JP2004085979A - Projection optical system - Google Patents

Projection optical system Download PDF

Info

Publication number
JP2004085979A
JP2004085979A JP2002248311A JP2002248311A JP2004085979A JP 2004085979 A JP2004085979 A JP 2004085979A JP 2002248311 A JP2002248311 A JP 2002248311A JP 2002248311 A JP2002248311 A JP 2002248311A JP 2004085979 A JP2004085979 A JP 2004085979A
Authority
JP
Japan
Prior art keywords
group
lens
optical system
projection optical
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248311A
Other languages
Japanese (ja)
Other versions
JP4206708B2 (en
Inventor
Satoshi Osawa
大澤 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2002248311A priority Critical patent/JP4206708B2/en
Publication of JP2004085979A publication Critical patent/JP2004085979A/en
Application granted granted Critical
Publication of JP4206708B2 publication Critical patent/JP4206708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection optical system which has zoom configuration by a small number of lenses while maintaining high optical performance. <P>SOLUTION: The projection optical system has the zoom configuration by a first negative group (Gr1), a second positive group (Gr2), a third group (Gr3), and a fourth positive group (Gr4) in order from its enlargement side; and the third group (Gr3) is composed of one negative lens and one positive lens, i.e. two lenses and the fourth group (Gr4) is composed of one positive lens. Further, the first group (Gr1) and third group (Gr3) each include one or more aspherical surfaces and the power is varied by moving at least the second group (Gr2) and third group (Gr3). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は投影光学系に関するものであり、例えば2次元表示素子(液晶表示素子等)の表示画像をスクリーンに拡大投影するプロジェクター用の投影光学系に関するものである。
【0002】
【従来の技術】
ビデオカメラ用のズームレンズでは、レンズ構成枚数4〜5枚程度のものが従来より知られている(特開平1−216310号公報等)。これに対し、プロジェクター用の投影光学系においては、ズーム化するのに10枚前後のレンズ枚数が必要となる。このため、ズーム機能を持った投影光学系ではコストダウンや軽量・小型化が困難である。
【0003】
【発明が解決しようとする課題】
少ないレンズ枚数で投影光学系をズーム化しようとすると、テレセントリック性を確保できなくなる。このため、コントラストが低下したり色ムラが発生したりすることになる。あるいは、Fナンバーが暗くなって十分な明るさを確保することが困難になる。
【0004】
本発明はこのような状況に鑑みてなされたものであって、その目的は、高い光学性能を保持しつつ少ないレンズ枚数でズーム構成された投影光学系を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、第1の発明の投影光学系は、拡大側から順に、負の第1群と、正の第2群と、第3群と、正の第4群と、でズーム構成された投影光学系であって、前記第2群が1枚の正レンズから成り、前記第3群が1枚の負レンズと1枚の正レンズとのレンズ2枚から成り、前記第4群が1枚の正レンズから成り、前記第1群と前記第3群とにそれぞれ1面以上の非球面を含み、少なくとも前記第2群と前記第3群が移動することで変倍を行うことを特徴とする。
【0006】
第2の発明の投影光学系は、上記第1の発明の構成において、さらに以下の条件式(1)を満たすことを特徴とする。
−0.75<P1/PW<−0.35  …(1)
ただし、
P1:第1群のパワー、
PW:ワイド端での全系のパワー、
である。
【0007】
第3の発明の投影光学系は、上記第1又は第2の発明の構成において、さらに以下の条件式(2)を満たすことを特徴とする。
−0.2<P3/PW<0.05 …(2)
ただし、
P3:第3群のパワー、
PW:ワイド端での全系のパワー、
である。
【0008】
第4の発明の投影光学系は、上記第1,第2又は第3の発明の構成において、縮小側がテレセントリックであることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明を実施した投影光学系を、図面を参照しつつ説明する。図1〜図3は、第1〜第3の実施の形態の投影光学系にそれぞれ対応するレンズ構成図であり、テレ端(T)でのレンズ配置を光学断面で示している。また図4〜図6は、第1〜第3の実施の形態の投影光学系にそれぞれ対応する光路図であり、テレ端(T),ミドル(M)及びワイド端(W)での光路及び光学構成をそれぞれ示している。
【0010】
図1〜図3中、矢印mj(j=1,2,3),矢印msはテレ端(T)からワイド端(W)へのズーミングにおける第j群(Grj),絞り(ST)の光軸(AX)に沿った移動をそれぞれ模式的に示している。また図1〜図3中、ri(i=1,2,3,...)が付された面は拡大側(つまりスクリーン側)から数えてi番目の面(riに*印が付された面は非球面)であり、diが付された軸上面間隔は、拡大側から数えてi番目の軸上面間隔di(i=1,2,3,...)のうち、ズーミングにおいて変化する可変間隔である。
【0011】
各投影光学系の実施の形態は、拡大側から順に、負のパワーを有する第1群(Gr1)と、正のパワーを有する第2群(Gr2)と、負のパワーを有する第3群(Gr3)と、正のパワーを有する第4群(Gr4)とから成る、縮小側(つまり表示素子側)にテレセントリックなズームレンズである(パワー:焦点距離の逆数で定義される量)。第2群(Gr2)と第3群(Gr3)との間には絞り(ST)が配置されており、第4群(Gr4)の縮小側にはプリズム(PR)が配置されている。プリズム(PR)は色合成プリズムや光路分離プリズムに相当し、色合成プリズムは具体的にはクロスダイクロイックプリズム等を指し、光路分離プリズムは具体的にはPBS(Polarizing Beam Splitter)プリズムやTIR(Total Internal Reflection)プリズム等を指す。
【0012】
各実施の形態において、第1群(Gr1),第2群(Gr2),第3群(Gr3)及び絞り(ST)はズーミングにおいて移動し、第4群(Gr4)はプリズム(PR)と共にズーム位置固定である。テレ端(T)からワイド端(W)へのズーミングにおいて、第1群(Gr1)〜第3群(Gr3)は縮小側へ移動し、絞り(ST)も基本的には縮小側へ移動する。ただし、絞り(ST)はミドル(M)からワイド端(W)にかけて移動量の減少が目立ち、なかでも第3の実施の形態(図3,図6)ではミドル(M)からワイド端(W)にかけてほとんど移動しない。
【0013】
第1の実施の形態(図1,図4)において、各群(Gr1〜Gr4)は拡大側から順に以下のように構成されている。第1群(Gr1)は、縮小側に凹の負メニスカスレンズ2枚(縮小側のレンズが両面非球面)から成っている。第2群(Gr2)は、拡大側に凸の正メニスカスレンズ(両面非球面)1枚から成っている。第3群(Gr3)は、拡大側に凹の負メニスカスレンズ(両面非球面)と両凸の正レンズとのレンズ2枚から成っている。第4群(Gr4)は、両凸の正レンズ1枚から成っている。
【0014】
第2の実施の形態(図2,図5)において、各群(Gr1〜Gr4)は拡大側から順に以下のように構成されている。第1群(Gr1)は、縮小側に凹の負メニスカスレンズ(両面非球面)1枚から成っている。第2群(Gr2)は、拡大側に凸の正メニスカスレンズ1枚から成っている。第3群(Gr3)は、両凹の負レンズ(両面非球面)と両凸の正レンズとのレンズ2枚から成っている。第4群(Gr4)は、両凸の正レンズ1枚から成っている。
【0015】
第3の実施の形態(図3,図6)において、各群(Gr1〜Gr4)は拡大側から順に以下のように構成されている。第1群(Gr1)は、縮小側に凹の負メニスカスレンズ(両面非球面)1枚から成っている。第2群(Gr2)は、両凸の正レンズ1枚から成っている。第3群(Gr3)は、両凹の負レンズと両凸の正レンズ(両面非球面)とのレンズ2枚から成っている。第4群(Gr4)は、両凸の正レンズ1枚から成っている。
【0016】
各実施の形態では投影光学系によって縮小側(共役長の短い側)の表示素子面(IM)から拡大側(共役長の長い側)のスクリーン面への拡大投影が行われるが、表示素子(例えばLCD:Liquid Crystal Display)の代わりに画像入力用の撮像素子(例えばCCD:Charge Coupled Device)を用い、投影光学系を撮像光学系として使用すれば、拡大側の被写体から縮小側の撮像素子への縮小投影を行う画像入力装置(例えばデジタルカメラ,ビデオカメラ,デジタルビデオユニット等)を構成することができる。その場合、表示素子面(IM)を撮像素子(例えばCCD)の受光面とし、スクリーン面を読み取り画像面(被写体)とすればよい。つまり、各実施の形態の投影光学系は、投影光学系(拡大系)としての使用に限らず、撮像光学系(縮小系)としても好適に使用することが可能である。
【0017】
各実施の形態で採用しているズーム光学系の構成は、縮小側テレセントリック性の確保等による高い光学性能を保持しつつ、少ないレンズ枚数で投影光学系をズーム化することを可能にする。つまりズーム機能を持った投影光学系は、拡大側から順に、負の第1群(Gr1)と、正の第2群(Gr2)と、第3群(Gr3)と、正の第4群(Gr4)と、でズーム構成され、第2群(Gr2)が1枚の正レンズから成り、第3群(Gr3)が1枚の負レンズと1枚の正レンズとのレンズ2枚から成り、第4群(Gr4)が1枚の正レンズから成り、第1群(Gr1)と第3群(Gr3)とにそれぞれ1面以上の非球面を含み、少なくとも第2群(Gr2)と第3群(Gr3)が移動することで変倍を行うタイプのズーム光学系であることが望ましい。
【0018】
第1群(Gr1)を負パワーの群とすることで、第1群(Gr1)以降の群に入射する軸外光の角度を小さくすることができる。その結果、第2群(Gr2)以降で発生する収差が少なくなるため、レンズ枚数の削減が可能となる。また、第4群(Gr4)を正パワーの群とすることで、縮小側へのテレセントリック性の確保が容易になる。さらに、軸外性能の補正に効果のある第1群(Gr1)と、軸上性能の補正に効果のある第3群(Gr3)と、に非球面を配置することで、像面全体での性能の向上が可能となり、それによってレンズ枚数の削減が可能となる。
【0019】
図4〜図6の光路図から分かるように、いずれの投影光学系においても縮小側へのテレセントリック性が各焦点距離状態(T,M,W)で確保されている。このように、投影光学系は縮小側がテレセントリックであることが望ましい。テレセントリックにすることで色合成プリズムや光路分離プリズムに入射する角度が像高により一定となるため、分光反射率が画面内で変化せず、色ムラを低減することができる。
【0020】
第1の実施の形態(図1)における第9面(r9)、第2の実施の形態(図2)における第7面(r7)、並びに第3の実施の形態(図3)における第8面(r8)及び第9面(r9)は、負のパワーを強める方向の非球面になっている。このように、負のパワーを強める方向の非球面が第3群(Gr3)に少なくとも1面配置されることが望ましい。これにより、第2群(Gr2)及び第3群(Gr3)内で発生する球面収差を補正することができ、光学系全体で球面収差の補正が容易になる。
【0021】
各実施の形態のように、第3群(Gr3)が拡大側から順に負パワー・正パワーの2枚構成であることが望ましい。この構成をとることにより、負レンズと正レンズで第3群(Gr3)内の色収差補正が可能となる。また、ズームによる色収差の変動を抑えることができるとともに、負レンズを拡大側に配置することで色合成プリズムや光路分離プリズムを配置するのに十分な長さのレンズバックを確保することが可能となる。
【0022】
各実施の形態のように、絞り(ST)が独立でズーム移動する構成にすることが望ましい。この構成によりテレセントリック性の確保が容易になるため、ズーム移動の自由度が増し、光学性能の向上が可能になる。また、第4群(Gr4)を1枚の正レンズから成る固定群とすることが望ましい。この構成によりレンズ枚数と移動群数が減るため、鏡胴構成が簡単になりコストの低減が可能となる。
【0023】
次に、前述した各実施の形態のようなタイプの投影光学系において満たすことが望ましい条件式を説明する。ただし、以下に説明する全ての条件式を同時に満たす必要はなく、個々の条件式を光学構成に応じてそれぞれ単独に満足すれば、対応する作用・効果を達成することは可能である。もちろん、複数の条件式を満足する方が、光学性能,小型化,組立等の観点からより望ましいことはいうまでもない。
【0024】
以下の条件式(1)を満たすことが望ましい。
−0.75<P1/PW<−0.35  …(1)
ただし、
P1:第1群(Gr1)のパワー、
PW:ワイド端(W)での全系のパワー、
である。
【0025】
条件式(1)の下限を下回ると、第1群(Gr1)の負のパワーが過大となり、第1群(Gr1)で発生する像面湾曲を補正するためにレンズ枚数が増えてコストが増大したり、他の群の正のパワーを大きくする必要があるために発生する収差の補正が困難になったりする。逆に条件式(1)の上限を超えると、第1群(Gr1)の負のパワーが弱くなるため、第2群(Gr2)以降への軸外光の入射角度が大きくなりすぎて第2群(Gr2)以降のレンズ枚数が増大するとともに、第1群(Gr1)のレンズ径が大きくなりすぎてコストが上昇する。
【0026】
以下の条件式(1a)を満たすことが更に望ましい。
−0.60<P1/PW<−0.45  …(1a)
【0027】
条件式(1a)は、前記条件式(1)のなかでも更に好ましい条件範囲を規定している。条件式(1a)の下限を下回ると、第1群(Gr1)内に強いパワーの負の面が必要となり、レンズの製造コストが上昇する。逆に条件式(1a)の上限を超えると、第1群(Gr1)の移動量が大きくなりすぎて全長が長くなるためコストが増大する。
【0028】
以下の条件式(2)を満たすことが望ましい。
−0.2<P3/PW<0.05 …(2)
ただし、
P3:第3群(Gr3)のパワー、
PW:ワイド端(W)での全系のパワー、
である。
【0029】
条件式(2)の下限を下回ると、第2群(Gr2)の正のパワーが増大し、第2群(Gr2)がレンズ1枚では収差補正が困難となってコストアップになる。逆に条件式(2)の上限を超えると、レンズバックが短くなりすぎて色合成プリズムや光路分離プリズムを配置することが困難になる。
【0030】
以下の条件式(2a)を満たすことが更に望ましい。
−0.15<P3/PW<0.00 …(2a)
【0031】
条件式(2a)は、前記条件式(2)のなかでも更に好ましい条件範囲を規定している。条件式(2a)の下限を下回ると、第3群(Gr3)内での負レンズのパワーが過大となり、群内で色収差補正を十分に行うことが困難になる。逆に条件式(2a)の上限を超えると、絞り(ST)周辺の正パワーが過大となり、球面収差補正を十分に行うことが困難になる。
【0032】
以下の条件式(3)を満たすことが望ましい。
1.0<PW×LB<2.0  …(3)
ただし、
PW:ワイド端(W)での全系のパワー、
LB:第4群(Gr4)以降の空気換算のレンズバック、
である。
【0033】
条件式(3)は、最終レンズ面から像面(IM)までの間にプリズム(PR)を配置するためのレンズバック(LB)を規定している。条件式(3)の上限を超えると、レンズバックが長くなりすぎて光学系全長が大きくなり、レンズ径も大きくなってコストが上昇する。逆に条件式(3)の下限を下回ると、色合成プリズムや光路分離プリズムを配置することが困難になる。
【0034】
以下の条件式(4)を満たすことが望ましい。
0.2<P4/PW<0.6  …(4)
ただし、
P4:第4群(Gr4)のパワー、
PW:ワイド端(W)での全系のパワー、
である。
【0035】
条件式(4)の下限を下回ると、第4群(Gr4)の正パワーが弱すぎてテレセントリックを維持するために光学系の全長が長くなりすぎてしまい、コストアップとなる。逆に条件式(4)の上限を超えると、第4群(Gr4)の正パワーが強すぎてレンズバックが短くなりすぎてしまい、色合成プリズムや光路分離プリズムを配置することが困難になる。
【0036】
なお各実施の形態には、入射光線を屈折により偏向させる屈折型レンズ(つまり、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ)のみが用いられているが、これに限らない。例えば、回折により入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ,入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ等を用いてもよい。また、光学的なパワーを有しない面(例えば、反射面,屈折面,回折面)を光路中に配置することにより、投影光学系の前,後又は途中で光路を折り曲げてもよい。折り曲げ位置は必要に応じて設定すればよく、光路の適正な折り曲げにより、投影装置のコンパクト化・薄型化を達成することが可能である。
【0037】
【実施例】
以下、本発明に係る投影光学系をコンストラクションデータ等により更に具体的に説明する。なお、ここで例として挙げる実施例1〜3は、前述した第1〜第3の実施の形態にそれぞれ対応しており、第1〜第3の実施の形態を表すレンズ構成図(図1〜図3)や光路図(図4〜図6)は、対応する実施例1〜3のレンズ構成や光路をそれぞれ示している。
【0038】
各実施例のコンストラクションデータにおいて、ri(i=1,2,3,...)は拡大側から数えてi番目の面の曲率半径(mm)、di(i=1,2,3,...)は拡大側から数えてi番目の軸上面間隔(mm)を示しており、Ni(i=1,2,3,...),νi(i=1,2,3,...)は拡大側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(νd)を示している。曲率半径riに*印が付された面は、非球面(非球面形状の屈折光学面、非球面と等価な屈折作用を有する面等)であり、非球面の面形状を表わす以下の式(AS)で定義される。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔は、テレ端(長焦点距離端,T)〜ミドル(中間焦点距離状態,M)〜ワイド端(短焦点距離端,W)での可変空気間隔である。各焦点距離状態(T),(M),(W)での全系の焦点距離(f,mm)及びFナンバー(FNO)、並びに非球面データ(ただしAi=0の場合は省略する。)を他のデータとあわせて示し、また各条件式の対応データ及び関連データを表1に示す。
【0039】
X(H)=(C・H)/{1+√(1−ε・C・H)}+(A4・H+A6・H+A8・H+A10・H10+A12・H12)  …(AS)
ただし、式(AS)中、
X(H):高さHの位置での光軸(AX)方向の変位量(面頂点基準)、
H:光軸(AX)に対して垂直な方向の高さ、
C:近軸曲率(=1/曲率半径)、
ε:2次曲面パラメータ、
Ai:i次の非球面係数、
である。
【0040】
図7〜図9は実施例1〜実施例3にそれぞれ対応する収差図であり、(T)はテレ端,(M)はミドル,(W)はワイド端における無限遠物体に対する縮小側での諸収差{左から順に、球面収差等,非点収差,歪曲収差である。Y’:最大像高(mm)}を示している。球面収差図において、実線(d)はd線、一点鎖線(g)はg線、二点鎖線(c)はc線に対する各球面収差量(mm)を表しており、破線(SC)は正弦条件の不満足量(mm)を表している。非点収差図において、破線(DM)はメリディオナル面でのd線に対する非点収差(mm)を表しており、実線(DS)はサジタル面でのd線に対する非点収差(mm)を表わしている。また、歪曲収差図において実線はd線に対する歪曲(%)を表している。
【0041】
なお、各実施例の投影光学系を投影装置(例えば液晶プロジェクター)に用いる場合には、本来はスクリーン面(被投影面)が像面であり表示素子面(例えば液晶パネル面)が物体面であるが、各実施例では光学設計上それぞれ縮小系とし、スクリーン面を物体面とみなして表示素子面(IM)で光学性能を評価している。そして、得られた光学性能から分かるように、各実施例のズーム光学系は投影光学系としてだけでなく、撮像装置(例えばビデオカメラ,デジタルカメラ,デジタルビデオユニット)用の撮像光学系としても好適に使用可能である。
【0042】

Figure 2004085979
Figure 2004085979
【0043】
[第3面(r3)の非球面データ]
ε=0.10000×10,A4= 0.23481×10−4,A6=−0.18545×10−6,A8= 0.59013×10−9,A10=−0.10907×10−11,A12= 0.81908×10−15
[第4面(r4)の非球面データ]
ε=−0.21856,A4= 0.53067×10−4,A6=−0.31344×10−6,A8= 0.11295×10−8,A10=−0.28848×10−11,A12= 0.29444×10−14
[第5面(r5)の非球面データ]
ε=0.10000×10,A4= 0.51073×10−5,A6= 0.79695×10−8,A8= 0.54574×10−10,A10=−0.69035×10−12,A12= 0.26379×10−14
[第6面(r6)の非球面データ]
ε=0.10000×10,A4= 0.67836×10−5,A6= 0.90737×10−8,A8=−0.72302×10−10,A10= 0.15825×10−12,A12= 0.54839×10−15
[第8面(r8)の非球面データ]
ε=0.10000×10,A4= 0.75052×10−4,A6=−0.88534×10−6,A8= 0.56483×10−8,A10=−0.32187×10−10,A12= 0.10564×10−12[第9面(r9)の非球面データ]
ε=0.10000×10,A4= 0.86261×10−4,A6=−0.64225×10−6,A8= 0.35854×10−8,A10=−0.11891×10−10,A12= 0.18313×10−13
【0044】
Figure 2004085979
Figure 2004085979
【0045】
[第1面(r1)の非球面データ]
ε=0.10000×10,A4=−0.39890×10−5,A6= 0.17662×10−8,A8= 0.45155×10−11,A10=−0.60789×10−14
[第2面(r2)の非球面データ]
ε=−0.19682,A4= 0.23634×10−4,A6=−0.34395×10−7,A8= 0.14954×10−9,A10=−0.16803×10−12
[第6面(r6)の非球面データ]
ε=0.10000×10,A4=−0.46228×10−5,A6=−0.56029×10−7,A8=−0.36247×10−9,A10= 0.42287×10−11[第7面(r7)の非球面データ]
ε=0.10000×10,A4= 0.22674×10−4,A6=−0.51422×10−7,A8= 0.16873×10−9,A10=−0.12866×10−12
【0046】
Figure 2004085979
Figure 2004085979
【0047】
[第1面(r1)の非球面データ]
ε=0.10000×10,A4=−0.11695×10−4,A6= 0.14330×10−7,A8=−0.10091×10−10,A10= 0.18290×10−14
[第2面(r2)の非球面データ]
ε=−0.10692,A4= 0.77079×10−5,A6=−0.31265×10−7,A8= 0.14211×10−9,A10=−0.17243×10−12
[第8面(r8)の非球面データ]
ε=0.10000×10,A4=−0.26077×10−4,A6= 0.72269×10−7,A8=−0.23146×10−9,A10= 0.39465×10−12
[第9面(r9)の非球面データ]
ε=0.10000×10,A4= 0.71496×10−5,A6= 0.15348×10−7,A8= 0.26241×10−10,A10=−0.61042×10−14
【0048】
【表1】
Figure 2004085979
【0049】
【発明の効果】
以上説明したように本発明によれば、高い光学性能を保持しつつ少ないレンズ枚数でズーム構成された投影光学系を実現することができる。そして、これを画像投影装置に用いれば、当該装置の軽量・コンパクト化,高性能化及び低コスト化に寄与することができる。
【図面の簡単な説明】
【図1】第1の実施の形態(実施例1)のレンズ構成図。
【図2】第2の実施の形態(実施例2)のレンズ構成図。
【図3】第3の実施の形態(実施例3)のレンズ構成図。
【図4】第1の実施の形態(実施例1)の光路図。
【図5】第2の実施の形態(実施例2)の光路図。
【図6】第3の実施の形態(実施例3)の光路図。
【図7】実施例1の収差図。
【図8】実施例2の収差図。
【図9】実施例3の収差図。
【符号の説明】
Gr1  …第1群
Gr2  …第2群
ST …絞り
Gr3  …第3群
Gr4  …第4群
PR …プリズム
IM …像面(表示素子面)
AX …光軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a projection optical system, and more particularly to a projection optical system for a projector that enlarges and projects a display image of a two-dimensional display element (such as a liquid crystal display element) on a screen.
[0002]
[Prior art]
2. Description of the Related Art As a zoom lens for a video camera, one having about 4 to 5 lens elements has been conventionally known (Japanese Patent Application Laid-Open No. 1-216310). On the other hand, in a projection optical system for a projector, approximately ten lenses are required for zooming. For this reason, it is difficult for the projection optical system having the zoom function to reduce the cost and reduce the weight and size.
[0003]
[Problems to be solved by the invention]
If an attempt is made to zoom the projection optical system with a small number of lenses, telecentricity cannot be ensured. For this reason, the contrast is reduced and color unevenness occurs. Alternatively, the F-number becomes dark and it becomes difficult to secure sufficient brightness.
[0004]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a projection optical system which is configured to be zoomed with a small number of lenses while maintaining high optical performance.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the projection optical system according to the first aspect of the present invention includes, in order from the magnification side, a negative first unit, a positive second unit, a third unit, and a positive fourth unit. In a projection optical system having a zoom configuration, the second group includes one positive lens, and the third group includes two lenses, one negative lens and one positive lens. Four groups include one positive lens, and the first group and the third group each include one or more aspheric surfaces, and at least the second group and the third group move to change the magnification. It is characterized by performing.
[0006]
A projection optical system according to a second aspect is characterized in that, in the configuration of the first aspect, the following conditional expression (1) is further satisfied.
−0.75 <P1 / PW <−0.35 (1)
However,
P1: power of the first group,
PW: power of whole system at wide end,
It is.
[0007]
A projection optical system according to a third aspect of the present invention is characterized in that, in the configuration of the first or second aspect, the following conditional expression (2) is further satisfied.
−0.2 <P3 / PW <0.05 (2)
However,
P3: power of the third group,
PW: power of whole system at wide end,
It is.
[0008]
A projection optical system according to a fourth aspect is characterized in that, in the configuration according to the first, second or third aspect, the reduction side is telecentric.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a projection optical system embodying the present invention will be described with reference to the drawings. 1 to 3 are lens configuration diagrams respectively corresponding to the projection optical systems of the first to third embodiments, and show the lens arrangement at the telephoto end (T) in an optical cross section. FIGS. 4 to 6 are optical path diagrams corresponding to the projection optical systems of the first to third embodiments, respectively. The optical paths at the telephoto end (T), the middle (M), and the wide end (W) are shown. Each shows an optical configuration.
[0010]
In FIGS. 1 to 3, arrows mj (j = 1, 2, 3) and arrows ms indicate light of the j-th group (Grj) and the stop (ST) in zooming from the telephoto end (T) to the wide end (W). Each movement along the axis (AX) is schematically shown. 1 to 3, the ri (i = 1, 2, 3,...) Attached surface is the i-th surface (ri is marked with *) from the enlargement side (that is, the screen side). The distance between the upper surfaces of the shafts, denoted by di, changes during zooming among the i-th axial surface distances di (i = 1, 2, 3,...) Counted from the enlargement side. Is a variable interval.
[0011]
In the embodiment of each projection optical system, the first group (Gr1) having a negative power, the second group (Gr2) having a positive power, and the third group (Gr2) having a negative power are arranged in order from the enlargement side. The zoom lens is a telecentric zoom lens on the reduction side (that is, the display element side) composed of Gr3) and a fourth group (Gr4) having positive power (power: an amount defined by the reciprocal of the focal length). A stop (ST) is arranged between the second group (Gr2) and the third group (Gr3), and a prism (PR) is arranged on the reduction side of the fourth group (Gr4). The prism (PR) corresponds to a color combining prism or an optical path separating prism. The color combining prism specifically refers to a cross dichroic prism or the like, and the optical path separating prism is specifically a PBS (Polarizing Beam Splitter) prism or a TIR (Total). Internal Reflection) prism or the like.
[0012]
In each embodiment, the first lens unit (Gr1), the second lens unit (Gr2), the third lens unit (Gr3), and the stop (ST) move during zooming, and the fourth lens unit (Gr4) zooms together with the prism (PR). The position is fixed. In zooming from the telephoto end (T) to the wide end (W), the first lens unit (Gr1) to the third lens unit (Gr3) move to the reduction side, and the diaphragm (ST) basically moves to the reduction side. . However, the amount of movement of the stop (ST) is noticeable from the middle (M) to the wide end (W), and in the third embodiment (FIGS. 3 and 6), in particular, in the third embodiment (FIG. 3 and FIG. 6), the middle (M) to the wide end (W). ) Hardly move.
[0013]
In the first embodiment (FIGS. 1 and 4), each group (Gr1 to Gr4) is configured as follows in order from the enlargement side. The first group (Gr1) is composed of two negative meniscus lenses concave on the reduction side (lenses on the reduction side are aspherical on both surfaces). The second group (Gr2) includes one positive meniscus lens (both aspherical surfaces) convex on the enlargement side. The third group (Gr3) is composed of two lenses: a negative meniscus lens (both aspherical surfaces) concave on the enlargement side and a biconvex positive lens. The fourth unit (Gr4) includes one biconvex positive lens.
[0014]
In the second embodiment (FIGS. 2 and 5), the groups (Gr1 to Gr4) are configured as follows in order from the enlargement side. The first group (Gr1) includes one negative meniscus lens (both aspherical surfaces) concave on the reduction side. The second group (Gr2) includes one positive meniscus lens convex on the enlargement side. The third group (Gr3) includes two lenses: a biconcave negative lens (both aspheric surfaces) and a biconvex positive lens. The fourth unit (Gr4) includes one biconvex positive lens.
[0015]
In the third embodiment (FIGS. 3 and 6), the groups (Gr1 to Gr4) are configured as follows in order from the enlargement side. The first group (Gr1) includes one negative meniscus lens (both aspherical surfaces) concave on the reduction side. The second group (Gr2) includes one biconvex positive lens. The third group (Gr3) includes two lenses, a biconcave negative lens and a biconvex positive lens (both aspheric surfaces). The fourth unit (Gr4) includes one biconvex positive lens.
[0016]
In each of the embodiments, the projection optical system performs enlarged projection from the display element surface (IM) on the reduction side (the side with the shorter conjugate length) to the screen surface on the enlargement side (the side with the longer conjugate length). For example, if an image pickup device for image input (for example, CCD: Charge Coupled Device) is used instead of an LCD (Liquid Crystal Display) and a projection optical system is used as an image pickup optical system, an object on the enlargement side can be changed to an image pickup device on the reduction side. (For example, a digital camera, a video camera, a digital video unit, and the like) that performs a reduced projection of the image. In this case, the display element surface (IM) may be used as the light receiving surface of the image sensor (for example, CCD), and the screen surface may be read and used as the image surface (subject). That is, the projection optical system according to each embodiment can be suitably used not only as a projection optical system (enlargement system) but also as an imaging optical system (reduction system).
[0017]
The configuration of the zoom optical system employed in each of the embodiments enables the projection optical system to be zoomed with a small number of lenses while maintaining high optical performance by ensuring telecentricity on the reduction side. That is, the projection optical system having a zoom function includes, in order from the enlargement side, a negative first lens unit (Gr1), a positive second lens unit (Gr2), a third lens unit (Gr3), and a positive fourth lens unit (Gr3). Gr4), the second group (Gr2) is composed of one positive lens, and the third group (Gr3) is composed of two negative lenses and one positive lens. The fourth group (Gr4) includes one positive lens, the first group (Gr1) and the third group (Gr3) each include one or more aspheric surfaces, and at least the second group (Gr2) and the third group (Gr2). It is desirable that the zoom optical system be of a type that performs zooming by moving the group (Gr3).
[0018]
By making the first group (Gr1) a group of negative power, the angle of off-axis light incident on the first group (Gr1) and subsequent groups can be reduced. As a result, aberrations occurring after the second group (Gr2) are reduced, and the number of lenses can be reduced. Further, by making the fourth lens unit (Gr4) a positive power lens unit, it becomes easy to ensure telecentricity on the reduction side. Furthermore, by arranging aspherical surfaces in the first group (Gr1) that is effective for correcting off-axis performance and the third group (Gr3) that is effective for correcting on-axis performance, It is possible to improve the performance and thereby reduce the number of lenses.
[0019]
As can be seen from the optical path diagrams of FIGS. 4 to 6, in any of the projection optical systems, telecentricity toward the reduction side is ensured in each focal length state (T, M, W). Thus, it is desirable that the projection optical system be telecentric on the reduction side. Since the angle of incidence on the color combining prism and the optical path separating prism becomes constant depending on the image height by being telecentric, the spectral reflectance does not change in the screen and color unevenness can be reduced.
[0020]
The ninth surface (r9) in the first embodiment (FIG. 1), the seventh surface (r7) in the second embodiment (FIG. 2), and the eighth surface (r7) in the third embodiment (FIG. 3). The surface (r8) and the ninth surface (r9) are aspherical surfaces in a direction to increase the negative power. Thus, it is desirable that at least one aspherical surface in the direction to increase the negative power be disposed in the third lens unit (Gr3). This makes it possible to correct the spherical aberration occurring in the second group (Gr2) and the third group (Gr3), and it becomes easy to correct the spherical aberration in the entire optical system.
[0021]
As in each of the embodiments, it is desirable that the third lens unit (Gr3) has a two-layer configuration of negative power and positive power in order from the enlargement side. With this configuration, chromatic aberration in the third lens unit (Gr3) can be corrected by the negative lens and the positive lens. In addition, it is possible to suppress the fluctuation of chromatic aberration due to zooming, and by arranging the negative lens on the enlargement side, it is possible to secure a lens back long enough to arrange the color combining prism and the optical path separating prism. Become.
[0022]
As in each embodiment, it is desirable to have a configuration in which the aperture (ST) moves independently and zooms. With this configuration, the telecentricity can be easily ensured, so that the degree of freedom of the zoom movement is increased and the optical performance can be improved. It is desirable that the fourth group (Gr4) be a fixed group composed of one positive lens. With this configuration, the number of lenses and the number of moving groups are reduced, so that the lens barrel configuration is simplified and the cost can be reduced.
[0023]
Next, conditional expressions that are desirably satisfied in the projection optical system of the type described in each of the above embodiments will be described. However, it is not necessary to satisfy all the conditional expressions described below at the same time, and if the individual conditional expressions are individually satisfied according to the optical configuration, it is possible to achieve the corresponding operation and effect. Of course, it is needless to say that satisfying a plurality of conditional expressions is more desirable from the viewpoint of optical performance, miniaturization, assembly, and the like.
[0024]
It is desirable to satisfy the following conditional expression (1).
−0.75 <P1 / PW <−0.35 (1)
However,
P1: power of the first group (Gr1),
PW: power of whole system at wide end (W),
It is.
[0025]
When the value goes below the lower limit of conditional expression (1), the negative power of the first lens unit (Gr1) becomes excessively large, and the number of lenses increases to correct the field curvature generated in the first lens unit (Gr1), resulting in an increase in cost. In addition, it is necessary to increase the positive power of the other groups, so that it becomes difficult to correct the aberration that occurs. On the other hand, when the value exceeds the upper limit of the conditional expression (1), the negative power of the first lens unit (Gr1) becomes weak, and the incident angle of off-axis light to the second lens unit (Gr2) and thereafter becomes too large. As the number of lenses after the group (Gr2) increases, the lens diameter of the first group (Gr1) becomes too large and the cost increases.
[0026]
It is more desirable to satisfy the following conditional expressions (1a).
−0.60 <P1 / PW <−0.45 (1a)
[0027]
Conditional expression (1a) defines a more preferable condition range among the conditional expressions (1). When the value goes below the lower limit of conditional expression (1a), a negative surface having a strong power is required in the first lens unit (Gr1), and the manufacturing cost of the lens increases. On the other hand, when the value exceeds the upper limit of the conditional expression (1a), the moving amount of the first lens unit (Gr1) becomes too large and the total length becomes long, so that the cost increases.
[0028]
It is desirable to satisfy the following conditional expression (2).
−0.2 <P3 / PW <0.05 (2)
However,
P3: power of the third group (Gr3),
PW: power of whole system at wide end (W),
It is.
[0029]
When the value goes below the lower limit of conditional expression (2), the positive power of the second group (Gr2) increases, and it becomes difficult to correct the aberration of the second group (Gr2) with one lens, thereby increasing the cost. On the other hand, when the value exceeds the upper limit of the conditional expression (2), the lens back becomes too short, and it becomes difficult to arrange the color combining prism and the optical path separating prism.
[0030]
It is more desirable to satisfy the following conditional expressions (2a).
-0.15 <P3 / PW <0.00 (2a)
[0031]
Conditional expression (2a) defines a more preferable condition range among the conditional expressions (2). When the value goes below the lower limit of conditional expression (2a), the power of the negative lens in the third lens unit (Gr3) becomes excessive, and it becomes difficult to sufficiently perform chromatic aberration correction in the lens unit. On the other hand, when the value exceeds the upper limit of the conditional expression (2a), the positive power around the stop (ST) becomes excessively large, and it becomes difficult to sufficiently correct spherical aberration.
[0032]
It is desirable to satisfy the following conditional expression (3).
1.0 <PW × LB <2.0 (3)
However,
PW: power of whole system at wide end (W),
LB: Air-equivalent lens back from the fourth group (Gr4)
It is.
[0033]
Conditional expression (3) defines a lens back (LB) for disposing the prism (PR) between the last lens surface and the image surface (IM). If the upper limit of conditional expression (3) is exceeded, the lens back becomes too long, the overall length of the optical system increases, and the lens diameter increases, which increases the cost. Conversely, when the value goes below the lower limit of conditional expression (3), it becomes difficult to dispose the color combining prism and the optical path separating prism.
[0034]
It is desirable to satisfy the following conditional expression (4).
0.2 <P4 / PW <0.6 (4)
However,
P4: power of the fourth group (Gr4)
PW: power of whole system at wide end (W),
It is.
[0035]
When the value goes below the lower limit of conditional expression (4), the positive power of the fourth lens unit (Gr4) is too weak, and the entire length of the optical system becomes too long to maintain the telecentricity. On the other hand, if the upper limit of conditional expression (4) is exceeded, the positive power of the fourth lens unit (Gr4) will be too strong and the lens back will be too short, making it difficult to arrange a color combining prism or an optical path separating prism. .
[0036]
In each of the embodiments, only a refraction lens that deflects an incident light beam by refraction (that is, a lens of a type in which deflection is performed at an interface between media having different refractive indices) is used. Absent. For example, a diffractive lens that deflects an incident light beam by diffraction, a hybrid refractive / diffractive lens that deflects an incident light beam by a combination of diffraction and refraction, and a refractive index distribution type that deflects an incident light beam according to a refractive index distribution in a medium. A lens or the like may be used. In addition, by arranging a surface having no optical power (for example, a reflecting surface, a refracting surface, or a diffracting surface) in the optical path, the optical path may be bent before, after, or in the middle of the projection optical system. The bending position may be set as needed, and it is possible to achieve a compact and thin projection device by appropriately bending the optical path.
[0037]
【Example】
Hereinafter, the projection optical system according to the present invention will be described more specifically with reference to construction data and the like. Examples 1 to 3 given here as examples correspond to the above-described first to third embodiments, respectively, and are lens configuration diagrams showing the first to third embodiments (FIGS. 1 to 3). FIG. 3) and the optical path diagrams (FIGS. 4 to 6) show the lens configurations and the optical paths of the corresponding Examples 1 to 3, respectively.
[0038]
In the construction data of each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature (mm) of the i-th surface counted from the enlargement side, and di (i = 1, 2, 3,. ..) indicate the i-th axial top surface distance (mm) counted from the enlargement side, and Ni (i = 1, 2, 3,...), Νi (i = 1, 2, 3,. .) Indicate the refractive index (Nd) and Abbe number (νd) of the i-th optical element counted from the enlargement side with respect to the d-line. Surfaces marked with an asterisk (*) in the radius of curvature ri are aspherical surfaces (refracting optical surfaces having an aspherical surface, surfaces having a refracting action equivalent to an aspherical surface, and the like), and the following expression representing the aspherical surface shape ( AS). In the construction data, the distance between the upper surfaces of the axes that changes during zooming is variable air at the telephoto end (long focal length end, T) to the middle (intermediate focal length state, M) to the wide end (short focal length end, W). The interval. The focal length (f, mm) and F-number (FNO) of the entire system in each focal length state (T), (M), (W), and aspherical data (however, omitted when Ai = 0) Is shown together with other data, and the corresponding data and related data of each conditional expression are shown in Table 1.
[0039]
X (H) = (C · H 2 ) / {1 + {(1−ε · C 2 · H 2 )} + (A 4 · H 4 + A 6 · H 6 + A 8 · H 8 + A 10 · H 10 + A 12 · H 12 ) … (AS)
However, in the expression (AS),
X (H): displacement amount in the optical axis (AX) direction at the position of height H (based on the surface vertex),
H: height in a direction perpendicular to the optical axis (AX),
C: paraxial curvature (= 1 / radius of curvature),
ε: quadratic surface parameter,
Ai: i-th order aspherical coefficient,
It is.
[0040]
7 to 9 are aberration diagrams respectively corresponding to the first to third embodiments, where (T) is the telephoto end, (M) is the middle, and (W) is the reduction end for the object at infinity at the wide end. Various aberrations 順 に In order from the left, there are spherical aberration, astigmatism, and distortion. Y ′: maximum image height (mm)}. In the spherical aberration diagram, the solid line (d) represents the amount of spherical aberration (mm) with respect to the d line, the one-dot chain line (g) the g line, the two-dot chain line (c) with respect to the c line, and the dashed line (SC) represents the sine. It represents the unsatisfied amount (mm) of the condition. In the astigmatism diagram, a broken line (DM) represents astigmatism (mm) with respect to the d-line on the meridional surface, and a solid line (DS) represents astigmatism (mm) with respect to the d-line on the sagittal surface. I have. In the distortion diagrams, the solid line represents the distortion (%) with respect to the d-line.
[0041]
When the projection optical system of each embodiment is used in a projection apparatus (for example, a liquid crystal projector), the screen surface (projected surface) is originally an image surface and the display element surface (for example, a liquid crystal panel surface) is an object surface. However, in each embodiment, a reduction system is used for optical design, and the screen surface is regarded as an object surface, and the optical performance is evaluated on the display element surface (IM). As can be seen from the obtained optical performance, the zoom optical system of each embodiment is suitable not only as a projection optical system but also as an imaging optical system for an imaging device (for example, a video camera, a digital camera, a digital video unit). It can be used for
[0042]
Figure 2004085979
Figure 2004085979
[0043]
[Aspherical surface data of third surface (r3)]
ε = 0.10000 × 10, A4 = 0.23481 × 10 −4 , A6 = −0.18545 × 10 −6 , A8 = 0.59013 × 10 −9 , A10 = −0.10907 × 10 −11 , A12 = 0.81908 × 10 −15
[Aspherical surface data of fourth surface (r4)]
ε = −0.21856, A4 = 0.53067 × 10 −4 , A6 = −0.31344 × 10 −6 , A8 = 0.11295 × 10 −8 , A10 = −0.28848 × 10 −11 , A12 = 0.29444 × 10 −14
[Aspherical surface data of fifth surface (r5)]
ε = 0.10000 × 10, A4 = 0.51073 × 10 −5 , A6 = 0.79695 × 10 −8 , A8 = 0.54574 × 10 −10 , A10 = −0.69035 × 10 −12 , A12 = 0.26379 × 10 −14
[Aspherical surface data of sixth surface (r6)]
ε = 0.10000 × 10, A4 = 0.67836 × 10 −5 , A6 = 0.09737 × 10 −8 , A8 = −0.72302 × 10 −10 , A10 = 0.15825 × 10 −12 , A12 = 0.54839 × 10 −15
[Aspherical surface data of eighth surface (r8)]
ε = 0.10000 × 10, A4 = 0.75052 × 10 −4 , A6 = −0.88534 × 10 −6 , A8 = 0.56483 × 10 −8 , A10 = −0.32187 × 10 −10 , A12 = 0.10564 × 10 -12 [Aspherical surface data of ninth surface (r9)]
ε = 0.10000 × 10, A4 = 0.86261 × 10 −4 , A6 = −0.64225 × 10 −6 , A8 = 0.35854 × 10 −8 , A10 = −0.11891 × 10 −10 , A12 = 0.18313 × 10 -13
[0044]
Figure 2004085979
Figure 2004085979
[0045]
[Aspherical surface data of first surface (r1)]
ε = 0.10000 × 10, A4 = −0.39890 × 10 −5 , A6 = 0.17662 × 10 −8 , A8 = 0.45155 × 10 −11 , A10 = −0.60789 × 10 −14
[Aspherical surface data of second surface (r2)]
ε = −0.19682, A4 = 0.23634 × 10 −4 , A6 = −0.34395 × 10 −7 , A8 = 0.14954 × 10 −9 , A10 = −0.16803 × 10 −12
[Aspherical surface data of sixth surface (r6)]
ε = 0.10000 × 10, A4 = −0.46228 × 10 −5 , A6 = −0.56029 × 10 −7 , A8 = −0.36247 × 10 −9 , A10 = 0.42287 × 10 −11 [Aspherical surface data of the seventh surface (r7)]
ε = 0.10000 × 10, A4 = 0.22674 × 10 −4 , A6 = −0.51422 × 10 −7 , A8 = 0.16873 × 10 −9 , A10 = −0.12866 × 10 −12
[0046]
Figure 2004085979
Figure 2004085979
[0047]
[Aspherical surface data of first surface (r1)]
ε = 0.10000 × 10, A4 = −0.11695 × 10 −4 , A6 = 0.14330 × 10 −7 , A8 = −0.10091 × 10 −10 , A10 = 0.18290 × 10 −14
[Aspherical surface data of second surface (r2)]
ε = −0.10692, A4 = 0.77079 × 10 −5 , A6 = −0.31265 × 10 −7 , A8 = 0.14211 × 10 −9 , A10 = −0.17243 × 10 −12
[Aspherical surface data of eighth surface (r8)]
ε = 0.10000 × 10, A4 = −0.26077 × 10 −4 , A6 = 0.72269 × 10 −7 , A8 = −0.23146 × 10 −9 , A10 = 0.39465 × 10 −12
[Aspherical surface data of ninth surface (r9)]
ε = 0.1000 × 10, A4 = 0.71496 × 10 −5 , A6 = 0.15348 × 10 −7 , A8 = 0.62441 × 10 −10 , A10 = −0.61042 × 10 −14
[0048]
[Table 1]
Figure 2004085979
[0049]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a projection optical system having a zoom configuration with a small number of lenses while maintaining high optical performance. If this is used for an image projection device, it can contribute to a reduction in weight, size, performance, and cost of the device.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).
FIG. 2 is a lens configuration diagram of a second embodiment (Example 2).
FIG. 3 is a lens configuration diagram of a third embodiment (Example 3).
FIG. 4 is an optical path diagram of the first embodiment (Example 1).
FIG. 5 is an optical path diagram of the second embodiment (Example 2).
FIG. 6 is an optical path diagram of the third embodiment (Example 3).
FIG. 7 is an aberration diagram of the first embodiment.
FIG. 8 is an aberration diagram of the second embodiment.
FIG. 9 is an aberration diagram of the third embodiment.
[Explanation of symbols]
Gr1 First group Gr2 Second group ST Stop Aperture Gr3 Third group Gr4 Fourth group PR Prism IM Image plane (display element surface)
AX: Optical axis

Claims (4)

拡大側から順に、負の第1群と、正の第2群と、第3群と、正の第4群と、でズーム構成された投影光学系であって、
前記第2群が1枚の正レンズから成り、前記第3群が1枚の負レンズと1枚の正レンズとのレンズ2枚から成り、前記第4群が1枚の正レンズから成り、前記第1群と前記第3群とにそれぞれ1面以上の非球面を含み、少なくとも前記第2群と前記第3群が移動することで変倍を行うことを特徴とする投影光学系。
A projection optical system zoomed by a negative first unit, a positive second unit, a third unit, and a positive fourth unit in order from the enlargement side,
The second group is composed of one positive lens, the third group is composed of two negative lenses and one positive lens, the fourth group is composed of one positive lens, A projection optical system, wherein the first group and the third group each include at least one aspheric surface, and at least the second group and the third group move to perform zooming.
さらに以下の条件式(1)を満たすことを特徴とする請求項1記載の投影光学系;
−0.75<P1/PW<−0.35  …(1)
ただし、
P1:第1群のパワー、
PW:ワイド端での全系のパワー、
である。
2. The projection optical system according to claim 1, further satisfying the following conditional expression (1):
−0.75 <P1 / PW <−0.35 (1)
However,
P1: power of the first group,
PW: power of whole system at wide end,
It is.
さらに以下の条件式(2)を満たすことを特徴とする請求項1又は2記載の投影光学系;
−0.2<P3/PW<0.05 …(2)
ただし、
P3:第3群のパワー、
PW:ワイド端での全系のパワー、
である。
3. The projection optical system according to claim 1, further satisfying the following conditional expression (2):
−0.2 <P3 / PW <0.05 (2)
However,
P3: power of the third group,
PW: power of whole system at wide end,
It is.
縮小側がテレセントリックであることを特徴とする請求項1,2又は3記載の投影光学系。4. The projection optical system according to claim 1, wherein the reduction side is telecentric.
JP2002248311A 2002-08-28 2002-08-28 Projection optical system Expired - Fee Related JP4206708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248311A JP4206708B2 (en) 2002-08-28 2002-08-28 Projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248311A JP4206708B2 (en) 2002-08-28 2002-08-28 Projection optical system

Publications (2)

Publication Number Publication Date
JP2004085979A true JP2004085979A (en) 2004-03-18
JP4206708B2 JP4206708B2 (en) 2009-01-14

Family

ID=32055726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248311A Expired - Fee Related JP4206708B2 (en) 2002-08-28 2002-08-28 Projection optical system

Country Status (1)

Country Link
JP (1) JP4206708B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040032A (en) * 2006-08-04 2008-02-21 Casio Comput Co Ltd Zoom lens and projection device
US7667898B2 (en) 2006-11-06 2010-02-23 Seiko Epson Corporation Zoom lens and projector
JP2010134473A (en) * 2004-06-09 2010-06-17 Olympus Corp Variable power optical system, and electronic equipment using the same
JP2010164839A (en) * 2009-01-16 2010-07-29 Ricoh Co Ltd Imaging lens, camera apparatus, and personal digital assistant
JP2010176099A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
US7826147B2 (en) 2008-09-24 2010-11-02 Canon Kabushiki Kaisha Zoom lens and image projection apparatus
JP2011053513A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device
JP2011059498A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
JP2011076021A (en) * 2009-10-02 2011-04-14 Nikon Corp Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
WO2013179582A1 (en) * 2012-05-30 2013-12-05 富士フイルム株式会社 Magnifying projection optics and projection display
WO2014132317A1 (en) * 2013-02-28 2014-09-04 富士フイルム株式会社 Imaging lens and imaging device
JP2016018162A (en) * 2014-07-10 2016-02-01 株式会社タムロン Far-infrared lens and far-infrared image capturing device
CN109521549A (en) * 2018-11-12 2019-03-26 江西联创电子有限公司 Bugeye lens
CN114296219A (en) * 2021-12-29 2022-04-08 歌尔股份有限公司 Projection lens and projector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345008B2 (en) 2009-07-09 2013-11-20 富士フイルム株式会社 Projection variable focus lens and projection display device
US8107175B2 (en) * 2009-10-02 2012-01-31 Nikon Corporation Wide-angle lens, optical apparatus, and method for manufacturing wide-angle lens

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134473A (en) * 2004-06-09 2010-06-17 Olympus Corp Variable power optical system, and electronic equipment using the same
JP2008040032A (en) * 2006-08-04 2008-02-21 Casio Comput Co Ltd Zoom lens and projection device
US7667898B2 (en) 2006-11-06 2010-02-23 Seiko Epson Corporation Zoom lens and projector
US7826147B2 (en) 2008-09-24 2010-11-02 Canon Kabushiki Kaisha Zoom lens and image projection apparatus
JP2010164839A (en) * 2009-01-16 2010-07-29 Ricoh Co Ltd Imaging lens, camera apparatus, and personal digital assistant
JP2010176099A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
JP2011053513A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Projection type variable focus lens and projection type display device
JP2011059498A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
JP2011076021A (en) * 2009-10-02 2011-04-14 Nikon Corp Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
WO2013179582A1 (en) * 2012-05-30 2013-12-05 富士フイルム株式会社 Magnifying projection optics and projection display
US9261687B2 (en) * 2012-05-30 2016-02-16 Fujifilm Corporation Variable magnification optical system for projection and projection-type display apparatus
JP5687392B2 (en) * 2012-05-30 2015-03-18 富士フイルム株式会社 Variable magnification optical system for projection and projection display device
US20150085375A1 (en) * 2012-05-30 2015-03-26 Fujifilm Corporation Variable magnification optical system for projection and projection-type display apparatus
WO2014132317A1 (en) * 2013-02-28 2014-09-04 富士フイルム株式会社 Imaging lens and imaging device
JP5826431B2 (en) * 2013-02-28 2015-12-02 富士フイルム株式会社 Imaging lens and imaging apparatus
CN105074529A (en) * 2013-02-28 2015-11-18 富士胶片株式会社 Imaging lens and imaging device
CN105074529B (en) * 2013-02-28 2017-05-10 富士胶片株式会社 Imaging lens and imaging device
US9753248B2 (en) 2013-02-28 2017-09-05 Fujifilm Corporation Imaging lens and imaging apparatus
JP2016018162A (en) * 2014-07-10 2016-02-01 株式会社タムロン Far-infrared lens and far-infrared image capturing device
CN109521549A (en) * 2018-11-12 2019-03-26 江西联创电子有限公司 Bugeye lens
US11415775B2 (en) 2018-11-12 2022-08-16 Jiangxi Lianchuang Electronic Co., Ltd. Ultra-wide-angle lens including six lenses of --++-+ refractive powers, or seven lenses of --++-++ or ---+-++ refractive powers
CN114296219A (en) * 2021-12-29 2022-04-08 歌尔股份有限公司 Projection lens and projector
CN114296219B (en) * 2021-12-29 2023-09-12 歌尔光学科技有限公司 Projection lens and projector

Also Published As

Publication number Publication date
JP4206708B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP3656089B2 (en) Imaging lens device
JP4669294B2 (en) Zoom lens and imaging apparatus having the same
JP4123683B2 (en) Zoom lens
JP4380086B2 (en) Zoom lens
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
JP4103475B2 (en) Imaging lens device
US6606201B1 (en) Zoom lens system
JP3864897B2 (en) Imaging lens device
JP3822268B2 (en) Zoom lens
JP4030743B2 (en) Zoom lens system
JP2006084829A (en) Zoom lens and imaging apparatus having the same
JP2002082284A (en) Imaging lens device
JP2007072263A (en) Variable power optical system
JP3750672B2 (en) Imaging lens device
JP4206708B2 (en) Projection optical system
JP4994812B2 (en) Imaging device
JP2005037576A (en) Imaging lens device
JP3821087B2 (en) Imaging lens device
JP2004037967A (en) Image pickup lens device
JPH10282416A (en) Zoom lens
JP2004070235A (en) Image pickup lens device
JP3435364B2 (en) Zoom lens system
JP2000275520A (en) Zoom lens
JP2011065185A (en) Zoom lens and imaging apparatus having the same
JP2004226510A (en) Imaging lens device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees