JP2001220638A - Aluminum alloy excellent in surface quality and component designing method therefor - Google Patents

Aluminum alloy excellent in surface quality and component designing method therefor

Info

Publication number
JP2001220638A
JP2001220638A JP2000030880A JP2000030880A JP2001220638A JP 2001220638 A JP2001220638 A JP 2001220638A JP 2000030880 A JP2000030880 A JP 2000030880A JP 2000030880 A JP2000030880 A JP 2000030880A JP 2001220638 A JP2001220638 A JP 2001220638A
Authority
JP
Japan
Prior art keywords
aluminum alloy
surface quality
solid
component
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030880A
Other languages
Japanese (ja)
Inventor
Katsura Kajiwara
桂 梶原
Yasuaki Sugizaki
康昭 杉崎
Yuichi Seki
勇一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000030880A priority Critical patent/JP2001220638A/en
Publication of JP2001220638A publication Critical patent/JP2001220638A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy satisfying various characteristics to be required and moreover excellent in surface quality and to provide a component designing method therefor. SOLUTION: In a multicomponent aluminum alloy containing Fe, Si and other alloying elements by one or more components, an aluminum alloy in which the solid-liquid coexisting temperature range is 30 deg.C or less, and, in intermetallic compounds of 0.5 μm or more, the ratio of the number of the compounds, in which the content of the above other alloying laments is 50% or more, is 30% or les is excellent in surface quality. For designing the above aluminum alloy, the liquid phase temperature and the solid phase temperature of the above aluminum alloys in variety are measured or calculated, the solid- liquid coexisting temperature range in which the unevenness of etching exceeding an allowable range starts to be generated is investigated, and the respective contents of the above other alloying elements are decided so as to be controlled to this temperature range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面品質に優れた
アルミニウム合金およびその成分設計方法に関し、詳細
には陽極酸化処理やエッチング等の表面処理を施して使
用されるアルミニウム合金であって、建築用内外装パネ
ル,熱交換フィン(エアコン,ラジエーター等),日用
品,厨房用品,平板印刷版支持体,電機部品,光学機器
等に好適なアルミニウム合金及びその成分設計方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy having excellent surface quality and a method for designing its components. More specifically, the present invention relates to an aluminum alloy which is used after being subjected to a surface treatment such as anodic oxidation treatment or etching, and The present invention relates to aluminum alloys suitable for interior and exterior panels for use, heat exchange fins (air conditioners, radiators, etc.), daily necessities, kitchenware, lithographic printing plate supports, electric components, optical devices, and the like, and a method of designing the components thereof.

【0002】[0002]

【従来の技術】近年、意匠性の観点から種々の色調など
が求められると共に、生産性向上等を目的として、Al
合金の陽極酸化処理やエッチング処理の条件も非常に多
様化しており、それぞれのAl合金の要求特性に応じた
最適成分系を迅速に設計していくことが求められてい
る。
2. Description of the Related Art In recent years, various color tones have been demanded from the viewpoint of designability, and Al has been developed to improve productivity and the like.
The conditions for anodizing and etching of alloys are also diversified, and it is required to quickly design an optimal component system according to the required characteristics of each Al alloy.

【0003】通常、アルミニウム合金の成分設計を行う
場合、表面処理性も考慮すべき重要な特性であるが、基
本的な特性となる強度,延性,成形性などを勘案し、こ
れらを総合的に判断して、主成分系が決定されている。
但し、添加元素やそれぞれの添加量を種々に変化させ、
強度等の表面処理性以外の特性向上を追求していった場
合、添加される合金化元素の影響により、陽極酸化によ
るエッチングむらや色調むらが出やすい成分の含有量が
多くなり、強度などの基本的特性は満足しても外観上の
不具合から商品価値がなくなるという問題があった。
In general, when designing the composition of an aluminum alloy, surface treatment properties are important properties to be taken into consideration. However, in consideration of basic properties such as strength, ductility and formability, these properties are comprehensively considered. As a result, the principal component system has been determined.
However, by changing the addition elements and the respective addition amounts in various ways,
When pursuing improvements in properties other than surface treatment properties such as strength, due to the effect of the added alloying element, the content of components that tend to cause unevenness in etching and uneven color tone due to anodic oxidation increases, Even if the basic characteristics are satisfied, there is a problem that the commercial value is lost due to a defect in appearance.

【0004】A1−Fe系の金属間化合物を晶出するア
ルミニウム合金では、鋳造条件や鋳塊サイズにより、鋳
塊の表面付近や内部で晶出する化合物の形態が異なって
おり、この化合物形態が最終製品の陽極酸化処理性やエ
ッチング性むら,外観むら,色調むら等に影響を及ぼす
ことが知られている。特に、金属間化合物の相の違いや
鋳塊時に生じた樅の木状組織に起因して、加工後に筋状
の色調むらが生じる問題がある。そこで、樅の木状組織
の生成を防止する方法として、成分や金属間化合物量に
より制御する方法(例えば、特公昭58−26421,
特開平7−126890,特開平5−320839,特
開平9−235638,特開平8−269649等)
や、鋳造方法により制御する方法(例えば、特開平11
−156487,特開平9−141393,特公平1−
26788,特開平1−24590等)などが提案され
ている。しかしながら、上記成分設計方法や鋳造方法で
は、種々の要求特性に応じて、Cu,Mn,Mg,N
i,Cr,Ti,Zr,Zn,B,V,Be,Ga,S
n,Ca,Sr,Coなどの合金化元素を添加した多成
分系アルミニウム合金にすると、要求されている表面品
質を十分に満たすことができなかった。
In an aluminum alloy which crystallizes an A1-Fe intermetallic compound, the form of the compound crystallized near or inside the surface of the ingot differs depending on the casting conditions and the size of the ingot. It is known that it affects the anodizing property, etching property unevenness, appearance unevenness, color tone unevenness, etc. of the final product. In particular, there is a problem in that streaky color tone unevenness occurs after processing due to a difference in phase of an intermetallic compound or a fir tree structure generated during ingot casting. Therefore, as a method for preventing the formation of a fir tree-like structure, a method of controlling the amount of components or intermetallic compounds (for example, Japanese Patent Publication No. 58-26421,
JP-A-7-126890, JP-A-5-320839, JP-A-9-235638, JP-A-8-269649, etc.)
And a method of controlling by a casting method (for example,
156487, JP-A-9-141393, Japanese Patent Publication No.
26788, JP-A-1-24590, etc.). However, according to the above component design method and casting method, Cu, Mn, Mg, N
i, Cr, Ti, Zr, Zn, B, V, Be, Ga, S
When a multi-component aluminum alloy to which alloying elements such as n, Ca, Sr, and Co are added is used, the required surface quality cannot be sufficiently satisfied.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情に
着目してなされたものであって、種々の要求特性を満た
す上に、表面品質にも優れたアルミニウム合金と、その
成分設計方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an aluminum alloy which satisfies various required characteristics and has excellent surface quality, and a method of designing its components. It is something to offer.

【0006】[0006]

【課題を解決するための手段】上記課題を解決した本発
明のアルミニウム合金とは、Fe及びSiと共に他の合
金化元素を1成分以上含む多成分系のアルミニウム合金
であって、固液共存温度範囲が30℃以下であり、0.
5μm以上の金属間化合物における前記他の合金化元素
の含有量が5質量%以上である化合物の個数の割合が3
0%以下であることを要旨とするものである。
The aluminum alloy of the present invention which has solved the above-mentioned problems is a multi-component aluminum alloy containing one or more other alloying elements together with Fe and Si, and has a solid-liquid coexistence temperature. The range is 30 ° C. or less;
When the content of the other alloying element in the intermetallic compound of 5 μm or more is 5 mass% or more, the ratio of the number of the compounds is 3
The gist should be 0% or less.

【0007】また、上記課題を解決した本発明に係るア
ルミニウム合金の成分設計方法とは、 Fe及びSiと
共に他の合金化元素を1成分以上含む多成分系アルミニ
ウム合金の合金化元素の種類及び含有量を設定するアル
ミニウム合金の成分設計方法であって、種々の前記アル
ミニウム合金の液相温度と固相温度を測定するか或いは
計算し、許容範囲(目的や用途に応じて許容されるエッ
チングむらの範囲)を超えるエッチングむらが生じ始め
る固液共存温度範囲を調査し、この温度範囲内となる様
に前記他の合金化元素の夫々の含有量を決定することを
要旨とするものである。
[0007] In addition, the method of designing a component of an aluminum alloy according to the present invention which solves the above-mentioned problems is as follows: The type and content of the alloying element of a multi-component aluminum alloy containing one or more other alloying elements together with Fe and Si. A method for designing the composition of an aluminum alloy in which the amount is set, wherein the liquidus temperature and the solidus temperature of various aluminum alloys are measured or calculated, and the allowable range (the allowable etching unevenness according to the purpose or application) is determined. The gist is to investigate the solid-liquid coexistence temperature range in which the etching unevenness exceeding the range begins to occur, and to determine the content of each of the other alloying elements so as to be within this temperature range.

【0008】尚、液相温度とは、液相の冷却過程におい
て液相中に固相が出現する温度であり、固相温度とは、
液相がすべて固相に変化する温度である。また固液共存
温度範囲とは、固相と液相が共存する温度範囲であり、
換言すれば、液相温度と固相温度の温度差のことであ
る。
The liquidus temperature is the temperature at which a solid phase appears in the liquid phase during the cooling process of the liquid phase.
The temperature at which all liquid phases change to solid phases. The solid-liquid coexisting temperature range is a temperature range in which a solid phase and a liquid phase coexist,
In other words, it is the temperature difference between the liquid phase temperature and the solid phase temperature.

【0009】[0009]

【発明の実施の形態】優れた表面品質を有するAl合金
製板材を得る上では、エッチングむらを防止することが
不可欠である。このエッチングむらが発生する理由は、
材料中の金属間化合物の形態の差によって、エッチング
性やエッチング速度等が異なるからであり、この金属間
化合物の形態の違いは、鋳造時に生じる晶出物が、冷却
速度の違いによって、凝固時に平衡状態図上において準
安定相や安定相に種々に変化することが起因となってい
る。例えば、A1−Fe系晶出物は、成分や鋳造条件に
よって、A13Fe,A16Fe,A1mFeの他α−A
1FeSi、β−A1FeSi等に変化しやすい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain an Al alloy plate having excellent surface quality, it is essential to prevent etching unevenness. The reason for this uneven etching is that
This is because the etching properties, etching rates, etc., differ depending on the difference in the form of the intermetallic compound in the material. This is caused by various changes to a metastable phase and a stable phase on the equilibrium diagram. For example, A1-Fe-based crystallized substances, with the components and casting conditions, A1 3 Fe, A1 6 Fe , A1 m Fe of other alpha-A
1FeSi, β-A1FeSi, etc.

【0010】さらに、これらの晶出物の鋳塊時の状態ま
たは固溶状態はばらつき易く、以後の均熱工程や熱間加
工工程での析出挙動に影響を及ぼすため、表面品質をば
らつかせている。
[0010] Furthermore, the state of these ingots at the time of ingot or the solid solution state is liable to fluctuate, which affects the precipitation behavior in the subsequent soaking step or hot working step. ing.

【0011】いずれの合金種においても、Fe,Si以
外の成分は、表面処理性,陽極酸化処理性,機械的特性
(強度,延性,靭性,硬度等),成形性,耐食性等の向
上に寄与する合金化元素が選択されて添加されている。
上記合金化元素としては、Cu,Mn,Mg,Ni,C
r,Ti,Zr,Zn,B,V,Be,Ga,Sn,C
a,Sr,Co等があるが、これらの合金化元素の影響
により、晶出物形態が大きく変化し、表面品質をばらつ
かせていた。さらに、上述したA1−Fe系およびA1
−Fe−Si系での晶出物形態が準安定相であると、合
金化元素が固溶または置換され易く、その晶出物形態を
種々に変化させ、表面品質やエッチング性を変化させて
いるものである。
In any of the alloy types, components other than Fe and Si contribute to the improvement of surface treatment properties, anodic oxidation treatment properties, mechanical properties (strength, ductility, toughness, hardness, etc.), formability, corrosion resistance, etc. Alloying elements are selected and added.
The alloying elements include Cu, Mn, Mg, Ni, C
r, Ti, Zr, Zn, B, V, Be, Ga, Sn, C
Although there are a, Sr, Co, etc., the morphology of the crystallized material was greatly changed by the influence of these alloying elements, and the surface quality was varied. Further, the above-mentioned A1-Fe system and A1
-When the crystallization form in the Fe-Si system is a metastable phase, the alloying element is easily dissolved or replaced, and the crystallization form is variously changed to change the surface quality and the etching property. Is what it is.

【0012】また、通常の製造工程である鋳造後の均熱
処理,熱間加工,冷間加工,焼鈍等(中間焼鈍工程が入
る製品もある)の工程によるが、鋳造時の晶出物形態の
ばらつきが、工程中のA1−Fe系析出物,A1−Fe
−Si系析出物,単体Si析出等に影響を与え、表面品
質のばらつきに影響を及ぼす。
[0012] In addition, depending on the steps of soaking, hot working, cold working, annealing, and the like (some products include an intermediate annealing step) after casting, which are ordinary manufacturing steps, there are crystallized forms during casting. The variation is caused by A1-Fe-based precipitates and A1-Fe during the process.
-Affects Si-based precipitates, single-Si precipitation, etc., and affects variations in surface quality.

【0013】本発明者らは、複雑に変化する多成分系で
の表面品質の制御方法について鋭意研究を重ねた結果、
A1−Fe−Si系金属間化合物中のFe,Si以外の
合金化元素の含有量とそのAl合金の固液共存温度域
が、表面品質と密接に関与していることを見出した。す
なわち、液相が存在する温度範囲を制御することにより
表面品質が改善でき、多成分系であっても表面品質に優
れたAl合金の成分設計が可能であることを突き止め、
本発明に想到した。
The present inventors have conducted intensive studies on a method for controlling the surface quality in a multi-component system that changes in a complex manner.
It has been found that the content of alloying elements other than Fe and Si in the A1-Fe-Si based intermetallic compound and the solid-liquid coexistence temperature range of the Al alloy are closely related to the surface quality. That is, the surface quality can be improved by controlling the temperature range in which the liquid phase exists, and it is ascertained that the component design of an Al alloy having excellent surface quality is possible even in a multi-component system,
The present invention has been made.

【0014】まず、本発明において固液共存温度範囲
(以下、△Tということがある)を30℃以下に設定し
た理由は次の通りである。
First, the reason for setting the solid-liquid coexistence temperature range (hereinafter sometimes referred to as ΔT) to 30 ° C. or lower in the present invention is as follows.

【0015】固液共存温度範囲△Tが大きい成分系ほど
鋳造条件による晶出物相の変動を受けやすく、また鋳塊
表面部でその形態がばらつきやすい。そのため、金属間
化合物の相が変動しやすく、鋳塊の樅の木状組織も発生
しやすい傾向にある。図1に示すように、液相の合金を
冷却していった場合、液相温度を過ぎると、固相も出現
し始め、化合物としてはAl−Fe系化合物が生成し、
次いで準安定Al−Fe相が生成し、固相温度において
残りの液相も全て固相となる。固液共存温度範囲△Tに
より、液相とアルミマトリックス(固相)とA1−Fe
系化合物が共存している温度範囲が、広い成分系ほど、
鋳造時の凝固・冷却過程での条件により、A1−Fe系
安定相と準安定相の生成のばらつきが大きくなる傾向に
ある。即ち、固液共存温度範囲が広い成分系ほど、表面
品質がばらつきやすい傾向にあり、この範囲が狭いほ
ど、表面品質を劣化させずに成分設計を行うことが可能
である。従って、△Tは30℃以下にすべきであり、2
8℃以下であると好ましい。尚、表面品質に関する要求
が厳しい分野に適用されるアルミニウム合金に関して
は、ΔTをより小さい値に制限すること(例えば、15
℃以下、10℃以下、5℃以下等とすること)も当然あ
りうる。本発明で規定する30℃以下とは、他の用途と
の関係等を特に考慮せず、表面品質のみを従来に比べて
向上させることだけを考慮した場合の値である。また、
各成分の一般的な傾向としては、Feは添加量の増加に
より固液共存温度範囲は狭くなる傾向があり、Fe以外
の元素の場合には、添加量の増加により固液共存温度範
囲は広がる傾向にある。但し、合金化元素の種類によっ
て影響度は異なり、しかも多成分系では各成分の相互作
用によっても固液共存温度範囲は変化するものであり、
さらに目的や用途などに応じて許容されるエッチングむ
らの範囲を超える温度範囲も変化する。
A component system having a larger solid-liquid coexistence temperature range ΔT is more susceptible to fluctuations in the crystallized phase depending on casting conditions, and its form is more likely to vary at the surface of the ingot. Therefore, the phase of the intermetallic compound tends to fluctuate, and a fir tree structure of the ingot tends to occur. As shown in FIG. 1, when the liquid phase alloy is cooled, after the liquidus temperature, a solid phase also starts to appear, and as a compound, an Al—Fe-based compound is generated,
Next, a metastable Al-Fe phase is formed, and all of the remaining liquid phase becomes a solid phase at the solid phase temperature. The liquid phase, aluminum matrix (solid phase) and A1-Fe
The wider the temperature range in which the system compounds coexist, the more component systems
Depending on the conditions in the solidification / cooling process at the time of casting, the variation in the formation of the A1-Fe-based stable phase and the metastable phase tends to increase. That is, a component system having a wider solid-liquid coexistence temperature range tends to have a more variable surface quality, and a narrower range allows component design without deteriorating the surface quality. Therefore, ΔT should be less than 30 ° C.
It is preferable that the temperature is 8 ° C or lower. It should be noted that ΔT should be limited to a smaller value for an aluminum alloy applied to a field where the demand for surface quality is strict (for example, 15T).
C. or lower, 10 ° C. or lower, 5 ° C. or lower). The temperature of 30 ° C. or lower specified in the present invention is a value in the case where only the surface quality is improved compared to the conventional one without considering the relationship with other applications. Also,
As a general tendency of each component, the solid-liquid coexistence temperature range of Fe tends to narrow with an increase in the addition amount, and the solid-liquid coexistence temperature range increases with an increase in the addition amount of an element other than Fe in the case of an element other than Fe. There is a tendency. However, the degree of influence differs depending on the type of alloying element, and in a multi-component system, the solid-liquid coexistence temperature range also changes due to the interaction of each component.
Further, the temperature range that exceeds the range of allowable etching unevenness varies depending on the purpose and application.

【0016】次に、本発明において、0.5μm以上の
金属間化合物であってFe,Si以外の合金化元素の含
有量が5質量%以上である化合物を、個数割合で30%
以下とした理由は次の通りである。
Next, in the present invention, a compound having a content of alloying elements other than Fe and Si of at least 5% by mass, which is an intermetallic compound having a size of at least 0.5 μm, is added in an amount of 30% by number.
The reason for the following is as follows.

【0017】A1−Fe系およびA1−Fe−Si系化
合物中に、Fe,Si以外の合金化元素が固溶または置
換され、その晶出物形態を種々に変化させ、表面品質や
エッチング性を変化させているが、中でもサイズが0.
5μm以上の化合物相が、表面品質や見た目の劣化、エ
ッチング性に悪影響を及ぼし、特にFe,Si以外の合
金化元素の含有量が5質量%以上のとき、悪影響が大き
い。尚、表面品質向上の観点から、Fe,Si以外の合
金化元素や金属間化合物中に占める質量比は小さいこと
が望ましく、4質量%以下であるとより望ましい。
Alloying elements other than Fe and Si are dissolved or substituted in the A1-Fe-based and A1-Fe-Si-based compounds to change the crystallized form in various ways, thereby reducing the surface quality and etching property. It has been changed, but especially the size is 0.
The compound phase of 5 μm or more has a bad influence on the surface quality, the appearance deterioration and the etching property, and particularly when the content of alloying elements other than Fe and Si is 5% by mass or more, the bad influence is large. From the viewpoint of improving the surface quality, the mass ratio in the alloying elements other than Fe and Si and the intermetallic compound is preferably small, and more preferably 4% by mass or less.

【0018】実際には、その金属間化合物の量が効いて
おり、具体的には、Fe,Si以外の合金化元素の含有
量が5質量%以上である化合物が、個数割合で30%を
超えると表面品質を劣化させる。上記化合物の個数割合
は少ない方が望ましく、25%以下であるとより好まし
い。
Actually, the amount of the intermetallic compound is effective. Specifically, a compound in which the content of alloying elements other than Fe and Si is 5% by mass or more is 30% by number. If it exceeds, the surface quality deteriorates. It is desirable that the number ratio of the above compound is small, more preferably 25% or less.

【0019】尚、本発明に係るAl合金を製造するにあ
たっての鋳造条件としては、鋳造方法には半連続鋳造や
連続鋳造等があり、また鋳型サイズや各設備能力に依存
するので、一概には特定できないが、△Tが大きい成分
系では、エッチング性に及ぼす添加元素の効果が大きく
晶出物むらが出やすいので、鋳造可能な最小の冷却水量
により、低めの冷却速度で制御する方が好ましく、△T
が小さい成分系では、エッチング性に及ぼす添加元素の
影響は小さく、晶出物むらが出にくいので、高速の冷却
速度で制御してもよい。
The casting conditions for producing the Al alloy according to the present invention include semi-continuous casting and continuous casting in the casting method, and depend on the mold size and the capacity of each equipment. Although it cannot be specified, in the case of a component system having a large ΔT, the effect of the added element on the etching property is large and crystallized matters are likely to be uneven. Therefore, it is preferable to control the cooling rate at a lower cooling rate with the minimum amount of cooling water that can be cast. , △ T
In a component system having a small value, the effect of the added element on the etching property is small, and it is difficult to cause unevenness of crystallized substances. Therefore, the cooling rate may be controlled at a high speed.

【0020】多成分系のAl合金を成分設計する際に
は、通常、表面処理性,強度,延性,成形性などの観点
から主成分系を決定するが、本発明では、それらの特性
を満たしながら、表面品質を良好に維持した多成分系の
成分設計方法を提供するものであり、固液共存温度範囲
を制御することにより、多成分系のAl合金の成分設計
を行うものである。
When designing the composition of a multi-component Al alloy, the main component is usually determined from the viewpoints of surface treatment properties, strength, ductility, formability, etc., but the present invention satisfies these properties. In addition, the present invention provides a method for designing a multi-component system alloy with good surface quality, and controls the solid-liquid coexistence temperature range to design a component of a multi-component Al alloy.

【0021】図2(a)は、Fe:0.36%,Si:
0.05%,Cu:0.016%を含有するAl合金A
のFe添加量と温度による液相温度及び固相温度等を図
式化したものであり、図2(b)は、Fe:0.3%,
Si:0.05%,Cu:0.005%,Ni:0.0
3%を含有するAl合金BのFe添加量と温度による液
相温度及び固相温度等を図式化したものである。合金A
と合金Bの固液共存温度範囲を比較すると、Niの添加
により固液共存温度範囲が広くなることが分かる。
FIG. 2A shows that Fe: 0.36%, Si:
Al alloy A containing 0.05% and Cu: 0.016%
FIG. 2B is a graph showing the liquid phase temperature and the solid phase temperature depending on the amount of Fe added and the temperature.
Si: 0.05%, Cu: 0.005%, Ni: 0.0
3 is a graph showing a liquid phase temperature, a solid phase temperature, and the like depending on the amount and temperature of Fe added to an Al alloy B containing 3%. Alloy A
Comparing the solid-liquid coexisting temperature range of the alloy B and the alloy B, it can be seen that the solid-liquid coexisting temperature range is widened by the addition of Ni.

【0022】具体的に成分設計を行うにあたっては、強
度等の主要特性を満たした基準組成のAl合金の液相温
度と固相温度を測定するか或いは計算し、目的及び用途
に応じて許容される表面品質むらの範囲を超える表面品
質むらが生じ始める上限の固液共存温度範囲を調査し、
この温度範囲内でアルミニウム合金の多成分系元素(合
金化元素)と各合金化元素の添加量を決定することによ
って行うことができる。
In designing the components, the liquid phase temperature and the solid phase temperature of an Al alloy having a reference composition satisfying the main characteristics such as strength are measured or calculated, and are allowed according to the purpose and application. Investigate the upper limit solid-liquid coexistence temperature range where surface quality unevenness beyond the range of surface quality unevenness starts to occur,
This can be performed by determining the multi-component elements (alloying elements) of the aluminum alloy and the amounts of the respective alloying elements to be added within this temperature range.

【0023】尚、本発明に係る成分設計方法では、予
め、種々の組成や添加量で液相温度及び固相温度等を測
定または計算しておく必要があるが、それらのデータベ
ースを作製し、システム化しておけば、迅速な多成分系
の成分設計が可能である。また、液相温度及び固相温度
などの計算手法として熱力学的な平衡状態図計算を挙げ
ることができる。
In the component designing method according to the present invention, it is necessary to previously measure or calculate the liquidus temperature and the solidus temperature with various compositions and addition amounts. If it is systemized, it is possible to quickly design components of a multi-component system. A thermodynamic equilibrium diagram calculation can be cited as a method of calculating the liquidus temperature and the solidus temperature.

【0024】以下、本発明を実施例によって更に詳細に
説明するが、下記の実施例は本発明を限定する性質のも
のではなく、前・後記の主旨に基づいて設計変更するこ
とはいずれも本発明の技術的範囲内に含まれるものであ
る。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design change based on the above and following gist is not limited to the examples. It is within the technical scope of the invention.

【0025】[0025]

【実施例】実施例1 表1に示す様に、固液共存温度範囲を種々に変化させた
組成をもつアルミニウム合金を通常のDC鋳造により、
厚さ500mm,幅1500mmの鋳塊を鋳造した。そ
の後、均質化処理後に面削を施すか、或いは面削の後均
質化処理を施し、加熱又は炉冷して、熱間加工及び冷間
加工を行い、板材を作製した。これらの板材を用いて、
以下の通りにして、固液共存温度範囲を求めると共に、
金属間化合物の分析を行い、表面品質の調査を行った。
更に、各特性値のばらつきも評価した。
EXAMPLES As shown in Example 1 in Table 1, the conventional DC casting an aluminum alloy having the composition of changing solid-liquid coexistence temperature range in a variety,
An ingot having a thickness of 500 mm and a width of 1500 mm was cast. Then, after the homogenization treatment, the surface was cut, or the surface was subjected to the homogenization treatment, followed by heating or furnace cooling, hot working and cold working to prepare a plate material. Using these plates,
A solid-liquid coexistence temperature range is determined as follows,
Intermetallic compounds were analyzed and surface quality was investigated.
Furthermore, the variation of each characteristic value was also evaluated.

【0026】(1)固液共存温度範囲の算出 示差熱分析により、液相温度と固相温度を測定し、固液
2相の共存領域の温度範囲を算出した。
(1) Calculation of the solid-liquid coexisting temperature range The liquid phase temperature and the solid phase temperature were measured by differential thermal analysis, and the temperature range of the solid-liquid coexisting region was calculated.

【0027】(2)0.5μm以上の金属間化合物中に
おける合金化成分の含有量 TEM,FE−TEMまたはFE−SEMによるEDS
(EDX)により、金属間化合物のサイズと金属間化合
物中の各成分の含有量を測定した。測定した金属間化合
物の数は、200個以上であり、Fe,Si以外の各成
分が5質量%を越えているものの化合物の個数割合を算
出した。
(2) Content of alloying component in intermetallic compound of 0.5 μm or more EDS by TEM, FE-TEM or FE-SEM
The size of the intermetallic compound and the content of each component in the intermetallic compound were measured by (EDX). The number of intermetallic compounds measured was 200 or more, and the number ratio of compounds in which each component other than Fe and Si exceeded 5% by mass was calculated.

【0028】(3)表面品質調査 アルカリエッチング10%NaOH水溶液により60℃
3分間エッチングし、水洗後硝酸でデスマット後、目視
と粗さ計によりエッチングむらを以下の基準で評価し
た。 ◎:良好 ○:可 △:悪い ×:非常に悪い
(3) Surface quality investigation Alkali etching 10% NaOH aqueous solution at 60 ° C.
After etching for 3 minutes, washing with water and desmutting with nitric acid, the unevenness of etching was evaluated visually and with a roughness meter according to the following criteria. ◎: good ○: acceptable △: bad ×: very bad

【0029】(4)特性のばらつき評価 強度 JIS5号の引張試験片を用いて、0.2%耐力までは
5mm/minで、その後は20mm/minの引張速
度で引張試験を行い、強度特性をして耐力を測定した。
(4) Evaluation of Characteristics Variation Strength Using a JIS No. 5 tensile test piece, a tensile test was performed at a tensile speed of 5 mm / min up to a 0.2% proof stress, and at a tensile speed of 20 mm / min thereafter. The proof stress was measured.

【0030】LDH(引張限界高さ) 直径101.6mmの球頭張出パンチにより、長さ18
0mm幅110mmの試験片に対して、しわ押さえ圧2
00KN、パンチ速度4mm/sの条件で銅板用潤滑油
(スギムラ化学工業社製「R-303P」)を用いて成形を行
い、LDHを測定した。
LDH (Limiting Tensile Height) A ball-overhanging punch having a diameter of 101.6 mm was used to obtain a length of 18 mm.
A wrinkle holding pressure of 2 on a test piece having a width of 0 mm and a width of 110 mm
Molding was performed using a lubricating oil for copper plates (“R-303P” manufactured by Sugimura Chemical Industry Co., Ltd.) under the conditions of 00 KN and a punch speed of 4 mm / s, and the LDH was measured.

【0031】上記試験において特性のばらつきの評価
は、試験を3回繰り返し、コイル内における長手方向の
先端,中央,後端および幅方向の中央,端部の計6箇所
につき、その特性値のばらつき割合[=[(“最大値”
−“最小値”)/“平均値”]×100%]を算出して
行った。
In the above test, the characteristic variation was evaluated by repeating the test three times and varying the characteristic value at a total of six locations in the coil, that is, a front end, a center, a rear end, and a center and an end in the width direction. Ratio [= [("maximum value"
− “Minimum value”) / “average value”] × 100%].

【0032】耳率 ブランク径80mm,ポンチ径40mm,絞り率50%
でカップ絞り試験を行い、以下の算出式により耳率を求
めた。 耳率=[[(45°−“4方向の平均高さ”)−(0,
90°−“4方向の平均高さ”)]/“8方向の平均高
さ”]×100(%) (ここで45°とは、圧延方向45°方向の耳のことを
指す。) 耳率のばらつきの評価は、試験を3回繰り返し、コイル
内の長手先端,中央,後端および幅中央,端部の計6箇
所につき、その特性値のばらつきの幅(=“最大値”−
“最小値”)で評価した。
Ear ratio Blank diameter 80 mm, punch diameter 40 mm, drawing ratio 50%
A cup squeezing test was performed, and the ear ratio was determined by the following formula. Ear ratio = [[((45 ° − “average height in four directions”) − (0,
90 ° − “average height in four directions”)] / “average height in eight directions”] × 100 (%) (here, 45 ° means ears in the rolling direction of 45 °). To evaluate the variation of the rate, the test was repeated three times, and the width of the characteristic value variation (= “maximum value”) −
"Minimum value").

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】No.1〜8は、本発明例であり、エッチ
ングむらがなく表面品質が良好であり、しかも各種の特
性値のばらつきも小さかった。
No. Nos. 1 to 8 are examples of the present invention, in which the surface quality was good without etching unevenness, and the dispersion of various characteristic values was small.

【0036】これに対してNo.9〜11は、固液共存
温度範囲が30℃を超え、かつ0.5μm以上の金属間
化合物においてFe及びSi以外の合金化元素の含有量
が5質量%以上である化合物の個数の割合が30%を超
える場合の比較例であり、エッチングむらが見られ、特
性のばらつきも大きかった。
On the other hand, no. 9 to 11, the ratio of the number of compounds in which the solid-liquid coexistence temperature range exceeds 30 ° C. and the content of alloying elements other than Fe and Si is 5% by mass or more in the intermetallic compound of 0.5 μm or more. This is a comparative example in which it exceeds 30%, in which etching unevenness was observed and the variation in characteristics was large.

【0037】実施例2 表3のNo.B−1の合金を基準として成分設計を行っ
ていく状況を仮定して、No.B−1の合金をべ一スと
し、固液共存温度範囲を種々に変化させたNo.B−2
〜B−9の合金を、実施例1と同様にして製造して、実
施例1と同様の評価をおこなった。
Example 2 No. 3 in Table 3 No. B-1 is assumed to be designed based on the alloy No. B-1. The alloy No. B-1 was used as a base, and the solid-liquid coexistence temperature range was variously changed. B-2
Alloys Nos. B-9 were manufactured in the same manner as in Example 1, and the same evaluation as in Example 1 was performed.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】No.B−1〜B−9はいずれも本発明の
請求項1の条件を満たすものであり、エッチングむらが
なく表面品質が良好であるが、No.B−2〜B−6
は、ベース合金であるNo.B−1と表面品質が同等以
上であり、また特性のバラツキに関してはNo.B−1
よりも良好であった。これに対して、No.B−7〜B
−9は、B−1に比べると表面品質が劣り、各品質特性
もばらつきが大きくなっている。従って、上記の様にB
−1合金を基準として成分設計を行っていく状況を仮定
すれば、B−2〜B−6の如き合金を目標にして設計を
行う様にすれば良い。なお、この場合には、表面品質む
らの許容温度範囲を15℃以下として成分設計すること
が好ましいことが分かる。
No. Nos. B-1 to B-9 satisfy the condition of claim 1 of the present invention and have good surface quality without etching unevenness. B-2 to B-6
No. is a base alloy. The surface quality is equal to or higher than that of B-1. B-1
Than was better. On the other hand, no. B-7 to B
In the case of -9, the surface quality is inferior to that of B-1, and the quality characteristics also vary widely. Therefore, as described above, B
Assuming a situation in which the component design is performed on the basis of the -1 alloy, the design may be performed with the target of an alloy such as B-2 to B-6. In this case, it is understood that it is preferable to design the components by setting the allowable temperature range of the surface quality unevenness to 15 ° C. or less.

【0041】[0041]

【発明の効果】本発明は、以上の様に構成されているの
で、種々の要求特性を満たす上に、表面品質にも優れた
アルミニウム合金と、その成分設計方法が提供できるこ
ととなった。
As described above, according to the present invention, it is possible to provide an aluminum alloy which satisfies various required characteristics and has an excellent surface quality, and a method for designing its components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固液共存温度範囲を模式的に示す説明図であ
る。
FIG. 1 is an explanatory view schematically showing a solid-liquid coexisting temperature range.

【図2】合金化元素と固液共存温度範囲の関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between an alloying element and a solid-liquid coexistence temperature range.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe及びSiと共に他の合金化元素を1
成分以上含む多成分系のアルミニウム合金であって、 固液共存温度範囲が30℃以下であり、 0.5μm以上の金属間化合物における前記他の合金化
元素の含有量が5質量%以上である化合物の個数の割合
が30%以下であることを特徴とする表面品質に優れた
アルミニウム合金。
1. The method according to claim 1, further comprising adding another alloying element together with Fe and Si.
A multi-component aluminum alloy containing at least one component, the solid-liquid coexistence temperature range is 30 ° C. or less, and the content of the other alloying element in the intermetallic compound of 0.5 μm or more is 5% by mass or more. An aluminum alloy having excellent surface quality, wherein the ratio of the number of compounds is 30% or less.
【請求項2】 Fe及びSiと共に他の合金化元素を1
成分以上含む多成分系アルミニウム合金の合金化元素の
種類及び含有量を設定するアルミニウム合金の成分設計
方法であって、 種々の前記アルミニウム合金の液相温度と固相温度を測
定するか或いは計算し、許容範囲を超えるエッチングむ
らが生じ始める固液共存温度範囲を調査し、この温度範
囲内となる様に前記他の合金化元素の夫々の含有量を決
定することを特徴とする表面品質に優れたアルミニウム
合金の成分設計方法。
2. An alloying element together with Fe and Si,
An aluminum alloy component design method for setting the type and content of alloying elements of a multi-component aluminum alloy containing at least one component, wherein the liquid phase temperature and solid phase temperature of various aluminum alloys are measured or calculated. Investigate the solid-liquid coexistence temperature range at which etching unevenness exceeding the allowable range begins to occur, and determine the content of each of the other alloying elements so as to be within this temperature range.Excellent surface quality. Aluminum alloy composition design method.
JP2000030880A 2000-02-08 2000-02-08 Aluminum alloy excellent in surface quality and component designing method therefor Pending JP2001220638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030880A JP2001220638A (en) 2000-02-08 2000-02-08 Aluminum alloy excellent in surface quality and component designing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030880A JP2001220638A (en) 2000-02-08 2000-02-08 Aluminum alloy excellent in surface quality and component designing method therefor

Publications (1)

Publication Number Publication Date
JP2001220638A true JP2001220638A (en) 2001-08-14

Family

ID=18555834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030880A Pending JP2001220638A (en) 2000-02-08 2000-02-08 Aluminum alloy excellent in surface quality and component designing method therefor

Country Status (1)

Country Link
JP (1) JP2001220638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112698A1 (en) * 2009-04-03 2010-10-07 Alcan International Limited Aa 6xxx aluminium alloy for precision turning
JP2012524841A (en) * 2009-04-24 2012-10-18 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Manganese-rich and highly magnesium-rich aluminum strips
JP2012524840A (en) * 2009-04-24 2012-10-18 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Manganese-rich and magnesium-rich aluminum strips
WO2020090805A1 (en) 2018-10-31 2020-05-07 昭和電工株式会社 Material exploration apparatus, method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112698A1 (en) * 2009-04-03 2010-10-07 Alcan International Limited Aa 6xxx aluminium alloy for precision turning
FR2944029A1 (en) * 2009-04-03 2010-10-08 Alcan Int Ltd 6XXX SERIES ALLOY ALLOY ALLOY
JP2012524841A (en) * 2009-04-24 2012-10-18 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Manganese-rich and highly magnesium-rich aluminum strips
JP2012524840A (en) * 2009-04-24 2012-10-18 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Manganese-rich and magnesium-rich aluminum strips
KR101477251B1 (en) * 2009-04-24 2014-12-29 하이드로 알루미늄 도이칠란트 게엠베하 Aluminum strip rich in manganese and magnesium
WO2020090805A1 (en) 2018-10-31 2020-05-07 昭和電工株式会社 Material exploration apparatus, method, and program

Similar Documents

Publication Publication Date Title
CN103930577B (en) Aluminum alloy material and aluminum alloy structure and production process therefor
CN105220037B (en) Super-strength anti-corrosion easy-to-cut aluminum alloy radiating material, preparation method and applications
JP2008500453A (en) Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
JP4911657B2 (en) High conductivity aluminum fin alloy
US5021106A (en) Brazeable aluminum alloy sheet and process of making same
CA2856488C (en) Aluminium fin alloy and method of making the same
JP5105389B2 (en) Aluminum alloy manufacturing method
JP2003520294A5 (en)
KR20030096258A (en) Production of high strength aluminum alloy foils
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
JP2001220638A (en) Aluminum alloy excellent in surface quality and component designing method therefor
JPH05104287A (en) Production of aluminum brazing sheet having excellent moldability
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
US20220396858A1 (en) Aluminum alloy with improved extrudability and corrosion resistance
JPH0770685A (en) High strength al alloy fin material and production thereof
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP4341453B2 (en) Aluminum alloy casting excellent in thermal conductivity and method for producing the same
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JP6474582B2 (en) Aluminum alloy plate with excellent formability
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
JPH11343532A (en) Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy
JPH10298723A (en) Manufacture of aluminum alloy die casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A977 Report on retrieval

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131