JP2001223443A - Flexible printed board and method of manufacturing the same - Google Patents

Flexible printed board and method of manufacturing the same

Info

Publication number
JP2001223443A
JP2001223443A JP2000030386A JP2000030386A JP2001223443A JP 2001223443 A JP2001223443 A JP 2001223443A JP 2000030386 A JP2000030386 A JP 2000030386A JP 2000030386 A JP2000030386 A JP 2000030386A JP 2001223443 A JP2001223443 A JP 2001223443A
Authority
JP
Japan
Prior art keywords
metal foil
fpc
foil layer
adhesive layer
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030386A
Other languages
Japanese (ja)
Inventor
Kenichi Okada
顕一 岡田
Nobuo Tanabe
信夫 田辺
Sadamitsu Jumonji
貞光 十文字
Masahiko Arai
正彦 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000030386A priority Critical patent/JP2001223443A/en
Publication of JP2001223443A publication Critical patent/JP2001223443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible printed board (FPC) which is improved in elasticity and heat resistance without sacrificing a flexibility. SOLUTION: The FPC is made by laminating a base film 11, base film-side adhesive layer 12, metal foil layer 13 which constitutes a patterns circuit, coverlay-side adhesive layer 14, and coverlay film 15 in this order. A crossliking density on the side of the adhesive layers 12, 14 near and around the metal foil layer 13 is made larger than the other parts. As a result, without sacrificing a flexibility of the entire FPC, elasticity and heat resistance of the FPC can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐屈曲性や柔軟性
に優れたフレキシブルプリント基板(FPC)及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible printed circuit board (FPC) having excellent bending resistance and flexibility, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】FPCは、一般に、図5に示すように、
ベースフイルム1のベースフイルム側接着剤層2上に金
属箔層3のパターン回路が形成され、この上にカバーレ
イ側接着剤層4の塗布されたカバーレイフイルム5が貼
り付けられている。
2. Description of the Related Art Generally, an FPC is, as shown in FIG.
A pattern circuit of a metal foil layer 3 is formed on a base film side adhesive layer 2 of a base film 1, and a cover lay film 5 on which a cover lay side adhesive layer 4 is applied is attached thereon.

【0003】このベースフイルム1は、通常ポリイミド
樹脂やポリエチレンテレフタレート(PET)樹脂など
の柔軟性のあるフイルムからなり、通常はこのフイルム
上にベースフイルム側接着剤層2を介して予めフイルム
全面に金属箔層3の貼り付けられた金属(銅)箔付きフ
イルム(CCL=Copper Composite Laminate )を用い
ている。
The base film 1 is usually made of a flexible film such as a polyimide resin or a polyethylene terephthalate (PET) resin. Usually, the base film 1 is coated on the entire surface of the film with a base film-side adhesive layer 2 in advance. A film (CCL = Copper Composite Laminate) with a metal (copper) foil to which the foil layer 3 is attached is used.

【0004】つまり、上記CCLにリソグラフィー技術
などの技術を適用して、金属箔層部分に所望のパターン
回路を形成している。より具体的には、一旦CCLにド
ライフィルム(DF)をラミネートさせ、この後露光、
現像、エッチングの各工程を経てパターン回路を形成
し、不要となったDFを除去している。
That is, a desired pattern circuit is formed on the metal foil layer portion by applying a technique such as a lithography technique to the CCL. More specifically, once dry film (DF) is laminated on CCL,
A pattern circuit is formed through development and etching steps, and unnecessary DF is removed.

【0005】この後、パターン回路の形成されたCCL
上に、やはりポリイミド樹脂やPET樹脂などの柔軟性
のあるフイルムからなるカバーレイ(CL=Cover Laye
r)フイルム5を、その片面側に塗布されたカバーレイ側
接着剤層4によって、上記のように貼り付け、プレス、
キュア工程を経て、FPCを得ている。
Thereafter, the CCL on which the pattern circuit is formed is formed.
On top, a coverlay (CL = Cover Laye) also made of a flexible film such as polyimide resin or PET resin
r) The film 5 is attached by the cover lay side adhesive layer 4 applied to one side of the film 5 as described above,
Through a curing process, FPC is obtained.

【0006】[0006]

【発明が解決しようとする課題】ところが、このような
従来のFPCの場合、例えばパソコン機器類のハードデ
イスク用の基板として用いたとき、数千万〜数億回にも
及ぶ屈曲動作が求められ、高い耐屈曲性や柔軟性が要求
されるわけであるが、この際、特にパターン回路の金属
箔層3部分で疲労劣化が起こり、クラックが発生してパ
ターン回路が断線するという問題があった。このような
クラックの発生は、FPCを小さな曲率半径でかつ高サ
イクルで屈曲させる場合に起き易かった。
However, in the case of such a conventional FPC, when it is used, for example, as a substrate for a hard disk of personal computer equipment, a bending operation of several tens to several hundred million times is required. High flex resistance and flexibility are required, but in this case, there is a problem that fatigue deterioration occurs particularly in the metal foil layer 3 portion of the pattern circuit, cracks are generated, and the pattern circuit is disconnected. Such cracks tend to occur when the FPC is bent with a small radius of curvature and a high cycle.

【0007】このため、従来から厳しい屈曲条件下で使
用される場合には、クラックの発生やその進展を抑制す
るため、弾性率及び耐熱性の高い接着剤を使用する方法
が提案されているが、この場合、FPC全体が硬くなり
柔軟性が損なわれるという問題があった。
[0007] For this reason, a method of using an adhesive having high elastic modulus and heat resistance has been proposed to suppress the generation and progress of cracks when used under severe bending conditions. In this case, however, there is a problem that the whole FPC becomes hard and flexibility is impaired.

【0008】本発明は、このような従来の問題点に鑑み
てなされたもので、基本的には、クラックが発生し易い
金属箔層の周囲近傍における接着剤層側の架橋密度を高
めて、クラックの発生を抑制することによって、上記従
来の問題点を解消した優れたFPCびその製造方法を提
供せんとするものである。
The present invention has been made in view of such a conventional problem. Basically, the crosslinking density on the adhesive layer side near the periphery of a metal foil layer where cracks are easily generated is increased, An object of the present invention is to provide an excellent FPC that solves the above-mentioned conventional problems and a method of manufacturing the same by suppressing the occurrence of cracks.

【0009】[0009]

【課題を解決するための手段】請求項1記載の本発明
は、ベースフイルム、ベースフイルム側接着剤層、パタ
ーン回路をなす金属箔層、カバーレイ側接着剤層及びカ
バーレイフイルムの順に積層されたフレキシブルプリン
ト基板において、前記金属箔層の周囲近傍における接着
剤層側の架橋密度を前記周囲近傍以外の部分より高くし
たことを特徴とするフレキシブルプリント基板にある。
According to the present invention, a base film, an adhesive layer on the base film side, a metal foil layer forming a pattern circuit, an adhesive layer on the coverlay side, and a coverlay film are laminated in this order. In the flexible printed circuit board, the crosslink density on the side of the adhesive layer near the periphery of the metal foil layer is higher than that on portions other than the vicinity of the periphery.

【0010】請求項2記載の本発明は、前記金属箔層の
周囲近傍における接着剤層側の架橋密度を前記金属箔層
との境界部分を最大にする傾斜的な密度分布とすること
を特徴とする請求項1記載のフレキシブルプリント基板
にある。
According to a second aspect of the present invention, the crosslinking density on the side of the adhesive layer near the periphery of the metal foil layer is a gradient density distribution that maximizes a boundary portion with the metal foil layer. The flexible printed circuit board according to claim 1.

【0011】請求項3記載の本発明は、ベースフイル
ム、ベースフイルム側接着剤層、パターン回路をなす金
属箔層、カバーレイ側接着剤層及びカバーレイフイルム
の順に積層されたフレキシブルプリント基板を製造する
方法において、前記金属箔層部分への通電によって当該
金属箔層の周囲近傍の接着剤層側を加熱して、その架橋
密度を前記周囲近傍以外の部分より高くすることを特徴
とするフレキシブルプリント基板の製造方法にある。
According to a third aspect of the present invention, there is provided a flexible printed circuit board in which a base film, a base film side adhesive layer, a metal foil layer forming a pattern circuit, a cover lay side adhesive layer, and a cover lay film are laminated in this order. In the flexible printing method, the adhesive layer side near the periphery of the metal foil layer is heated by energizing the metal foil layer portion to increase the crosslink density thereof compared to the portion other than the vicinity. There is a method of manufacturing a substrate.

【0012】[0012]

【発明の実施の形態】図1は本発明に係るFPCの一実
施例を示したものである。このFPC10の場合、その
基本的な構成は、上記図5のFPCとほぼ同様で、ベー
スフイルム11のベースフイルム側接着剤層12上に金
属箔層13のパターン回路が形成され、この上にカバー
レイ側接着剤層14の塗布されたカバーレイフイルム1
5が貼り付けられてなる。
FIG. 1 shows an embodiment of an FPC according to the present invention. The basic structure of the FPC 10 is substantially the same as that of the FPC of FIG. 5, and a pattern circuit of a metal foil layer 13 is formed on a base film-side adhesive layer 12 of a base film 11, and a cover circuit is formed thereon. Coverlay film 1 coated with lay-side adhesive layer 14
5 is pasted.

【0013】そして、本発明では、パターン回路をなす
金属箔層13を挟み込む形で位置するベースフイルム側
接着剤層12及びカバーレイ側接着剤層14のうち、金
属箔層13と接触する周囲近傍における接着剤層12
a,14a側の架橋密度を、この周囲近傍以外の部分1
2,14より高くしてある。より具体的には、金属箔層
13との境界部分を最大にする傾斜的な密度分布として
ある。
In the present invention, of the base film side adhesive layer 12 and the cover lay side adhesive layer 14 positioned so as to sandwich the metal foil layer 13 forming the pattern circuit, in the vicinity of the periphery in contact with the metal foil layer 13 Adhesive layer 12 in
a, the cross-link density on the 14a side is reduced to the part 1
It is higher than 2,14. More specifically, it is a gradient density distribution that maximizes the boundary with the metal foil layer 13.

【0014】この架橋方法は、通常の工程を経て得られ
たFPCの金属箔層13部分、即ちパターン回路部分へ
の通電よって起こる発熱によって行う。このとき、パタ
ーン回路部分のみの効果的な加熱が行われるように、好
ましくはFPC全体を空冷などの方法で、適度に冷却し
ながら行うとよい。また、加熱温度としては、金属箔層
13部分のあるFPC表面温度を熱電対などでモニター
し、例えば80〜120℃程度となるように通電量を調
整して行う。なお、このときの金属箔層13部分の表面
温度は120〜180℃程度となる。
This cross-linking method is performed by the heat generated by energizing the metal foil layer 13 of the FPC obtained through a normal process, ie, the pattern circuit portion. At this time, it is preferable that the entire FPC is preferably cooled while being appropriately cooled by a method such as air cooling so that only the pattern circuit portion is effectively heated. The heating temperature is determined by monitoring the surface temperature of the FPC where the metal foil layer 13 is located with a thermocouple or the like, and adjusting the amount of current to be about 80 to 120 ° C., for example. At this time, the surface temperature of the metal foil layer 13 is about 120 to 180 ° C.

【0015】通常のFPC製造工程にあっても、加熱が
行われ、架橋剤が予め添加されている各接着剤層部分で
は、ある程度の架橋が行われるものの、不十分なケース
が多いため、この通電加熱によって、より完全な形の架
橋密度が得られる。より具体的には、通電加熱によっ
て、金属箔層13の境界部分の架橋がより一層進行し、
接着剤部分のガラス転移温度が使用温度域以上(例えば
60℃以上)となるように調整するとよい。
[0015] Even in the normal FPC manufacturing process, heating is performed, and in each adhesive layer portion to which a crosslinking agent is added in advance, crosslinking is performed to some extent, but in many cases, insufficient crosslinking is performed. The more complete shape of the crosslink density is obtained by electrical heating. More specifically, the cross-linking of the boundary portion of the metal foil layer 13 further progresses by the electric heating,
It is advisable to adjust the glass transition temperature of the adhesive portion to be equal to or higher than the operating temperature range (for example, 60 ° C. or higher).

【0016】このような通電加熱の場合、金属箔層13
の境界部分が最も高温となり、境界部分から離れるほど
温度が低下するため、架橋密度は、金属箔層13との境
界部分を最大とした傾斜的な密度分布が自然に得られ
る。
In the case of such electric heating, the metal foil layer 13
Since the temperature of the boundary portion becomes the highest, and the temperature decreases as the distance from the boundary portion increases, the cross-linking density naturally has an inclined density distribution with the boundary portion with the metal foil layer 13 being maximized.

【0017】FPCにおいて、高い耐屈曲性や柔軟性が
要求されるのは、疲労劣化が起こり易いパターン回路の
金属箔層3部分、特にその境界部分であるため、上記金
属箔層13との境界部分を最大とした傾斜的な密度分布
は理想的な形と言える。
In the FPC, high bending resistance and flexibility are required in the metal foil layer 3 of the pattern circuit where fatigue deterioration is apt to occur, particularly at the boundary between the metal foil layer 3 and the metal foil layer 13. It can be said that a gradient density distribution with a maximum portion is an ideal shape.

【0018】つまり、高弾性率、高耐熱性を必要とする
のは、金属箔層3の境界部分だけであるので、この付近
のみを高弾性率化することにより、変形の断面2次モー
メントは低い値に抑えることができ、FPC全体の柔軟
性は維持したままで屈曲性、及び耐熱性を向上させるこ
とができる。また、傾斜的な架橋密度の分布によって、
金属箔層表面の剪断応力集中を低減することができるた
め、FPC全体を熱処理する場合に比較して屈曲寿命の
向上が図られる。
That is, since only the boundary portion of the metal foil layer 3 requires a high elastic modulus and high heat resistance, by increasing the elastic modulus only in the vicinity thereof, the secondary moment of area of deformation is reduced. It can be suppressed to a low value, and the flexibility and heat resistance can be improved while maintaining the flexibility of the entire FPC. Also, due to the gradient distribution of crosslinking density,
Since the concentration of shear stress on the surface of the metal foil layer can be reduced, the flex life can be improved as compared with the case where the entire FPC is heat-treated.

【0019】このような本発明で用いられる接着剤とし
ては、熱処理前後の弾性率、耐熱性変化が十分大きくな
るように可塑成分、架橋剤量を調整したものを使用す
る。また、上記通電加熱する回路にあっては、屈曲性が
必要な部分だけとすることも可能である。
As the adhesive used in the present invention, an adhesive in which the amount of the plastic component and the amount of the crosslinking agent are adjusted so that the change in elastic modulus and heat resistance before and after the heat treatment is sufficiently large is used. Further, in the above-described circuit for energizing and heating, it is possible to use only a portion that requires flexibility.

【0020】〈実施例1〉25μm厚さの熱硬化性ポリ
イミドフィルムの片面に厚さ20μmのエポキシ樹脂系
の接着剤層を設けた後、35μmの銅箔からなる金属箔
層を貼り付けて金属箔付きフイルム(CCL)を作り、
この金属箔層部分に所定のパターン回路を形成し、引き
続き、この上に25μm厚さの熱硬化性ポリイミドフィ
ルムの片面に厚さ20μmのエポキシ樹脂系の接着剤層
を設けたカバーレイ(CL)フイルムを貼り付けて、サ
ンプルのFPCを得た。これを図示すると、図2の如く
で、このFPC10において、11はベースフイルム、
13は金属箔層のパターン回路、15はカバーレイフイ
ルムを示す。
Example 1 A 20 μm-thick epoxy resin adhesive layer was provided on one side of a 25 μm-thick thermosetting polyimide film, and a 35 μm-thick metal foil layer made of copper foil was adhered thereto. Make a film with foil (CCL)
A predetermined pattern circuit is formed on the metal foil layer portion, and a coverlay (CL) on which a 20 μm-thick epoxy resin-based adhesive layer is provided on one side of a thermosetting polyimide film having a thickness of 25 μm. The film was attached to obtain a sample FPC. This is illustrated in FIG. 2. In this FPC 10, 11 is a base film,
13 is a pattern circuit of a metal foil layer, and 15 is a coverlay film.

【0021】そして、このFPCの金属箔層のパターン
回路部分に1時間通電した。なお、このとき、FPCの
表面は空冷で冷却し、通電時のパターン回路部分におけ
る発熱温度は、熱電対でモニターし、FPC表面が11
0℃(金属箔層部分は150℃程度)に保たれるように
調整した。
Then, a current was applied to the pattern circuit portion of the metal foil layer of the FPC for one hour. At this time, the surface of the FPC was cooled by air cooling, and the heat generation temperature in the pattern circuit portion during energization was monitored with a thermocouple.
The temperature was adjusted so as to be kept at 0 ° C. (the metal foil layer portion was about 150 ° C.).

【0022】〈実施例2〉上記実施例1と同様にして得
たFPCの金属箔層のパターン回路部分に5時間通電し
た。なお、このとき、FPCの表面は空冷で冷却し、通
電時のパターン回路部分における発熱温度は、熱電対で
モニターし、FPC表面が110℃(金属箔層部分は1
50℃程度)に保たれるように調整した。
<Example 2> Electric power was applied to the pattern circuit portion of the metal foil layer of the FPC obtained in the same manner as in Example 1 for 5 hours. At this time, the surface of the FPC is cooled by air cooling, and the heat generation temperature in the pattern circuit portion during energization is monitored by a thermocouple.
(About 50 ° C.).

【0023】〈実施例3〉上記実施例1と同様にして得
たFPCの金属箔層のパターン回路部分に10時間通電
した。なお、このとき、FPCの表面は空冷で冷却し、
通電時のパターン回路部分における発熱温度は、熱電対
でモニターし、FPC表面が110℃(金属箔層部分は
150℃程度)に保たれるように調整した。
<Embodiment 3> An electric current was applied to the pattern circuit portion of the metal foil layer of the FPC obtained in the same manner as in Embodiment 1 for 10 hours. At this time, the surface of the FPC is cooled by air cooling,
The heat generation temperature in the pattern circuit portion during energization was monitored with a thermocouple and adjusted so that the FPC surface was maintained at 110 ° C. (the metal foil layer portion was maintained at approximately 150 ° C.).

【0024】〈実施例4〉上記実施例1と同様にして得
たFPCの金属箔層のパターン回路部分に5時間通電し
た。なお、このとき、FPCの表面は冷却することなく
室温下で、通電時のパターン回路部分における発熱温度
は、熱電対でモニターし、FPC表面が110℃に保た
れるように調整した。
Example 4 An electric current was applied to the pattern circuit portion of the metal foil layer of the FPC obtained in the same manner as in Example 1 for 5 hours. At this time, the surface of the FPC was cooled at room temperature without cooling, and the heat generation temperature in the pattern circuit portion during energization was monitored with a thermocouple, and adjusted so that the surface of the FPC was maintained at 110 ° C.

【0025】〈比較例1〉上記実施例1と同様にして得
たFPCそのものの、即ちパターン回路部分への通電に
よる加熱の行わなかったもの。
<Comparative Example 1> An FPC itself obtained in the same manner as in the above-mentioned Example 1, that is, one in which heating was not performed by supplying electricity to the pattern circuit portion.

【0026】上記実施例1〜4及び比較例1のFPCに
ついて、屈曲寿命、柔軟性、耐熱性を求めたところ、表
1の如くであった。
The flex life, flexibility, and heat resistance of the FPCs of Examples 1 to 4 and Comparative Example 1 were determined, and the results are as shown in Table 1.

【0027】ここで、屈曲寿命試験(疲労試験)は、図
3に示すように、互いに平行に配設された下部治具20
及び上部治具30にサンプルのFPC10を、その曲げ
半径Rが2mmとなるようにして貼り付け、そして、下
部治具20は固定し、上部治具30を20mmのストロ
ーク、1500回/分の速度で水平方向に往復動させ、
FPC10の破断に至るまでの屈曲回数を測定して行っ
た。
Here, as shown in FIG. 3, the flex life test (fatigue test) is performed on the lower jigs 20 arranged in parallel with each other.
Then, the sample FPC 10 is attached to the upper jig 30 so that the bending radius R is 2 mm, and the lower jig 20 is fixed, and the upper jig 30 is moved at a stroke of 20 mm at a speed of 1500 times / minute. To reciprocate in the horizontal direction,
The measurement was performed by measuring the number of times of bending until the FPC 10 was broken.

【0028】また、柔軟性試験は、図4に示すように、
互いに平行に配設された下部治具20及び上部治具30
にサンプルのFPC10を、その曲げ半径Rが2mmと
なるようにして貼り付け、そして、下部治具20は固定
し、上部治具30は図中左端側の軸31を中心にして他
端側のストッパーピン32まで押し下げ、これによっ
て、FPC10に屈曲力を12時間負荷させた後、フリ
ー状態にし、このときの反発力をセンサー(ロードセ
ル)33で測定して行った。測定値の単位は、×10−
4N・mで、N・mは(1Kgf・m)/9.8を表
す。
In the flexibility test, as shown in FIG.
Lower jig 20 and upper jig 30 arranged parallel to each other
A sample FPC 10 is attached so that its bending radius R is 2 mm, and the lower jig 20 is fixed, and the upper jig 30 is centered on the shaft 31 on the left end side in FIG. The FPC 10 was pressed down to the stopper pin 32, thereby applying a bending force to the FPC 12 for 12 hours. After that, the FPC 10 was set in a free state, and the repulsive force at this time was measured by a sensor (load cell) 33. The unit of the measured value is × 10-
In 4N · m, N · m represents (1Kgf · m) /9.8.

【0029】一方、耐熱性試験は、サンプルのFPCを
解体して、金属箔層のパターン回路近傍2μm部分にお
ける接着材料を採取し、そのガラス転移温度を測定して
行った。つまり、良好な屈曲性を得るには、金属箔層回
りの接着材料のガラス転移温度が60℃以上であること
が条件とされるため、ガラス転移温度が60℃未満のも
のを不合格(×)で表示し、ガラス転移温度が60℃以
上のものを合格(○)で表示した。
On the other hand, the heat resistance test was performed by disassembling the FPC of the sample, collecting an adhesive material in a portion of the metal foil layer near the pattern circuit of 2 μm, and measuring the glass transition temperature. In other words, in order to obtain good flexibility, the glass transition temperature of the adhesive material around the metal foil layer is required to be 60 ° C. or higher. ), And those having a glass transition temperature of 60 ° C. or higher were evaluated as acceptable (○).

【0030】[0030]

【表1】 [Table 1]

【0031】表1から、通電加熱を行った本発明に係る
FPCの実施例1〜4では、屈曲寿命が長く、かつ、柔
軟性にも富み、さらに、良好な耐熱性を有することが判
る。これに対して、通電加熱を行わなかった比較例1で
は、屈曲寿命が短く、かつ、柔軟性にも劣り、さらに、
耐熱性にあっても不良であることが判る。
From Table 1, it can be seen that Examples 1 to 4 of the FPC according to the present invention, which were subjected to electric heating, had a long flexing life, had excellent flexibility, and had good heat resistance. On the other hand, in Comparative Example 1 in which the electric heating was not performed, the bending life was short, the flexibility was poor, and further,
It turns out that it is poor even in heat resistance.

【0032】なお、上記実施例では、片面タイプのFP
Cであったが、本発明は、両面タイプのFPCにも同様
に適用することができる。。
In the above embodiment, the single-sided FP is used.
C, but the present invention can be similarly applied to a double-sided type FPC. .

【0033】[0033]

【発明の効果】先ず、本発明に係るFPCによると、金
属箔層の周囲近傍における接着剤層側の架橋密度のみ
を、その周囲近傍以外の部分より高くするものであるた
め、全接着剤層部分の架橋密度を上げる場合や、最初か
ら弾性率や耐熱性の高い接着剤を用いる場合に比較し
て、FPC全体の柔軟性を保持したままで、優れた耐屈
曲性が得られる。つまり、FPC全体の柔軟性を犠牲に
することなく、金属箔層即ちパターン回路部分において
優れた耐屈曲性が得られ、極めて耐久性の高いFPCの
供給が可能となる。
First, according to the FPC according to the present invention, only the crosslink density on the adhesive layer side near the periphery of the metal foil layer is made higher than that on the portion other than the periphery. As compared with the case where the crosslink density of the portion is increased or the case where an adhesive having high elastic modulus and heat resistance is used from the beginning, excellent bending resistance can be obtained while maintaining the flexibility of the entire FPC. That is, excellent flexibility is obtained in the metal foil layer, that is, the pattern circuit portion, without sacrificing the flexibility of the entire FPC, and it is possible to supply the FPC with extremely high durability.

【0034】次に、本発明に係るFPCの製造方法によ
ると、単に金属箔層即ちパターン回路部分に通電するの
みでよいため、極めて簡単に実施することができる。し
かも、特別な操作をすることなく、金属箔層の境界部分
の架橋密度を最大にした傾斜的な密度分布を容易に得る
ことができる。また、この通電はパターン回路によって
は高屈曲性が必要とされる部分の金属箔層にのみ行うこ
とも容易に行える。
Next, according to the method of manufacturing an FPC according to the present invention, it is only necessary to apply a current to the metal foil layer, that is, the pattern circuit portion. Moreover, it is possible to easily obtain a gradient density distribution in which the crosslink density at the boundary between the metal foil layers is maximized without performing any special operation. In addition, this energization can be easily performed only on the metal foil layer in a portion where high flexibility is required depending on the pattern circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るFPCの一実施例を示した縦断
面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of an FPC according to the present invention.

【図2】 サンプルFPCの概略平面図である。FIG. 2 is a schematic plan view of a sample FPC.

【図3】 FPCの屈曲寿命試験の方法を示した模式図
である。
FIG. 3 is a schematic view showing a method of a flex life test of an FPC.

【図4】 FPCの柔軟性試験の方法を示した模式図で
ある。
FIG. 4 is a schematic view showing a method of an FPC flexibility test.

【図5】 従来のFPCを示した縦断面図である。FIG. 5 is a longitudinal sectional view showing a conventional FPC.

【符号の説明】[Explanation of symbols]

10 FPC 11 ベースフイルム 12 ベースフイルム側接着剤層 13 金属箔層(パターン回路) 14 カバーレイ側接着剤層 15 カバーレイフイルム DESCRIPTION OF SYMBOLS 10 FPC 11 Base film 12 Base film side adhesive layer 13 Metal foil layer (pattern circuit) 14 Coverlay side adhesive layer 15 Coverlay film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 十文字 貞光 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 新井 正彦 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 Fターム(参考) 4F100 AB01B AB33B AK53 AR00C AT00A BA05 BA07 BA10A BA10C GB43 JA13D JA13E JB12D JB12E JL11D JL11E 5E338 AA01 AA12 AA16 BB51 BB63 BB72 BB75 CC01 CD13 EE26 EE27  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Jumoji Sadamitsu 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Masahiko Arai 1-1-1, Kiba, Koto-ku, Tokyo Stock Company F term in Fujikura 4F100 AB01B AB33B AK53 AR00C AT00A BA05 BA07 BA10A BA10C GB43 JA13D JA13E JB12D JB12E JL11D JL11E 5E338 AA01 AA12 AA16 BB51 BB63 BB72 BB75 CC01 CD13 EE26 EE27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ベースフイルム、ベースフイルム側接着
剤層、パターン回路をなす金属箔層、カバーレイ側接着
剤層及びカバーレイフイルムの順に積層されたフレキシ
ブルプリント基板において、 前記金属箔層の周囲近傍における接着剤層側の架橋密度
を前記周囲近傍以外の部分より高くしたことを特徴とす
るフレキシブルプリント基板。
1. A flexible printed circuit board comprising a base film, a base film-side adhesive layer, a metal foil layer forming a pattern circuit, a coverlay-side adhesive layer, and a coverlay film laminated in this order, in the vicinity of the periphery of the metal foil layer. 3. The flexible printed circuit board according to claim 1, wherein the crosslink density on the side of the adhesive layer is higher than that of the portion other than the vicinity.
【請求項2】 前記金属箔層の周囲近傍における接着剤
層側の架橋密度を前記金属箔層との境界部分を最大にす
る傾斜的な密度分布とすることを特徴とする請求項1記
載のフレキシブルプリント基板。
2. The method according to claim 1, wherein the crosslinking density on the side of the adhesive layer near the periphery of the metal foil layer is a gradient density distribution that maximizes a boundary portion with the metal foil layer. Flexible printed circuit board.
【請求項3】 ベースフイルム、ベースフイルム側接着
剤層、パターン回路をなす金属箔層、カバーレイ側接着
剤層及びカバーレイフイルムの順に積層されたフレキシ
ブルプリント基板を製造する方法において、 前記金属箔層部分への通電によって当該金属箔層の周囲
近傍の接着剤層側を加熱して、その架橋密度を前記周囲
近傍以外の部分より高くすることを特徴とするフレキシ
ブルプリント基板の製造方法。
3. A method of manufacturing a flexible printed board in which a base film, a base film side adhesive layer, a metal foil layer forming a pattern circuit, a coverlay side adhesive layer and a coverlay film are laminated in this order. A method of manufacturing a flexible printed circuit board, characterized in that the adhesive layer side near the periphery of the metal foil layer is heated by energizing the layer portion to increase the crosslink density of the adhesive layer compared with the portion other than the vicinity.
JP2000030386A 2000-02-08 2000-02-08 Flexible printed board and method of manufacturing the same Pending JP2001223443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030386A JP2001223443A (en) 2000-02-08 2000-02-08 Flexible printed board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030386A JP2001223443A (en) 2000-02-08 2000-02-08 Flexible printed board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001223443A true JP2001223443A (en) 2001-08-17

Family

ID=18555404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030386A Pending JP2001223443A (en) 2000-02-08 2000-02-08 Flexible printed board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001223443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147380A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Connection structure and connection method of printed wiring board
JP2015053353A (en) * 2013-09-06 2015-03-19 住友金属鉱山株式会社 Deposition method of electric resistance thin film layer and method of manufacturing copper-clad laminate
CN110324972A (en) * 2019-07-15 2019-10-11 宁波华远电子科技有限公司 A kind of cutting method of Rigid Flex laser grounding point

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147380A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Connection structure and connection method of printed wiring board
JP2015053353A (en) * 2013-09-06 2015-03-19 住友金属鉱山株式会社 Deposition method of electric resistance thin film layer and method of manufacturing copper-clad laminate
CN110324972A (en) * 2019-07-15 2019-10-11 宁波华远电子科技有限公司 A kind of cutting method of Rigid Flex laser grounding point
CN110324972B (en) * 2019-07-15 2021-06-22 宁波华远电子科技有限公司 Cutting method of laser grounding point of rigid-flex board

Similar Documents

Publication Publication Date Title
JP4547336B2 (en) Method for producing flexible laminate
JP2003519901A (en) Flexible laminate for flexible circuits
JP3898077B2 (en) Manufacturing method of flexible printed wiring board
KR20050059342A (en) Method for manufacturing flexible wiring circuit board
CN102202458A (en) Flexible printed circuit board with reinforced plate and manufacture method thereof
JP2009166404A (en) Laminate, method for manufacturing laminate, multilayer printed wiring board and semiconductor device
JP2001223443A (en) Flexible printed board and method of manufacturing the same
JP6352791B2 (en) Coil sheet, coil, and method of manufacturing coil
JP2009280855A (en) Rolled copper foil and method for producing the same
JP4500773B2 (en) Method for producing flexible laminate
JP2001223444A (en) Flexible printed board and method of manufacturing the same
JP2009185364A (en) Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member
JP5205938B2 (en) Information recording medium
JP2003041234A (en) Adhesive for flexible printed wiring board
JP2001326458A (en) Printed wiring board and its manufacturing method
JP6247629B2 (en) Coil sheet manufacturing method and coil manufacturing method
JPH0537153A (en) Multilayer flexible printed wiring board
JP2007012761A (en) Substrate with built-in semiconductor ic and its manufacturing method
TWI338539B (en)
JP4246013B2 (en) Release material and method for manufacturing circuit board structure using the same
JPWO2004049336A1 (en) Laminate for HDD suspension using thin copper foil and manufacturing method thereof
JP2003249742A (en) Method of manufacturing heavy current circuit substrate
JP2006179716A (en) Prepreg sheet and method for manufacturing multilayer substrate using it
JPH10221372A (en) Wiring circuit board with inspection electrode and method for forming the same
US11453204B2 (en) Poly-supported copper foil