JP2001227843A - Heat exchanger with receiver tank - Google Patents

Heat exchanger with receiver tank

Info

Publication number
JP2001227843A
JP2001227843A JP2000038997A JP2000038997A JP2001227843A JP 2001227843 A JP2001227843 A JP 2001227843A JP 2000038997 A JP2000038997 A JP 2000038997A JP 2000038997 A JP2000038997 A JP 2000038997A JP 2001227843 A JP2001227843 A JP 2001227843A
Authority
JP
Japan
Prior art keywords
receiver tank
heat exchanger
refrigerant
path
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000038997A
Other languages
Japanese (ja)
Inventor
Hirohiko Watanabe
寛彦 渡辺
Ryoichi Hoshino
良一 星野
康浩 ▲高▼▲橋▼
Yasuhiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000038997A priority Critical patent/JP2001227843A/en
Publication of JP2001227843A publication Critical patent/JP2001227843A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger having a receiver tank in which a high refrigeration effect can be attained. SOLUTION: A condenser of the present invention is comprised of a heat exchanger main body 10 and a receiver tank 50. A plurality of heat exchanging tubes 12 communicated with and connected to both headers at both ends are arranged between a pair of headers 11. The heat exchanging tubes 12 are divided into a condensing part 10C and a supercooling part 10S at the heat exchanger main body 10. After the refrigerant condensed by the condensing part 10C is guided to a pressure reducing pipe P3 and its pressure is reduced, gas and liquid of the refrigerant are separated by the receiver tank 50 and only the liquid refrigerant is fed into the supercooling segment 10S to perform a supercooling operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば車両の空気
調和用冷凍システム等に好適に用いられるレシーバタン
ク付き熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger with a receiver tank suitably used for, for example, a refrigeration system for air conditioning of a vehicle.

【0002】[0002]

【発明の背景】車両等の空気調和用冷凍システムは、通
常、コンプレッサー、凝縮器、膨張弁、及び蒸発器を用
いた蒸気圧縮式の冷凍サイクルを有している。
BACKGROUND OF THE INVENTION An air conditioning refrigeration system for a vehicle or the like usually has a vapor compression refrigeration cycle using a compressor, a condenser, an expansion valve, and an evaporator.

【0003】従来、このような冷凍サイクルの凝縮器と
して、マルチフロータイプと称される熱交換器からなる
ものが周知である。この熱交換器は、図7に示すよう
に、一対のヘッダー(102)(102)に、両端を連
通接続した多数の熱交換チューブが並列状に配置され
て、コア(101)が形成されている。更にヘッダー
(102)内に設けられた仕切部材(103)により、
多数の熱交換チューブが複数のパス(P1)〜(P4)
に区分けされる。そして、この熱交換器においては、冷
媒を各パス(P1)〜(P4)に順に流通させるととも
に、その流通の際に、冷媒を外気との間で熱交換させて
凝縮するものである。
Conventionally, as a condenser of such a refrigeration cycle, a condenser comprising a heat exchanger called a multi-flow type is well known. In this heat exchanger, as shown in FIG. 7, a large number of heat exchange tubes having both ends connected and connected in parallel are arranged on a pair of headers (102) (102) to form a core (101). I have. Further, by a partition member (103) provided in the header (102),
Many heat exchange tubes have multiple passes (P1) to (P4)
Is divided into In this heat exchanger, the refrigerant is circulated in order through the respective paths (P1) to (P4), and during the circulation, the refrigerant is condensed by exchanging heat with the outside air.

【0004】一方近年になって、上記マルチフロータイ
プの熱交換器を基にして、凝縮された冷媒を、更に数度
低い温度にまで過冷却して放熱量を増加させて、冷凍能
力の向上を図ろうする技術が提案されている。
On the other hand, in recent years, based on the multi-flow type heat exchanger, the condensed refrigerant is further cooled to a temperature several degrees lower to increase the amount of heat radiation, thereby improving the refrigerating capacity. A technique for achieving the above has been proposed.

【0005】この提案技術として、凝縮部と過冷却部と
の間に、レシーバタンクを配置したレシーバタンク付き
熱交換器の開発が進められている。
As this proposed technique, a heat exchanger with a receiver tank in which a receiver tank is disposed between a condenser section and a supercooling section is being developed.

【0006】このレシーバタンク付き熱交換器は、図8
に示すように、マルチフロータイプの熱交換器本体(1
11)と、その一方のヘッダー(112)に併設された
レシーバタンク(113)とを備え、熱交換器本体(1
11)の上流側を凝縮部(111C)、下流側を過冷却
部(111S)として構成するものである。そしてこの
熱交換器においては、冷媒が、凝縮部(111C)の各
パス(P1)〜(P3)を順に流通する間に、冷媒を外
気との間で熱交換させて凝縮し、更にその凝縮冷媒をレ
シーバタンク(113)に導いて気液分離して、液冷媒
のみを過冷却部(111S)に導いて過冷却するもので
ある。
FIG. 8 shows a heat exchanger with a receiver tank.
As shown in the figure, the multi-flow type heat exchanger body (1
11) and a receiver tank (113) attached to one of the headers (112).
The upstream side of 11) is configured as a condensing section (111C), and the downstream side is configured as a supercooling section (111S). In this heat exchanger, the refrigerant exchanges heat with the outside air and condenses while passing through the paths (P1) to (P3) of the condensing section (111C) in order, and further condenses. The refrigerant is guided to the receiver tank (113) to separate gas and liquid, and only the liquid refrigerant is guided to the supercooling section (111S) to be supercooled.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記従来提
案のレシーバタンク付き熱交換器は、図7に示す既存の
熱交換器と同様に、自動車内の限られたスペース内に設
置されるものであり、基本的には、既存の熱交換器と同
じサイズのものが採用される。ところが、従来提案のレ
シーバタンク付き熱交換器は、熱交換器本体(111)
の下側を、凝縮に寄与しない過冷却部(111S)とし
て構成するものであるため、既存の熱交換器と比較した
場合、熱交換器本体(111)に過冷却部(111S)
を形成する分、凝縮部(111C)が小さくなり凝縮能
力が低下する。このため例えば、凝縮部(111C)に
おいて冷媒の凝縮が不十分となり易く、ガス冷媒が多く
混在したまま液冷媒が、レシーバタンク(113)に流
入されて、タンク(113)内で泡立ちが発生して泡切
れ性が悪くなり、安定状態の液冷媒を過冷却部(111
S)に送り込むことが困難になり、所望の冷凍効果を得
ることができない恐れがあった。逆に安定状態の液冷媒
を得るには、冷媒を余分に封入する必要があり、冷媒封
入量の増大と共に、凝縮部(111C)における液溜ま
りが発生して性能の低下を来すので、好ましくない。
The heat exchanger with a receiver tank proposed in the prior art is installed in a limited space in an automobile, like the existing heat exchanger shown in FIG. Yes, basically, the same size as the existing heat exchanger is used. However, the heat exchanger with the receiver tank proposed in the past is a heat exchanger body (111).
Is configured as a subcooling section (111S) that does not contribute to condensation, so that the heat exchanger body (111) has a subcooling section (111S) when compared with an existing heat exchanger.
Is formed, the condensing portion (111C) becomes small, and the condensing ability is reduced. For this reason, for example, the condensation of the refrigerant in the condensing section (111C) tends to be insufficient, and the liquid refrigerant flows into the receiver tank (113) with a large amount of gas refrigerant mixed therein, and foaming occurs in the tank (113). The bubble-removing property is deteriorated, and the liquid refrigerant in a stable state is
It became difficult to feed into S), and there was a possibility that the desired refrigeration effect could not be obtained. Conversely, in order to obtain a liquid refrigerant in a stable state, it is necessary to additionally charge the refrigerant, and as the amount of the charged refrigerant increases, a liquid pool occurs in the condensing portion (111C), which deteriorates the performance. Absent.

【0008】この発明は、上記の事情に鑑みてなされた
もので、安定状態の液冷媒を過冷却部に効率良く送り込
むことができて、優れた冷凍効果を得ることができるレ
シーバタンク付き熱交換器を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and a heat exchanger with a receiver tank capable of efficiently sending a stable liquid refrigerant to a supercooling section and obtaining an excellent refrigeration effect. The purpose is to provide a vessel.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明のレシーバタンク付き熱交換器は、間隔を
おいて互いに平行に配置される一対のヘッダー間に、両
端を両ヘッダーに連通接続する複数の熱交換チューブが
配置されるとともに、前記ヘッダーの内部が仕切られ
て、前記複数の熱交換チューブが凝縮部と過冷却部とに
区分けされた熱交換器本体と、冷媒の気液分離を行うた
めのレシーバタンクと、冷媒圧力を低下させるための減
圧手段とを備え、前記凝縮部により凝縮された冷媒を前
記減圧手段により減圧してから、前記レシーバタンクに
より気液分離し、液冷媒を前記過冷却部により過冷却す
るよう構成されてなるものを要旨としている。
In order to achieve the above object, a heat exchanger with a receiver tank according to the present invention has two ends connected to a pair of headers arranged in parallel at a distance from each other. A plurality of heat exchange tubes are arranged, and the inside of the header is partitioned, and the plurality of heat exchange tubes are divided into a condensing section and a supercooling section. Tank, and a pressure reducing means for lowering the refrigerant pressure, the pressure of the refrigerant condensed by the condensing unit is reduced by the pressure reducing means, and then gas-liquid separated by the receiver tank. Is configured to be supercooled by the supercooling section.

【0010】本発明のレシーバタンク付き熱交換器にお
いては、凝縮部とレシーバタンクとの間に減圧手段を設
けるものである。この減圧手段は、冷媒を安定した状態
に制御する冷媒状態制御機能を保有しており、この制御
機能によって、凝縮部において最良の凝縮能力が得ら
れ、減圧手段の流入部手前の凝縮部に液溜まりが生じる
ことがなく、減圧手段からレシーバタンクに安定状態の
液冷媒のみが確実に送り込まれる。このため例えば、レ
シーバタンク内での泡立ちを防止できて、泡切れ性の向
上を図ることができ、レシーバタンクにより気液分離を
効率良くスムーズに行うことができる。
In the heat exchanger with a receiver tank according to the present invention, a pressure reducing means is provided between the condensing section and the receiver tank. This decompression means has a refrigerant state control function for controlling the refrigerant in a stable state. With this control function, the best condensing capacity is obtained in the condensing part, and the liquid is supplied to the condensing part just before the inflow part of the depressurizing means. No accumulation occurs, and only the liquid refrigerant in a stable state is reliably sent from the pressure reducing means to the receiver tank. For this reason, for example, foaming in the receiver tank can be prevented, the bubble elimination property can be improved, and gas-liquid separation can be efficiently and smoothly performed by the receiver tank.

【0011】一方、本発明においては、減圧手段を、熱
交換チューブ自体で構成することができる。
On the other hand, in the present invention, the decompression means can be constituted by the heat exchange tube itself.

【0012】すなわち、本発明においては、前記複数の
熱交換チューブが、3つ以上のパスに区分けされ、それ
らのパスのうち、第1パスと最終パスとの間の中間のパ
スが、前記減圧手段を構成する減圧パスとして構成さ
れ、前記減圧パスよりも上流側のパスが前記凝縮部とし
て構成されるとともに、前記減圧パスよりも下流側のパ
スが前記過冷却部として構成されてなるものを採用する
ことができる。
That is, in the present invention, the plurality of heat exchange tubes are divided into three or more paths, and of those paths, an intermediate path between the first path and the final path is the depressurized one. The pressure reduction path constituting the means is configured such that a path upstream of the pressure reduction path is configured as the condensation unit, and a path downstream of the pressure reduction path is configured as the supercooling unit. Can be adopted.

【0013】[0013]

【発明の実施の形態】図1はこの発明の実施形態である
レシーバタンク付き熱交換器(1)を示す正面図、図2
はその熱交換器(1)の冷媒回路構成図である。両図に
示すように、この熱交換器(1)は、熱交換器本体(1
0)と、レシーバタンク(50)とを有している。
FIG. 1 is a front view showing a heat exchanger (1) with a receiver tank according to an embodiment of the present invention, and FIG.
FIG. 2 is a refrigerant circuit configuration diagram of the heat exchanger (1). As shown in both figures, this heat exchanger (1) is provided with a heat exchanger body (1).
0) and a receiver tank (50).

【0014】熱交換器本体(10)は、離間して対峙し
た左右一対の垂直方向に沿うヘッダー(11)(11)
が設けられる。この一対のヘッダー(11)(11)間
には、熱交換チューブとしての多数本の水平方向に沿う
扁平チューブ(12)が、それらの各両端を両ヘッダー
(11)(11)に連通した状態で、上下方向に所定の
間隔おきに並列状に配置される。更に扁平チューブ(1
2)の各間、及び最外側の扁平チューブ(12)の外側
には、コルゲートフィン(13)が配置されるととも
に、最外側のコルゲートフィン(13)の外側には、そ
のフィン(13)を保護するための帯板状サイドプレー
ト(14)が設けられる。
The heat exchanger body (10) has a pair of left and right vertical headers (11) (11) facing each other at a distance.
Is provided. Between the pair of headers (11) and (11), a number of flat tubes (12) as heat exchange tubes extending along the horizontal direction are connected at both ends thereof to the headers (11) and (11). , Are arranged in parallel at predetermined intervals in the vertical direction. In addition, a flat tube (1
Corrugated fins (13) are arranged between each of 2) and outside the outermost flat tube (12), and the fins (13) are placed outside the outermost corrugated fin (13). A strip-shaped side plate (14) for protection is provided.

【0015】ここで、扁平チューブ(12)としては、
図3に示すように、内部に複数の冷媒通路(12a)が
併設されたハモニカチューブが使用されている。
Here, as the flat tube (12),
As shown in FIG. 3, a harmonica tube having a plurality of refrigerant passages (12a) provided therein is used.

【0016】なお、本発明において、熱交換チューブと
しては、図4及び図5に示すように、内部に、複数の冷
媒通路(12a)が併設されるとともに、隣合う冷媒通
路間の仕切壁(12b)に、隣合う冷媒通路同士を連通
する複数の連通孔(12c)が形成される通路間連通型
の扁平チューブ等も好適に使用することができる。
In the present invention, as the heat exchange tube, as shown in FIGS. 4 and 5, a plurality of refrigerant passages (12a) are provided inside, and a partition wall between adjacent refrigerant passages (12a). A flat tube or the like having a plurality of communication holes (12c) for connecting adjacent refrigerant passages to each other in (12b) may be suitably used.

【0017】熱交換器本体(10)における各ヘッダー
(11)(11)の所定位置には、ヘッダー内部を仕切
る複数の仕切部材(16)が設けられて、多数の扁平チ
ューブ(12)が、第1ないし第4の4つのパス(P
1)〜(P4)に区分けされる。この場合、第1ないし
第3パス(P1)〜(P3)の各間には、一方のヘッダ
ー(11)にのみ仕切部材(16)が設けられて、第1
ないし第3パス(P1)〜(P3)がこの順に連通され
るとともに、第3パス(P3)と第4パス(P4)との
間には、両ヘッダー(11)(11)に同じ高さ位置
(同レベル)で仕切部材(16)が設けられて、第1な
いし第3パス(P1)〜(P3)に対し、第4パス(P
4)が独立するように区分けされている。
At a predetermined position of each header (11) in the heat exchanger body (10), a plurality of partition members (16) for partitioning the inside of the header are provided, and a large number of flat tubes (12) are formed. The first to fourth four paths (P
1) to (P4). In this case, between each of the first to third passes (P1) to (P3), a partition member (16) is provided only on one of the headers (11), and the first header (11) is provided.
In addition, the third paths (P1) to (P3) are communicated in this order, and between the third path (P3) and the fourth path (P4), both headers (11) and (11) have the same height. A partition member (16) is provided at the position (same level), and a fourth pass (P) is provided for the first to third passes (P1) to (P3).
4) is divided so as to be independent.

【0018】そしてこれらのパス(P1)〜(P4)の
うち、第3パス(P3)が減圧手段としての減圧パスと
して構成され、その減圧パス(P3)を境にして、上側
の第1及び第2パス(P1)(P2)が凝縮部(10
C)として構成されるとともに、下側が過冷却部(10
S)として構成される。
Of these paths (P1) to (P4), the third path (P3) is constituted as a decompression path as a decompression means, and the first and upper paths above the decompression path (P3). The second pass (P1) (P2) is the condensing section (10
C), and the lower side is a subcooling section (10
S).

【0019】ここで、本実施形態において具体的には、
上から1本目から12本目までの12本の扁平チューブ
(12)により第1パス(P1)が形成され、13本目
から22本目までの10本の扁平チューブ(12)によ
り第2パス(P2)が形成され、23本目の1本の扁平
チューブ(12)により減圧パス(P3)が形成され、
24本目から26本目までの3本の扁平チューブ(1
2)により第4パス(P4)が形成されている。
Here, in this embodiment, specifically,
The first pass (P1) is formed by the 12 flat tubes (12) from the first to the twelfth from the top, and the second pass (P2) is formed by the ten flat tubes (12) from the 13th to the 22nd. Is formed, and a decompression pass (P3) is formed by the 23rd flat tube (12).
The three flat tubes (1 to 24)
The fourth pass (P4) is formed by 2).

【0020】左側ヘッダー(11)の上下両端には、ユ
ニオンナット等が取り付けられて、冷媒入口(11a)
及び冷媒出口(11b)が形成されている。
At the upper and lower ends of the left header (11), union nuts and the like are attached, and a refrigerant inlet (11a) is provided.
And a refrigerant outlet (11b).

【0021】一方、右側ヘッダー(11)に沿うように
設けられるレシーバタンク(50)は、冷媒の気液分離
を行うものであって、このレシーバタンク(50)の入
口部が、右側ヘッダー(11)の減圧パス(P3)に対
応する位置に、タンク流入管(51)を介して連通され
るとともに、レシーバタンク(50)の出口部が、右側
ヘッダー(11)の第4パス(P4)に対応する位置
に、つまり過冷却部(10S)に対応する位置に、タン
ク流出管(52)を介して連通されている。
On the other hand, a receiver tank (50) provided along the right header (11) separates refrigerant from gas and liquid. The inlet of the receiver tank (50) is connected to the right header (11). ) Through the tank inflow pipe (51) at a position corresponding to the pressure reducing path (P3), and the outlet of the receiver tank (50) is connected to the fourth path (P4) of the right header (11). A corresponding position, that is, a position corresponding to the subcooling unit (10S) is communicated via the tank outflow pipe (52).

【0022】このレシーバタンク付き熱交換器(1)に
おいては、冷媒入口(11a)から流入した冷媒は、第
1及び第2パス(P1)(P2)、すなわち凝縮部(1
0C)を通過して凝縮液化されて、減圧パス(P3)に
流入する。
In the heat exchanger (1) with a receiver tank, the refrigerant flowing from the refrigerant inlet (11a) passes through the first and second paths (P1) and (P2), that is, the condensing section (1).
0C), is condensed and liquefied, and flows into the pressure reduction path (P3).

【0023】ここで、減圧パス(P3)は、その上流側
のパス(P2)に比べて、チューブ本数が少なくて、ト
ータル通路断面積が小さいため、冷媒が減圧パス(P
3)を通過する際に、流速が増して減圧される。この減
圧により、冷媒が安定した状態に制御され、この冷媒状
態制御機能によって、凝縮部(10C)において最良の
凝縮能力が得られる。このため、減圧パス(P3)から
レシーバタンク(50)に液冷媒のみが確実に送り込ま
れ、タンク(50)内での泡立ちを防止でき、泡切れ性
の向上を図ることができる。従って、レシーバタンク
(50)により気液分離を効率良くスムーズに行えて、
安定状態の液冷媒のみが確実に過冷却部(10S)に送
り込まれる。
Here, the pressure reduction path (P3) has a smaller number of tubes and a smaller total passage sectional area than the upstream path (P2), so that the refrigerant passes through the pressure reduction path (P3).
When passing through 3), the flow velocity increases and the pressure is reduced. Due to this reduced pressure, the refrigerant is controlled to a stable state, and the best condensing capacity is obtained in the condensing section (10C) by this refrigerant state control function. For this reason, only the liquid refrigerant is reliably sent from the pressure reduction path (P3) to the receiver tank (50), so that bubbling in the tank (50) can be prevented, and the bubble elimination property can be improved. Therefore, gas-liquid separation can be efficiently and smoothly performed by the receiver tank (50).
Only the liquid refrigerant in a stable state is reliably sent to the supercooling section (10S).

【0024】過冷却部(10S)に送り込まれた液冷媒
は過冷却されて、放熱量を十分に増加させた後、冷媒出
口(11b)から流出される。なお、冷媒出口(11
b)から流出された冷媒は、膨張弁(図示省略)で減圧
膨張された後、蒸発器(図示省略)に送り込まれ、そこ
で車内空気と熱交換して蒸発気化する。
The liquid refrigerant sent to the supercooling section (10S) is supercooled, and after sufficiently increasing the amount of heat released, flows out of the refrigerant outlet (11b). The refrigerant outlet (11
The refrigerant flowing out of b) is decompressed and expanded by an expansion valve (not shown) and then sent to an evaporator (not shown), where it exchanges heat with the air in the vehicle and evaporates.

【0025】以上のように、本実施形態のレシーバタン
ク付き熱交換器(1)においては、凝縮部(10C)に
より十分に凝縮されて、安定状態の液冷媒のみが確実に
レシーバタンク(50)及び過冷却部(10S)に送り
込まれるため、優れた冷凍効果を得ることができる。
As described above, in the heat exchanger (1) with a receiver tank according to the present embodiment, only the liquid refrigerant in the stable state, which is sufficiently condensed by the condensing section (10C), is surely received. And since it is sent to the supercooling section (10S), an excellent refrigeration effect can be obtained.

【0026】なお、上記実施形態においては、減圧パス
(P3)を構成するチューブ(12)と、減圧パス以外
のパスを構成するチューブ(12)とを、同じ構造のチ
ューブにより形成しているが、本発明はそれだけに限ら
れず、減圧効果を高めるために、減圧パスを構成するチ
ューブを、他のチューブに対し、異なる構造のものによ
り形成することもできる。例えば図6に示すように、減
圧パス用のチューブ(12)として、内部に、小円形の
複数の冷媒通路(12a)が形成された円孔通路型ハモ
ニカチューブ等を用いても良い。
In the above embodiment, the tube (12) constituting the decompression path (P3) and the tube (12) constituting the path other than the decompression path are formed of tubes having the same structure. However, the present invention is not limited to this. In order to enhance the decompression effect, a tube constituting a decompression path may be formed with a different structure from other tubes. For example, as shown in FIG. 6, a circular passage type harmonica tube in which a plurality of small circular refrigerant passages (12a) are formed may be used as the tube (12) for the decompression path.

【0027】更に減圧パスを構成するチューブとして、
必ずしも直線状のものを用いる必要はなく、サーペンタ
イン型熱交換器に採用される蛇行形状のチューブや、キ
ャピラリーチューブを減圧パス用のチューブとして用い
ることもできる。
Further, as a tube constituting a decompression path,
It is not always necessary to use a straight one, and a meandering tube or a capillary tube used in a serpentine heat exchanger may be used as a tube for a reduced pressure path.

【0028】また本発明においては、パス数や、各パス
のチューブ本数等は、限定されるものではなく、例えば
減圧パスを2本以上のチューブにより構成しても良く、
更に減圧パスを2つ以上設けても良い。
In the present invention, the number of passes and the number of tubes in each pass are not limited. For example, a decompression pass may be constituted by two or more tubes.
Further, two or more pressure reduction paths may be provided.

【0029】また本発明において、減圧手段は、必ずし
も、熱交換チューブ自体により構成する必要はなく、チ
ューブ内に、オリフィス付き仕切板、細管製のオリフィ
スチューブ、絞りバルブ等の減圧手段を別途設けるよう
にしても良い。
In the present invention, the depressurizing means does not necessarily need to be constituted by the heat exchange tube itself, and a separate depressurizing means such as a partition plate with an orifice, an orifice tube made of a thin tube, and a throttle valve is separately provided in the tube. You may do it.

【0030】更に本発明は、減圧手段を、必ずしも熱交
換チューブに設ける必要はなく、ヘッダーに設けるよう
にしても良い。
Further, in the present invention, the decompression means does not necessarily need to be provided in the heat exchange tube, but may be provided in the header.

【0031】[0031]

【発明の効果】以上のように、本発明のレシーバタンク
付き熱交換器によれば、凝縮部とレシーバタンクとの間
に減圧手段を設けるものであるため、この減圧手段によ
り冷媒を安定した状態に制御でき、凝縮部において最良
の凝縮能力が得られる。このため、減圧手段からレシー
バタンクに液冷媒のみが確実に送り込まれ、タンク内で
の泡立ちを防止できて、泡切れ性を向上させることがで
きる。従って、レシーバタンクにより気液分離を効率良
くスムーズに行えて、安定状態の液冷媒のみを確実に過
冷却部に送り込むことができて、優れた冷凍効果を得る
ことができる。
As described above, according to the heat exchanger with the receiver tank of the present invention, since the decompression means is provided between the condensing part and the receiver tank, the refrigerant is kept in a stable state by the decompression means. And the best condensing capacity is obtained in the condensing section. For this reason, only the liquid refrigerant is reliably sent from the decompression means to the receiver tank, and bubbling in the tank can be prevented, so that bubble elimination can be improved. Therefore, gas-liquid separation can be efficiently and smoothly performed by the receiver tank, and only the liquid refrigerant in a stable state can be reliably sent to the supercooling section, and an excellent refrigerating effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態であるレシーバタンク付き
熱交換器を示す正面図である。
FIG. 1 is a front view showing a heat exchanger with a receiver tank according to an embodiment of the present invention.

【図2】実施形態のレシーバタンク付き熱交換器におけ
る冷媒回路構成図である。
FIG. 2 is a configuration diagram of a refrigerant circuit in the heat exchanger with a receiver tank according to the embodiment.

【図3】実施形態における熱交換器の熱交換チューブと
して適用された扁平チューブを示す断面図である。
FIG. 3 is a cross-sectional view showing a flat tube applied as a heat exchange tube of the heat exchanger in the embodiment.

【図4】本発明における熱交換チューブの変形例として
適用可能な扁平チューブを分解して示す斜視図である。
FIG. 4 is an exploded perspective view showing a flat tube applicable as a modified example of the heat exchange tube in the present invention.

【図5】上記図4の扁平チューブを示す図であって、同
図(a)は正面断面図、同図(b)は側面断面図であ
る。
5 is a view showing the flat tube of FIG. 4, wherein FIG. 5 (a) is a front sectional view and FIG. 5 (b) is a side sectional view.

【図6】本発明における減圧パス用チューブの変形例で
ある円孔通路型扁平チューブを示す断面図である。
FIG. 6 is a sectional view showing a circular passage type flat tube which is a modified example of the tube for a decompression path in the present invention.

【図7】従来のマルチフロー型熱交換器における冷媒回
路構成図である。
FIG. 7 is a configuration diagram of a refrigerant circuit in a conventional multi-flow type heat exchanger.

【図8】従来の提案にかかるレシーバタンク付き熱交換
器における冷媒回路構成図である。
FIG. 8 is a configuration diagram of a refrigerant circuit in a heat exchanger with a receiver tank according to a conventional proposal.

【符号の説明】[Explanation of symbols]

1…レシーバタンク付き熱交換器 10…熱交換器本体 11…ヘッダー 12…扁平チューブ(熱交換チューブ) 50…レシーバタンク 10C…凝縮部 10S…過冷却部 P1〜P4…パス DESCRIPTION OF SYMBOLS 1 ... Heat exchanger with receiver tank 10 ... Heat exchanger main body 11 ... Header 12 ... Flat tube (heat exchange tube) 50 ... Receiver tank 10C ... Condensing part 10S ... Supercooling part P1-P4 ... Pass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 間隔をおいて互いに平行に配置される一
対のヘッダー間に、両端を両ヘッダーに連通接続する複
数の熱交換チューブが配置されるとともに、前記ヘッダ
ーの内部が仕切られて、前記複数の熱交換チューブが凝
縮部と過冷却部とに区分けされた熱交換器本体と、 冷媒の気液分離を行うためのレシーバタンクと、 冷媒圧力を低下させるための減圧手段とを備え、 前記凝縮部により凝縮された冷媒を前記減圧手段により
減圧してから、前記レシーバタンクにより気液分離し、
液冷媒を前記過冷却部により過冷却するよう構成されて
なることを特徴とするレシーバタンク付き熱交換器。
1. A plurality of heat exchange tubes having both ends communicating with both headers are arranged between a pair of headers arranged in parallel with each other at intervals, and the inside of the headers is partitioned, A heat exchanger body in which a plurality of heat exchange tubes are divided into a condensing section and a supercooling section, a receiver tank for performing gas-liquid separation of the refrigerant, and a pressure reducing means for lowering the refrigerant pressure, After the pressure of the refrigerant condensed by the condensing unit is reduced by the pressure reducing means, gas-liquid separation is performed by the receiver tank.
A heat exchanger with a receiver tank, wherein the liquid refrigerant is supercooled by the supercooling section.
【請求項2】 前記複数の熱交換チューブが、3つ以上
のパスに区分けされ、それらのパスのうち、第1パスと
最終パスとの間の中間のパスが、前記減圧手段を構成す
る減圧パスとして構成され、 前記減圧パスよりも上流側のパスが前記凝縮部として構
成されるとともに、 前記減圧パスよりも下流側のパスが前記過冷却部として
構成されてなる請求項1記載のレシーバタンク付き熱交
換器。
2. The plurality of heat exchange tubes are divided into three or more paths, and among these paths, an intermediate path between a first path and a final path is a depressurized pressure constituting the decompression means. The receiver tank according to claim 1, wherein the receiver tank is configured as a path, and a path upstream of the decompression path is configured as the condensing unit, and a path downstream of the decompression path is configured as the supercooling unit. With heat exchanger.
JP2000038997A 2000-02-17 2000-02-17 Heat exchanger with receiver tank Pending JP2001227843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038997A JP2001227843A (en) 2000-02-17 2000-02-17 Heat exchanger with receiver tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038997A JP2001227843A (en) 2000-02-17 2000-02-17 Heat exchanger with receiver tank

Publications (1)

Publication Number Publication Date
JP2001227843A true JP2001227843A (en) 2001-08-24

Family

ID=18562639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038997A Pending JP2001227843A (en) 2000-02-17 2000-02-17 Heat exchanger with receiver tank

Country Status (1)

Country Link
JP (1) JP2001227843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483065B1 (en) * 2002-10-07 2005-04-15 위니아만도 주식회사 Unity of condenser and capillary tube for air-conditioner
US6915659B2 (en) * 2002-02-20 2005-07-12 Showa Denko K.K. Refrigeration system and its condensing apparatus
KR20140107001A (en) * 2013-02-27 2014-09-04 엘지전자 주식회사 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915659B2 (en) * 2002-02-20 2005-07-12 Showa Denko K.K. Refrigeration system and its condensing apparatus
KR100483065B1 (en) * 2002-10-07 2005-04-15 위니아만도 주식회사 Unity of condenser and capillary tube for air-conditioner
KR20140107001A (en) * 2013-02-27 2014-09-04 엘지전자 주식회사 Air conditioner
KR102122261B1 (en) * 2013-02-27 2020-06-12 엘지전자 주식회사 Air conditioner

Similar Documents

Publication Publication Date Title
JP6202451B2 (en) Heat exchanger and air conditioner
US20100084120A1 (en) Heat exchanger and method of operating the same
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP4358981B2 (en) Air conditioning condenser
WO2014188714A1 (en) Heat exchanger
WO2018116929A1 (en) Heat exchanger and air conditioner
JPH07103610A (en) Refrigerant evaporator
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
JP5636215B2 (en) Evaporator
JP2011257111A5 (en)
JP2001235255A (en) Condenser
WO2001001051A1 (en) Refrigerant condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001221535A (en) Refrigerant evaporator
JP2001227843A (en) Heat exchanger with receiver tank
JP2010065880A (en) Condenser
JP2002350002A (en) Condenser
KR20150098835A (en) Condenser
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2002228299A (en) Composite heat exchanger
JPH10267462A (en) Evaporator
CN110887276B (en) Evaporator and vehicle
JPH10170098A (en) Laminated evaporator
JP2008256234A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106