなるので必要であり、これにより誘導子10が保護管13に対し円滑に摺動可能にしている。
【0021】
このような誘導子10の伸縮は可聴周波励磁線輪12のリアクタンスを変化させ、その変化により前記被変位可動体14の変位の計測を可能にする。
則ち、誘導子10において、その折畳まれた方形折片は、穿孔された貫通孔15を介して励磁線輪12の外側を嵌合する保護管13がこれを貫通しているので、方形折片には前記励磁線輪10の短絡環が形成され、折畳み部を介して結合された伸縮可能の誘導素子を構成する。
従って前述の二重螺旋型誘導子が閉回路を形成するために螺旋捲きの二つのコイルの両端末側を接続して形成されるものとは構造を異にし、本願ではそれぞれの板状短絡環が折畳み部で結合された集合体により、本願誘導子は形成されている。
【0022】
お、折畳みされた各誘導素子の厚みは何れの部分でも等しいので、各誘導素子が結合し折り畳められた部分の一枚の誘導素子に限って見れば、撓みは誘導素子面で発生し、折り畳まれ形成された誘導素子10はその全域にわたり保護管13上で均一歪み分布のもとに弾性変形をし、伸縮可能としているため、前記被変変位可動体の変位に対応した確度の高いリアクタンス変化に対応する出力変化を得ることができる。
【0023】
図3には本願誘導子の特性曲線を示す。
図には被変位可動体の変位を横軸にとり、可聴周波励磁線輪の電流変化量を縦軸に取ってある。図に見るように、誘導子の端末の固定されている部分の変位に対する出力特性は誘導子が積層されるので、非線形に対する補正効果があり、可動末端の端末部分を除けば、線形特性を呈しており、その精度は勝れている。
【0024】
【発明の効果】
本発明は、上記構成により下記効果を奏する。
a、折畳み型誘導子の使用により、独立した短絡環を持つ誘導素子の集合体の形成により誘導線輪を閉路させる帰線、則ち短絡部分を必要としないコンパクトな構成を得ることができる。
b、誘導子の伸縮は、誘導素子面の平面部の撓みによる弾性によるため、長期の作動に対しても疲労破断することはなく、被変位可動体の変位に対し均一歪み分布で対応することができ、安定した計測結果が得られる。
c、計測器周囲環境の振動に対しても伸縮性を維持するとともに、耐震的特性を持つ。
d、量産性が高く小型に形成できる。
e、有効長比率が極めて高いため、狭小の空間でも利用率が高い。
f、出力特性が安定している。
【図面の簡単な説明】
【図1】 本発明の折畳み型伸縮誘導子による変位計の構造に係わる一実施例の概略構成を示す図である。
【図2】 (A)は図1の折畳み型誘導子の伸張時の誘導子の側面図で、(B)は(A)のIIIB−IIIB視図である。
【図3】 図1の折畳み型伸縮誘導子の特性曲線を示す図である。
【図4】 従来の管状型誘導子変位センサの概略構成を示す図である。
【図5】 従来の螺旋型誘導子変位センサの概略構成を示す図である。
【符号の説明】
10 折畳み型伸縮誘導子
10a 一端
10b 他端
10c 折畳み線
11 円柱状磁芯
12 可聴周波励磁線輪
13 非磁性保護管
14 被変位可動体
15 貫通孔
17 方形隅部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a displacement meter using an inductor, which uses a folding expansion / contraction inductor instead of a conventional sliding inductor and fits outside an audio excitation wire ring provided on a cylindrical magnetic core. By connecting the one end of the exciting wire ring and one end of the inductor, the other end of the inductor is coupled to the movable body to be displaced, and a folding type expansion and contraction inductor for measuring the displacement of the movable body. It relates to the structure of the displacement meter.
[0002]
[Prior art]
In the conventional displacement gauge structure using a sliding inductor, the other end of the tube forming the sliding inductor is coupled to the movable body, and the sliding movement is made in accordance with the displacement of the movable body from the starting position of the excitation wire ring. In response to the sliding, a change in the excitation current based on the reactance change is caused in the excitation wire ring by electromagnetic induction, and the displacement of the movable body is output as a change in the excitation current.
[0003]
Various types of displacement measurement using the displacement of the inductor as described above have been used.
For example, there is an invention made by the inventors of the present application shown in FIG. 4 (unknown). The present invention is connected to an audible frequency excitation wire ring 52 wound around a magnetic core 50, a protective tube 53 fitted and fixed to the outside thereof, and a displaced movable body (not shown) along the arrow A. The tubular inductor displacement sensor is composed of a tubular sliding inductor 54 that slides on the surface of the protective tube 53, and operates by connecting a connection terminal 56 to an audio power source.
This is simple in structure, robust, and has good output characteristics. However, since the shape requires a space of an equal length with respect to the measured displacement, the effective length ratio to the length is 50% or less. However, if this is used for the displacement sensor of the piston in the cylinder, there is no particular problem in such a case. But if you can't find such a space, you can't use it.
[0004]
Further, there is a spiral inductor sensor shown in FIG. 5 made by the inventors of the present application in order to solve the above problems.
The displacement sensor is a double spiral structure with the winding direction reversed, and uses a spiral inductor that is connected to the terminal and made into a closed circuit. The displacement sensor has a ratio of the total sensor length to the displacement length. The effective length ratio reaches 80 to 90%, and the space can be used very effectively.
[0005]
The displacement sensor is composed of an audio excitation wire ring 60 and a helical inductor 62. The audio excitation wire ring 60 is formed of a two-layer intimate winding wound on a magnetic core 61 and is connected via a terminal 60a. It is configured to operate by being connected to an audio power source not shown.
The spiral inductor 62 is formed of a two-layer winding wire ring composed of an inner layer wire ring 62b and an outer layer wire ring 62a having different winding directions, and the inner layer and the outer layer are respectively wound at the beginning and end of the winding. A closed loop that is electrically coupled and short-circuited at 63 and 65 is formed to short-circuit the voltage induced by the flux linkage.
The fixed end 63a of the spiral inductor 62 is fixed to the terminal end portion O1 of one terminal of the audio frequency excitation wire ring 60, and the other end of the spiral inductor 62 is displaced to be displaced (not shown). The structure is attached to the movable end of the body, and in use, the spiral inductor 62 is expanded and contracted in the direction indicated by the two-dot chain line in the direction of arrow B as the movable end moves.
The current value corresponding to the reactance change of the audio frequency excitation wire ring 60 corresponding to the expansion / contraction position is read, and the displacement amount is detected.
[0006]
However, when the displacement distance in the horizontal state is long, the central portion of the spiral inductor hangs down, and it is easy to cause contact between the protective tube or the inner and outer spirals.
In the case of the double spiral structure, the inner layer and outer layer coils have different winding directions and are superposed, and when stretched, the inner and outer layer coils are inclined in opposite directions. A loosely coupled structure with a tolerance to move freely is necessary, and the insulation coating of each other may be damaged by the contact of the inner and outer coil strands, especially when the displacement distance of the movable displacement body is large, There is a built-in problem of requiring complicated work for assembly adjustment.
Further, in an environment where vibration is intense, a phenomenon that the spiraling resonates may occur, and the sense of stability is impaired due to the spiraling shape.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems,
Providing a structure of a displacement meter with a high-precision foldable expansion and contraction inductor with a high effective length ratio that can reduce the manufacturing cost and assembly cost while configuring a mechanically stable and compact structure. It is the purpose.
[0008]
[Means for solving problems]
Therefore, the structure of the displacement meter by the folding type expansion and contraction inductor of the present invention is as follows:
In the structure of a displacement meter that detects the displacement of a movable body by an inductor that slides on an audio frequency excitation wire ring wound around a magnetic core,
The audio excitation wire ring, and a protective tube made of a non-magnetic material fitted to the outside thereof,
One end of a foldable inductor having a spring function is fixed on the surface of the protective tube at the beginning of the winding of the audio excitation wire ring, and the other end is connected to a movable body to be displaced and expanded and contracted along the protective tube. Configured to cause a change in reactance in the audio frequency excitation wire ring by the expansion and contraction,
Furthermore, the folding inductor having a spring function is formed by alternately folding thin strip-like conductive metal plates having the same thickness, forming a material for each induction element, and providing a through-hole through which the protective tube can pass through each induction element. The through-hole through which the protective tube of the exciting wire ring of the induction element penetrates is an elliptical hole, and its long axis is a folding line that forms each induction element. It is characterized by a vertical direction .
[0009]
The structure of the displacement meter by the folding expansion / contraction inductor of the present invention is as follows.
Concerning the structure of a displacement meter that detects the displacement of a movable body by means of a folding expansion / contraction inductor that slides on a protective tube made of a non-magnetic material fitted on the surface of an audio frequency excitation wire ring wound around a magnetic core so,
The inductor uses a spring-type expandable inductor formed by alternating folding of a metal plate, instead of the conventionally used tubular slip inductor or spiral inductor,
A non-magnetic protective tube fitted outside the audio excitation wire ring is slidably provided through a through-hole, and one end is fixed to the starting position of the audio excitation wire ring and the other end is fixed. By using the foldable expansion / contraction inductor coupled to the displaced movable body and expanding / contracting under a strain stress that is uniformly distributed with respect to the displacement of the movable body, the displacement of the movable body can be accurately expressed as a reactance change of the excitation wire ring. It can be expressed in
[0010]
[0011]
The above-described invention describes the configuration of a folding inductor having a spring function used in the structure of a displacement meter by the folding type inductor of the present invention,
Folding conductive thin strip metal plates alternately to form a material for each inductive element, forming a through-hole through which the protective tube penetrates the material to form each inductive element. By making it penetrate, a retractable inductor is formed.
[0012]
The thickness of each inductive element folded What follow is equal at any portion, when viewed only on a single inductive element portions each inductive elements are foldable attached, they are bound respectively, And the length of the fold line part is designed to be larger than the width of any part parallel to the fold line on the inductive element surface. The induction element elastically deforms and expands and contracts on the protective tube with a uniform strain distribution.
[0013]
Therefore, the minimum reduction length of the foldable expansion / contraction inductor having the above-described configuration, that is, the effective length ratio with respect to the measured total displacement of the thickness of all laminated inductors is extremely high, and it is easy to obtain a value of 95% or more. It is.
When the inductor is fully extended, elastic deformation is performed in the vicinity of the perforation of the inductive element serving as a penetrating portion of the protective tube. When the inductor is fully reduced, each inductor returns to a flat plate shape without bending, and its side surface returns to a straight line.
[0014]
Further, in the structure of the deformation meter by the folding induction element of the present invention,
The through-hole through which the protective tube of the exciting wire ring provided in the induction element passes was an elliptical hole, and the long axis thereof was a direction perpendicular to the fold line forming each induction element .
In other words, the shape of the through hole provided in each induction element that penetrates the protective tube is such that when the inductor is extended, each inductor and the protective tube approach the protective tube and the horizontal inclination angle becomes small.
Therefore, the shape of the through-hole is not circular, but is drilled in an elliptical shape, and the major axis of the elliptical shape is positioned on a vertical bisector that divides the folding line that couples the induction elements approximately vertically. is there.
[0015]
In addition, the thin belt-like plate is folded to form a rectangular folded body, but the corner angle is unnecessary in view of the function as a short-circuit ring of the audio frequency excitation wire ring, and the elastic deformation upper corner angle is cut off, It is desirable to have a shape.
Further, the periphery of the elliptical perforated portion is chamfered to enable smooth sliding on the protective tube surface.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
FIG. 1 is a diagram showing a schematic configuration of an embodiment relating to the structure of a displacement meter using a folding type expansion / contraction inductor according to the present invention. FIG. 2 (A) is a side view of the inductor when the folding type inductor of FIG. 1 is extended. In the figure, (B) is a IIIB-IIIB view of (A). FIG. 3 is a diagram showing a characteristic curve of the folding type expansion and contraction inductor of FIG.
[0017]
In FIG. 1, a displacement gauge structure using a folding expansion / contraction inductor is closely connected to a cylindrical magnetic core 11 and is excited by an audio frequency power source (not shown), and The non-magnetic protective tube 13 fitted to the outer peripheral portion over the entire length, the folding expansion / contraction inductor 10 that loosely slidably fits the surface of the protective tube 13, and the displaced movable body 14,
One end 10 a of the folding expansion / contraction inductor 10 is fixed to the starting start end of the excitation wire ring 12 at the left end of the protective tube 13, and the other end 10 b is attached to the movable end of the displaced movable body 14.
As the movable body 14 to be displaced is displaced in the direction of arrow A, the foldable expansion / contraction inductor 10 extends in the direction of arrow A through the other end 10b.
[0018]
The foldable expansion / contraction inductor 10 is formed of a conductive thin elastic member, for example, a phosphor bronze plate or a copper plate with increased hardness,
As shown in FIG. 2 (A), the band-shaped member is sequentially folded into a rectangular shape having a length S equivalent to the width of the member in the flow direction C of the member via a folding line 10c, An elliptical through-hole 15 having a vertical bisector of the folding line 10c as a major axis is drilled in the center (forming the material of each inductor element) and laminated in a stretchable tension spring shape. As shown in (B), an inductive element group having a length S on one side is formed.
[0019]
The through-hole 15 is provided at the center of the square-shaped piece, and has a hole diameter through which the nonmagnetic protective tube 13 fitted over the entire surface of the audio excitation wire 12 can pass through in a loose fit. In this case, it is necessary for the inductor to be easily slidable and expandable on the outer peripheral surface of the protective tube 13. For example, when the inductor is sufficiently extended, the respective rectangular induction elements are inclined in opposite directions. In consideration of the above, the through hole 15 is configured to have an elliptical shape.
[0020]
As shown in FIG. 2 (B), the rectangular corner portion 17 that is not particularly necessary for the function of the inductive element group can be cut off into an octagonal shape so as to have an elastic function on each inductive element surface.
Note that chamfering to the inner peripheral thickness of the elliptical perforations is necessary because the horizontal inclination angle with respect to the protective tube 13 is reduced when the inductor is extended, and thus the inductor 10 smoothly slides against the protective tube 13. It is possible to move.
[0021]
Such expansion and contraction of the inductor 10 changes the reactance of the audio frequency excitation wire ring 12, and the change enables the displacement of the displaced movable body 14 to be measured.
In other words, in the inductor 10, the folded rectangular piece has a rectangular shape because the protective tube 13 that fits the outside of the exciting wire ring 12 passes through the through hole 15 that is perforated. A short-circuit ring of the exciting wire ring 10 is formed on the folded piece, and constitutes an expandable / contractible inductive element coupled via a folding portion.
Therefore, the double helix type inductor described above has a different structure from that formed by connecting both ends of two spirally wound coils in order to form a closed circuit. The inductor of the present application is formed by an assembly in which are joined at the folding part.
[0022]
Contact name is equal in foldable been thicknesses any part of the inductive element, when viewed only on a single inductive element portions each inductive element has been folded and bound, deflection occurs in the inductive element surface The folded induction element 10 is elastically deformed on the protective tube 13 over the entire area under a uniform strain distribution and can be expanded and contracted. Therefore, the induction element 10 has high accuracy corresponding to the displacement of the variable displacement movable body. An output change corresponding to the reactance change can be obtained.
[0023]
FIG. 3 shows a characteristic curve of the inductor of the present application.
In the figure, the displacement of the movable body to be displaced is plotted on the horizontal axis, and the amount of current change in the audio frequency excitation wire is plotted on the vertical axis. As shown in the figure, the output characteristics with respect to the displacement of the fixed portion of the terminal of the inductor has a non-linear correction effect because the inductor is stacked, and exhibits a linear characteristic except for the terminal portion of the movable end. And its accuracy is excellent.
[0024]
【The invention's effect】
The present invention has the following effects by the above configuration.
a. By using a folding inductor, a compact configuration that does not require a retrace line that closes the induction wire ring by forming an assembly of inductive elements having independent short-circuit rings, that is, a short-circuit portion, can be obtained.
b. Since the expansion and contraction of the inductor is due to the elasticity of the flat portion of the inductive element surface, it does not fatigue and break even for long-term operation, and responds to the displacement of the displaced movable body with a uniform strain distribution. And stable measurement results can be obtained.
c. Maintains elasticity even against vibrations in the surrounding environment of the measuring instrument and has seismic characteristics.
d. High productivity and small size.
e. Since the effective length ratio is extremely high, the utilization rate is high even in a narrow space.
f, Output characteristics are stable.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment relating to the structure of a displacement meter using a folding type expansion and contraction inductor according to the present invention.
2A is a side view of the inductor when the folding inductor of FIG. 1 is extended, and FIG. 2B is a view taken along the line IIIB-IIIB of FIG.
FIG. 3 is a diagram showing a characteristic curve of the folding type expansion / contraction inductor of FIG. 1;
FIG. 4 is a diagram showing a schematic configuration of a conventional tubular inductor displacement sensor.
FIG. 5 is a diagram showing a schematic configuration of a conventional helical inductor displacement sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Folding type | mold expansion-contraction inductor 10a One end 10b The other end 10c Folding line 11 Cylindrical magnetic core 12 Audio excitation wire ring 13 Nonmagnetic protective tube 14 Displaceable movable body 15 Through-hole 17 Square corner

Claims (1)

磁芯に巻装された可聴周波励磁線輪上を摺動する誘導子により可動体の変位を検出する変位計の構造において、
前記可聴周波励磁線輪と、その外側に嵌合した非磁性体よりなる保護管と、
該保護管面上で前記可聴周波励磁線輪の捲き始め位置にばね機能のある折畳み型誘導子の一端を固定するとともに、その他端は被変位可動体に結合させて前記保護管に沿い伸縮させるように構成し、該伸縮により前記可聴周波励磁線輪にリアクタンス変化を惹起させ、
更に前記ばね機能のある折畳み型誘導子は、厚みの等しい薄肉帯状の導電性の金属板を交互に折畳み、各誘導素子の素材を形成し、前記保護管が貫通できる貫通孔を前記各誘導素子の素材のそれぞれに設けて、前記誘導子を形成するとともに、前記誘導素子の励磁線輪の保護管が貫通する貫通孔は楕円孔とし、その長軸は前記各誘導素子を形成する折り畳み線に垂直となる方向としたことを特徴とする折畳み型伸縮誘導子による変位計の構造。
In the structure of a displacement meter that detects the displacement of a movable body by an inductor that slides on an audio frequency excitation wire ring wound around a magnetic core,
The audio excitation wire ring, and a protective tube made of a non-magnetic material fitted to the outside thereof,
One end of a foldable inductor having a spring function is fixed on the surface of the protective tube at the beginning of the winding of the audio excitation wire ring, and the other end is connected to a movable body to be displaced and expanded and contracted along the protective tube. Configured to cause a change in reactance in the audio frequency excitation wire ring by the expansion and contraction,
Furthermore, the folding inductor having a spring function is formed by alternately folding thin strip-like conductive metal plates having the same thickness, forming a material for each induction element, and providing a through-hole through which the protective tube can pass through each induction element. The through-hole through which the protective tube of the exciting wire ring of the induction element penetrates is an elliptical hole, and its long axis is a folding line that forms each induction element. A structure of a displacement meter using a folding expansion / contraction inductor, characterized by having a vertical direction .
JP2002310143A 2002-10-24 2002-10-24 Displacement meter structure with folding telescopic inductors Expired - Fee Related JP3846794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310143A JP3846794B2 (en) 2002-10-24 2002-10-24 Displacement meter structure with folding telescopic inductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310143A JP3846794B2 (en) 2002-10-24 2002-10-24 Displacement meter structure with folding telescopic inductors

Publications (2)

Publication Number Publication Date
JP2004144626A JP2004144626A (en) 2004-05-20
JP3846794B2 true JP3846794B2 (en) 2006-11-15

Family

ID=32455747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310143A Expired - Fee Related JP3846794B2 (en) 2002-10-24 2002-10-24 Displacement meter structure with folding telescopic inductors

Country Status (1)

Country Link
JP (1) JP3846794B2 (en)

Also Published As

Publication number Publication date
JP2004144626A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US7389702B2 (en) Magnetostrictive torque sensor
WO2006121145A1 (en) Position sensor
US7317371B1 (en) Linear variable differential transformer with complimentary step-winding secondary coils
CN107910171B (en) Linear variable differential transformer
EP0366227A2 (en) A displacement measuring apparatus
JP2009260006A (en) Current sensor
US7605585B2 (en) Air-core transformer position sensor
JPH09113203A (en) Differential transformer and measuring device using it
JP3499844B2 (en) Displacement detection method and its displacement sensor
JP3846794B2 (en) Displacement meter structure with folding telescopic inductors
US4132980A (en) High-sensitivity inductive transducer for rectilinear or rotational displacement
JP4810021B2 (en) Position detection device
CN111103450A (en) Coil wire, current sensor component, and current sensor
JP4625743B2 (en) Magnetic detection element
JP3315967B2 (en) Telescopic spiral sliding inductor reactor displacement sensor
EP3093859B1 (en) Variable differential transformer position sensor with a trapezoidal primary coil
JP3632112B2 (en) Displacement sensor
US20210118600A1 (en) Linear variable differential transducer
JP2003068528A (en) Common mode choke coil
JP2965557B1 (en) Displacement detector and displacement measuring device
JP6892664B2 (en) How to make a tubular core
JP7391591B2 (en) position detection device
JP4618192B2 (en) Position sensor
JPH063103A (en) Displacement detector
JP2005180950A (en) Load sensor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees