JP2001215412A - Oblique projection optical system - Google Patents

Oblique projection optical system

Info

Publication number
JP2001215412A
JP2001215412A JP2000027303A JP2000027303A JP2001215412A JP 2001215412 A JP2001215412 A JP 2001215412A JP 2000027303 A JP2000027303 A JP 2000027303A JP 2000027303 A JP2000027303 A JP 2000027303A JP 2001215412 A JP2001215412 A JP 2001215412A
Authority
JP
Japan
Prior art keywords
image plane
optical system
projection optical
oblique projection
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000027303A
Other languages
Japanese (ja)
Other versions
JP2001215412A5 (en
JP4419243B2 (en
Inventor
Satoshi Osawa
聡 大澤
Kenji Konno
賢治 金野
Atsushi Ishihara
淳 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2000027303A priority Critical patent/JP4419243B2/en
Publication of JP2001215412A publication Critical patent/JP2001215412A/en
Publication of JP2001215412A5 publication Critical patent/JP2001215412A5/ja
Application granted granted Critical
Publication of JP4419243B2 publication Critical patent/JP4419243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oblique projection optical system capable of being made compact while an oblique projection angle is sufficiently secured, easy to be produced and having high performance. SOLUTION: An image is projected magnified in an oblique direction from a primary image surface 11 to a secondary image surface 12. This optical system is equipped with two ore more refractive lens groups eccentric each other and one or more reflection surfaces having power. When a light beam passing through the center of a diaphragm ST from the center of an image surface 11 and reaching the center of the image surface 12 is set as the center light beam of the screen, 10 deg.<θ0<70 deg. and 0.40<S1/S<0.9 [θ0: the angle formed by the center light beam of the screen with the normal to the image surface 12, S: the optical path length of the center light beam of the screen from the image surface 11 to the image surface 12 and S1: the optical path length of the center light beam of the screen from the image surface 12 to the first optical surface having power] is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は斜め投影光学系に関
するものであり、例えば1次像面から2次像面への斜め
方向の拡大投影を行う、画像投影装置に好適な斜め投影
光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oblique projection optical system, and more particularly, to an oblique projection optical system suitable for an image projection apparatus for performing enlarged projection in an oblique direction from a primary image plane to a secondary image plane. Things.

【0002】[0002]

【従来の技術】液晶ディスプレイ(LCD:liquid crys
tal display)等に表示された画像をスクリーンに拡大投
影する画像投影装置において、スクリーンの大型化を達
成しつつも投影装置全体をコンパクトにする目的で、画
像を斜め方向からスクリーンに拡大投影する装置が種々
提案されている。その具体的な例としては、投影光学系
のすべての光学要素を反射ミラーで構成した装置(特開
平10−111474号公報)、投影光学系のすべての
光学要素を屈折レンズで構成した装置(特開平10−2
82451号公報)、反射ミラーと屈折レンズとが組み
合わされた投影光学系を有する装置(特開平9−179
064号公報)が挙げられる。
2. Description of the Related Art Liquid crystal displays (LCD)
(tal display), etc., in an image projection device that enlarges and projects an image displayed on a screen, the device that enlarges and projects an image on a screen from an oblique direction in order to make the entire projection device compact while achieving a large screen. Have been proposed. Specific examples thereof include an apparatus in which all optical elements of the projection optical system are configured by reflecting mirrors (Japanese Patent Application Laid-Open No. H10-111474), and an apparatus in which all optical elements of the projection optical system are configured by refraction lenses (special). Kaihei 10-2
No. 82451), a device having a projection optical system in which a reflection mirror and a refraction lens are combined (Japanese Patent Laid-Open No. 9-179).
064).

【0003】[0003]

【発明が解決しようとする課題】特開平10−1114
74号公報で提案されているように、すべての光学要素
を反射ミラーで構成すると、構成要素を少なくすること
ができる。しかし、反射ミラーには色収差補正の自由度
がないため、多板式によるカラー化の構成では色合成用
光学素子の配置に制約が生じてしまう。また、大径の曲
面ミラーを低コストで得るためにはミラーをプラスチッ
クで成型する必要があるが、プラスチック面上に高効率
な反射コートを形成することは困難である。このため、
プラスチック製のミラーを高輝度のプロジェクターに使
用すると、ミラーの温度が上昇して反射面形状が変形
し、収差の悪化や耐久性の低下を招くことになる。
Problems to be Solved by the Invention
As proposed in Japanese Patent Publication No. 74, when all the optical elements are constituted by reflection mirrors, the number of components can be reduced. However, since the reflection mirror has no degree of freedom in correcting chromatic aberration, the arrangement of the color combining optical element is restricted in a multi-plate type color configuration. Further, in order to obtain a large-diameter curved mirror at low cost, it is necessary to mold the mirror with plastic, but it is difficult to form a highly efficient reflective coat on the plastic surface. For this reason,
When a plastic mirror is used for a high-brightness projector, the temperature of the mirror rises and the shape of the reflecting surface is deformed, resulting in deterioration of aberrations and deterioration of durability.

【0004】特開平10−282451号公報で提案さ
れているように、すべての光学要素を屈折レンズで構成
すると、比較的小さい面積の光学要素で斜め投影を達成
することができる。しかし、偏心したレンズ群が多数必
要であり、そのうちのいくつかは大きく偏心させる必要
があるため、光学要素の保持が困難である。特開平9−
179064号公報で提案されているように、反射ミラ
ーと屈折レンズとを組み合わせれば、偏心したレンズ群
は少なくて済み、投影光学系の構成も簡単になる。しか
し、パワーを有するとともに面積の非常に大きい製造困
難なミラーが必要になる。
[0004] As proposed in Japanese Patent Application Laid-Open No. 10-282451, when all optical elements are constituted by refractive lenses, oblique projection can be achieved with optical elements having a relatively small area. However, a large number of decentered lens groups are required, and some of them need to be largely decentered, so that it is difficult to hold the optical element. JP-A-9-
As proposed in Japanese Patent No. 179064, if a reflecting mirror and a refracting lens are combined, the number of decentered lens groups can be reduced, and the configuration of the projection optical system can be simplified. However, a mirror that has power and has a very large area and is difficult to manufacture is required.

【0005】本発明はこのような状況に鑑みてなされた
ものであって、斜め投影角度を十分にとりながらコンパ
クト化を達成した、製造容易で高性能な斜め投影光学系
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to provide an easy-to-manufacture, high-performance oblique projection optical system that achieves compactness while taking a sufficient oblique projection angle. I do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の斜め投影光学系は、縮小側の1次像面
から拡大側の2次像面への斜め方向の拡大投影を行う斜
め投影光学系であって、互いに偏心した2つ以上の屈折
レンズ群を備えるとともに、パワーを有する反射面を1
面以上備え、前記1次像面から前記2次像面までに中間
実像を結像することなく、前記1次像面の画面中心から
絞りの中心を通り前記2次像面の画面中心に到達する光
線を画面中心光線とするとき、以下の条件式を満たすこ
とを特徴とする。 10°<θo<70° 0.40<S1/S<0.9 ただし、 θo:画面中心光線が2次像面の法線となす角度、 S :1次像面から2次像面までの画面中心光線の光路
長、 S1:2次像面から最初のパワーを有する光学面までの画
面中心光線の光路長 、である。
In order to achieve the above object, an oblique projection optical system according to a first aspect of the present invention comprises an obliquely enlarged projection from a primary image plane on a reduction side to a secondary image plane on an enlargement side. Is an oblique projection optical system that includes two or more refracting lens groups decentered from each other and has a reflecting surface having power of 1
Surface and reaches the screen center of the secondary image surface from the screen center of the primary image surface through the center of the stop without forming an intermediate real image from the primary image surface to the secondary image surface. The following conditional expression is satisfied when the light beam to be used is the screen center light beam. 10 ° <θo <70 ° 0.40 <S1 / S <0.9, where θo: the angle between the screen center ray and the normal to the secondary image plane, S: the screen center ray from the primary image plane to the secondary image plane Optical path length, S1: The optical path length of the central ray of the screen from the secondary image plane to the optical surface having the first power.

【0007】第2の発明の斜め投影光学系は、上記第1
の発明の構成において、前記1次像面と前記絞りとの間
に屈折面のみが配置されていることを特徴とする。
[0007] The oblique projection optical system according to a second aspect of the present invention provides the oblique projection optical system according to the first aspect.
In the configuration of the present invention, only a refracting surface is disposed between the primary image surface and the stop.

【0008】第3の発明の斜め投影光学系は、上記第1
の発明の構成において、前記反射面の1面以上が自由曲
面形状を有することを特徴とする。
[0008] The oblique projection optical system according to a third aspect of the present invention provides the oblique projection optical system according to the first aspect.
In one embodiment of the invention, at least one of the reflection surfaces has a free-form surface shape.

【0009】第4の発明の斜め投影光学系は、上記第1
の発明の構成において、前記絞りより2次像面側に、前
記反射面を構成する反射ミラーが2面配置されており、
絞り側の反射ミラーが正パワーを有し、2次像面側の反
射ミラーが負パワーを有することを特徴とする。
The oblique projection optical system according to a fourth aspect of the present invention provides the oblique projection optical system according to the first aspect.
In the configuration of the invention, two reflecting mirrors constituting the reflecting surface are arranged on the secondary image surface side of the stop,
The reflection mirror on the stop side has positive power, and the reflection mirror on the secondary image plane side has negative power.

【0010】第5の発明の斜め投影光学系は、上記第1
の発明の構成において、前記屈折レンズ群を構成してい
る屈折レンズのうち最も1次像面側に配置されている屈
折レンズが正のパワーを有し、以下の条件式を満たすこ
とを特徴とする。 -1.7<fs×βy/S<-0.8 ただし、 fs:最も1次像面側の正の屈折レンズの焦点距離、 βy:斜め投影方向の拡大倍率、 である。
The oblique projection optical system according to a fifth aspect of the present invention provides the oblique projection optical system according to the first aspect.
In the configuration of the invention, the refractive lens arranged closest to the primary image plane among the refractive lenses constituting the refractive lens group has a positive power and satisfies the following conditional expression. I do. −1.7 <fs × βy / S <−0.8 where fs: focal length of the positive refraction lens closest to the primary image plane, βy: magnification in the oblique projection direction.

【0011】第6の発明の斜め投影光学系は、上記第1
の発明の構成において、一部の光学要素を動かすことで
フォーカスを行うことを特徴とする。
The oblique projection optical system according to a sixth aspect of the present invention provides the oblique projection optical system according to the first aspect.
In the structure of the invention, the focus is performed by moving some of the optical elements.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施した斜め投影
光学系を、図面を参照しつつ説明する。図1に第1の実
施の形態の1次像面(I1)から2次像面(I2)までの投影光
路全体を示し、図2に第1の実施の形態の光学構成及び
投影光路要部を示す。図5に第2の実施の形態の1次像
面(I1)から2次像面(I2)までの投影光路全体を示し、図
6に第2の実施の形態の光学構成及び投影光路要部を示
す。また、図9及び図10に第3の実施の形態の1次像
面(I1)から2次像面(I2)までの投影光路全体を各フォー
カスポジション(i),(ii)について示し、図11及び図1
2に第3の実施の形態の光学構成及び投影光路要部を各
フォーカスポジション(i),(ii)について示す。なお、こ
れらの光路図は後述の直交座標系(X,Y,Z)におけるY-Z断
面構成を示しており、図2,図6,図11及び図12
中、*印が付された面は非球面、$印が付された面は自由
曲面であることを示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an oblique projection optical system embodying the present invention will be described with reference to the drawings. FIG. 1 shows the entire projection optical path from the primary image plane (I1) to the secondary image plane (I2) according to the first embodiment, and FIG. 2 shows the optical configuration and the main parts of the projection optical path according to the first embodiment. Is shown. FIG. 5 shows the entire projection optical path from the primary image plane (I1) to the secondary image plane (I2) according to the second embodiment, and FIG. 6 shows the optical configuration and the essential parts of the projection optical path according to the second embodiment. Is shown. 9 and 10 show the entire projection optical path from the primary image plane (I1) to the secondary image plane (I2) according to the third embodiment for each focus position (i), (ii). 11 and FIG.
FIG. 2 shows an optical configuration and a main part of a projection optical path according to the third embodiment at respective focus positions (i) and (ii). Note that these optical path diagrams show the YZ cross-sectional configuration in a rectangular coordinate system (X, Y, Z) described later, and are shown in FIGS.
In the figure, the surface marked with * indicates an aspheric surface, and the surface marked with $ indicates a free-form surface.

【0013】各実施の形態は、縮小側の1次像面(I1)か
ら拡大側の2次像面(I2)への斜め方向の拡大投影を行
う、画像投影装置用の斜め投影光学系である。したがっ
て、1次像面(I1)は2次元画像を表示する表示素子(例
えばLCD)の表示面に相当し、2次像面(I2)は投影像
面(つまりスクリーン面)に相当する。なお、2次像面(I
2)から1次像面(I1)への斜め方向の縮小投影を行う斜め
投影光学系として、各実施の形態を画像読み取り装置に
用いることも可能である。その場合、1次像面(I1)は画
像読み取りを行う受光素子[例えばCCD(Charge Coupl
ed Device)]の受光面に相当し、2次像面(I2)は読み取
り画像面(つまりフィルム等の原稿面)に相当する。
Each of the embodiments is directed to an oblique projection optical system for an image projection apparatus, which performs oblique enlargement projection from a reduction-side primary image plane (I1) to an enlargement-side secondary image plane (I2). is there. Therefore, the primary image plane (I1) corresponds to a display surface of a display element (for example, LCD) for displaying a two-dimensional image, and the secondary image plane (I2) corresponds to a projection image plane (that is, a screen surface). The secondary image plane (I
Each of the embodiments can be used in an image reading apparatus as an oblique projection optical system that performs diagonal reduction projection in the oblique direction from 2) to the primary image plane (I1). In that case, the primary image plane (I1) is a light receiving element for reading an image [for example, a CCD (Charge Coupl
ed Device)], and the secondary image surface (I2) corresponds to a read image surface (that is, a document surface such as a film).

【0014】第1の実施の形態(図1,図2)は、1次像
面(I1)側(縮小側)から順に、プリズムブロック(Pr)と、
偏心した1枚の屈折レンズから成る第1屈折レンズ群(G
1)と、共軸系を成す4枚の屈折レンズから成る第2屈折
レンズ群(G2)と、絞り(ST)と、正パワーを有する第1反
射ミラー(M1)と、負パワーを有する第2反射ミラー(M2)
と、で構成されている。第1屈折レンズ群(G1)を構成し
ている屈折レンズの縮小側面は非球面から成っており、
第1,第2反射ミラー(M1,M2)の反射面は自由曲面から
成っている。
In the first embodiment (FIGS. 1 and 2), a prism block (Pr) is sequentially provided from the primary image plane (I1) side (reduction side).
A first refractive lens group (G
1), a second refraction lens group (G2) composed of four refraction lenses forming a coaxial system, a stop (ST), a first reflection mirror (M1) having a positive power, and a second reflection lens (M1) having a negative power. 2 reflection mirror (M2)
And is composed of The reduced side surface of the refractive lens constituting the first refractive lens group (G1) is formed of an aspheric surface,
The reflecting surfaces of the first and second reflecting mirrors (M1, M2) are free-form surfaces.

【0015】第2の実施の形態(図5,図6)は、1次像
面(I1)側(縮小側)から順に、プリズムブロック(Pr)と、
偏心した1枚の屈折レンズから成る第1屈折レンズ群(G
1)と、共軸系を成す4枚の屈折レンズから成る第2屈折
レンズ群(G2)と、絞り(ST)と、偏心した1枚の屈折レン
ズから成る第3屈折レンズ群(G3)と、偏心した1枚の屈
折レンズから成る第4屈折レンズ群(G4)と、負パワーを
有する第1反射ミラー(M1)と、で構成されている。第1
屈折レンズ群(G1)を構成している屈折レンズの縮小側面
は非球面から成っており、第4屈折レンズ群(G4)を構成
している屈折レンズの拡大側面は自由曲面から成ってお
り、第1反射ミラー(M1)の反射面は自由曲面から成って
いる。
In the second embodiment (FIGS. 5 and 6), a prism block (Pr) is arranged in order from the primary image plane (I1) side (reduction side).
A first refractive lens group (G
1), a second refraction lens group (G2) composed of four refraction lenses forming a coaxial system, a stop (ST), and a third refraction lens group (G3) composed of one decentered refraction lens. A fourth refraction lens group (G4) composed of one decentered refraction lens, and a first reflection mirror (M1) having negative power. First
The reduced side surface of the refractive lens forming the refractive lens group (G1) is formed of an aspherical surface, and the enlarged side surface of the refractive lens forming the fourth refractive lens group (G4) is formed of a free-form surface, The reflection surface of the first reflection mirror (M1) is composed of a free-form surface.

【0016】第3の実施の形態(図9〜図12)は、1次
像面(I1)側(縮小側)から順に、プリズムブロック(Pr)
と、偏心した1枚の屈折レンズから成る第1屈折レンズ
群(G1)と、共軸系を成す4枚の屈折レンズから成る第2
屈折レンズ群(G2)と、絞り(ST)と、正パワーを有する第
1反射ミラー(M1)と、負パワーを有する第2反射ミラー
(M2)と、で構成されている。第1屈折レンズ群(G1)を構
成している屈折レンズの縮小側面は非球面、拡大側面は
自由曲面から成っており、第1,第2反射ミラー(M1,M
2)の反射面は自由曲面から成っている。第3の実施の形
態のフォーカスは、第2屈折レンズ群(G2)が平行移動す
ることにより行われる。例えば、図9,図11に示すフ
ォーカスポジション(i)において、第2屈折レンズ群(G
2)を矢印mF方向(図11)に移動させると、図10,図
12に示すフォーカスポジション(ii)となる。なお、フ
ォーカス時には絞り(ST)が第2屈折レンズ群(G2)と共に
移動する。
In the third embodiment (FIGS. 9 to 12), the prism blocks (Pr) are sequentially arranged from the primary image plane (I1) side (reduction side).
A first refractive lens group (G1) composed of one decentered refractive lens, and a second refractive lens group (G1) composed of four refractive lenses forming a coaxial system.
Refractive lens group (G2), stop (ST), first reflecting mirror (M1) having positive power, and second reflecting mirror having negative power
(M2). The reduced side surface of the refractive lens constituting the first refractive lens group (G1) is an aspheric surface, and the enlarged side surface is a free-form surface, and the first and second reflection mirrors (M1, M1
The reflecting surface of 2) is composed of a free-form surface. Focusing in the third embodiment is performed by the parallel movement of the second refractive lens group (G2). For example, at the focus position (i) shown in FIGS. 9 and 11, the second refractive lens group (G
When 2) is moved in the direction of arrow mF (FIG. 11), the focus position (ii) shown in FIGS. 10 and 12 is obtained. At the time of focusing, the stop (ST) moves together with the second refractive lens group (G2).

【0017】各実施の形態のように、互いに偏心した2
つ以上の屈折レンズ群(G1,G2,…)を備えるとともに、パ
ワーを有する反射面(M1,…)を1面以上備え、また1次
像面(I1)から2次像面(I2)までに中間実像を結像するこ
とのない構成とするのが望ましい。これにより、高い光
学性能を保持しながら、斜め投影光学系を薄型のコンパ
クトにすることが可能となる。プロジェクターに用いら
れるカラー化のための多板構成では、クロスダイクロイ
ックプリズム等のガラスブロックが一般に必要とされる
が、ガラスブロックの入射面や射出面に対して斜めに投
影光が通過すると色収差が発生してしまう。上記のよう
に屈折レンズ群(G1,G2,…)を備えていれば、色収差の補
正が可能である。また、反射型表示素子(例えば反射型
LCD)を斜め方向から照明することが可能になるた
め、偏光ビームスプリッター(PBS)等を用いる必要が
なくなり低コスト化を達成することができる。
As in each of the embodiments, the two
It has at least one refracting lens group (G1, G2, ...), and has at least one reflecting surface (M1, ...) having power. From the primary image plane (I1) to the secondary image plane (I2) It is desirable to adopt a configuration in which no intermediate real image is formed. This makes it possible to make the oblique projection optical system thin and compact while maintaining high optical performance. A glass plate such as a cross dichroic prism is generally required for a multi-plate configuration for colorization used in a projector, but chromatic aberration occurs when projection light passes obliquely to the entrance surface and exit surface of the glass block. Resulting in. If the refraction lens group (G1, G2,...) Is provided as described above, chromatic aberration can be corrected. In addition, since it becomes possible to illuminate a reflective display element (for example, a reflective LCD) from an oblique direction, it is not necessary to use a polarizing beam splitter (PBS) or the like, so that cost reduction can be achieved.

【0018】1次像面(I1)の画面中心から絞り(ST)の中
心を通り2次像面(I2)の画面中心に到達する光線を「画
面中心光線」とするとき、1次像面(I1)と2次像面(I2)
との間での中間実像の結像なしに、以下の条件式(1)及
び(2)を満たすことが望ましい。 10°<θo<70° …(1) 0.40<S1/S<0.9 …(2) ただし、 θo:画面中心光線が2次像面(I2)の法線となす角度、 S :1次像面(I1)から2次像面(I2)までの画面中心光線
の光路長、 S1:2次像面(I2)から最初のパワーを有する光学面まで
の画面中心光線の光路長、である。
When a ray reaching from the center of the screen of the primary image plane (I1) to the center of the screen of the secondary image plane (I2) through the center of the stop (ST) is referred to as "screen center ray", the primary image plane (I1) and secondary image plane (I2)
It is desirable that the following conditional expressions (1) and (2) be satisfied without forming an intermediate real image between the conditions. 10 ° <θo <70 ° (1) 0.40 <S1 / S <0.9 (2) where θo: the angle formed by the center ray of the screen with the normal to the secondary image plane (I2), S: the primary image plane S1 is the optical path length of the central ray of the screen from (I1) to the secondary image plane (I2), and S1 is the optical path length of the central ray of the screen from the secondary image plane (I2) to the optical surface having the first power.

【0019】条件式(1)の上限を超えると、斜め投影に
よる台形歪みを補正することが困難になる。条件式(1)
の下限を超えると、斜め投影による薄型化の効果が小さ
くなってしまう。条件式(2)の上限を超えると、投影距
離が長くなりすぎて薄型化の効果が小さくなる。条件式
(2)の下限を超えると、拡大側の2次像面(I2)に近い光
学素子の径が過大となり、コストアップとともにその製
造が困難になる。
If the upper limit of conditional expression (1) is exceeded, it will be difficult to correct trapezoidal distortion due to oblique projection. Conditional expression (1)
If the lower limit is exceeded, the effect of thinning by oblique projection will be reduced. If the upper limit of conditional expression (2) is exceeded, the projection distance will be too long and the effect of thinning will be reduced. Conditional expression
If the lower limit of (2) is exceeded, the diameter of the optical element near the secondary image plane (I2) on the enlargement side becomes excessively large, which increases the cost and makes it difficult to manufacture the optical element.

【0020】さらに以下の条件式(3)を満たすことが望
ましい。 40°<θo<60° …(3)
It is desirable to satisfy the following conditional expression (3). 40 ° <θo <60 °… (3)

【0021】条件式(3)は、角度θoの更に好ましい条件
範囲を規定している。条件式(3)の上限を超えると、台
形歪み及び像面湾曲を補正するために自由曲面が多く必
要になり、その分コストが高くなる。さらに、投影スク
リーンに対する入射角度が大きくなるため、スクリーン
において観察者の方向に大きく光を曲げる必要が生じ
る。したがって、スクリーンの構造が複雑になりコスト
が高くなる。条件式(3)の下限を超えると、斜め投影に
よる効果的な薄型化が難しくなる。
Conditional expression (3) defines a more preferable condition range of the angle θo. If the upper limit of conditional expression (3) is exceeded, a large number of free-form surfaces will be required to correct trapezoidal distortion and field curvature, and the cost will increase accordingly. Furthermore, since the incident angle with respect to the projection screen becomes large, it is necessary to largely bend the light in the direction of the viewer on the screen. Therefore, the structure of the screen becomes complicated and the cost increases. If the lower limit of conditional expression (3) is exceeded, it is difficult to effectively reduce the thickness by oblique projection.

【0022】各実施の形態のように、反射面の1面以上
が自由曲面形状を有することが望ましい。自由曲面形状
とは、大きく偏心した非球面を含むとともに回転対称軸
を有効領域内に持たないような回転非対称な面形状であ
る(各実施の形態に用いられている反射面は、Y-Z平面に
対して対称な自由曲面形状を有する。)。斜め投影では
非軸対称な収差補正が必要となるが、自由曲面形状を有
する反射面を1面以上用いることにより、少ない光学要
素で斜め投影による非軸対称な収差補正が可能となる。
また、2面以上の自由曲面を用いることが更に望まし
い。自由曲面形状を有する反射面を2面以上用いること
により、斜め投影の台形歪みを主に補正する自由曲面
[2次像面(I2)に近接した自由曲面]と、斜め投影による
非対称な像面湾曲及び非点隔差を補正する自由曲面[絞
り(ST)に近接した自由曲面]と、に収差補正が分担可能
になるため、より高性能な投影光学系を達成することが
できる。
As in each embodiment, it is desirable that at least one of the reflection surfaces has a free-form surface shape. The free-form surface shape is a rotationally asymmetric surface shape that includes a large eccentric aspherical surface and does not have a rotationally symmetric axis in an effective area. (Reflective surface used in each embodiment is a YZ plane. It has a free-form surface shape that is symmetrical with respect to it.) Non-axisymmetric aberration correction is required in oblique projection. However, by using one or more reflection surfaces having a free-form surface shape, non-axisymmetric aberration correction by oblique projection can be performed with a small number of optical elements.
It is further desirable to use two or more free-form surfaces. A free-form surface that mainly corrects trapezoidal distortion in oblique projection by using two or more reflective surfaces having a free-form surface shape
Aberration correction is performed for the [free-form surface close to the secondary image plane (I2)] and the free-form surface [free-form surface close to the stop (ST)] for correcting asymmetric field curvature and astigmatism due to oblique projection. Since sharing is possible, a higher-performance projection optical system can be achieved.

【0023】ところで、投影光学系を反射ミラーのみで
構成する場合には、できるだけ多くのミラー面を自由曲
面形状にする必要がある。自由曲面や非球面は、一般に
プラスチックで形成することがコスト的に有利である
が、プラスチック面上に多層の誘電体多層膜を形成する
ことは困難である。このため、プラスチックで構成され
た自由曲面ミラーでは、その反射率が可視域での平均で
95%以下となる。残りの数%の光はプラスチック面に
吸収されて熱になるため、反射ミラーの温度は上昇して
しまう。プラスチック製の反射ミラーは耐熱性が低いた
め、温度上昇によって反射面形状が変形し、それが収差
の悪化や耐久性の低下を招くことになる。
In the case where the projection optical system is composed of only reflection mirrors, it is necessary to form as many mirror surfaces as free-form surfaces as much as possible. The free-form surface and the aspherical surface are generally cost-effectively formed of plastic, but it is difficult to form a multilayer dielectric multilayer film on the plastic surface. Therefore, the reflectivity of a free-form surface mirror made of plastic is 95% or less in the visible region on average. The remaining few percent of the light is absorbed by the plastic surface and becomes heat, so that the temperature of the reflection mirror rises. Since the reflection mirror made of plastic has low heat resistance, the shape of the reflection surface is deformed by an increase in temperature, which leads to deterioration of aberrations and deterioration of durability.

【0024】特に1次像面(I1)近傍から絞り(ST)近傍に
かけての領域では、光が集中することになるため、上記
熱の問題は重大であり、その領域にプラスチック製の自
由曲面ミラーを配置することは不可能である。この問題
を解決するには、1次像面(I1)近傍から絞り(ST)近傍に
かけての領域に、非球面又は自由曲面を有するプラスチ
ックレンズ,ガラスレンズ等の屈折系の光学素子を配置
することが望ましい。屈折系の光学素子であれば、その
透過率が1面で99%程度に抑えられるため、自由曲面
をプラスチックで構成しても上記熱の問題を回避するこ
とができる。また1次像面(I1)近傍から絞り(ST)近傍に
かけての領域に、ガラス成型により得られる自由曲面ミ
ラーを配置してもよい。ガラスはプラスチックよりも耐
熱性が高いため、上記熱の問題を回避することが可能で
ある。
In particular, in the region from the vicinity of the primary image plane (I1) to the vicinity of the stop (ST), light is concentrated. Therefore, the above-mentioned heat problem is serious, and a plastic free-form mirror is located in that region. It is impossible to arrange. In order to solve this problem, a refractive optical element such as a plastic lens or a glass lens having an aspherical surface or a free-form surface should be arranged in the region from the vicinity of the primary image plane (I1) to the vicinity of the stop (ST). Is desirable. In the case of a refraction-type optical element, the transmittance can be suppressed to about 99% on one surface, so that the above-mentioned heat problem can be avoided even if the free-form surface is made of plastic. Further, a free-form surface mirror obtained by glass molding may be arranged in a region from the vicinity of the primary image plane (I1) to the vicinity of the stop (ST). Since glass has higher heat resistance than plastic, the above-described heat problem can be avoided.

【0025】各実施の形態のように、1次像面(I1)と絞
り(ST)との間に屈折面のみが配置された構成では、上述
した観点から上記熱の問題を回避することができる。屈
折面は反射面よりも耐熱性に優れるため、1次像面(I1)
と絞り(ST)との間に屈折面を構成する屈折系の光学素子
(非球面又は自由曲面を有するプラスチックレンズやガ
ラスレンズ)を用いれば、上記熱の問題を回避しつつよ
り明るい照明を行うことが可能となる。また、1次像面
(I1)と絞り(ST)との間は空間的に余裕のない領域である
が、この領域で反射ミラーによる光線の折り返しをしな
いことにより、1次像面(I1)を照明する照明光学系の配
置が容易になるという効果もある。
In the configuration in which only the refraction surface is disposed between the primary image plane (I1) and the stop (ST) as in each of the embodiments, it is possible to avoid the heat problem from the above-described viewpoint. it can. Since the refraction surface has better heat resistance than the reflection surface, the primary image surface (I1)
Optical element that constitutes a refractive surface between the lens and the stop (ST)
If (a plastic lens or a glass lens having an aspherical surface or a free-form surface) is used, brighter illumination can be performed while avoiding the heat problem. Also, the primary image plane
Although there is no space between the (I1) and the stop (ST), the illumination optical system illuminates the primary image plane (I1) by not turning light rays back by the reflecting mirror in this area. Also, there is an effect that the arrangement is easy.

【0026】第1,第3の実施の形態のように、絞り(S
T)より2次像面(I2)側に反射ミラー(M1,M2)が2面配置
された構成において、絞り(ST)側の第1反射ミラー(M1)
が正パワーを有し、2次像面(I2)側の第2反射ミラー(M
2)が負パワーを有することが望ましい。絞り(ST)に近い
第1反射ミラー(M1)のパワーを正にすることで、第1反
射ミラー(M1)から第2反射ミラー(M2)への光束を収束ぎ
みにすることができる。したがって、第2反射ミラー(M
2)を小さくすることができるため、コスト面や製造しや
すさの面で有利になる。さらに、第2反射ミラー(M2)の
パワーを負にすることで、短い投影距離でも大きな画面
の投影が可能になるため、投影光学系全体をコンパクト
にすることができる。
As in the first and third embodiments, the aperture (S
In the configuration in which two reflecting mirrors (M1, M2) are arranged on the secondary image plane (I2) side from (T), the first reflecting mirror (M1) on the stop (ST) side
Has a positive power and has a second reflection mirror (M2) on the secondary image plane (I2) side.
It is desirable that 2) have negative power. By making the power of the first reflection mirror (M1) close to the stop (ST) positive, the light flux from the first reflection mirror (M1) to the second reflection mirror (M2) can be almost converged. Therefore, the second reflection mirror (M
2) can be reduced, which is advantageous in terms of cost and ease of manufacturing. Further, by making the power of the second reflection mirror (M2) negative, it is possible to project a large screen even with a short projection distance, so that the entire projection optical system can be made compact.

【0027】各実施の形態のように、屈折レンズ群(G1,
…)を構成している屈折レンズのうち最も1次像面(I1)
側に配置されている屈折レンズ(G1)が正のパワーを有
し、以下の条件式(4)を満たすことが望ましい。 -1.7<fs×βy/S<-0.8 …(4) ただし、 fs:最も1次像面(I1)側の正の屈折レンズ(G1)の焦点距
離、 βy:斜め投影方向の拡大倍率、 である。
As in each embodiment, the refractive lens group (G1,
…)), The most primary image plane (I1) of the refractive lenses
It is desirable that the refractive lens (G1) disposed on the side has a positive power and satisfies the following conditional expression (4). -1.7 <fs × βy / S <-0.8 (4) where fs is the focal length of the positive refractive lens (G1) closest to the primary image plane (I1), βy is the magnification in the oblique projection direction, is there.

【0028】条件式(4)の下限を超えると、表示素子か
らの光がテレセントリックから大きく外れるため、色合
成プリズムで発生する色ムラが許容できなくなるととも
に、投影光学系の全長が大きくなりすぎてしまう。条件
式(4)の上限を超えると、このレンズのパワーが強くな
りすぎるために発生する像面湾曲と歪曲が過大となり、
補正が困難になる。
If the lower limit of the conditional expression (4) is exceeded, the light from the display element deviates greatly from the telecentricity, so that the color unevenness generated by the color synthesizing prism cannot be tolerated and the total length of the projection optical system becomes too large. I will. If the upper limit of conditional expression (4) is exceeded, the field curvature and distortion that occur due to too strong power of this lens will be excessive,
Correction becomes difficult.

【0029】フォーカスに関しては、第3の実施の形態
のように一部の光学要素を動かすことで行うのが望まし
い。表示素子移動によるフォーカスは、多板方式におい
てフォーカスに伴う画素ズレを生じさせやすい。したが
って、フォーカスと画素ズレ調整を同時に行う必要が生
じるため、作業時間が長くなるという問題がある。ま
た、光学系全体を動かすフォーカスは、移動部材が大き
いためフォーカス機構自体も大きくなり、コストが高く
なる。したがって、一部の光学要素(屈折系の光学素
子,反射系の光学素子)を動かすことでフォーカスを行
う構成が望ましい。この構成によると、多板構成におけ
る画素ズレ調整のための表示素子移動とフォーカスとが
独立するため、フォーカス及び画素ズレ調整作業が簡単
になり、フォーカス機構自体もコンパクト化が達成され
る。第3の実施の形態のように一部の光学要素を平行に
動かすこと(すなわち平行移動)でフォーカスを行うこと
が更に望ましい。これにより、フォーカスの移動機構が
より簡単になり、コストを安くすることができる。
It is desirable to perform focusing by moving some optical elements as in the third embodiment. Focusing by moving the display element easily causes a pixel shift due to the focus in the multi-plate system. Therefore, since it is necessary to perform the focus and the pixel shift adjustment at the same time, there is a problem that the working time becomes long. Further, the focus for moving the entire optical system has a large moving member, so that the focus mechanism itself becomes large, and the cost increases. Therefore, it is desirable to perform a focusing by moving some optical elements (refractive optical element and reflective optical element). According to this configuration, since the movement of the display element and the focus for adjusting the pixel shift in the multi-plate configuration are independent, the work of adjusting the focus and the shift of the pixel is simplified, and the focus mechanism itself is also downsized. It is further desirable to perform focusing by moving some optical elements in parallel (that is, parallel movement) as in the third embodiment. As a result, the focus moving mechanism becomes simpler and the cost can be reduced.

【0030】[0030]

【実施例】以下、本発明を実施した斜め投影光学系の構
成を、コンストラクションデータ,スポットダイアグラ
ム等を挙げて、更に具体的に説明する。ここで例として
挙げる実施例1〜3は、前述した第1〜第3の実施の形
態にそれぞれ対応しており、各実施の形態を表す図(図
1,図2;図5,図6;図9〜図12)は、対応する各
実施例の光路等をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of an oblique projection optical system embodying the present invention will be described more specifically with reference to construction data, a spot diagram and the like. Examples 1 to 3 given here as examples correspond to the above-described first to third embodiments, respectively, and illustrate the respective embodiments (FIGS. 1, 2; FIGS. 5, 6; 9 to 12) show the optical paths and the like of the corresponding embodiments, respectively.

【0031】各実施例のコンストラクションデータにお
いて、si(i=1,2,3,...)は、縮小側の1次像面(I1;拡大
投影における物面に相当する。)及び拡大側の2次像面
(I2;拡大投影における像面に相当する。)を含めた系に
おいて、縮小側から数えてi番目の面であり、ri(i=1,2,
3,...)は面siの曲率半径(mm)である。また、di(i=1,2,
3,...)は、縮小側から数えてi番目の軸上面間隔(mm,偏
心面間隔は偏心データとして記載。)を示しており、Ni
(i=1,2,3,...),νi(i=1,2,3,...)は縮小側から数えてi
番目の光学素子のd線に対する屈折率(Nd),アッベ数(ν
d)をそれぞれ示している。なお、各フィールドポジショ
ンに対応する1次像面(I1)側の物高(mm)を併せて示し、
また、表1に各実施例の条件式対応値及び関連データを
示す。
In the construction data of each embodiment, si (i = 1, 2, 3,...) Is a primary image plane (I1; corresponding to an object plane in enlarged projection) on the reduction side and the enlargement side. Secondary image plane
(I2; equivalent to the image plane in the enlarged projection), the ith surface counted from the reduction side, and ri (i = 1, 2,
3, ...) is the radius of curvature (mm) of the surface si. Di (i = 1,2,
3, ...) indicates the i-th shaft upper surface distance counted from the reduction side (mm, the eccentric surface distance is described as eccentricity data).
(i = 1,2,3, ...), νi (i = 1,2,3, ...) is i
The refractive index (Nd) and Abbe number (ν
d) are shown respectively. In addition, the object height (mm) on the primary image plane (I1) side corresponding to each field position is also shown,
Table 1 shows conditional expression corresponding values and related data of each embodiment.

【0032】*印が付された面siは軸対称な非球面であ
り、その面形状は面頂点を原点とする直交座標系(x,y,
z)を用いた以下の式(AS1)で定義される。また、$印が付
された面siは自由曲面であり、その面形状は面頂点を原
点とする直交座標系(x,y,z)を用いた以下の式(AS2)で定
義される。非球面データ及び自由曲面データを他のデー
タと併せて示す。
The surface si marked with * is an axisymmetric aspheric surface, and its surface shape is a rectangular coordinate system (x, y,
It is defined by the following equation (AS1) using z). The surface si with a $ mark is a free-form surface, and its surface shape is defined by the following equation (AS2) using an orthogonal coordinate system (x, y, z) whose origin is the surface vertex. Aspherical surface data and free-form surface data are shown together with other data.

【0033】 z=(c・h2)/[1+√[1-c2・h2]]+(A・h4+B・h6+C・h8+D・h10) …(AS1)Z = (c · h 2 ) / [1 + √ [1-c 2 · h 2 ]] + (A · h 4 + B · h 6 + C · h 8 + D · h 10 )… ( AS1)

【数1】 (Equation 1)

【0034】ただし、 z:高さhの位置での光軸方向の基準面からの変位量、 h:光軸に対して垂直な方向の高さ(h2=x2+y2)、 c:近軸曲率(=1/曲率半径)、 A,B,C,D:非球面係数、 K:コーニック定数、 C(m,n):自由曲面係数、 である。Here, z: displacement amount from the reference plane in the optical axis direction at the position of height h, h: height in the direction perpendicular to the optical axis (h 2 = x 2 + y 2 ), c : Paraxial curvature (= 1 / radius of curvature), A, B, C, D: aspherical coefficient, K: conic constant, C (m, n): free-form surface coefficient.

【0035】縮小側直前に位置する面に対して偏心した
面については、偏心データを直交座標系(X,Y,Z)に基づ
いて示す。直交座標系(X,Y,Z)においては、1次像面(s
1)の中心位置を原点(0,0,0)とする面頂点座標(XDE,YDE,
ZDE)=[X軸方向の平行偏心位置(mm),Y軸方向の平行偏心
位置(mm),Z軸方向の平行偏心位置(mm)]で、平行偏心し
た面の位置を表すとともに、その面の面頂点を中心とす
るX軸回りの回転角ADE(°)で、回転偏心位置(光路図
中、紙面に向かって反時計回りを正とする。)を表す。
光路図中、X軸方向は紙面に対して垂直方向であり(紙面
の裏面方向を正とする。)、Y軸方向は1次像面(s1)と紙
面とが交わる直線方向であり(光路図の上方向を正とす
る。)、Z軸方向は1次像面(s1)の法線方向である[2次
像面(I2)側を正とする。]。なお、実施例3については
フォーカスにより変化する面頂点座標(YDE,ZDE)を併せ
て示す。
For the plane eccentric to the plane located immediately before the reduction side, the eccentricity data is shown based on the rectangular coordinate system (X, Y, Z). In the rectangular coordinate system (X, Y, Z), the primary image plane (s
The vertex coordinates (XDE, YDE,
ZDE) = [parallel eccentric position in the X-axis direction (mm), parallel eccentric position in the Y-axis direction (mm), parallel eccentric position in the Z-axis direction (mm)]. A rotation angle ADE (°) about the X axis centered on the surface vertex of the surface indicates a rotational eccentric position (in the optical path diagram, a counterclockwise direction toward the paper surface is defined as positive).
In the optical path diagram, the X-axis direction is a direction perpendicular to the paper surface (the back surface direction of the paper surface is defined as positive), and the Y-axis direction is a linear direction where the primary image plane (s1) and the paper surface intersect (optical path). The upward direction in the figure is positive.), And the Z-axis direction is the normal direction of the primary image plane (s1) [the secondary image plane (I2) side is positive. ]. In the third embodiment, surface vertex coordinates (YDE, ZDE) that change with focus are also shown.

【0036】各実施例の光学性能をスポットダイアグラ
ム(図3;図7;図13,図14)と歪曲図(図4;図
8;図15,図16)でそれぞれ示す。スポットダイア
グラムは2次像面(I2)での結像特性(mm)をd線,g線及
びc線の3波長について示しており、歪曲図は1次像面
(I1)での長方形状網目に対応する2次像面(I2)での光線
位置(mm)を示している。歪曲図中、D1(実線)が実施例の
歪曲格子であり、D0(点線)がアナモ比を考慮した理想像
点の格子(歪曲無し)である。なお、X軸と同方向にx軸を
とり、x軸に対して垂直で、かつ、1次像面(I1)に対し
て平行な方向にy軸をとった場合、物高は1次像面(I1)
の画面中心を原点とする座標(x,y)で表される。また、X
軸と同方向にx'軸をとり、x'軸に対して垂直で、かつ、
2次像面(I2)に対して平行な方向にy'軸をとった場合、
像高は2次像面(I2)の画面中心を原点とする座標(x',
y')で表される。したがって、各歪曲図はx'-y'平面に対
して垂直方向から見た2次像面(I2)上での実際の像の歪
曲状態(ただしx'の負側のみ)を示していることになる。
The optical performance of each embodiment is shown by a spot diagram (FIG. 3, FIG. 7, FIG. 13, FIG. 14) and a distortion diagram (FIG. 4, FIG. 8, FIG. 15, FIG. 16). The spot diagram shows the imaging characteristics (mm) on the secondary image plane (I2) for three wavelengths of d-line, g-line and c-line, and the distortion diagram shows the primary image plane.
A ray position (mm) on the secondary image plane (I2) corresponding to the rectangular mesh in (I1) is shown. In the distortion diagram, D1 (solid line) is the distortion lattice of the embodiment, and D0 (dotted line) is the lattice of ideal image points in consideration of the anamorphic ratio (no distortion). If the x-axis is taken in the same direction as the x-axis and the y-axis is taken perpendicular to the x-axis and parallel to the primary image plane (I1), the object height is Surface (I1)
Is represented by coordinates (x, y) with the center of the screen at the origin. Also, X
Take the x 'axis in the same direction as the axis, perpendicular to the x' axis, and
When the y 'axis is taken in a direction parallel to the secondary image plane (I2),
The image height is the coordinates (x ', with the origin at the screen center of the secondary image plane (I2).
y '). Therefore, each distortion diagram shows the distortion state of the actual image on the secondary image plane (I2) viewed from the direction perpendicular to the x'-y 'plane (however, only the negative side of x'). become.

【0037】 《実施例1》 [面] [曲率半径等][軸上面間隔] [屈折率] [アッベ数] [1次像面(I1)] s1 r1= ∞ [プリズムブロック(Pr)] s2 r2= ∞ XDE=0.000000,YDE=0.000000,ZDE=2.000000,ADE=8.231146 d2=25.000000 N1=1.516800 ν1=64.17 s3 r3= ∞ [第1屈折レンズ群(G1)] s4* r4= 46.70870 A=-0.143476×10-4,B=0.336127×10-7,C=-0.100793×10-9 D=0.169578×10-12 XDE=0.000000,YDE=-0.209423,ZDE=27.884859,ADE=2.863299 d4= 5.054112 N2=1.516800 ν2=64.17 s5 r5= -23.80876 [第2屈折レンズ群(G2)] s6 r6= 17.16844 XDE=0.000000,YDE=-3.800929,ZDE=37.839776,ADE=-5.724528 d6= 8.214673 N3=1.754500 ν3=51.5700 s7 r7= -183.84669 d7= 0.437109 s8 r8= -36.61565 d8= 0.550000 N4=1.634801 ν4=31.1517 s9 r9= 11.51501 d9= 2.998133 s10 r10= -14.20564 d10=3.078071 N5=1.646976 ν5=30.1061 s11 r11= -36.35997 d11=7.611291 s12 r12= -97.19418 d12=1.254406 N6=1.754500 ν6=51.5700 s13 r13= -19.09051 d13=0.100000 [絞り(ST)] s14 r14= ∞(絞り半径=5.528787) [第1反射ミラー(M1)] s15$ r15=-515.18948 XDE=0.000000,YDE=-3.880643,ZDE=162.698182,ADE=40.395892 K=0.000000 C(0,1)= 4.5091×10-1 ,C(2,0)=-3.9754×10-4 ,C(0,2)=-4.3444×10-4 C(2,1)=-9.2883×10-6 ,C(0,3)=-8.9339×10-6 ,C(4,0)=-3.3775×10-8 C(2,2)=-6.0399×10-8 ,C(0,4)= 3.4705×10-8 ,C(4,1)= 2.9641×10-9 C(2,3)= 3.7180×10-9 ,C(0,5)= 2.9922×10-9 ,C(6,0)= 3.7758×10-11 C(4,2)= 8.4198×10-11,C(2,4)= 1.0632×10-10,C(0,6)= 2.4061×10-11 C(6,1)=-9.7584×10-13,C(4,3)= 1.2522×10-12,C(2,5)= 1.7911×10-12 C(0,7)=-6.4844×10-13,C(8,0)=-1.6691×10-14,C(6,2)=-1.7447×10-15 C(4,4)= 1.8389×10-14,C(2,6)= 1.7057×10-14,C(0,8)=-1.2407×10-14 [第2反射ミラー(M2)] s16$ r16=11790.68206 XDE=0.000000,YDE=-221.232416,ZDE=-1.216178,ADE=63.818350 K=0.000000 C(0,1)= 1.9367 ,C(2,0)=-2.5631×10-3 ,C(0,2)=-7.1973×10-3 C(2,1)= 9.2605×10-6 ,C(0,3)= 2.1326×10-4 ,C(4,0)= 8.9157×10-8 C(2,2)=-2.1518×10-6 ,C(0,4)=-6.9456×10-7 ,C(4,1)=-4.4593×10-9 C(2,3)= 5.9549×10-8 ,C(0,5)=-1.5015×10-7 ,C(6,0)=-4.7449×10-11 C(4,2)= 2.8377×10-10,C(2,4)=-9.6994×10-10,C(0,6)= 4.0579×10-9 C(6,1)=-4.8820×10-14,C(4,3)=-6.0060×10-12,C(2,5)= 8.4012×10-12 C(0,7)=-4.5581×10-11,C(8,0)= 1.1592×10-14,C(6,2)= 3.5666×10-15 C(4,4)= 4.7297×10-14,C(2,6)=-3.0020×10-14,C(0,8)= 1.9608×10-13 [2次像面(I2)] s17 r17= ∞ XDE=0.000000,YDE=-791.632950,ZDE=1233.624811,ADE=17.190021Example 1 [Surface] [Radius of Curvature, etc.] [Interval of Upper Surface of Shaft] [Refractive Index] [Abbe Number] [Primary Image Surface (I1)] s1 r1 = ∞ [Prism Block (Pr)] s2 r2 = ∞ XDE = 0.000000, YDE = 0.000000, ZDE = 2.000000, ADE = 8.231146 d2 = 25.000000 N1 = 1.516800 ν1 = 64.17 s3 r3 = ∞ [First refractive lens group (G1)] s4 * r4 = 46.70870 A = -0.143476 × 10 -4 , B = 0.336127 × 10 -7 , C = -0.100793 × 10 -9 D = 0.169578 × 10 -12 XDE = 0.000000, YDE = -0.209423, ZDE = 27.884859, ADE = 2.863299 d4 = 5.054112 N2 = 1.516800 ν2 = 64.17 s5 r5 = -23.80876 [Second refractive lens group (G2)] s6 r6 = 17.16844 XDE = 0.000000, YDE = -3.800929, ZDE = 37.839776, ADE = -5.724528 d6 = 8.214673 N3 = 1.754500 ν3 = 51.5700 s7 r7 = -183.84669 d7 = 0.437109 s8 r8 = -36.61565 d8 = 0.550000 N4 = 1.634801 ν4 = 31.1517 s9 r9 = 11.51501 d9 = 2.998133 s10 r10 = -14.20564 d10 = 3.078071 N5 = 1.646976 ν5 = 30.1061 s11 r11 = 12.3591 r12 = -97.19418 d12 = 1.254406 N6 = 1.754500 ν6 = 51.5700 s13 r13 = -19.09051 d13 = 0.100000 [Aperture (ST)] s14 r14 = ∞ (Aperture radius = 5.528787) [First reflection Error (M1)] s15 $ r15 = -515.18948 XDE = 0.000000, YDE = -3.880643, ZDE = 162.698182, ADE = 40.395892 K = 0.000000 C (0,1) = 4.5091 × 10 -1, C (2,0) = -3.9754 × 10 -4 , C (0,2) =-4.3444 × 10 -4 C (2,1) =-9.2883 × 10 -6 , C (0,3) =-8.9339 × 10 -6 , C ( (4,0) =-3.3775 × 10 -8 C (2,2) =-6.0399 × 10 -8 , C (0,4) = 3.4705 × 10 -8 , C (4,1) = 2.9641 × 10 -9 C (2,3) = 3.7180 × 10 -9 , C (0,5) = 2.9922 × 10 -9 , C (6,0) = 3.7758 × 10 -11 C (4,2) = 8.4198 × 10 -11 , C (2,4) = 1.0632 × 10 -10 , C (0,6) = 2.4061 × 10 -11 C (6,1) =-9.7584 × 10 -13 , C (4,3) = 1.2522 × 10 -12 , C (2,5) = 1.7911 × 10 -12 C (0,7) =-6.4844 × 10 -13 , C (8,0) =-1.6691 × 10 -14 , C (6,2) = -1.7447 × 10 -15 C (4,4) = 1.8389 × 10 -14 , C (2,6) = 1.7057 × 10 -14 , C (0,8) =-1.2407 × 10 -14 [Second reflection mirror (M2)] s16 $ r16 = 11790.68206 XDE = 0.000000, YDE = -221.232416, ZDE = -1.216178, ADE = 63.818350 K = 0.000000 C (0,1) = 1.9367, C (2,0) = - 2.5631 × 10 - 3 , C (0,2) =-7.1973 × 10 -3 C (2,1) = 9.2605 × 10 -6 , C (0,3) = 2.1326 × 10 -4 , C (4,0) = 8.9157 × 10 -8 C (2,2) =-2.1518 × 10 -6 , C (0,4) =-6.9456 × 10 -7 , C (4,1) =-4.4593 × 10 -9 C (2,3) = 5.9549 × 10 -8 , C (0,5) = -1.5015 × 10 -7 , C (6,0) =-4.7449 × 10 -11 C (4,2) = 2.8377 × 10 -10 , C (2,4) =-9.6994 × 10 -10 , C ( 0,6) = 4.0579 × 10 -9 C (6,1) =-4.8820 × 10 -14 , C (4,3) =-6.0060 × 10 -12 , C (2,5) = 8.4012 × 10 -12 C (0,7) = - 4.5581 × 10 -11, C (8,0) = 1.1592 × 10 -14, C (6,2) = 3.5666 × 10 -15 C (4,4) = 4.7297 × 10 - 14 , C (2,6) =-3.0020 × 10 -14 , C (0,8) = 1.9608 × 10 -13 [Secondary image plane (I2)] s17 r17 = ∞ XDE = 0.000000, YDE = -791.632950, ZDE = 1233.624811, ADE = 17.190021

【0038】 [各フィールト゛ホ゜シ゛ションに対応する1次像面(I1)側の物高] (x,y)=( 0.00000, 0.00000),( 0.00000, 3.73600),( 0.00000, 1.86800), ( 0.00000,-1.86800),( 0.00000,-3.73600),( 3.32075, 3.73600), ( 3.32075, 0.00000),( 3.32075,-3.73600),( 6.64150, 3.73600), ( 6.64150, 1.86800),( 6.64150, 0.00000),( 6.64150,-1.86800), ( 6.64150,-3.73600)[Object height on primary image plane (I1) side corresponding to each field location] (x, y) = (0.00000, 0.00000), (0.00000, 3.73600), (0.00000, 1.86800), (0.00000,- 1.86800), (0.00000, -3.73600), (3.32075, 3.73600), (3.32075, 0.00000), (3.32075, -3.73600), (6.64150, 3.73600), (6.64150, 1.86800), (6.64150, 0.00000), (6.64150, -1.86800), (6.64150, -3.73600)

【0039】 《実施例2》 [面] [曲率半径等][軸上面間隔] [屈折率] [アッベ数] [1次像面(I1)] s1 r1= ∞ d1= 0.100000 [プリズムブロック(Pr)] s2 r2= ∞ d2=40.000000 N1=1.516800 ν1=64.17 s3 r3= ∞ [第1屈折レンズ群(G1)] s4* r4= 37.22004 A=-0.687561×10-5,B=0.305656×10-8,C=-0.432821×10-11 D=0.178300×10-14 XDE=0.000000,YDE=1.230868,ZDE=41.092651,ADE=-11.272977 d4= 9.478934 N2=1.516800 ν2=64.17 s5 r5= -75.16721 [第2屈折レンズ群(G2)] s6 r6= 18.43381 XDE=0.000000,YDE=-4.657780,ZDE=63.581617,ADE=-2.914203 d6= 6.957547 N3=1.753490 ν3=51.6038 s7 r7= -249.34663 d7= 0.100000 s8 r8= -223.20442 d8= 0.900000 N4=1.675123 ν4=28.2701 s9 r9= 12.75359 d9=12.989344 s10 r10= -14.76633 d10=9.137331 N5=1.847429 ν5=26.2798 s11 r11= -21.50143 d11=0.100000 s12 r12= 60.06702 d12=2.260898 N6=1.753409 ν6=51.6065 s13 r13= -66.17530 d13=0.100000 [絞り(ST)] s14 r14= ∞(絞り半径=8.929177) [第3屈折レンズ群(G3)] s15 r15= 60.56155 XDE=0.000000,YDE=-5.308920,ZDE=107.168486,ADE=-12.460990 d15=5.040667 N7=1.801983 ν7=22.6887 s16 r16= 38.17795 [第4屈折レンズ群(G4)] s17 r17= -82.51476 XDE=0.000000,YDE=-24.514254,ZDE=134.213398,ADE=11.867790 N8=1.600000 ν8=50.0000 s18$ r18= -48.20057 XDE=0.000000,YDE=-21.429443,ZDE=148.892769,ADE=17.627981 K=0.000000 C(0,1)=-1.2629×10-2 ,C(2,0)= 7.6324×10-3 ,C(0,2)= 8.8274×10-3 C(2,1)=-9.0235×10-5 ,C(0,3)=-8.8068×10-5 ,C(4,0)= 3.0504×10-6 C(2,2)= 5.1991×10-6 ,C(0,4)= 1.3647×10-6 ,C(4,1)=-1.2274×10-7 C(2,3)= 9.1338×10-8 ,C(0,5)= 1.3392×10-7 ,C(6,0)= 1.5795×10-9 C(4,2)= 1.0046×10-8 ,C(2,4)=-8.3371×10-9 ,C(0,6)=-5.4608×10-9 C(6,1)=-1.8409×10-10,C(4,3)=-4.7482×10-10,C(2,5)= 2.1921×10-10 C(0,7)= 8.8471×10-11,C(8,0)= 2.0063×10-12,C(6,2)= 8.6883×10-12 C(4,4)= 1.0236×10-11,C(2,6)=-9.5143×10-13,C(0,8)=-2.4945×10-13 [第1反射ミラー(M1)] s19$ r19= 484.60696 XDE=0.000000,YDE=-32.721774,ZDE=338.544609,ADE=19.876412 K=0.000000 C(0,1)= 1.5307 ,C(2,0)= 1.2746×10-3 ,C(0,2)= 1.6045×10-3 C(2,1)=-2.7069×10-5 ,C(0,3)=-4.1320×10-5 ,C(4,0)=-9.8465×10-8 C(2,2)=-1.1160×10-7 ,C(0,4)=-1.8515×10-7 ,C(4,1)= 2.5453×10-9 C(2,3)= 7.3428×10-9 ,C(0,5)= 9.5282×10-9 ,C(6,0)= 6.2489×10-12 C(4,2)=-1.9710×10-11,C(2,4)=-7.0208×10-11,C(0,6)= 3.8356×10-12 C(6,1)=-1.0859×10-13,C(4,3)=-2.6945×10-13,C(2,5)=-3.4077×10-14 C(0,7)=-2.0958×10-12,C(8,0)=-3.4342×10-16,C(6,2)= 1.5410×10-15 C(4,4)= 2.8319×10-15,C(2,6)= 2.2998×10-15,C(0,8)= 1.5687×10-14 [2次像面(I2)] s20 r20= ∞ XDE=0.000000,YDE=847.663047,ZDE=94.096282,ADE=-31.350316Example 2 [Surface] [Radius of Curvature, etc.] [Spacing of Upper Surface of the Shaft] [Refractive Index] [Abbe Number] [Primary Image Surface (I1)] s1 r1 = ∞d1 = 0.100000 [Prism Block (Pr )] s2 r2 = ∞ d2 = 40.000000 N1 = 1.516800 ν1 = 64.17 s3 r3 = ∞ [first refraction lens group (G1)] s4 * r4 = 37.22004 A = -0.687561 × 10 -5 , B = 0.305656 × 10 -8 , C = -0.432821 × 10 -11 D = 0.178300 × 10 -14 XDE = 0.000000, YDE = 1.230868, ZDE = 41.092651, ADE = -11.272977 d4 = 9.478934 N2 = 1.516800 ν2 = 64.17 s5 r5 = -75.16721 [Second refraction Lens group (G2)] s6 r6 = 18.43381 XDE = 0.000000, YDE = -4.657780, ZDE = 63.581617, ADE = -2.914203 d6 = 6.957547 N3 = 1.753490 ν3 = 51.6038 s7 r7 = -249.34663 d7 = 0.100000 s8 r8 = -223.20442 d8 = 0.900000 N4 = 1.675123 ν4 = 28.2701 s9 r9 = 12.75359 d9 = 12.989344 s10 r10 = -14.76633 d10 = 9.137331 N5 = 1.847429 ν5 = 26.2798 s11 r11 = -21.50143 d11 = 0.100000 s12 r12 = 60.06702 d12 = 2.2608986 = 53.51 s13 r13 = -66.17530 d13 = 0.100000 [Aperture (ST)] s14 r14 = ∞ (Aperture radius = 8.929177) [Third refractive lens group (G3)] s15 r15 = 60.56155 XDE = 0.000000, YDE = -5.308920, ZDE = 107.168486, ADE = -12.460990 d15 = 5.040667 N7 = 1.801983 ν7 = 22.6887 s16 r16 = 38.17795 [4th refractive lens group (G4)] s17 r17 = -82.51476 XDE = 0.000000, YDE = -24.514254, ZDE = 134.213398, ADE = 11.867790 N8 = 1.600000 ν8 = 50.0000 s18 $ r18 = -48.20057 XDE = 0.000000, YDE = -21.429443, ZDE = 148.892769, ADE = 17.627981 K = 0.000000 C (0,1) =-1.2629 × 10 -2 , C (2,0) = 7.6324 × 10 -3 , C (0,2) = 8.8274 × 10 -3 C (2,1) =-9.0235 × 10 -5 , C (0,3) = -8.8068 × 10 -5 , C (4,0) = 3.0504 × 10 -6 C (2,2) = 5.1991 × 10 -6 , C (0,4) = 1.3647 × 10 -6 , C (4, 1) =-1.2274 × 10 -7 C (2,3) = 9.1338 × 10 -8 , C (0,5) = 1.3392 × 10 -7 , C (6,0) = 1.5795 × 10 -9 C (4 , 2) = 1.0046 × 10 -8 , C (2,4) =-8.3371 × 10 -9 , C (0,6) =-5.4608 × 10 -9 C (6,1) =-1.8409 × 10 -10 , C (4,3) =-4.7482 × 10 -10 , C (2,5) = 2.1921 × 10 -10 C (0,7) = 8.8471 × 10 -11 , C (8,0) = 2.0063 × 10 -12 , C (6,2) = 8.6883 × 10 -12 C (4,4) = 1.0236 × 10 -11 , C (2,6) =-9.5143 × 10 -13 , C (0,8) =- 2.4945 × 10 -13 [First reflection mirror (M1)] s19 $ r19 = 484.60696 XDE = 0.000000, YDE = -32.721774, ZDE = 338.544609, ADE = 19.876412 K = 0.000000 C (0 , 1) = 1.5307, C (2,0) = 1.2746 × 10 -3 , C (0,2) = 1.6045 × 10 -3 C (2,1) =-2.7069 × 10 -5 , C (0,3 ) =-4.1320 × 10 -5 , C (4,0) =-9.8465 × 10 -8 C (2,2) =-1.1160 × 10 -7 , C (0,4) =-1.8515 × 10 -7 , C (4,1) = 2.5453 × 10 -9 C (2,3) = 7.3428 × 10 -9 , C (0,5) = 9.5282 × 10 -9 , C (6,0) = 6.2489 × 10 -12 C (4,2) =-1.9710 × 10 -11 , C (2,4) =-7.0208 × 10 -11 , C (0,6) = 3.8356 × 10 -12 C (6,1) =-1.0859 × 10 -13 , C (4,3) =-2.6945 × 10 -13 , C (2,5) =-3.4077 × 10 -14 C (0,7) =-2.0958 × 10 -12 , C (8,0 ) =-3.4342 × 10 -16 , C (6,2) = 1.5410 × 10 -15 C (4,4) = 2.8319 × 10 -15 , C (2,6) = 2.2998 × 10 -15 , C (0 , 8) = 1.5687 × 10 -14 [Secondary image plane (I2)] s20 r20 = ∞ XDE = 0.000000, YDE = 847.663047, ZDE = 94.096282, ADE = -31.350316

【0040】 [各フィールト゛ホ゜シ゛ションに対応する1次像面(I1)側の物高] (x,y)=( 0.00000, 0.00000),( 0.00000, 9.00000),( 0.00000, 4.50000), ( 0.00000,-4.50000),( 0.00000,-9.00000),( 6.00000, 9.00000), ( 6.00000, 0.00000),( 6.00000,-9.00000),(12.00000, 9.00000), (12.00000, 4.50000),(12.00000, 0.00000),(12.00000,-4.50000), (12.00000,-9.00000)[Object height on primary image plane (I1) side corresponding to each field location] (x, y) = (0.00000, 0.00000), (0.00000, 9.00000), (0.00000, 4.50000), (0.00000,- 4.50000), (0.00000, -9.00000), (6.00000, 9.00000), (6.00000, 0.00000), (6.00000, -9.00000), (12.00000, 9.00000), (12.00000, 4.50000), (12.00000, 0.00000), (12.00000, -4.50000), (12.00000, -9.00000)

【0041】 《実施例3》 [面] [曲率半径等][軸上面間隔] [屈折率] [アッベ数] [1次像面(I1)] s1 r1= ∞ d1= 0.100000 [プリズムブロック(Pr)] s2 r2= ∞ d2=40.000000 N1=1.516800 ν1=64.17 s3 r3= ∞ [第1屈折レンズ群(G1)] s4* r4= 27.15757 A=-0.159264×10-4,B=0.278084×10-7,C=-0.392459×10-10 D=0.165520×10-13 XDE=0.000000,YDE=1.104200,ZDE=40.200000,ADE=1.828800 d4= 8.217708 N2=1.516800 ν2=64.17 s5$ r5= -59.69786 K=0.000000 C(0,1)=-4.1697×10-2 ,C(2,0)=-1.0437×10-3 ,C(0,2)=-6.9849×10-4 C(2,1)= 2.7171×10-5 ,C(0,3)= 1.5774×10-5 ,C(4,0)=-2.1151×10-7 C(2,2)=-1.5052×10-7 ,C(0,4)=-7.8598×10-7 ,C(4,1)=-2.4605×10-8 C(2,3)= 2.7285×10-8 ,C(0,5)= 2.9623×10-8 ,C(6,0)= 2.0889×10-8 C(4,2)= 5.1467×10-8 ,C(2,4)= 4.9394×10-8 ,C(0,6)= 1.8655×10-8 C(6,1)=-3.4631×10-11,C(4,3)=-1.1603×10-10,C(2,5)=-4.0374×10-10 C(0,7)=-1.0193×10-10,C(8,0)=-2.7915×10-11,C(6,2)=-8.5645×10-11 C(4,4)=-1.0836×10-10,C(2,6)=-9.5474×10-11,C(0,8)=-2.0106×10-11 [第2屈折レンズ群(G2)] s6 r6= 46.72081 XDE=0.000000,YDE=0.343200,ZDE=54.793000,ADE=-0.046400 d6= 3.648127 N3=1.746892 ν3=51.8282 s7 r7= -106.07118 d7= 2.256696 s8 r8= -36.98381 d8=10.051440 N4=1.639391 ν4=30.7444 s9 r9= 18.55035 d9= 5.365573 s10 r10= -32.78870 d10=7.024369 N5=1.605973 ν5=34.1504 s11 r11= 43.56262 d11=0.145875 s12 r12= 42.32336 d12=11.083877 N6=1.764916 ν6=42.3487 s13 r13= -27.53907 d13=0.100000 [絞り(ST)] s14 r14= ∞(絞り半径=8.518602) [第1反射ミラー(M1)] s15$ r15=-301.34410 XDE=0.000000,YDE=20.461272,ZDE=194.484643,ADE=39.903360 K=0.000000 C(0,1)= 4.5423×10-1 ,C(2,0)= 4.5039×10-4 ,C(0,2)= 1.6186×10-4 C(2,1)=-9.0834×10-6 ,C(0,3)=-8.5756×10-6 ,C(4,0)=-2.4624×10-8 C(2,2)=-1.9352×10-9 ,C(0,4)= 6.7051×10-8 ,C(4,1)= 2.9051×10-9 C(2,3)= 6.2404×10-9 ,C(0,5)= 2.7989×10-9 ,C(6,0)= 2.7038×10-11 C(4,2)= 1.2518×10-10,C(2,4)= 2.3993×10-10,C(0,6)= 3.8914×10-11 C(6,1)= 5.0561×10-13,C(4,3)= 4.3033×10-12,C(2,5)= 5.4791×10-12 C(0,7)= 6.9726×10-13,C(8,0)=-5.2820×10-15,C(6,2)= 1.9971×10-14 C(4,4)= 5.8846×10-14,C(2,6)= 4.7753×10-14,C(0,8)= 6.6631×10-15 [第2反射ミラー(M2)] s16$ r16= -95.46469 XDE=0.000000,YDE=-194.056296,ZDE=5.290871,ADE=63.913454 K=0.000000 C(0,1)= 2.6001 ,C(2,0)= 2.8186×10-3 ,C(0,2)=-9.0120×10-4 C(2,1)=-1.4514×10-4 ,C(0,3)= 1.0385×10-4 ,C(4,0)= 1.4821×10-7 C(2,2)= 1.1660×10-5 ,C(0,4)=-2.5919×10-7 ,C(4,1)=-2.2429×10-8 C(2,3)=-5.5819×10-7 ,C(0,5)=-5.0997×10-8 ,C(6,0)= 6.0417×10-11 C(4,2)= 1.7171×10-9 ,C(2,4)= 1.3392×10-8 ,C(0,6)= 6.7092×10-10 C(6,1)=-4.0241×10-12,C(4,3)=-3.8374×10-11,C(2,5)=-1.5583×10-10 C(0,7)=-2.4608×10-12,C(8,0)= 4.3528×10-15,C(6,2)= 6.1025×10-14 C(4,4)= 2.9147×10-13,C(2,6)= 7.1407×10-13,C(0,8)= 5.1111×10-16 [2次像面(I2)] s17 r17= ∞ XDE=0.000000,YDE=-538.425624,ZDE=792.252066,ADE=12.177415<< Embodiment 3 >> [Surface] [Radius of curvature, etc.] [Shaft upper surface interval] [Refractive index] [Abbe number] [Primary image plane (I1)] s1 r1 = ∞d1 = 0.100000 [Prism block (Pr) )] s2 r2 = ∞ d2 = 40.000000 N1 = 1.516800 ν1 = 64.17 s3 r3 = ∞ [First refractive lens group (G1)] s4 * r4 = 27.15757 A = -0.159264 × 10 -4 , B = 0.278084 × 10 -7 , C = -0.392459 × 10 -10 D = 0.165520 × 10 -13 XDE = 0.000000, YDE = 1.104200, ZDE = 40.200000, ADE = 1.828800 d4 = 8.217708 N2 = 1.516800 ν2 = 64.17 s5 $ r5 = -59.69786 K = 0.000000 C (0,1) =-4.1697 × 10 -2 , C (2,0) =-1.0437 × 10 -3 , C (0,2) =-6.9849 × 10 -4 C (2,1) = 2.7171 × 10 -5 , C (0,3) = 1.5774 × 10 -5 , C (4,0) =-2.1151 × 10 -7 C (2,2) =-1.5052 × 10 -7 , C (0,4) = -7.8598 × 10 -7 , C (4,1) =-2.4605 × 10 -8 C (2,3) = 2.7285 × 10 -8 , C (0,5) = 2.9623 × 10 -8 , C (6, 0) = 2.0889 × 10 -8 C (4,2) = 5.1467 × 10 -8 , C (2,4) = 4.9394 × 10 -8 , C (0,6) = 1.8655 × 10 -8 C (6, 1) =-3.4631 × 10 -11 , C (4,3) =-1.1603 × 10 -10 , C (2,5) =-4.0374 × 10 -10 C (0,7) =-1.0193 × 10 -10 , C (8,0) =-2.7915 × 10 -11 , C (6,2) =-8.5645 × 10 -11 C (4,4) =-1.0836 × 10 -10 , C (2,6) =- 9.5474 × 10 -11 , C (0,8) =-2.0106 × 10 -11 [Second refractive lens group (G2)] s6 r6 = 46.72081 XDE = 0.000000, YDE = 0.343200, ZDE = 54.793000, ADE = -0.046400 d6 = 3.648127 N3 = 1.746892 ν3 = 51.8282 s7 r7 = -106.07118 d7 = 2.256696 s8 r8 = -36.98381 d8 = 10.051440 N4 = 1.639391 ν4 = 30.7444 s9 r9 = 18.55035 d9 = 5.365573 s10 r10 = -32.78870 d10 = 7.02497504 = 15 s11 r11 = 43.56262 d11 = 0.145875 s12 r12 = 42.32336 d12 = 11.083877 N6 = 1.764916 ν6 = 42.3487 s13 r13 = -27.53907 d13 = 0.100000 [Aperture (ST)] s14 r14 = ∞ (Aperture radius = 8.518602) [First reflection mirror ( M1)] s15 $ r15 = -301.34410 XDE = 0.000000, YDE = 20.461272, ZDE = 194.484643, ADE = 39.903360 K = 0.000000 C (0,1) = 4.5423 × 10 -1 , C (2,0) = 4.5039 × 10 -4 , C (0,2) = 1.6186 × 10 -4 C (2,1) =-9.0834 × 10 -6 , C (0,3) =-8.5756 × 10 -6 , C (4,0) = -2.4624 × 10 -8 C (2,2) =-1.9352 × 10 -9 , C (0,4) = 6.7051 × 10 -8 , C (4,1) = 2.9051 × 10 -9 C (2,3 ) = 6.2404 × 10 -9 , C (0,5) = 2.7989 × 10 -9 , C (6,0) = 2.7038 × 10 -11 C (4,2) = 1.2518 × 10 -10 , C (2, 4) = 2.3993 × 10 -10 , C (0,6) = 3.8914 × 10 -11 C (6,1) = 5.0561 × 10 -13 , C (4,3) = 4.3033 × 10 -12 , C (2,5) = 5.4791 × 10 -12 C (0,7) = 6.9726 × 10 -13 , C (8,0) =-5.2820 × 10 -15 , C (6,2 ) = 1.9971 × 10 -14 C (4,4) = 5.8846 × 10 -14 , C (2,6) = 4.7753 × 10 -14 , C (0,8) = 6.6631 × 10 -15 [Second reflection mirror (M2)] s16 $ r16 = -95.46469 XDE = 0.000000, YDE = -194.056296, ZDE = 5.290871, ADE = 63.913454 K = 0.000000 C (0,1) = 2.6001, C (2,0) = 2.8186 × 10 -3 , C (0,2) =-9.0120 × 10 -4 C (2,1) =-1.4514 × 10 -4 , C (0,3) = 1.0385 × 10 -4 , C (4,0) = 1.4821 × 10 -7 C (2,2) = 1.1660 × 10 -5 , C (0,4) =-2.5919 × 10 -7 , C (4,1) =-2.2429 × 10 -8 C (2,3) = -5.5819 × 10 -7 , C (0,5) =-5.0997 × 10 -8 , C (6,0) = 6.0417 × 10 -11 C (4,2) = 1.7171 × 10 -9 , C (2, 4) = 1.3392 × 10 -8 , C (0,6) = 6.7092 × 10 -10 C (6,1) =-4.0241 × 10 -12 , C (4,3) =-3.8374 × 10 -11 , C (2,5) = - 1.5583 × 10 -10 C (0,7) = - 2.4608 × 10 -12, C (8,0) = 4.3528 × 10 -15, C (6,2) = 6.1025 × 10 - 14 C (4,4) = 2.9147 × 10 -13 , C (2,6) = 7.1407 × 10 -13 , C (0,8) = 5.1111 × 10 -16 [Secondary image plane (I2)] s17 r17 = ∞ XDE = 0.000000, YDE = -538.425624, ZDE = 792.252066, ADE = 12.177415

【0042】 [各フォーカスホ゜シ゛ション(i),(ii)での面頂点座標(YDE,ZDE)] s6…YDE=(i)0.34320,(ii)0.29510;ZDE=(i)54.79300,(ii)54.19310 s17…YDE=(i)-538.42562,(ii)-600.85012;ZDE=(i)792.25207,(ii)900.87289[Vertex coordinates (YDE, ZDE) at each focus position (i), (ii)] s6 ... YDE = (i) 0.34320, (ii) 0.29510; ZDE = (i) 54.79300, (ii) 54.19310 s17 ... YDE = (i) -538.42562, (ii) -600.85012; ZDE = (i) 792.25207, (ii) 900.87289

【0043】 [各フィールト゛ホ゜シ゛ションに対応する1次像面(I1)側の物高] (x,y)=( 0.00000, 0.00000),( 0.00000, 9.00000),( 0.00000, 4.50000), ( 0.00000,-4.50000),( 0.00000,-9.00000),( 6.00000, 9.00000), ( 6.00000, 0.00000),( 6.00000,-9.00000),(12.00000, 9.00000), (12.00000, 4.50000),(12.00000, 0.00000),(12.00000,-4.50000), (12.00000,-9.00000)[Object height on primary image plane (I1) side corresponding to each field location] (x, y) = (0.00000, 0.00000), (0.00000, 9.00000), (0.00000, 4.50000), (0.00000,- 4.50000), (0.00000, -9.00000), (6.00000, 9.00000), (6.00000, 0.00000), (6.00000, -9.00000), (12.00000, 9.00000), (12.00000, 4.50000), (12.00000, 0.00000), (12.00000, -4.50000), (12.00000, -9.00000)

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、斜
め投影角度を十分にとりながらコンパクト化を達成し
た、製造容易で高性能な斜め投影光学系を実現すること
ができる。
As described above, according to the present invention, it is possible to realize a high-performance oblique projection optical system which is compact and achieves a sufficient oblique projection angle and is easy to manufacture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態(実施例1)の光路図。FIG. 1 is an optical path diagram of a first embodiment (Example 1).

【図2】第1の実施の形態(実施例1)の光学構成及び投
影光路要部を示す図。
FIG. 2 is a diagram showing an optical configuration and a main part of a projection optical path according to the first embodiment (Example 1).

【図3】実施例1のスポットダイアグラム。FIG. 3 is a spot diagram of Example 1.

【図4】実施例1の歪曲図。FIG. 4 is a distortion diagram of the first embodiment.

【図5】第2の実施の形態(実施例2)の光路図。FIG. 5 is an optical path diagram of the second embodiment (Example 2).

【図6】第2の実施の形態(実施例2)の光学構成及び投
影光路要部を示す図。
FIG. 6 is a diagram illustrating an optical configuration and a main part of a projection optical path according to a second embodiment (Example 2).

【図7】実施例2のスポットダイアグラム。FIG. 7 is a spot diagram of Example 2.

【図8】実施例2の歪曲図。FIG. 8 is a distortion diagram of the second embodiment.

【図9】第3の実施の形態(実施例3)のフォーカスポジ
ション(i)での光路図。
FIG. 9 is an optical path diagram at a focus position (i) according to the third embodiment (Example 3).

【図10】第3の実施の形態(実施例3)のフォーカスポ
ジション(ii)での光路図。
FIG. 10 is an optical path diagram at a focus position (ii) according to the third embodiment (Example 3).

【図11】第3の実施の形態(実施例3)のフォーカスポ
ジション(i)での光学構成及び投影光路要部を示す図。
FIG. 11 is a diagram illustrating an optical configuration and a main part of a projection optical path at a focus position (i) according to a third embodiment (Example 3).

【図12】第3の実施の形態(実施例3)のフォーカスポ
ジション(ii)での光学構成及び投影光路要部を示す図。
FIG. 12 is a diagram illustrating an optical configuration and a main part of a projection optical path at a focus position (ii) according to a third embodiment (Example 3).

【図13】実施例3のフォーカスポジション(i)でのス
ポットダイアグラム。
FIG. 13 is a spot diagram at a focus position (i) according to the third embodiment.

【図14】実施例3のフォーカスポジション(ii)でのス
ポットダイアグラム。
FIG. 14 is a spot diagram at a focus position (ii) according to the third embodiment.

【図15】実施例3のフォーカスポジション(i)での歪
曲図。
FIG. 15 is a distortion diagram at the focus position (i) of the third embodiment.

【図16】実施例3のフォーカスポジション(ii)での歪
曲図。
FIG. 16 is a distortion diagram at the focus position (ii) of the third embodiment.

【符号の説明】[Explanation of symbols]

I1 …1次像面 I2 …2次像面 Pr …プリズムブロック G1 …第1屈折レンズ群 G2 …第2屈折レンズ群 G3 …第3屈折レンズ群 G4 …第4屈折レンズ群 ST …絞り M1 …第1反射ミラー M2 …第2反射ミラー I1 ... Primary image plane I2 ... Secondary image plane Pr ... Prism block G1 ... First refraction lens group G2 ... Second refraction lens group G3 ... Third refraction lens group G4 ... Fourth refraction lens group ST ... Stop M1 ... First 1 reflection mirror M2 ... 2nd reflection mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 淳 大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 Fターム(参考) 2H087 KA06 MA05 NA00 RA05 RA13 RA32 RA41 TA00 TA04 TA06 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Ishihara 2-3-1, Azuchi-cho, Chuo-ku, Osaka City Osaka International Building Minolta Co., Ltd. F-term (reference) 2H087 KA06 MA05 NA00 RA05 RA13 RA32 RA41 TA00 TA04 TA06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 縮小側の1次像面から拡大側の2次像面
への斜め方向の拡大投影を行う斜め投影光学系であっ
て、互いに偏心した2つ以上の屈折レンズ群を備えると
ともに、パワーを有する反射面を1面以上備え、前記1
次像面から前記2次像面までに中間実像を結像すること
なく、前記1次像面の画面中心から絞りの中心を通り前
記2次像面の画面中心に到達する光線を画面中心光線と
するとき、以下の条件式を満たすことを特徴とする斜め
投影光学系; 10°<θo<70° 0.40<S1/S<0.9 ただし、 θo:画面中心光線が2次像面の法線となす角度、 S :1次像面から2次像面までの画面中心光線の光路
長、 S1:2次像面から最初のパワーを有する光学面までの画
面中心光線の光路長 、である。
An oblique projection optical system for performing oblique enlargement projection from a reduction-side primary image plane to an enlargement-side secondary image plane, comprising two or more refractive lens groups decentered from each other. , One or more reflecting surfaces having power,
Without forming an intermediate real image from the secondary image plane to the secondary image plane, a light ray reaching the screen center of the secondary image plane from the screen center of the primary image plane through the center of the stop is referred to as a screen center ray. Where oblique projection optical system satisfies the following conditional expression: 10 ° <θo <70 ° 0.40 <S1 / S <0.9, where θo: the center ray of the screen is the normal to the secondary image plane The angle to be formed, S: the optical path length of the central ray of the screen from the primary image plane to the secondary image plane, and S1: the optical path length of the central ray of the screen from the secondary image plane to the optical surface having the first power.
【請求項2】 前記1次像面と前記絞りとの間に屈折面
のみが配置されていることを特徴とする請求項1記載の
斜め投影光学系。
2. The oblique projection optical system according to claim 1, wherein only a refraction surface is disposed between said primary image plane and said stop.
【請求項3】 前記反射面の1面以上が自由曲面形状を
有することを特徴とする請求項1記載の斜め投影光学
系。
3. The oblique projection optical system according to claim 1, wherein at least one of said reflection surfaces has a free-form surface shape.
【請求項4】 前記絞りより2次像面側に、前記反射面
を構成する反射ミラーが2面配置されており、絞り側の
反射ミラーが正パワーを有し、2次像面側の反射ミラー
が負パワーを有することを特徴とする請求項1記載の斜
め投影光学系。
4. A reflection mirror constituting the reflection surface is disposed on two sides of the secondary image plane from the stop, and the reflection mirror on the stop side has a positive power and reflects light on the secondary image plane side. 2. The oblique projection optical system according to claim 1, wherein the mirror has a negative power.
【請求項5】 前記屈折レンズ群を構成している屈折レ
ンズのうち最も1次像面側に配置されている屈折レンズ
が正のパワーを有し、以下の条件式を満たすことを特徴
とする請求項1記載の斜め投影光学系; -1.7<fs×βy/S<-0.8 ただし、fs:最も1次像面側の正の屈折レンズの焦点距
離、 βy:斜め投影方向の拡大倍率、 である。
5. The refracting lens constituting the refracting lens group, wherein the refracting lens disposed closest to the primary image plane has a positive power and satisfies the following conditional expression. 2. The oblique projection optical system according to claim 1, wherein -1.7 <fs × βy / S <−0.8, where fs is the focal length of the positive refraction lens closest to the primary image plane, and βy is the magnification in the oblique projection direction. is there.
【請求項6】 一部の光学要素を動かすことでフォーカ
スを行うことを特徴とする請求項1記載の斜め投影光学
系。
6. The oblique projection optical system according to claim 1, wherein focusing is performed by moving some optical elements.
JP2000027303A 2000-01-31 2000-01-31 Oblique projection optical system Expired - Fee Related JP4419243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027303A JP4419243B2 (en) 2000-01-31 2000-01-31 Oblique projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027303A JP4419243B2 (en) 2000-01-31 2000-01-31 Oblique projection optical system

Publications (3)

Publication Number Publication Date
JP2001215412A true JP2001215412A (en) 2001-08-10
JP2001215412A5 JP2001215412A5 (en) 2006-02-09
JP4419243B2 JP4419243B2 (en) 2010-02-24

Family

ID=18552891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027303A Expired - Fee Related JP4419243B2 (en) 2000-01-31 2000-01-31 Oblique projection optical system

Country Status (1)

Country Link
JP (1) JP4419243B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387201A1 (en) * 2002-07-30 2004-02-04 Canon Kabushiki Kaisha Projection optical system and projection type image display apparatus
EP1387207A2 (en) * 2002-07-30 2004-02-04 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
US6984044B2 (en) 2002-07-30 2006-01-10 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
US6991338B2 (en) 2002-07-30 2006-01-31 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
US7101052B2 (en) 2001-09-04 2006-09-05 Canon Kabushiki Kaisha Projection optical system and optical system
JP2006292901A (en) * 2005-04-08 2006-10-26 Hitachi Ltd Projection optical unit and projection type video display device using same
US7239452B2 (en) 2004-04-14 2007-07-03 Konica Minolta Opto, Inc. Projection optical system
JP2007233056A (en) * 2006-03-01 2007-09-13 Necディスプレイソリューションズ株式会社 Projection display apparatus
JP2007334052A (en) * 2006-06-15 2007-12-27 Hitachi Ltd Projection type image display apparatus and projection optical unit for it
JP2008152280A (en) * 2008-02-08 2008-07-03 Konica Minolta Opto Inc Design method of optical system and manufacturing method
WO2008108203A1 (en) * 2007-03-01 2008-09-12 Konica Minolta Opto, Inc. Projection optical system
WO2008108204A1 (en) * 2007-03-01 2008-09-12 Konica Minolta Opto, Inc. Projection optical system
US7670008B2 (en) 2004-11-10 2010-03-02 Konica Minolta Opto, Inc. Oblique projection optical system
JP2011150369A (en) * 2011-04-04 2011-08-04 Canon Inc Projection optical system and projection display device including the same
JP2011175277A (en) * 2011-04-11 2011-09-08 Hitachi Ltd Projection optical unit and projection image display device using the same
JP2011180609A (en) * 2011-04-25 2011-09-15 Hitachi Ltd Projection optical unit and projection type image display apparatus using the same
JP2015230324A (en) * 2014-06-03 2015-12-21 日東光学株式会社 Curved mirror adjusting device
WO2018179561A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Projection optical system, image projection device and image projection system
EP1868032B1 (en) * 2006-06-01 2019-01-02 Maxell, Ltd. Projection-type image display apparatus

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101052B2 (en) 2001-09-04 2006-09-05 Canon Kabushiki Kaisha Projection optical system and optical system
US7182466B2 (en) 2001-09-04 2007-02-27 Canon Kabushiki Kaisha Projection optical system and optical system
US6984044B2 (en) 2002-07-30 2006-01-10 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
EP1387201A1 (en) * 2002-07-30 2004-02-04 Canon Kabushiki Kaisha Projection optical system and projection type image display apparatus
US6991338B2 (en) 2002-07-30 2006-01-31 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
EP1387207A3 (en) * 2002-07-30 2004-04-07 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
US6951395B2 (en) 2002-07-30 2005-10-04 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
EP1387207A2 (en) * 2002-07-30 2004-02-04 Canon Kabushiki Kaisha Projection optical system, projection type image display apparatus, and image display system
US7239452B2 (en) 2004-04-14 2007-07-03 Konica Minolta Opto, Inc. Projection optical system
US7670008B2 (en) 2004-11-10 2010-03-02 Konica Minolta Opto, Inc. Oblique projection optical system
JP2006292901A (en) * 2005-04-08 2006-10-26 Hitachi Ltd Projection optical unit and projection type video display device using same
CN101788748B (en) * 2005-04-08 2013-11-06 株式会社日立制作所 Projection display device
CN101788747A (en) * 2005-04-08 2010-07-28 株式会社日立制作所 Projection display device
CN101788747B (en) * 2005-04-08 2013-06-12 株式会社日立制作所 Projection display device
JP2007233056A (en) * 2006-03-01 2007-09-13 Necディスプレイソリューションズ株式会社 Projection display apparatus
JP4584160B2 (en) * 2006-03-01 2010-11-17 Necディスプレイソリューションズ株式会社 Projection display
EP1868032B1 (en) * 2006-06-01 2019-01-02 Maxell, Ltd. Projection-type image display apparatus
JP2007334052A (en) * 2006-06-15 2007-12-27 Hitachi Ltd Projection type image display apparatus and projection optical unit for it
US8408717B2 (en) 2006-06-15 2013-04-02 Hitachi, Ltd. Projection type image display apparatus
WO2008108204A1 (en) * 2007-03-01 2008-09-12 Konica Minolta Opto, Inc. Projection optical system
US8113667B2 (en) 2007-03-01 2012-02-14 Konica Minolta Opto, Inc. Projection optical system
US8425044B2 (en) 2007-03-01 2013-04-23 Konica Minolta Opto, Inc. Projection optical system
WO2008108203A1 (en) * 2007-03-01 2008-09-12 Konica Minolta Opto, Inc. Projection optical system
JP2008152280A (en) * 2008-02-08 2008-07-03 Konica Minolta Opto Inc Design method of optical system and manufacturing method
JP2011150369A (en) * 2011-04-04 2011-08-04 Canon Inc Projection optical system and projection display device including the same
JP2011175277A (en) * 2011-04-11 2011-09-08 Hitachi Ltd Projection optical unit and projection image display device using the same
JP2011180609A (en) * 2011-04-25 2011-09-15 Hitachi Ltd Projection optical unit and projection type image display apparatus using the same
JP2015230324A (en) * 2014-06-03 2015-12-21 日東光学株式会社 Curved mirror adjusting device
WO2018179561A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Projection optical system, image projection device and image projection system
JPWO2018179561A1 (en) * 2017-03-30 2019-11-07 パナソニックIpマネジメント株式会社 Projection optical system, image projection apparatus, and image projection system

Also Published As

Publication number Publication date
JP4419243B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP6517294B2 (en) Projection optical system
US7558002B2 (en) Projection zoom lens and projection-type display device
US6633436B2 (en) Optical system, projection optical system, image projection apparatus having it, and image pickup apparatus
JP5152833B2 (en) Projection zoom lens and projection display device
JP2001215412A (en) Oblique projection optical system
JP2004271668A (en) Projection lens
US8270091B2 (en) Projection variable focusing lens and projection display device
EP0722106A2 (en) Viewfinder optical system
JP3837944B2 (en) Oblique projection optical system
JP2019174633A (en) Imaging optical system, projection display device, and image capturing device
JP4590044B2 (en) Projection device
JP2002122785A (en) Oblique projection optical system
JP4750318B2 (en) Projection zoom lens
JP2004085979A (en) Projection optical system
JP2001272602A (en) Zoom lens and optical equipment using the same
JP2000039585A (en) Projection type display device
JP2001215612A (en) Diagonal projection optical system
JP4689147B2 (en) Projection zoom lens and enlargement projection device
JP3695612B2 (en) Zoom lens
JP4551676B2 (en) Zoom lens, image display device, imaging device
JP3472508B2 (en) Projection lens, image enlargement projection system using the same, video projector, rear projector, and multi-vision system
JP2002357768A (en) Projection optical system for projection
JP2008309991A (en) Projection lens and projection display apparatus using the same
JP4418650B2 (en) Zoom lens and image projection apparatus having the same
JP2003255229A (en) Rear projection optical system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4419243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees