JP2001216968A - Positive electrode active material, its manufacturing method and nonaqueous secondary battery using the same - Google Patents

Positive electrode active material, its manufacturing method and nonaqueous secondary battery using the same

Info

Publication number
JP2001216968A
JP2001216968A JP2000032692A JP2000032692A JP2001216968A JP 2001216968 A JP2001216968 A JP 2001216968A JP 2000032692 A JP2000032692 A JP 2000032692A JP 2000032692 A JP2000032692 A JP 2000032692A JP 2001216968 A JP2001216968 A JP 2001216968A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
secondary battery
electrode active
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032692A
Other languages
Japanese (ja)
Other versions
JP4543474B2 (en
Inventor
Akihiko Shirakawa
彰彦 白川
Takao Noda
孝男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000032692A priority Critical patent/JP4543474B2/en
Publication of JP2001216968A publication Critical patent/JP2001216968A/en
Application granted granted Critical
Publication of JP4543474B2 publication Critical patent/JP4543474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having a great electric capacity of >=100 mAh/g after 100 cycles and a less deteriorating capacity, that is, a capacity maintaining percentage of 90% or more is kept after 100 cycles, a positive electrode active material for the battery and its manufacturing method. SOLUTION: A composite oxide LixAlyMn3-x-y, where 1.0<x<=1.1, 0<y<0.02, 3.5<z<=4.5, having a spinel structure formed of Li, Mn, Al and O is used as the positive electrode active material for the nonaqueous secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池用正
極活物質、その製造方法、該正極活物質を含んだ電極用
ペースト、該ペーストから作製した正極及び該正極活物
質を用いた非水二次電池に関する。
The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a method for producing the same, an electrode paste containing the positive electrode active material, a positive electrode prepared from the paste, and the positive electrode active material. It relates to a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】非水二次電池の正極活物質として高エネ
ルギー密度化への期待から、LiCoO2、LiNi
2、LiMn24が検討されている。しかしながら、
LiCoO 2はコバルトが高価で資源的な制約があり、
LiNiO2はその合成が難しい等の問題点がある。そ
のため、低コストで高性能なリチウムマンガン酸化物系
正極活物質への期待が高く、その開発が進められてい
る。しかしながら、スピネル型LiMn24を正極活物
質として用いた非水二次電池では、充放電を繰り返すと
短期間に容量低下が起こり、正極活物質の組成から予想
される電気容量より実際の電気容量がかなり小さいとい
う問題点がある。
2. Description of the Related Art As a positive electrode active material for non-aqueous secondary batteries, high energy
LiCoO from the expectation of higher densityTwo, LiNi
OTwo, LiMnTwoOFourIs being considered. However,
LiCoO TwoCobalt is expensive and has resource constraints,
LiNiOTwoHas problems such as difficulty in synthesis. So
Low cost, high performance lithium manganese oxide
Expectations for cathode active materials are high, and their development is ongoing.
You. However, spinel type LiMnTwoOFourThe positive electrode active material
The non-aqueous secondary battery used as the quality
Capacitance reduction occurs in a short period of time, expected from the composition of the positive electrode active material
The actual capacity is much smaller than the
There is a problem.

【0003】特開平2−270268号公報には、スピ
ネル型LiMn24にLiを過剰に添加することで充放
電を繰り返しても容量の低下が少ないスピネル構造を有
する複合酸化物を開示している。しかし、この場合Li
を過剰に加えるため初期容量が小さくなってしまうとい
う問題点がある。英国公開公報2221213A号に
は、低温で合成したスピネル型LiMn24を正極活物
質に用いた初期容量の大きな二次電池が開示されている
が、正極活物質の結晶性が低く、また比表面積が大きい
ために充放電の繰り返しによる容量低下が大きくなって
しまうという問題点がある。
Japanese Patent Application Laid-Open No. 2-270268 discloses a composite oxide having a spinel structure in which the capacity is small even when charge and discharge are repeated by excessively adding Li to spinel type LiMn 2 O 4. I have. However, in this case, Li
There is a problem in that the initial capacity is reduced due to excessive addition of. British Patent Publication No. 22221213A discloses a secondary battery having a large initial capacity using a spinel type LiMn 2 O 4 synthesized at a low temperature as a positive electrode active material. Since the surface area is large, there is a problem that the capacity decrease due to repetition of charge and discharge becomes large.

【0004】特開平2−278661号公報には、Li
xyMn2-yZ(Mは周期表IIIa又はIIIbから選ばれ
た元素)において、0<x≦1、0<y≦1、4≦Z<
4.5で示される正極活物質はサイクル特性に優れてい
ることを開示している。しかし、x≦1であるため、M
がAlである該酸化物の場合、容量維持率はたかだか7
0%程度に留まっている。さらに、本公報ではMがYで
ある場合二次電池の容量維持率が90%近くなるが、原
子量の大きいYを添加しているために放電容量が小さく
なるという問題がある。
Japanese Patent Application Laid-Open No. 2-278661 discloses Li
In x M y Mn 2-y O Z (M is selected from periodic table IIIa or IIIb elements), 0 <x ≦ 1,0 < y ≦ 1,4 ≦ Z <
It discloses that the positive electrode active material indicated by 4.5 has excellent cycle characteristics. However, since x ≦ 1, M
In the case of the oxide in which is Al, the capacity retention rate is at most 7
It remains at about 0%. Further, in this publication, when M is Y, the capacity retention rate of the secondary battery becomes close to 90%, but there is a problem that the discharge capacity becomes small because Y having a large atomic weight is added.

【0005】特開平5−21067号公報には、LiM
2-yy4(Mは1価から6価のMn以外の元素)を
正極活物質として用いることで、サイクル特性に優れた
非水電解質電池が開示されている。しかし、この技術も
特開平2−278661号公報に記載の発明と同様に、
Liが過剰でないため二次電池の容量維持率が低くなっ
ている。特開平4−289662号公報には、Lix
yMn2-y4において、0.85<x≦1.15かつ
0.02≦y≦0.5の範囲で示される正極活物質が、
過放電特性に優れていることを開示している。しかし、
このような化合物の場合、電気化学的に不活性なAl化
合物をy≧0.02になるように添加するため、放電容
量が小さくなるという問題点がある。
[0005] JP-A-5-21067 discloses LiM
n (the M elements other than hexavalent Mn from monovalent) 2-y M y O 4 by using as the positive electrode active material, there is disclosed a nonaqueous electrolyte battery excellent in cycle characteristics. However, this technique is also similar to the invention described in JP-A-2-278661,
Since Li is not excessive, the capacity retention of the secondary battery is low. JP-A-4-289662 discloses that Li x A
In l y Mn 2-y O 4 , is a positive electrode active substance represented by the range of 0.85 <x ≦ 1.15 and 0.02 ≦ y ≦ 0.5,
It discloses that it has excellent overdischarge characteristics. But,
In the case of such a compound, since an electrochemically inactive Al compound is added so that y ≧ 0.02, there is a problem that the discharge capacity is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、非水
二次電池における上記問題を解決するものであって、1
00サイクル経過後の電気容量が100mAh/g以上
と大きく、かつ100サイクル経過後の容量維持率を9
0%以上に維持できる、容量の低下の少ない非水二次電
池、該電池用正極活物質及びその製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in non-aqueous secondary batteries.
The electric capacity after the lapse of 00 cycles is as large as 100 mAh / g or more, and the capacity retention rate after the lapse of 100 cycles is 9
It is an object of the present invention to provide a non-aqueous secondary battery which can be maintained at 0% or more and has a small decrease in capacity, a positive electrode active material for the battery, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
に対し鋭意検討した結果、Li、Mn、Al及びOから
なるスピネル構造を有する複合酸化物LixAlyMn
3-x-yzにおいて、その組成式が1.0<x≦1.1か
つ0<y<0.02かつ3.5<z≦4.5の範囲の正
極活物質を非水二次電池に用いることによって、その容
量低下が殆ど起こらない非水二次電池を提供できること
を見い出した。
Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, have found that a composite oxide Li x Al y Mn having a spinel structure composed of Li, Mn, Al and O is provided.
A non-aqueous secondary battery comprising a positive electrode active material having a composition formula in the range of 1.0 <x ≦ 1.1, 0 <y <0.02 and 3.5 <z ≦ 4.5 in 3-xy O z It has been found that a non-aqueous secondary battery whose capacity is hardly reduced can be provided.

【0008】すなわち、本発明は、(1)Li、Mn、
Al及びOからなるスピネル構造を有する複合酸化物
が、LixAlyMn3-x-yzにおいて、1.0<x≦
1.1、0<y<0.02、3.5<z≦4.5の範囲
であることを特徴とする非水二次電池用正極活物質、
(2)スピネル構造を有する複合酸化物の格子定数
(Å)が、−0.24x−0.28y+8.481より
小さく、−0.24x−0.72y+8.481以上で
あることを特徴とする前項1に記載の非水二次電池用正
極活物質、(3)スピネル構造を有する複合酸化物の結
晶子サイズが、400Å以上かつ950Å以下であるこ
とを特徴とする前項1又は2に記載の非水二次電池用正
極活物質、
That is, the present invention relates to (1) Li, Mn,
A composite oxide having a spinel structure composed of Al and O has a value of 1.0 <x ≦ in Li x Al y Mn 3-xy O z .
1.1, 0 <y <0.02, 3.5 <z ≦ 4.5, wherein the positive electrode active material for a non-aqueous secondary battery is characterized by:
(2) The lattice constant (Å) of the composite oxide having a spinel structure is smaller than −0.24x−0.28y + 8.481 and is −0.24x−0.72y + 8.481 or more. The positive electrode active material for a non-aqueous secondary battery according to 1, wherein (3) the composite oxide having a spinel structure has a crystallite size of 400 ° or more and 950 ° or less. Positive electrode active material for water secondary batteries,

【0009】(4)スピネル構造を有する複合酸化物
が、平均粒子径2μm以下の粒子である前項1乃至3の
いずれか1項に記載の非水二次電池用正極活物質、
(5)スピネル構造を有する複合酸化物が、粒子径3μ
m〜50μmの造粒焼成された粒子である前項1乃至3
のいずれか1項に記載の非水二次電池用正極活物質、
(6)前項1乃至5のいずれか1項に記載の非水二次電
池用正極活物質を含んだ電極用ペースト、(7)ペース
トが、正極活物質又はその造粒物、導電性付与剤、バイ
ンダー及び溶媒を含んでいることを特徴とする前項6に
記載の電極用ペースト、
(4) The positive electrode active material for a non-aqueous secondary battery as described in any one of (1) to (3) above, wherein the composite oxide having a spinel structure is a particle having an average particle diameter of 2 μm or less;
(5) The composite oxide having a spinel structure has a particle diameter of 3 μm.
1 to 3 above, which are granulated and fired particles of m to 50 μm.
The positive electrode active material for a non-aqueous secondary battery according to any one of the above,
(6) An electrode paste containing the positive electrode active material for a non-aqueous secondary battery according to any one of the above items 1 to 5, (7) the paste is a positive electrode active material or a granulated product thereof, and a conductivity imparting agent. The paste for an electrode according to the above 6, wherein the paste for an electrode contains a binder and a solvent.

【0010】(8)ペースト中の正極活物質又はその造
粒物、導電性付与剤及びバインダーの全固形分濃度が、
30質量%〜70質量%の範囲であることを特徴とする
前項7に記載の電極用ペースト、(9)前項1乃至5の
いずれか1項に記載の非水二次電池用正極活物質を含ん
だ正極、(10)リチウム化合物と、比表面積が10m
2/g以上100m2/g以下の炭酸マンガン、及びアル
ミニウム化合物を混合し、これを350℃以上680℃
以下の温度で1時間以上焼成反応させ、次いで解砕後、
生成物を730℃以上900℃以下の温度で加熱処理す
ることを特徴とする非水二次電池用正極活物質の製造方
法、(11)アルミニウム化合物が、比表面積50m2
/g以上200m2/g以下の化合物であることを特徴
とする前項10に記載の非水二次電池用正極活物質の製
造方法、
(8) The total solid content of the positive electrode active material or the granulated material thereof, the conductivity-imparting agent and the binder in the paste is as follows:
The electrode paste according to the above item 7, which is in a range of 30% by mass to 70% by mass, and (9) the positive electrode active material for a non-aqueous secondary battery according to any one of the above items 1 to 5. Containing positive electrode, (10) lithium compound and specific surface area is 10m
A manganese carbonate of not less than 2 / g and not more than 100 m 2 / g and an aluminum compound are mixed, and this is mixed at 350 ° C. to 680 ° C.
Baking reaction at the following temperature for 1 hour or more, then after crushing,
A method for producing a positive electrode active material for a non-aqueous secondary battery, wherein the product is heat-treated at a temperature of 730 ° C. or more and 900 ° C. or less, (11) the aluminum compound has a specific surface area of 50 m 2.
The method for producing a positive electrode active material for a non-aqueous secondary battery according to the above item 10, wherein the compound is a compound having a concentration of not less than 200 g / g and not more than 200 m 2 / g,

【0011】(12)アルミニウム化合物が、酸化アル
ミニウム(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等
のアルミナ等)、Al(OH)3、Al(NO33、A
2(SO43(アルミナイト等)、酢酸アルミニウム
及びそれらの水和物からなる群より選ばれた少なくとも
1種の化合物である前項10又は11に記載の非水二次
電池用正極活物質の製造方法、(13)リチウムイオン
を可逆的に吸蔵放出可能な活物質を含む負極と、非水系
電解液又はポリマー電解質と、Li、Mn、Al及びO
からなるスピネル構造を有する複合酸化物の活物質を含
む正極を備えた非水二次電池において、該複合酸化物が
前項1乃至5のいずれか1項に記載の非水二次電池用正
極活物質であることを特徴とする非水二次電池、(1
4)前項13に記載の非水二次電池が、コイン型電池又
は円筒型電池、角型電池、ポリマー電池である非水二次
電池を提供することにより、前記目的を達成した。
(12) Aluminum compound is aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, ρ, etc.), Al (OH) 3 , Al (NO 3 ) 3 , A
12. The positive electrode active material for a nonaqueous secondary battery according to the above item 10 or 11, which is at least one compound selected from the group consisting of l 2 (SO 4 ) 3 (aluminite, etc.), aluminum acetate and hydrates thereof. (13) A negative electrode containing an active material capable of reversibly inserting and extracting lithium ions, a non-aqueous electrolyte or a polymer electrolyte, Li, Mn, Al and O
6. A non-aqueous secondary battery provided with a positive electrode containing a composite oxide active material having a spinel structure, comprising: the composite oxide as the positive electrode active material for a non-aqueous secondary battery according to any one of the above items 1 to 5. A non-aqueous secondary battery, characterized in that
4) The object is achieved by providing a non-aqueous secondary battery described in the above item 13, wherein the non-aqueous secondary battery is a coin-type battery or a cylindrical battery, a prismatic battery, or a polymer battery.

【0012】以下、本発明について詳細に説明する。本
発明は、Li、Mn、Al及びOからなるスピネル構造
を有する複合酸化物の正極活物質に関し、LixAly
3-x-yzにおいてxの組成範囲が1.0<x≦1.
1、yの組成範囲が0<y<0.02、zの組成範囲が
3.5<z≦4.5の複合酸化物を提供する。前記組成
範囲は、好ましくは1.005≦x≦1.080、0.
005≦y≦0.018、3.7<z≦4.3であり、
またその格子定数L(Å)は、前記示成式の組成におい
て、L1(x,y)=−0.24x−0.28y+8.
481で表される値より小さく、L2(x,y)=−
0.24x−0.72y+8.481で表される値より
も大きいものが好ましい。すなわち、図1において示さ
れる範囲の格子定数がよい。
Hereinafter, the present invention will be described in detail. The present invention relates to a composite oxide positive electrode active material having a spinel structure composed of Li, Mn, Al and O, and relates to Li x Al y M
In n 3-xy O z , the composition range of x is 1.0 <x ≦ 1.
Provided is a composite oxide in which the composition range of 1, y is 0 <y <0.02, and the composition range of z is 3.5 <z ≦ 4.5. The composition range is preferably 1.005 ≦ x ≦ 1.080, 0.
005 ≦ y ≦ 0.018, 3.7 <z ≦ 4.3,
The lattice constant L (Å) is L1 (x, y) = − 0.24x−0.28y + 8.
481, and L2 (x, y) = −
Those larger than the value represented by 0.24x−0.72y + 8.481 are preferable. That is, the lattice constant in the range shown in FIG. 1 is good.

【0013】一般に、セラミックスでは固溶体を作ると
き、ベガード則に従い格子定数が変化することが知られ
ている。LixAlyMn3-x-yzに対しては、結晶中の
Mn 3+が歪みを持つため、ベガード則での格子定数の予
測はできないが、本発明者らが検討したところ、完全に
固溶体を作るときには格子定数(Å)が上記L2(x,
y)の関係式(−0.24x−0.72y+8.48
1)で表される面内にあることがわかった。これに対し
て、Alの固溶体が進まない時にはこの面よりも格子定
数(Å)が大きくなり、L1(x,y)の関係式(−
0.24x−0.28y+8.481)の値以上になる
と、Liイオン電池の正極としたときの電気特性が悪く
なることを見出した(図1参照)。今までに、このよう
な範囲の格子定数を有する、スピネル構造を有する複合
酸化物はこれまでには見出されていない。
Generally, when a solid solution is made of ceramics,
It is known that the lattice constant changes according to the Vegard rule.
ing. LixAlyMn3-xyOzFor, in the crystal
Mn 3+Is distorted, so that the lattice constant is
Although it is not possible to measure,
When forming a solid solution, the lattice constant (Å) is L2 (x,
y) (−0.24x−0.72y + 8.48)
It was found that it was in the plane represented by 1). In contrast
When the solid solution of Al does not advance, the lattice
The number (Å) increases, and the relational expression (−−) of L1 (x, y)
0.24x-0.28y + 8.481) or more
Poor electrical characteristics when used as positive electrode of Li-ion battery
(See FIG. 1). Ever, like this
With a spinel structure with a wide range of lattice constants
Oxides have not been found previously.

【0014】格子定数が前記範囲より大きくなると、容
量低下が大きくなる。この容量低下を防ぐためには、x
を1.1より大きくする必要がある。また、容量低下を
防ぐためにyを0.02以上にする等の試みができる
が、結果的に放電容量が小さくなってしまい、目的とす
る容量が大きくかつ容量低下が小さい非水二次電池用正
極活物質を得ることはできない。前記正極活物質は、そ
の結晶子サイズが400Å以上950Å以下が好まし
く、さらには600Å〜850Åの範囲が好ましい。結
晶子サイズが400Åより小さい場合には二次電池の放
電容量が小さくなり、950Åより大きい場合には充放
電サイクルにおける放電容量の劣化が大きくなる。
When the lattice constant is larger than the above range, the capacity is greatly reduced. To prevent this decrease in capacity, x
Must be greater than 1.1. In order to prevent a decrease in capacity, an attempt can be made to increase y to 0.02 or more. However, as a result, the discharge capacity is reduced, and the desired capacity is large and the capacity decrease is small. A positive electrode active material cannot be obtained. The crystallite size of the positive electrode active material is preferably from 400 ° to 950 °, and more preferably from 600 ° to 850 °. When the crystallite size is smaller than 400 °, the discharge capacity of the secondary battery decreases, and when the crystallite size is larger than 950 °, the deterioration of the discharge capacity in the charge / discharge cycle increases.

【0015】本発明の正極活物質の製造方法として、例
えば、リチウム化合物と、比表面積が10m2/g以上
100m2/g以下の炭酸マンガン、及びアルミニウム
化合物を混合し、これを350℃以上680℃以下の温
度で1時間以上焼成反応させ、次いで生成物を730℃
以上900℃以下の温度で加熱処理して、前記正極活物
質を製造することができる。特に、本製造方法において
上記原料を予め350℃以上680℃以下の温度で焼成
反応し、次いで解砕することにより未反応物を再分散さ
せた後、さらに730℃以上900℃以下の温度で加熱
すると反応を完結させることができる。また、この低温
での焼成工程を行うことによって、730℃以上900
℃以下の温度での焼成時に結晶格子中のLiサイトにM
nの混入が起こらず、結晶化できる利点がある。本発明
においては、このような製造方法により電池特性の優れ
た正極活物質用の複合酸化体が得られる。
As a method for producing the positive electrode active material of the present invention, for example, a lithium compound, manganese carbonate having a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less, and an aluminum compound are mixed, and the mixture is heated at 350 ° C. to 680 Calcination reaction for 1 hour or more at a temperature of
The positive electrode active material can be manufactured by performing a heat treatment at a temperature of 900 ° C. or lower. In particular, in the present production method, the raw material is preliminarily subjected to a firing reaction at a temperature of 350 ° C or more and 680 ° C or less, and then disintegrated to redisperse the unreacted material. Then, the reaction can be completed. In addition, by performing the firing process at a low temperature, the temperature can be increased from 730 ° C. to 900 ° C.
When sintering at a temperature of not more than ℃ C, Li sites in the crystal lattice
There is an advantage that crystallization can be performed without mixing of n. In the present invention, a composite oxidant for a positive electrode active material having excellent battery characteristics can be obtained by such a production method.

【0016】前記製造方法において、原料のリチウム化
合物には特に制限はなく、炭酸リチウム、水酸化リチウ
ム、硝酸リチウム等が好ましく用いられる。また、前記
製造方法において、原料のアルミニウム化合物は特に制
限はなく、350℃以上680℃以下の温度下での反応
性の点から、比表面積が50m2/g以上200m2/g
以下のアルミニウム化合物なら何でもよい。このような
アルミニウム化合物として、例えば、酸化アルミニウム
(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等のアルミ
ナ等)、Al(OH)3、Al(NO33、Al2(SO
43(アルミナイト等)、酢酸アルミニウム及びそれら
の水和物等が挙げることができる。好ましくは酸化アル
ミニウム、特に好ましくは気相法から得られたアルミナ
(例えばγ型)が使用される。
In the above production method, the lithium compound as a raw material is not particularly limited, and lithium carbonate, lithium hydroxide, lithium nitrate and the like are preferably used. Further, in the above manufacturing method, an aluminum compound of the raw material is not particularly limited, from the viewpoint of reactivity at a temperature of 350 ° C. or higher 680 ° C. or less and a specific surface area of 50 m 2 / g or more 200 meters 2 / g
Any of the following aluminum compounds may be used. Examples of such an aluminum compound include aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, ρ, etc.), Al (OH) 3 , Al (NO 3 ) 3 , Al 2 (SO
4 ) 3 (aluminite, etc.), aluminum acetate and their hydrates. Preferably, aluminum oxide is used, particularly preferably alumina obtained from the gas phase process (eg γ-type).

【0017】また、本発明においては、前記LixAly
Mn3-x-yz(但し、1.0<x≦1.1、0<y<
0.02、3.5<z≦4.5の範囲である。)で表さ
れる複合酸化物は、その焼成品を解砕後、得られた粉砕
粒子(これは1次粒子または1次粒子の集合した二次粒
子であり、その平均粒子径は2μm以下、好ましくは
0.1μm〜1.0μm、さらに好ましくは0.2μm
〜0.5μmの範囲がよい。)を正極用活物質に用いる
ことができる。また、本発明においては、前記平均粒子
径を有する粉砕粒子に焼結促進助剤(造粒促進剤)を添
加混合して造粒焼成された緻密な造粒粒子(粒子径は3
μm〜50μm、好ましくは5μm〜30μmの範囲が
よい)を正極活物質として使用してもよい。ここで、緻
密な造粒粒子とは、該酸化物の1次粒子間に空隙がない
または少ないことを意味し、焼結促進助剤を使用した以
下の方法で製造することができる。
Further, in the present invention, the Li x Al y
Mn 3-xy O z (where 1.0 <x ≦ 1.1, 0 <y <
0.02, 3.5 <z ≦ 4.5. ) Is obtained by pulverizing the calcined product and then obtaining the obtained pulverized particles (this is a primary particle or a secondary particle obtained by assembling primary particles, the average particle diameter of which is 2 μm or less, Preferably 0.1 μm to 1.0 μm, more preferably 0.2 μm
The range is preferably 0.5 to 0.5 μm. ) Can be used as the positive electrode active material. In the present invention, dense granulated particles (particle size of 3) are obtained by adding and mixing a sintering accelerator (granulation accelerator) to the pulverized particles having the average particle diameter and granulating and firing.
μm to 50 μm, preferably 5 μm to 30 μm) may be used as the positive electrode active material. Here, the dense granulated particles mean that there are no or few voids between the primary particles of the oxide, and can be produced by the following method using a sintering accelerator.

【0018】解砕・粉砕した前記LixAlyMn3-x-y
z(但し、1.0<x≦1.1、0<y<0.02、
3.5<z≦4.5の範囲である。)で表される複合酸
化物粒子と焼結促進助剤との混合方法は、特に限定はな
く、例えば媒体攪拌式粉砕機、ボールミル、ペイントシ
ェーカー、混合ミキサーなどが使用できる。混合方式に
ついても乾式、湿式どちらでもよい。該複合酸化物を解
砕・粉砕する際に焼結促進助剤を添加して混合を同時に
行ってもよい。
The crushed and pulverized Li x Al y Mn 3-xy
O z (where 1.0 <x ≦ 1.1, 0 <y <0.02,
It is in the range of 3.5 <z ≦ 4.5. The method for mixing the composite oxide particles represented by the formula (1) and the sintering promoting aid is not particularly limited, and for example, a medium stirring type pulverizer, a ball mill, a paint shaker, a mixing mixer, or the like can be used. The mixing method may be either a dry method or a wet method. When the composite oxide is crushed and pulverized, a sintering accelerator may be added and mixing may be performed at the same time.

【0019】使用できる焼結促進助剤は、該LixAly
Mn3-x-yz(但し、1.0<x≦1.1、0<y<
0.02、3.5<z≦4.5の範囲である。)で表さ
れる複合酸化物粒子の解砕・粉砕粒子を造粒のために焼
結できるものであればよく、より好ましくは、900℃
以下の温度で溶融する化合物、例えば、550℃〜90
0℃の温度で溶融可能な酸化物またはその酸化物になり
うる前駆体もしくはリチウムまたはマンガンと固溶また
は反応して溶融する酸化物またはその酸化物になりうる
化合物であれば良い。例えば、焼結促進助剤には、B
i、B、W、Mo、Pbなどの元素を含む化合物が挙げ
られ、またこれらの化合物を任意に組み合わせて使用し
ても良く、またB23とLiFを組み合わせた化合物も
しくはMnF 2とLiFを組み合わせた化合物も使用さ
れる。中でも、Bi、B、Wの元素を含む化合物は焼結
収縮効果が大きいので特に好ましい。
The sintering accelerator which can be used is the LixAly
Mn3-xyOz(However, 1.0 <x ≦ 1.1, 0 <y <
0.02, 3.5 <z ≦ 4.5. )
The crushed and crushed particles of the complex oxide particles are burned for granulation.
Any material can be used as long as it can be tied, more preferably 900 ° C.
Compounds that melt at the following temperatures, e.g.
Becomes an oxide or its oxide that can be melted at a temperature of 0 ° C
Solid precursor with lithium or manganese
Can react and melt into an oxide or its oxide
Any compound may be used. For example, sintering accelerators include B
Compounds containing elements such as i, B, W, Mo, Pb
Used in any combination of these compounds.
Or BTwoOThreeAnd LiF compound
Or MnF TwoCompounds that combine LiF and LiF are also used
It is. In particular, compounds containing the elements Bi, B, and W are sintered.
It is particularly preferable because the shrinkage effect is large.

【0020】例えば、Bi化合物としては三酸化ビスマ
ス、硝酸ビスマス、安息臭酸ビスマス、オキシ酢酸ビス
マス、オキシ炭酸ビスマス、クエン酸ビスマス、水酸化
ビスマスなどが挙げられる。またB化合物としては、三
二酸化硼素、炭化硼素、窒化硼素、硼酸などが挙げられ
る。W化合物としては、二酸化タングステン、三酸化タ
ングステンなどが挙げられる。
For example, Bi compounds include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, bismuth hydroxide and the like. Examples of the B compound include boron trioxide, boron carbide, boron nitride, and boric acid. Examples of the W compound include tungsten dioxide and tungsten trioxide.

【0021】焼結促進助剤の添加量は、添加金属元素換
算で該複合酸化物中のMn1モルに対して0.0001
〜0.05モルの範囲内が好ましい。添加金属元素換算
での添加量が、0.0001モル未満では焼結収縮効果
がないし、0.05モルを越えると活物質の初期容量が
小さくなりすぎるからである。好ましいのは、0.00
5〜0.03モルである。焼結促進助剤は粉末状態でも
溶媒に溶解した液体状態で使用しても構わない。粉末状
態で添加する場合、焼結促進助剤の平均粒子径は50μ
m以下が好ましく、さらに好ましくは10μm以下であ
り、さらに好ましくは3μm以下である。焼結促進助剤
は造粒/焼結前に添加した方が好ましいが、造粒後焼結
促進助剤が溶融できる温度下で造粒物に含浸させ、焼結
させても構わない。
The amount of the sintering accelerator is 0.0001 in terms of the added metal element per mole of Mn in the composite oxide.
It is preferably in the range of -0.05 mol. If the amount of the added metal element is less than 0.0001 mol, there is no sintering shrinkage effect, and if it exceeds 0.05 mol, the initial capacity of the active material becomes too small. Preferred is 0.00
5 to 0.03 mol. The sintering accelerator may be used in a powder state or a liquid state dissolved in a solvent. When added in a powder state, the average particle size of the sintering accelerator is 50 μm.
m or less, more preferably 10 μm or less, and even more preferably 3 μm or less. The sintering promoting aid is preferably added before granulation / sintering, but the granulated material may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted after granulation.

【0022】次に造粒方法について説明する。造粒方法
としては、前記焼結促進助剤を使用して噴霧造粒方法、
流動造粒方法、圧縮造粒方法、撹拌造粒方法などが挙げ
られ、また媒体流動乾燥や媒体振動乾燥などの併用をし
てもよい。撹拌造粒と圧縮造粒は、二次粒子の密度が高
くなるので、また噴霧造粒は造粒粒子形状が真球状とな
るので特に好ましい。撹拌造粒器の例としては、パウレ
ック(株)社製バーチィカルグラニュレーターや不二パ
ウダル(株)社製スパルタンリューザーなどが挙げら
れ、圧縮造粒器の例としては、栗本鉄工(株)製ローラ
ーコンパクターMRCP−200型などが挙げられる。
噴霧造粒器の例としては、アシザワニロアトマイザー
(株)モービルマイナー型スプレードライヤーなどが挙
げられる。
Next, the granulation method will be described. As the granulation method, spray granulation method using the sintering accelerator,
Examples of the method include a fluidized-granulation method, a compression-granulation method, and a stirring-granulation method. Agitation granulation and compression granulation are particularly preferred because the density of secondary particles increases and spray granulation results in a perfectly spherical granulated particle shape. Examples of the agitation granulator include a vertical granulator manufactured by Powrex Co., Ltd. and a Spartan Luzer manufactured by Fuji Paudal Co., Ltd., and examples of the compression granulator include Kurimoto Tekko Co., Ltd. Roller compactor MRCP-200 type.
Examples of the spray granulator include a mobile minor type spray dryer such as Ashizawaniro Atomizer Co., Ltd.

【0023】本発明において、正極に使用される造粒し
た粒子のサイズには特に制約はない。造粒した粒子の平
均粒子径が大きすぎる場合には、造粒直後または焼結後
に軽く解砕・粉砕し分級・整粒し希望する粒度にすれば
よい。造粒効率を高めるためには、有機物系の造粒助剤
を添加してもよい。造粒助剤としては、アクリル系樹
脂、イソブチレンと無水マレイン酸との共重合体、ポリ
ビニルアルコール、ポリエチレングリコール、ポリビニ
ルピロリデン、ハイドロキシプロピルセルロース、メチ
ルセルロース、コーンスターチ、ゼラチン、リグニンな
どが挙げられる。
In the present invention, the size of the granulated particles used for the positive electrode is not particularly limited. If the average particle diameter of the granulated particles is too large, it may be lightly crushed and pulverized immediately after granulation or after sintering, classified and sized to obtain a desired particle size. In order to increase the granulation efficiency, an organic granulation aid may be added. Examples of the granulation aid include an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, lignin and the like.

【0024】造粒助剤の添加量としては、該LixAly
Mn3-x-yz(但し、1.0<x≦1.1、0<y<
0.02、3.5<z≦4.5の範囲である。)で表さ
れる複合酸化物及び焼結促進助剤100重量部に対して
5重量部以下が好ましく、さらに好ましくは2重量部以
下である。
The addition amount of the granulation auxiliary is Li x Al y
Mn 3-xy O z (where 1.0 <x ≦ 1.1, 0 <y <
0.02, 3.5 <z ≦ 4.5. ) Is preferably 5 parts by weight or less, more preferably 2 parts by weight or less, based on 100 parts by weight of the composite oxide and the sintering accelerator.

【0025】次に造粒した粒子の焼成方法について説明
する。造粒した粒子の脱脂方法は、大気中または酸素を
含有するガス雰囲気中で300℃から550℃の温度範
囲で10分以上保持することにより行う。脱脂した造粒
物のカーボン残留量としては0.1%以下であることが
好ましい。脱脂後の造粒粒子は、大気または酸素を含有
する雰囲気中で550℃〜900℃の温度範囲で1分以
上保持することにより焼結させる。また、前述の有機物
系の造粒助剤を使用しない造粒物の粒子の焼成も、大気
中または酸素を含有するガス雰囲気中で同様に焼結収縮
させ、二次粒子の緻密化をはかることができる。
Next, a method for firing the granulated particles will be described. The method of degreasing the granulated particles is performed by maintaining the granulated particles in a temperature range of 300 ° C. to 550 ° C. for 10 minutes or more in the air or in a gas atmosphere containing oxygen. The defatted granulated material preferably has a carbon residue of 0.1% or less. The degreased granulated particles are sintered by maintaining the temperature in a temperature range of 550 ° C. to 900 ° C. for 1 minute or more in air or an atmosphere containing oxygen. Also, in the firing of the particles of the granulated material without using the above-mentioned organic-based granulating aid, the sintering shrinkage is similarly performed in the air or in a gas atmosphere containing oxygen, and the secondary particles are densified. Can be.

【0026】次に、本発明の前記正極活物質を非水二次
電池の正極材料として使用する方法を説明する。正極
は、前記正極活物質又はその造粒物と導電性付与剤(導
電材)、及びバインダー(結合材)を所定割合でペース
ト用溶媒と混練して電極用ペーストを準備し、これを集
電体に塗布し、次いで乾燥後にロールプレスなどで加圧
して製造する。前記導電性付与剤には、一般にキャボッ
ト製バルカンXC−72のようなカーボンブラックや黒
鉛などの炭素粉、Al粉、Ag粉等の金属粉、SnO2
等の導電性金属酸化物、及びこれらの混合物が用いられ
る。
Next, a method of using the positive electrode active material of the present invention as a positive electrode material of a non-aqueous secondary battery will be described. The positive electrode is prepared by kneading the positive electrode active material or its granulated material, a conductivity-imparting agent (conductive material), and a binder (binder) at a predetermined ratio with a paste solvent, and preparing an electrode paste. It is applied to the body, then dried and pressed by a roll press or the like to produce. Examples of the conductivity-imparting agent include carbon powder such as carbon black and graphite such as Vulcan XC-72 manufactured by Cabot, metal powder such as Al powder and Ag powder, and SnO 2.
And the like, and a mixture thereof.

【0027】前記バインダーには、一般にポリフッ化ビ
ニリデン(PVDF)、テフロン、エチレン−プロピレ
ン−ジエン−共重合体(EPDM)、スチレン−ブタジ
エンゴム(SBR)、カルボキシメチルセルロース(C
MC)などが使用される。前記電極用ペーストに使用で
きる溶媒は、前記バインダーを溶解又は膨潤できる溶媒
なら何でも良く、例えば、N−メチル−2−ピロリドン
(NMP)、ベンゼン、キシレン、トルエン等の芳香族
系溶媒、メタノール、エタノール、プロパノール、ブタ
ノール等のアルコール類、メチルエチルケトン等のケト
ン類、ジオキサンなどのエーテル類が例示され、好まし
くは、NMP、キシレン、トルエン等が使用される。
The binder generally includes polyvinylidene fluoride (PVDF), Teflon, ethylene-propylene-diene-copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (C
MC) is used. The solvent that can be used for the electrode paste may be any solvent that can dissolve or swell the binder, for example, aromatic solvents such as N-methyl-2-pyrrolidone (NMP), benzene, xylene, and toluene, methanol, and ethanol. And alcohols such as propanol and butanol, ketones such as methyl ethyl ketone, and ethers such as dioxane. NMP, xylene, toluene and the like are preferably used.

【0028】前記集電体には、アルミニウム、ステンレ
ス(SUS)、チタン等から成る箔もしくはメッシュ体
の公知な金属製集電体が使用される。電極用ペーストの
固形成分の割合は、本発明の活物質の特性及び電気容量
を考慮して、正極活物質は全固形成分質量の50〜95
質量%、好ましくは60〜90質量%、導電性付与剤は
49〜4質量%、好ましくは39〜4質量%、バインダ
ー(結合材)は1〜46質量%、好ましくは1〜36質
量%において使用される。電極用ペーストの溶媒量は塗
布性から任意に決められ、その固形分濃度が30〜70
質量%、好ましくは40〜60質量%に自由に設定され
る。
As the current collector, a known metal current collector such as a foil or a mesh made of aluminum, stainless steel (SUS), titanium, or the like is used. The ratio of the solid component of the electrode paste is determined in consideration of the characteristics and electric capacity of the active material of the present invention.
% By mass, preferably 60 to 90% by mass, the conductivity imparting agent is 49 to 4% by mass, preferably 39 to 4% by mass, and the binder (binder) is 1 to 46% by mass, preferably 1 to 36% by mass. used. The solvent amount of the electrode paste is arbitrarily determined from the applicability, and the solid content concentration is 30 to 70.
% By mass, preferably 40 to 60% by mass.

【0029】本発明の非水二次電池において使用される
負極には、リチウムイオンを可逆的に吸蔵放出可能な活
物質であれば特に制限はなく、例えば、リチウム金属、
リチウム合金、炭素材料(黒鉛を含む)、金属カルコゲ
ン等が使用できる。本発明の非水二次電池において使用
される非水系電解液中の電解質塩としては、例えば、L
iPF6、LiBF4、LiN(CF3SO22、LiA
sF6、LiCF3SO3、LiC49SO3、LiI、L
iClO4、LiSCN等が挙げられ、好ましくはフッ
素を含有する前記リチウム塩が使用される。
The negative electrode used in the non-aqueous secondary battery of the present invention is not particularly limited as long as it is an active material capable of inserting and extracting lithium ions reversibly.
A lithium alloy, a carbon material (including graphite), a metal chalcogen, or the like can be used. As the electrolyte salt in the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, for example, L
iPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiA
sF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiI, L
iClO 4 , LiSCN and the like are preferable, and the above-mentioned lithium salt containing fluorine is preferably used.

【0030】または、本発明の非水二次電池において非
水系電解液の代わりにポリマー固体電解質を使用しても
よく、材料には限定されない。ポリマー固体電解質は、
通常オリゴオキシエチレン基又はオリゴプロピルオキシ
基を含む高分子固体電解質(SPEと略する)であり、
そのイオン伝導度は10-6〜10-3S/cm程度のもの
が知られている(例えば、特開平4−211412号公
報)。例えば、このSPEには、ポリエチレンオキサイ
ドやポリプロピレンオキサイド、又はポリエチレン、ポ
リプロピレン、ポリアクリロニトリル、ポリブタジエ
ン、ポリメタクリル酸エステル類、、ポリアクリル酸エ
ステル類、ポリスチレン、ポリホスファゼン類、ポリシ
ロキサン類あるいはポリシラン、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン等のベースポリマー
に、オリゴオキシエチレン基もしくはオリゴプロピルオ
キシ基が化学的に結合された高分子が挙げられる。
Alternatively, in the non-aqueous secondary battery of the present invention, a polymer solid electrolyte may be used instead of the non-aqueous electrolyte, and the material is not limited. Polymer solid electrolytes
Usually a solid polymer electrolyte containing an oligooxyethylene group or an oligopropyloxy group (abbreviated as SPE),
It is known that the ionic conductivity is about 10 -6 to 10 -3 S / cm (for example, Japanese Patent Application Laid-Open No. 4-211412). For example, this SPE includes polyethylene oxide or polypropylene oxide, or polyethylene, polypropylene, polyacrylonitrile, polybutadiene, polymethacrylates, polyacrylates, polystyrene, polyphosphazenes, polysiloxanes or polysilane, or polyfluoride. Examples include polymers in which an oligooxyethylene group or an oligopropyloxy group is chemically bonded to a base polymer such as vinylidene or polytetrafluoroethylene.

【0031】非水二次電池の非水系電解液は、前記リチ
ウムイオンを含む電解質を少なくとも1種を非水系電解
液に溶解して用いる。前記非水系電解液の非水溶媒に
は、化学的及び電気化学的に安定で非プロトン性であれ
ば限定されず使用できる。例えば、炭酸ジメチル、炭酸
プロピレン、炭酸エチレン、炭酸メチルエチル、炭酸メ
チルプロピル、炭酸メチルイソプロピル、炭酸メチルブ
チル、炭酸ジエチル、炭酸エチルプロピル、炭酸ジイソ
プロピル、炭酸ジブチル、炭酸1,2−ブチレン、炭酸
エチルイソプロピル、炭酸エチルブチル等の炭酸エステ
ル類が例示される。また、トリエチレングリコールメチ
ルエーテル、テトラエチレングリコールジメチルエーテ
ル等のオリゴエーテル類、プロピオン酸メチル、蟻酸メ
チル等の脂肪族エステル類、ベンゾニトリル、トルニト
リル等の芳香族ニトリル類、ジメチルホルムアミド等の
アミド類、ジメチルスルホキシド等のスルホキシド類、
γーブチロラクトン等のラクトン類、スルホラン等の硫
黄化合物、Nービニルピロリドン、Nーメチルピロリド
ン、リン酸エステル類等も例示できる。なかでも、本発
明では炭酸エステル類、脂肪族エステル類、エーテル類
が好ましい。
As the non-aqueous electrolyte for the non-aqueous secondary battery, at least one kind of the above-mentioned electrolyte containing lithium ions is used by dissolving it in the non-aqueous electrolyte. The non-aqueous solvent of the non-aqueous electrolyte solution can be used without limitation as long as it is chemically and electrochemically stable and aprotic. For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, Carbonic esters such as ethyl butyl carbonate are exemplified. Oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether; aliphatic esters such as methyl propionate and methyl formate; aromatic nitriles such as benzonitrile and tolunitrile; amides such as dimethylformamide; Sulfoxides such as sulfoxide,
Lactones such as γ-butyrolactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphoric esters can also be exemplified. Of these, carbonates, aliphatic esters, and ethers are preferred in the present invention.

【0032】次に、電極特性の評価方法について説明す
る。前記方法により作製した正極、負極、非水電解液又
はポリマー電解質、セパレーター(例えば、ポリプロピ
レン製、ポリエチレン性や共重合系を含む他のポリオレ
フィン製が用いられる。)、及び必要に応じて、負極の
デンドライト生成が原因のマイクロショートを防止する
目的で補強材としてアドバンテック東洋(株)製のシリ
カ繊維濾紙QR−100も併用して、コイン電池(例え
ば2016型)、円筒型電池、角型電池、ポリマー電池
を作製する。そして、この電池に対して100回の充電
・放電サイクル試験を、例えば、定電流定電圧充電−定
電流放電、充電及び放電レート1C(充電開始から2.
5時間で充電休止)、走査電圧3.1V〜4.3Vで行
われる。
Next, a method for evaluating the electrode characteristics will be described. The positive electrode, the negative electrode, the non-aqueous electrolyte or the polymer electrolyte, the separator (for example, polypropylene or another polyolefin containing polyethylene or a copolymer) used by the above method, and the negative electrode if necessary. For the purpose of preventing micro short circuit caused by dendrite generation, silica fiber filter paper QR-100 manufactured by Advantech Toyo Co., Ltd. is also used as a reinforcing material, and coin batteries (for example, 2016 type), cylindrical batteries, prismatic batteries, polymers Make a battery. Then, the battery is subjected to 100 charge / discharge cycle tests, for example, constant current / constant voltage charge-constant current discharge, charge / discharge rate 1C (2.
The charging is stopped after 5 hours), and the scanning is performed at a scanning voltage of 3.1 V to 4.3 V.

【0033】[0033]

【実施例】以下実施例および比較例によって、本発明を
具体的に説明するが、本発明はこれらにより何ら制限さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples.

【0034】(実施例1)正極活物質の製造 炭酸マンガン(BET法比表面積:30m2/g)0.
492モルと炭酸リチウム(BET法比表面積:1m2
/g)0.128モルと酸化アルミニウム(BET法比
表面積:100m2/g)0.0016モルを容量0.
7リットルのボールミルにて1時間混合した後、大気中
で650℃の反応温度で4時間反応を行った。この生成
物をボールミルで1時間解砕した後、大気中で750℃
の熱処理温度で20時間熱処理を行った。
(Example 1) Production of positive electrode active material Manganese carbonate (BET specific surface area: 30 m 2 / g)
492 mol and lithium carbonate (BET specific surface area: 1 m 2
/ G) of 0.128 mol and 0.0016 mol of aluminum oxide (BET specific surface area: 100 m 2 / g) with a capacity of 0.10 mol.
After mixing for 1 hour in a 7 liter ball mill, the mixture was reacted in the atmosphere at a reaction temperature of 650 ° C. for 4 hours. After crushing this product in a ball mill for 1 hour,
At a heat treatment temperature of 20 hours.

【0035】正極活物質の組成は試料を塩酸で分解後、
Liを炎光光度法で、AlをICP法で、Mnを電位差
滴定法でそれぞれ求め、混合比と変化していないことを
確認した。格子定数はJ.B.Nelson,D.P.Rileyの方法(Pr
oc.Phys.Soc.,57,160(1945))で求めた。結晶子サイズ
は、マンガン酸リチウムの(111)面のX線回折ピー
クから以下の条件にて測定し、Scherrerの式を用いて算
出した。結晶子の外形が立方体で大きさの分布を持たな
いと仮定して、結晶子の大きさによる回折線の広がりを
半価幅より算出した値を使用した。なお、単結晶シリコ
ンを炭化タングステン製サンプルミルで粉砕後、44μ
m以下にふるい分けした粉末を外部標準として、装置定
数校正曲線を作成した。但し、測定装置は、理学電機
(株)製Radタイプゴニオメーター、測定モードとして
連続測定、解析ソフトには理学電機(株)RINT2000シリ
ーズのアプリケーションソフトを使用し、結晶子の大き
さの解析を行った。測定条件は、X線(CuKα線)、
出力50kV、180mA、スリット幅(3ヶ所)は1
/2°、1/2°、0.15mm、スキャン方法は2θ
/θ法、スキャン速度は1°/min、測定範囲(2
θ)は17〜20°、ステップは0.004°である。
この方法での結晶子サイズの精度は±30Åであった。
The composition of the positive electrode active material is as follows:
Li was determined by flame photometry, Al by ICP, and Mn by potentiometric titration, and it was confirmed that the mixing ratio was not changed. The lattice constant is determined by the method of JBNelson and DPRiley (Pr
oc.Phys.Soc., 57, 160 (1945)). The crystallite size was measured from the X-ray diffraction peak of the (111) plane of lithium manganate under the following conditions, and calculated using the Scherrer equation. Assuming that the outer shape of the crystallite is cubic and does not have a size distribution, the value obtained by calculating the spread of the diffraction line according to the size of the crystallite from the half width was used. After grinding the single crystal silicon with a tungsten carbide sample mill,
A device constant calibration curve was prepared using the powder sieved to m or less as an external standard. However, the measurement device is a Rad-type goniometer manufactured by Rigaku Denki Co., Ltd., the continuous measurement is used as the measurement mode, and the analysis software uses the RINT2000 series RINT2000 series application software to analyze the crystallite size. Was. The measurement conditions were X-ray (CuKα ray),
Output 50kV, 180mA, slit width (3 places) is 1
/ 2 °, 1/2 °, 0.15mm, scan method is 2θ
/ Θ method, scan speed 1 ° / min, measurement range (2
θ) is 17 to 20 °, and the step is 0.004 °.
The accuracy of the crystallite size in this method was ± 30 °.

【0036】次に、この正極活物質を用いてコイン型電
池を次のような方法で作製した。正極活物質と導電剤で
あるカーボンブラック及びN−メチル−2−ピロリドン
に溶解(又は膨潤)した四フッ化エチレンを質量比で8
0対10対10の割合で混練し、このペーストをアルミ
ニウムエキスパンドメタルから成る集電体上に2t/c
2で加圧成形し正極とした。一方負極として所定の厚
さのリチウム箔を用いた。電解液として炭酸エチレンと
炭酸ジメチルを体積比で1:2の割合で混合した混合液
にLiPF6を1モル/リットルの濃度で溶解したもの
を用いた。これらの正極と負極、ポリプロピレン製のセ
パレーター、電解液を用い、2016型のコイン型電池
を作製した。上記方法で作製した電池を用いて、充放電
速度1C、電圧範囲4.2V〜3.0Vで充放電を繰り
返し、充放電サイクル試験を行なった。複合酸化物の組
成、格子定数、結晶サイズ、放電容量、容量維持率を表
1にまとめた。
Next, a coin-type battery was manufactured using the positive electrode active material by the following method. The mass ratio of the positive electrode active material, the conductive agent carbon black and ethylene tetrafluoride dissolved (or swelled) in N-methyl-2-pyrrolidone is 8 by mass ratio.
The mixture was kneaded at a ratio of 0:10 to 10 and the paste was applied on a current collector made of aluminum expanded metal at 2 t / c.
Pressure molding was performed at m 2 to obtain a positive electrode. On the other hand, a lithium foil having a predetermined thickness was used as a negative electrode. As an electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution obtained by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used. Using these positive and negative electrodes, a polypropylene separator and an electrolytic solution, a 2016 type coin-type battery was produced. Using the battery prepared by the above method, charge / discharge was repeated at a charge / discharge rate of 1 C and a voltage range of 4.2 V to 3.0 V, and a charge / discharge cycle test was performed. Table 1 summarizes the composition, lattice constant, crystal size, discharge capacity, and capacity retention of the composite oxide.

【0037】(実施例2〜14)実施例1を参考に、炭
酸マンガン、炭酸リチウム、酸化アルミニウムの混合比
が異なる以外は実施例1と同様にして正極活物質を製造
し、その格子定数、結晶子サイズ、放電容量、容量維持
率を調べ、その結果を表1にまとめた。
(Examples 2 to 14) Referring to Example 1, a cathode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different. The crystallite size, discharge capacity, and capacity retention were investigated, and the results are summarized in Table 1.

【0038】(実施例15)Li/Mn/Alのモル比
が1.03:1.957:0.013の組成となるよう
に炭酸リチウムと炭酸マンガンと150m2/gの気相
法アルミナをボールミルで混合し、大気中650℃で4
時間反応させた。得られた反応粉に酸化硼素0.4質量
%を添加して、水を分散媒にボールミルで湿式粉砕し
て、平均粒子径0.3μmにした。スラリーを乾燥した
後、不二パウダル(株)社製スパルタンリューザーRM
O−6Hで造粒した。該粉砕粉に造粒バインダーとして
水溶液としたポリビニルアルコールを1.5質量%添加
して造粒した。得られた造粒粉をミキサーで軽く粉砕・
解砕し、風力分級で20μmに整粒した。整粒した造粒
粉を大気中500℃で2時間保持して脱脂処理後、75
0℃で30分焼成して、複合酸化物を得た。
Example 15 Lithium carbonate, manganese carbonate and 150 m 2 / g vapor-phase alumina were mixed so that the molar ratio of Li / Mn / Al was 1.03: 1.957: 0.013. Mix in a ball mill and 650 ° C
Allowed to react for hours. 0.4 mass% of boron oxide was added to the obtained reaction powder, and the mixture was wet-pulverized with a ball mill using water as a dispersion medium to obtain an average particle diameter of 0.3 μm. After drying the slurry, Spartan Luzer RM manufactured by Fuji Paudal Co., Ltd.
Granulated with O-6H. 1.5 mass% of polyvinyl alcohol which was made into an aqueous solution as a granulating binder was added to the pulverized powder to perform granulation. Lightly pulverize the obtained granulated powder with a mixer.
It was crushed and sized to 20 μm by air classification. The sized granulated powder is held in the air at 500 ° C. for 2 hours and then degreased.
The mixture was fired at 0 ° C. for 30 minutes to obtain a composite oxide.

【0039】得られた複合酸化物に純水を添加して固形
分濃度20%のスラリーとし、5分間超音波処理し、上
澄み液を除去するまでの工程を10回繰り返して洗浄
し、100℃で乾燥した。得られたスピネル構造の該複
合酸化物に対して5モル%の硝酸を含有する水溶液に投
入し、水溶液のpHが中性付近で一定になったことを確
認後、濾過・洗浄して100℃で真空乾燥した。そして
300℃で4時間加熱処理し、本発明の正極活物質を得
た。得られた正極活物質を実施例1に記載の方法と同様
にして電池評価を実施した。前記複合酸化物の組成、格
子定数、結晶子サイズ、放電容量、容量維持率の結果を
表1にまとめた。
Pure water was added to the obtained composite oxide to form a slurry having a solid content of 20%, and the resulting mixture was subjected to ultrasonic treatment for 5 minutes, followed by washing 10 times until the supernatant was removed. And dried. The solution was charged into an aqueous solution containing 5 mol% of nitric acid with respect to the obtained composite oxide having a spinel structure, and after confirming that the pH of the aqueous solution became constant around neutrality, filtration and washing were performed to 100 ° C. And vacuum dried. And it heat-processed at 300 degreeC for 4 hours, and obtained the positive electrode active material of this invention. The obtained positive electrode active material was subjected to battery evaluation in the same manner as in Example 1. Table 1 summarizes the results of the composition, lattice constant, crystallite size, discharge capacity, and capacity retention of the composite oxide.

【0040】[0040]

【表1】 [Table 1]

【0041】(比較例1〜10)実施例1を参考に、炭
酸マンガン、炭酸リチウム、酸化アルミニウムの混合比
が異なる以外は実施例1と同様にして正極活物質を製造
し、その格子定数、結晶子サイズ、放電容量、容量維持
率を調べ、その結果を表2にまとめた。
Comparative Examples 1 to 10 A positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different. The crystallite size, discharge capacity, and capacity retention were examined, and the results are summarized in Table 2.

【0042】(比較例11、12)実施例1を参考に、
焼成温度が異なる以外は実施例1と同様にして正極活物
質を製造し、その格子定数、結晶子サイズ、放電容量、
容量維持率を調べ、その結果を表2にまとめた。
(Comparative Examples 11 and 12) Referring to Example 1,
A positive electrode active material was produced in the same manner as in Example 1 except that the firing temperature was different, and the lattice constant, crystallite size, discharge capacity,
The capacity retention was examined, and the results are summarized in Table 2.

【0043】(比較例13)実施例1を参考に、マンガ
ン原料としてBET比表面積が8m2/gの炭酸マンガ
ンを用いる以外は実施例1と同様にして正極活物質を製
造し、その格子定数、結晶子サイズ、放電容量、容量維
持率を調べ、その結果を表2にまとめた。
Comparative Example 13 A positive electrode active material was produced in the same manner as in Example 1 except that manganese carbonate having a BET specific surface area of 8 m 2 / g was used as a manganese raw material. , Crystallite size, discharge capacity, and capacity retention ratio were examined, and the results are summarized in Table 2.

【0044】(比較例14)実施例1を参考に、マンガ
ン原料としてBET比表面積が15m2/gの電解二酸
化マンガンを用いる以外は実施例1と同様にして正極活
物質の格子定数、結晶子サイズ、放電容量、容量維持率
を調べ、その結果を表2にまとめた。
(Comparative Example 14) With reference to Example 1, except that electrolytic manganese dioxide having a BET specific surface area of 15 m 2 / g was used as a manganese raw material, the lattice constant and crystallite of the positive electrode active material were changed in the same manner as in Example 1. The size, discharge capacity, and capacity retention were examined, and the results are summarized in Table 2.

【0045】(比較例15)実施例1を参考に、マンガ
ン原料としてBET比表面積が80m2/gの電解二酸
化マンガンを用いる以外は実施例1と同様にして正極活
物質の格子定数、結晶子サイズ、放電容量、容量維持率
を調べ、その結果を表2にまとめた。
(Comparative Example 15) With reference to Example 1, except that electrolytic manganese dioxide having a BET specific surface area of 80 m 2 / g was used as a manganese raw material, the lattice constant and crystallite of the positive electrode active material were changed in the same manner as in Example 1. The size, discharge capacity, and capacity retention were examined, and the results are summarized in Table 2.

【0046】(比較例16)実施例1を参考に、マンガ
ン原料としてBET比表面積が5m2/gの三二酸化マ
ンガンを用いる以外は実施例1と同様にして正極活物質
の格子定数、結晶子サイズ、放電容量、容量維持率を調
べ、その結果を表2にまとめた。
(Comparative Example 16) With reference to Example 1, the same procedure as in Example 1 was carried out except that manganese trioxide having a BET specific surface area of 5 m 2 / g was used as a manganese raw material. The size, discharge capacity, and capacity retention were examined, and the results are summarized in Table 2.

【0047】(比較例17)実施例1を参考に、アルミ
ニウム原料としてBET比表面積が10m2/gの酸化
アルミニウムを用いる以外は実施例1と同様にして正極
活物質の格子定数、結晶子サイズ、放電容量、容量維持
率を調べ、その結果を表2にまとめた。
Comparative Example 17 Referring to Example 1, except that aluminum oxide having a BET specific surface area of 10 m 2 / g was used as an aluminum raw material, the lattice constant and crystallite size of the positive electrode active material were changed in the same manner as in Example 1. , Discharge capacity and capacity retention rate were examined, and the results are summarized in Table 2.

【0048】(比較例18)実施例1を参考に、アルミ
ニウム原料としてBET比表面積が10m2/gの酸化
アルミニウムを用いる以外は実施例12と同様にして正
極活物質の格子定数、結晶子サイズ、放電容量、容量維
持率を調べ、その結果を表2にまとめた。
(Comparative Example 18) Referring to Example 1, except that aluminum oxide having a BET specific surface area of 10 m 2 / g was used as an aluminum raw material, the lattice constant and crystallite size of the positive electrode active material were changed in the same manner as in Example 12. , Discharge capacity and capacity retention rate were examined, and the results are summarized in Table 2.

【0049】(比較例19)実施例1を参考に、炭酸マ
ンガン、炭酸リチウム、酸化アルミニウムの混合比が異
なる以外は実施例1と同様にして正極活物質を製造し、
その格子定数、結晶子サイズ、放電容量、容量維持率を
調べ、その結果を表2にまとめた。但し、本比較例では
酸化アルミニウムの添加をなしとした。
Comparative Example 19 A positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different.
The lattice constant, crystallite size, discharge capacity, and capacity retention were examined, and the results are summarized in Table 2. However, in this comparative example, aluminum oxide was not added.

【0050】[0050]

【表2】 [Table 2]

【0051】以上、前記実施例1〜15及び比較例1〜
19で得られた結果として、LiXAlYMn3-X-YZ
おけるX、Y、格子定数(Å)、結晶子サイズ(Å)、
初期の放電容量(mAh/g)、100サイクル経過後
の放電容量(mAh/g)、100サイクル経過後の容
量維持率をまとめ、表1又は表2に示した。組成比Zを
示す酸素量は、正確に分析するのが難しく、また酸素欠
陥もあるが、通常3.5<z≦4.5の範囲である。容
量維持率は、(100サイクル経過後の放電容量÷初期
サイクルの放電容量)×100の計算から求めた。
The above Examples 1 to 15 and Comparative Examples 1 to
As the results obtained in step 19, X, Y, lattice constant (Å), crystallite size (Å), and crystallite size (Li) in Li X Al Y Mn 3-XY O Z
Table 1 or Table 2 summarizes the initial discharge capacity (mAh / g), the discharge capacity after 100 cycles (mAh / g), and the capacity retention rate after 100 cycles. The amount of oxygen indicating the composition ratio Z is difficult to accurately analyze and has oxygen vacancies, but is usually in the range of 3.5 <z ≦ 4.5. The capacity retention rate was determined from the calculation of (discharge capacity after 100 cycles / discharge capacity in initial cycle) × 100.

【0052】[0052]

【発明の効果】従来のLi、Mn、Al及びOからなる
スピネル構造を有する複合酸化物Li xAlyMn3-x-y
zの製造において、その固溶化が進みにくいためにA
lを多く添加する必要があり、その結果二次電池を製作
した時の電池の初期容量が小さくなってしまう欠点があ
ったが、本発明の正極活物質は、Al添加比を0<y<
0.02の低濃度範囲にすることで、その製造時の固溶
化が予想外に進むことを見出した。
The present invention comprises conventional Li, Mn, Al and O.
Complex oxide Li having spinel structure xAlyMn3-xy
OzIn the production of
It is necessary to add a large amount of l, and as a result, a secondary battery is manufactured.
The disadvantage is that the initial capacity of the battery when
However, the positive electrode active material of the present invention has an Al addition ratio of 0 <y <
By setting it in the low concentration range of 0.02,
Was found to progress unexpectedly.

【0053】また、組成範囲が1.0<x≦1.1、0
<y<0.02、3.5<z≦4.5の範囲のLix
yMn3-x-yz構造を有する複合酸化物において、そ
の格子定数(Å)は、L1(x,y)=−0.24x−
0.28y+8.481で表される値より小さく、L2
(x,y)=−0.24x−0.72y+8.481で
表される値よりも大きいものが好ましい。また、前記組
成範囲において、完全に固溶体を作るときには格子定数
(Å)は、L2(x,y)の関係式(−0.24x−
0.72y+8.481)で表される面内にあることを
はじめて見出した。本発明において、前記正極活物質を
非水二次電池に用いることで、従来のマンガン酸化物系
を用いた電池に比べ、高容量で容量低下の殆ど起こらな
い、実用性の高い非水二次電池が得られることを見出し
た。
When the composition range is 1.0 <x ≦ 1.1,0
Li x A in the range of <y <0.02, 3.5 <z ≦ 4.5
In the composite oxide having a l y Mn 3-xy O z structure, the lattice constant (Å) is, L1 (x, y) = - 0.24x-
0.22y + 8.481, smaller than the value represented by L2
A value larger than the value represented by (x, y) =-0.24x-0.72y + 8.481 is preferable. In the above composition range, when a solid solution is completely formed, the lattice constant (Å) is expressed by the relational expression (−0.24x−) of L2 (x, y).
(0.72y + 8.481) for the first time. In the present invention, by using the positive electrode active material in a non-aqueous secondary battery, compared to a battery using a conventional manganese oxide-based battery, the capacity is hardly reduced at high capacity, and a highly practical non-aqueous secondary battery is used. It has been found that a battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において有効な格子定数の範囲を表す。FIG. 1 shows a range of lattice constants effective in the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AC06 AD03 AD06 AE05 AE07 5H029 AJ03 AJ05 AK03 AL04 AL06 AL07 AL12 AM00 AM03 AM04 AM16 BJ02 BJ03 HJ01 HJ02 HJ05 HJ07 HJ13 HJ14 5H050 AA07 AA08 CA09 CB05 CB07 CB08 CB12 DA10 DA11 DA18 FA19 GA02 GA10 HA01 HA02 HA05 HA07 HA13 HA14  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G048 AA04 AB01 AC06 AD03 AD06 AE05 AE07 5H029 AJ03 AJ05 AK03 AL04 AL06 AL07 AL12 AM00 AM03 AM04 AM16 BJ02 BJ03 HJ01 HJ02 HJ05 HJ07 HJ13 HJ14 5H050 AA07 CB07 DA09CB09 DA18 FA19 GA02 GA10 HA01 HA02 HA05 HA07 HA13 HA14

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】Li、Mn、Al及びOからなるスピネル
構造を有する複合酸化物が、LixAlyMn3-x-yz
おいて、1.0<x≦1.1、0<y<0.02、3.
5<z≦4.5の範囲であることを特徴とする非水二次
電池用正極活物質。
1. A composite oxide having a spinel structure composed of Li, Mn, Al and O is composed of Li x Al y Mn 3 -xy O z, wherein 1.0 <x ≦ 1.1 and 0 <y <0. .02,3.
A cathode active material for a non-aqueous secondary battery, wherein 5 <z ≦ 4.5.
【請求項2】スピネル構造を有する複合酸化物の格子定
数(Å)が、−0.24x−0.28y+8.481よ
り小さく、−0.24x−0.72y+8.481以上
であることを特徴とする請求項1に記載の非水二次電池
用正極活物質。
2. The composite oxide having a spinel structure has a lattice constant (Å) smaller than -0.24x-0.28y + 8.481 and at least -0.24x-0.72y + 8.481 or more. The positive electrode active material for a non-aqueous secondary battery according to claim 1.
【請求項3】スピネル構造を有する複合酸化物の結晶子
サイズが、400Å以上かつ950Å以下であることを
特徴とする請求項1又は2に記載の非水二次電池用正極
活物質。
3. The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the composite oxide having a spinel structure has a crystallite size of 400 ° or more and 950 ° or less.
【請求項4】スピネル構造を有する複合酸化物が、平均
粒子径2μm以下の粒子である請求項1乃至3のいずれ
か1項に記載の非水二次電池用正極活物質。
4. The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the composite oxide having a spinel structure is a particle having an average particle diameter of 2 μm or less.
【請求項5】スピネル構造を有する複合酸化物が、粒子
径3μm〜50μmの造粒焼成された粒子である請求項
1乃至3のいずれか1項に記載の非水二次電池用正極活
物質。
5. The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the composite oxide having a spinel structure is granulated and calcined particles having a particle diameter of 3 μm to 50 μm. .
【請求項6】請求項1乃至5のいずれか1項に記載の非
水二次電池用正極活物質を含んだ電極用ペースト。
6. An electrode paste containing the positive electrode active material for a non-aqueous secondary battery according to claim 1.
【請求項7】ペーストが、正極活物質又はその造粒物、
導電性付与剤、バインダー及び溶媒を含んでいることを
特徴とする請求項6に記載の電極用ペースト。
7. A paste comprising: a positive electrode active material or a granulated product thereof;
The electrode paste according to claim 6, comprising a conductivity imparting agent, a binder, and a solvent.
【請求項8】ペースト中の正極活物質又はその造粒物、
導電性付与剤及びバインダーの全固形分濃度が、30質
量%〜70質量%の範囲であることを特徴とする請求項
7に記載の電極用ペースト。
8. A positive electrode active material or a granulated product thereof in a paste,
The electrode paste according to claim 7, wherein the total solid content of the conductivity-imparting agent and the binder is in a range of 30% by mass to 70% by mass.
【請求項9】請求項1乃至5のいずれか1項に記載の非
水二次電池用正極活物質を含んだ正極。
9. A positive electrode comprising the positive electrode active material for a non-aqueous secondary battery according to claim 1.
【請求項10】リチウム化合物と、比表面積が10m2
/g以上100m2/g以下の炭酸マンガン、及びアル
ミニウム化合物を混合し、これを350℃以上680℃
以下の温度で1時間以上焼成反応させ、次いで解砕後、
生成物を730℃以上900℃以下の温度で加熱処理す
ることを特徴とする非水二次電池用正極活物質の製造方
法。
10. A lithium compound having a specific surface area of 10 m 2.
/ G or more and 100 m 2 / g or less of manganese carbonate and an aluminum compound, and mixed at 350 ° C. to 680 ° C.
Baking reaction at the following temperature for 1 hour or more, then after crushing,
A method for producing a positive electrode active material for a non-aqueous secondary battery, comprising heating the product at a temperature of 730 ° C or more and 900 ° C or less.
【請求項11】アルミニウム化合物が、比表面積50m
2/g以上200m2/g以下の化合物であることを特徴
とする請求項10に記載の非水二次電池用正極活物質の
製造方法。
11. An aluminum compound having a specific surface area of 50 m
The method for producing a positive electrode active material for a nonaqueous secondary battery according to claim 10, characterized in that the 2 / g or more 200 meters 2 / g or less of compound.
【請求項12】アルミニウム化合物が、酸化アルミニウ
ム(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等のアル
ミナ等)、Al(OH)3、Al(NO33、Al2(S
43(アルミナイト等)、酢酸アルミニウム及びそれ
らの水和物からなる群より選ばれた少なくとも1種の化
合物である請求項10又は11に記載の非水二次電池用
正極活物質の製造方法。
12. An aluminum compound comprising aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, ρ, etc.), Al (OH) 3 , Al (NO 3 ) 3 , Al 2 (S
The positive electrode active material for a non-aqueous secondary battery according to claim 10, wherein the positive electrode active material is at least one compound selected from the group consisting of O 4 ) 3 (aluminite), aluminum acetate, and hydrates thereof. Production method.
【請求項13】リチウムイオンを可逆的に吸蔵放出可能
な活物質を含む負極と、非水系電解液又はポリマー電解
質と、Li、Mn、Al及びOからなるスピネル構造を
有する複合酸化物の活物質を含む正極を備えた非水二次
電池において、該複合酸化物が請求項1乃至5のいずれ
か1項に記載の非水二次電池用正極活物質であることを
特徴とする非水二次電池。
13. An active material comprising a negative electrode containing an active material capable of reversibly storing and releasing lithium ions, a nonaqueous electrolyte or a polymer electrolyte, and a composite oxide having a spinel structure comprising Li, Mn, Al and O. A non-aqueous secondary battery comprising a positive electrode comprising: a non-aqueous secondary battery, wherein the composite oxide is the positive electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 5. Next battery.
【請求項14】請求項13に記載の非水二次電池が、コ
イン型電池又は円筒型電池、角型電池、ポリマー電池で
ある非水二次電池。
14. A non-aqueous secondary battery according to claim 13, wherein the non-aqueous secondary battery is a coin battery, a cylindrical battery, a prismatic battery, or a polymer battery.
JP2000032692A 2000-02-03 2000-02-03 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same Expired - Fee Related JP4543474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032692A JP4543474B2 (en) 2000-02-03 2000-02-03 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032692A JP4543474B2 (en) 2000-02-03 2000-02-03 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010031612A Division JP2010157519A (en) 2010-02-16 2010-02-16 Method of manufacturing positive electrode active material

Publications (2)

Publication Number Publication Date
JP2001216968A true JP2001216968A (en) 2001-08-10
JP4543474B2 JP4543474B2 (en) 2010-09-15

Family

ID=18557259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032692A Expired - Fee Related JP4543474B2 (en) 2000-02-03 2000-02-03 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4543474B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208401A (en) * 2001-01-09 2002-07-26 Toshiba Electronic Engineering Corp Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery
JP2002226213A (en) * 2001-01-25 2002-08-14 Nippon Chem Ind Co Ltd Lithium manganese complex oxide powder, its production method, cathode active material for lithium secondary cell, and lithium secondary cell
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2006073339A (en) * 2004-09-02 2006-03-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery, and manufacturing method of lithium secondary battery
WO2009063630A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2010038424A1 (en) * 2008-10-01 2010-04-08 戸田工業株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2014063732A (en) * 2012-08-30 2014-04-10 Jgc Catalysts & Chemicals Ltd Positive electrode for all-solid-state lithium ion battery, mixture for obtaining the positive electrode, method for manufacturing them, and all-solid-state lithium ion battery
CN104157820A (en) * 2014-07-26 2014-11-19 新余英泰能科技有限公司 Method for serially connecting square polymer batteries in length direction
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2016100303A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Manufacturing method of electrode for lithium ion secondary battery
CN109478645A (en) * 2016-07-14 2019-03-15 三井金属矿业株式会社 Fully solid positive active material for lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JPH11176441A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JPH11302020A (en) * 1998-04-20 1999-11-02 Ube Ind Ltd Lithium manganese compound oxide, its production and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JPH11176441A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JPH11302020A (en) * 1998-04-20 1999-11-02 Ube Ind Ltd Lithium manganese compound oxide, its production and its use

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208401A (en) * 2001-01-09 2002-07-26 Toshiba Electronic Engineering Corp Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery
JP2002226213A (en) * 2001-01-25 2002-08-14 Nippon Chem Ind Co Ltd Lithium manganese complex oxide powder, its production method, cathode active material for lithium secondary cell, and lithium secondary cell
JP2004241242A (en) * 2003-02-05 2004-08-26 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP2006073339A (en) * 2004-09-02 2006-03-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery, and manufacturing method of lithium secondary battery
CN101855754A (en) * 2007-11-12 2010-10-06 户田工业株式会社 Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US9496551B2 (en) 2007-11-12 2016-11-15 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
EP2214233A1 (en) * 2007-11-12 2010-08-04 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2009063630A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
EP2214233A4 (en) * 2007-11-12 2014-04-23 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010108926A (en) * 2008-10-01 2010-05-13 Toda Kogyo Corp Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2010038424A1 (en) * 2008-10-01 2010-04-08 戸田工業株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US10056612B2 (en) 2008-10-01 2018-08-21 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2014063732A (en) * 2012-08-30 2014-04-10 Jgc Catalysts & Chemicals Ltd Positive electrode for all-solid-state lithium ion battery, mixture for obtaining the positive electrode, method for manufacturing them, and all-solid-state lithium ion battery
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
CN104157820A (en) * 2014-07-26 2014-11-19 新余英泰能科技有限公司 Method for serially connecting square polymer batteries in length direction
WO2016084600A1 (en) * 2014-11-26 2016-06-02 日本ゼオン株式会社 Method for manufacturing electrode for lithium ion secondary cell
JP2016100303A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Manufacturing method of electrode for lithium ion secondary battery
CN109478645A (en) * 2016-07-14 2019-03-15 三井金属矿业株式会社 Fully solid positive active material for lithium secondary battery

Also Published As

Publication number Publication date
JP4543474B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
KR100653170B1 (en) Positive plate active material, method for producing the same, and secondary cell
JP4644895B2 (en) Lithium secondary battery
KR100309773B1 (en) Positive active material for lithium secondary battery and method of preparing the same
KR101689213B1 (en) Positive electrode active material for lithium secondary battery, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
WO2018043671A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR20010040161A (en) Active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
WO2001036334A1 (en) Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
US6673491B2 (en) Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
KR20090037452A (en) Lithium composite metal oxide
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP7471903B2 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP3132504B2 (en) Non-aqueous electrolyte secondary battery
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP5168757B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery
JP2002003220A (en) Anode material for lithium ion secondary battery, anode and battery using it
JP2010157519A (en) Method of manufacturing positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees