JP2004070235A - Image pickup lens device - Google Patents

Image pickup lens device Download PDF

Info

Publication number
JP2004070235A
JP2004070235A JP2002232965A JP2002232965A JP2004070235A JP 2004070235 A JP2004070235 A JP 2004070235A JP 2002232965 A JP2002232965 A JP 2002232965A JP 2002232965 A JP2002232965 A JP 2002232965A JP 2004070235 A JP2004070235 A JP 2004070235A
Authority
JP
Japan
Prior art keywords
group
prism
lens system
object side
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232965A
Other languages
Japanese (ja)
Other versions
JP2004070235A5 (en
JP4281307B2 (en
Inventor
Hiroshi Omori
大森 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2002232965A priority Critical patent/JP4281307B2/en
Publication of JP2004070235A publication Critical patent/JP2004070235A/en
Publication of JP2004070235A5 publication Critical patent/JP2004070235A5/ja
Application granted granted Critical
Publication of JP4281307B2 publication Critical patent/JP4281307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image pickup lens device equipped with a zoom lens system whose zoom ratio is about 3, and made so compact and inexpensive that it is mounted in a thin housing such as a cellular phone. <P>SOLUTION: The zoom lens system (TL) is constituted of a 1st group (Gr1) positionally fixed at the time of zooming and having negative power, a 2nd group (Gr2) moving at the time of zooming and having positive power and a 3rd group (Gr3) moving at the time of zooming and having positive power in order from an object side, and an optical image formed by the zoom lens system (TL) is converted into an electrical signal by an imaging device (SR). The 1st group (Gr1) is constituted of a prism (PR) for bending an optical path, and the object side surface (S1) of the prism (PR) is an aspherical concave surface, and the reflection surface (S2) and the image side surface (S3) of the prism (PR) are plane. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は撮像レンズ装置に関するものであり、特に被写体の映像を光学系により光学的に取り込んで撮像素子により電気的な信号として出力する撮像レンズ装置{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,携帯電話,携帯通信端末,携帯情報端末(PDA:Personal Digital Assistant)等に内蔵又は外付けされるカメラの主たる構成要素}、なかでも小型のズームレンズ系を備えた撮像レンズ装置に関するものである。
【0002】
【従来の技術】
携帯通信端末やデジタルカメラ等に搭載される小型のズームレンズが、特開2002−55278号公報,特開平11−196303号公報,特開2000−131610号公報,特開平9−138347号公報等で提案されている。特開2002−55278号公報記載のズームレンズは、3枚のレンズ枚数で全長の短縮と3倍程度のズーム比を達成しており、特開平11−196303号,特開2000−131610号,特開平9−138347号の各公報に記載のズームレンズは、第1群で光路を折り曲げることにより奥行き方向の長さを短くしている。
【0003】
【発明が解決しようとする課題】
特開2002−55278号公報記載のズームレンズは、全長が10mm以上あり、撮像素子のユニットまで含めると、携帯電話や携帯通信端末等の薄型の筐体に搭載するにはやや大きい。特開平11−196303号,特開2000−131610号,特開平9−138347号の各公報に記載のズームレンズは、第1群がレンズと反射部材の2つの部材から構成されており、低コスト化・小型化が充分とは言えない。また、鏡筒への組み込み時に生じるレンズと反射部材との位置ズレによる性能劣化の問題もある。
【0004】
本発明はこのような状況に鑑みてなされたものであって、その目的は、ズーム比3倍程度のズームレンズ系を備え、携帯電話等の薄型の筐体に搭載するのに充分な小型化と低コスト化が達成された撮像レンズ装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、第1の発明の撮像レンズ装置は、複数の群から成り各群の間隔を変化させることにより変倍を行うズームレンズ系と、そのズームレンズ系により形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、前記ズームレンズ系が、物体側から順に、変倍において固定の負パワーの第1群と、変倍において移動する正パワーの第2群と、を少なくとも有し、前記第1群が最も物体側に光路折り曲げ用のプリズムを少なくとも有し、そのプリズムの物体側面が凹面であることを特徴とする。
【0006】
第2の発明の撮像レンズ装置は、上記第1の発明の構成において、前記プリズムの像側面が平面であることを特徴とする。
【0007】
第3の発明の撮像レンズ装置は、上記第1又は第2の発明の構成において、以下の条件式(1)を満足することを特徴とする。
1.5<−f1/fW<8.0  …(1)
ただし、
f1:第1群の焦点距離、
fW:広角端でのズームレンズ系全体の焦点距離、
である。
【0008】
第4の発明の撮像レンズ装置は、上記第1,第2又は第3の発明の構成において、前記プリズムの物体側面が非球面であることを特徴とする。
【0009】
第5の発明の撮像レンズ装置は、上記第4の発明の構成において、前記非球面が以下の条件式(2)を満足することを特徴とする。
0.1<R0/R1<0.7  …(2)
ただし、
R0:非球面の軸上での曲率半径、
R1:非球面の有効径位置での曲率半径、
である。
【0010】
【発明の実施の形態】
以下、本発明を実施した撮像レンズ装置を、図面を参照しつつ説明する。被写体の映像を光学的に取り込んで電気的な信号として出力する撮像レンズ装置は、被写体の静止画撮影や動画撮影に用いられるカメラ{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,携帯電話,携帯通信端末,携帯情報端末(PDA)等に内蔵又は外付けされるカメラ}の主たる構成要素である。その撮像レンズ装置は、例えば図1に示すように、物体(被写体)側から順に、物体の光学像を形成する撮影レンズ系(TL)と、光学的ローパスフィルター等に相当する平行平面板(PL)と、撮影レンズ系(TL)により形成された光学像を電気的な信号に変換する撮像素子(SR)と、で構成される。
【0011】
図1に示す撮影レンズ系(TL)は、物体側から順に、負パワーの第1群(Gr1)と、正パワーの第2群(Gr2)と、正パワーの第3群(Gr3)と、から成る3群構成のズームレンズ系である。そして、第2群(Gr2)と第3群(Gr3)が光軸(AX)に沿って移動し、各群の間隔を変化させることにより変倍(すなわちズーミング)が行われる。第1群(Gr1)は、変倍において位置固定の固定群であり、光学素子として光路折り曲げ用のプリズム(PR)のみから成っている。プリズム(PR)の物体側面(S1)は凹面であり、反射面(S2)と像側面(S3)は平面である。第1群(Gr1)の負パワーは凹面形状の物体側面(S1)によって構成されており、撮影レンズ系(TL)を屈曲光学系として使用するための光路の折り曲げは平面形状の反射面(S2)によって構成されている。なお、複数の群から成り各群の間隔を変化させることにより変倍を行うズームレンズ系であれば、撮影レンズ系(TL)のズーム構成はこれに限らない。
【0012】
撮像素子(SR)としては、例えば複数の画素から成るCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサー等の固体撮像素子が用いられ、ズームレンズ系により形成された光学像が撮像素子(SR)により電気的な信号に変換される。また、ズームレンズ系で形成されるべき光学像は、撮像素子(SR)の画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルター{平行平面板(PL)から成る。}を通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。光学的ローパスフィルターとしては、例えば所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルターや、必要とされる光学的な遮断周波数特性を回折効果により達成する位相型ローパスフィルター等が適用可能である。撮像素子(SR)で生成した信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されてデジタル映像信号としてメモリー(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。
【0013】
なお、図1に示す撮像レンズ装置では、撮影レンズ系(TL)によって拡大側(共役長の長い側)の被写体から縮小側(共役長の短い側)の撮像素子(SR)への縮小投影が行われるが、撮像素子(SR)の代わりに2次元画像を表示する表示素子(例えば液晶表示素子)を用い、撮影レンズ系(TL)を投影レンズ系として使用すれば、縮小側の画像表示面から拡大側のスクリーン面への拡大投影を行う画像投影装置を構成することができる。つまり、本発明の撮像レンズ装置に用いられるズームレンズ系は、撮影レンズ系(TL)としての使用に限らず、投影レンズ系としても好適に使用することが可能である。
【0014】
図2,図3に、撮像レンズ装置の第1,第2の実施の形態を構成するズームレンズ系を、広角端(W)でのレンズ配置・光学断面でそれぞれ示す。各レンズ構成図中の矢印m2,m3は、広角端(W)から望遠端(T)へのズーミングにおける第2群(Gr2),第3群(Gr3)の移動をそれぞれ模式的に示している。また、各レンズ構成図中、ri(i=1,2,3,...)が付された面は物体側から数えてi番目の面(riに*印が付された面は非球面)であり、di(i=1,2,3,...)が付された軸上面間隔は、物体側から数えてi番目の軸上面間隔のうち、ズーミングにおいて変化する可変間隔である。
【0015】
第1,第2の実施の形態のズームレンズ系はいずれも、物体側から順に、負のパワーを有する第1群(Gr1)と、正のパワーを有する第2群(Gr2)と、正のパワーを有する第3群(Gr3)と、から成り、各群の間隔を変化させることによりズーミングを行うズーム比3倍程度の3群ズームレンズである。そして、CCD等の撮像素子(SR)を備えたカメラ(例えばデジタルカメラ)に用いられるズームレンズ系として、その像側には光学的ローパスフィルター等の光学フィルターや撮像素子(SR)のカバーガラス等に相当するガラス製平行平面板(PL)が配置されている。その平行平面板(PL)と第1群(Gr1)は、ズーミングにおいて位置固定である。
【0016】
各実施の形態のレンズ構成を更に詳しく説明する。第1,第2の実施の形態のズームレンズ系において、負・正・正の各群(Gr1,Gr2,Gr3)は物体側から順に以下のように構成されている。第1群(Gr1)は、物体側面(S1)が非球面形状の凹面から成り、反射面(S2)で光軸(AX)を約90°曲げるプリズム(PR)で構成されている。第1の実施の形態(図2)では、第2群(Gr2)が両凸の正レンズ(物体側面が非球面)と両凹の負レンズ(像側面が非球面)とで構成されており、第3群(Gr3)が両凸の正レンズ(両面が非球面)で構成されている。第2の実施の形態(図3)では、第2群(Gr2)が物体側に凸の正メニスカスレンズ(両面が非球面)で構成されており、第3群(Gr3)が像側に凸の正メニスカスレンズ(両面が非球面)で構成されている。なお、第1の実施の形態のズームレンズ系(図2)は、図1中の撮影レンズ系(TL)と同じレンズタイプになっている。
【0017】
各実施の形態のズームレンズ系では、ズーミングにおいて負の第1群(Gr1)が固定であり、少なくとも正の第2群(Gr2)のズーム移動により各群間隔が変化する構成になっている。ズーミングにおいて第1群(Gr1)を固定とすることにより、ズームレンズ系の全長変化と前玉径の肥大化を抑えることができる。また、ズーム位置固定の第1群(Gr1)中の少なくとも最も物体側にプリズム(PR)を配置し、その反射面(S2)で光路を折り曲げれば、ズームレンズ系の入射光軸方向(つまり奥行き方向)の長さが短くかつ一定になり、従来に比べて更に小型化と高変倍化の達成が可能となる。したがって、カメラの見かけ上の薄型化・小型化が達成され、ズーミングや沈胴による厚さの変化が生じないカメラを構成することができる。なお必要に応じて、光軸(AX)を約90°曲げるプリズム(PR)の代わりに他のプリズムやミラー等を反射部材として用いてもよく、光軸(AX)の折り曲げ角度を90度以外の角度に設定してもよい。また必要に応じて、反射部材の反射面にパワーを持たせてもよく、反射面の代わりに屈折面や回折面を用いて光軸(AX)を折り曲げるようにしてもよい。
【0018】
奥行き方向の短縮のために光路折り曲げ用のプリズム(PR)を第1群(Gr1)に配置する場合、各実施の形態のように第1群(Gr1)の負パワーをプリズム(PR)にもたせることが望ましい。第1群(Gr1)の負パワーを適切に設定することにより、第1群(Gr1)を1つのプラスチック部材で構成することが可能となり、レンズ枚数削減,組立工程削減等による低コスト化・小型化や組立の高精度化等による光学性能の向上が可能となる。このような効果を得るための具体的なパワー設定として、以下の条件式(1)を満足することが望ましく、なかでも以下の条件式(1a)を満足することが更に望ましい。
【0019】
1.5<−f1/fW<8.0  …(1)
2.5<−f1/fW<5.0  …(1a)
ただし、
f1:第1群(Gr1)の焦点距離、
fW:広角端(W)でのズームレンズ系全体の焦点距離、
である。
【0020】
条件式(1)の上限を超えると、第1群(Gr1)のパワーが弱すぎて、3倍程度の変倍比を確保することが困難になる。逆に条件式(1)の下限を超えると、第1群(Gr1)のパワーが強すぎて、分散(すなわちアッベ数)が60以下のプラスチック部材を用いた場合に、特に広角端(W)での倍率色収差が大きくなって補正しきれなくなる。
【0021】
各実施の形態のように、プリズム(PR)の物体側面(S1)を凹面とすることが望ましく、更にプリズム(PR)の像側面(S3)を平面とすることが望ましい。光路折り曲げ用の反射面(S2)と負パワーの屈折面(S1)とを同一部材に設けることにより、組み込み誤差による性能劣化を防止することが可能となる。また、プリズム(PR)の物体側面(S1)のみを曲面とすることにより、物体側面(S1)と像側面(S3)との芯ズレによる性能劣化を防止することが可能となる。
【0022】
また各実施の形態のように、プリズム(PR)の物体側面(S1)を非球面とすることが望ましく、プリズム(PR)の物体側面(S1)を周辺へいくほど負のパワーが弱くなる非球面とすることが更に望ましい。プリズム(PR)の物体側面(S1)を周辺へいくほど負のパワーが弱くなる非球面にすることにより、特に広角端(W)で発生する強い糸巻型の歪曲収差を良好に補正することが可能となる。このような効果を得るための具体的な面形状設定として、以下の条件式(2)を満足することが望ましく、なかでも以下の条件式(2a)を満足することが更に望ましい。
【0023】
0.1<R0/R1<0.7  …(2)
0.2<R0/R1<0.5  …(2a)
ただし、
R0:非球面の軸上での曲率半径、
R1:非球面の有効径位置での曲率半径、
である。
【0024】
条件式(2),(2a)は、プリズム(PR)の物体側面(S1)に用いられる非球面の好ましい面形状を規定している。条件式(2)の上限を超えると、歪曲収差{特に広角端(W)で発生する強い糸巻型の歪曲収差}を充分に補正することが困難になる。条件式(2)の下限を超えると、補正過剰となり、逆に樽型の歪曲収差が発生してしまう。
【0025】
なお、各実施の形態を構成しているズームレンズ系には、入射光線を屈折作用により偏向させる屈折型レンズ(つまり、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ)が用いられているが、使用可能なレンズはこれに限らない。例えば、回折作用により入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ,入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ等を用いてもよい。また、不要光をカットするための光束規制板や絞り等を必要に応じて配置してもよい。
【0026】
【実施例】
以下、本発明を実施した撮像レンズ装置に用いられるズームレンズ系の構成等を、コンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1,2は、前述した第1,第2の実施の形態にそれぞれ対応しており、第1,第2の実施の形態を表すレンズ構成図(図2,図3)は、対応する実施例1,2のレンズ構成をそれぞれ示している。
【0027】
各実施例のコンストラクションデータにおいて、ri(i=1,2,3,...)は物体側から数えてi番目の面の曲率半径(mm)、di(i=1,2,3,...)は物体側から数えてi番目の軸上面間隔(mm)を示しており、Ni(i=1,2,3,...),νi(i=1,2,3,...)は物体側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔は、広角端(短焦点距離端,W)〜ミドル(中間焦点距離状態,M)〜望遠端(長焦点距離端,T)での可変空気間隔である。各焦点距離状態(W),(M),(T)に対応する全系の焦点距離(f,mm)及びFナンバー(FNO)を他のデータと併せて示し、各条件式の対応値を表1に示す。
【0028】
曲率半径riに*印が付された面は、非球面(非球面形状の屈折光学面、非球面と等価な屈折作用を有する面等)であり、非球面の面形状を表わす以下の式(AS)で定義される。各実施例の非球面データを他のデータと併せて示す(ただしAi=0の場合は省略する。)。
X(H)=(C0・H)/{1+√(1−ε・C0・H)}+Σ(Ai・H)  …(AS)
ただし、式(AS)中、
X(H):高さHの位置での光軸(AX)方向の変位量(面頂点基準)、
H:光軸(AX)に対して垂直な方向の高さ、
C0:近軸曲率(=1/曲率半径)、
ε:2次曲面パラメータ、
Ai:i次の非球面係数、
である。
【0029】
図4,図5は実施例1,実施例2にそれぞれ対応する収差図であり、(W)は広角端,(M)はミドル,(T)は望遠端における諸収差{左から順に、球面収差等,非点収差,歪曲収差である。Y’:最大像高(mm)}を示している。球面収差図において、実線(d)はd線に対する球面収差(mm)、一点鎖線(g)はg線に対する球面収差(mm)、破線(SC)は正弦条件(mm)を表している。非点収差図において、破線(DM)はメリディオナル面でのd線に対する非点収差(mm)を表しており、実線(DS)はサジタル面でのd線に対する非点収差(mm)を表わしている。また、歪曲収差図において実線はd線に対する歪曲(%)を表している。
【0030】

Figure 2004070235
【0031】
[第1面(r1)の非球面データ]
ε=0.10000×10,A4= 0.45384×10−2,A6=−0.25549×10−3,A8= 0.19212×10−4,A10=−0.50708×10−6
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=−0.94029×10−2,A6= 0.37587×10−2,A8=−0.57140×10−2,A10= 0.20264×10−2
[第7面(r7)の非球面データ]
ε=0.10000×10,A4= 0.26196×10−1,A6= 0.57695×10−3,A8= 0.24640×10−2,A10=−0.54217×10−3
[第8面(r8)の非球面データ]
ε=0.10000×10,A4= 0.22800×10−1,A6=−0.16954×10−1,A8= 0.35272×10−2,A10=−0.26419×10−3
[第9面(r9)の非球面データ]
ε=0.10000×10,A4= 0.63864×10−1,A6=−0.21319×10−1,A8= 0.37922×10−2,A10=−0.15800×10−3
【0032】
Figure 2004070235
【0033】
[第1面(r1)の非球面データ]
ε=0.10000×10,A4= 0.73161×10−2,A6=−0.24828×10−3,A8= 0.18751×10−4,A10= 0.13968×10−6
[第4面(r4)の非球面データ]
ε=0.10000×10,A4=−0.70785×10−2,A6=−0.30076×10−3,A8=−0.10693×10−2,A10= 0.32172×10−3
[第5面(r5)の非球面データ]
ε=0.10000×10,A4= 0.33683×10−1,A6=−0.63352×10−2,A8= 0.84942×10−2,A10=−0.15771×10−2
[第6面(r6)の非球面データ]
ε=0.10000×10,A4= 0.90694×10−2,A6=−0.34993×10−2,A8=−0.10148×10−2,A10= 0.38725×10−3
[第7面(r7)の非球面データ]
ε=0.10000×10,A4= 0.42638×10−1,A6=−0.11303×10−1,A8= 0.22729×10−2,A10=−0.87989×10−4
【0034】
【表1】
Figure 2004070235
【0035】
【発明の効果】
以上説明したように本発明によれば、ズーム比3倍程度のズームレンズ系を備え、携帯電話等の薄型の筐体に搭載するのに充分な小型化と低コスト化が達成された撮像レンズ装置を実現することができる。そして本発明を、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,携帯電話,携帯通信端末,携帯情報端末(PDA)等に内蔵又は外付けされるカメラに適用すれば、これらの機器のコンパクト化,低コスト化,高変倍化及び高性能化に寄与することができる。
【図面の簡単な説明】
【図1】本発明に係る撮像レンズ装置の概略光学構成を示す模式図。
【図2】第1の実施の形態(実施例1)のレンズ構成図。
【図3】第2の実施の形態(実施例2)のレンズ構成図。
【図4】実施例1の収差図。
【図5】実施例2の収差図。
【符号の説明】
TL …撮影レンズ系(ズームレンズ系)
PR …プリズム
Gr1  …第1群
Gr2  …第2群
Gr3  …第3群
PL …平行平面板
SR …撮像素子
AX …光軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an imaging lens device, and in particular, to an imaging lens device that optically captures an image of a subject by an optical system and outputs it as an electrical signal by an imaging device {for example, a digital camera; a video camera; a digital video unit; Main constituent elements of a camera built in or external to a personal computer, a mobile computer, a mobile phone, a mobile communication terminal, a personal digital assistant (PDA), etc., particularly an imaging lens having a small zoom lens system It concerns the device.
[0002]
[Prior art]
A small zoom lens mounted on a mobile communication terminal, a digital camera, or the like is disclosed in JP-A-2002-55278, JP-A-11-196303, JP-A-2000-131610, and JP-A-9-138347. Proposed. The zoom lens described in Japanese Patent Application Laid-Open No. 2002-55278 achieves a reduction in the overall length and a zoom ratio of about three times with three lenses, and Japanese Patent Application Laid-Open Nos. 11-196303 and 2000-131610. The zoom lenses described in Japanese Unexamined Patent Publication No. Hei 9-138347 reduce the length in the depth direction by bending the optical path in the first group.
[0003]
[Problems to be solved by the invention]
The zoom lens described in Japanese Patent Application Laid-Open No. 2002-55278 has a total length of 10 mm or more, and when including a unit of an image sensor, is slightly large to be mounted on a thin housing such as a mobile phone or a mobile communication terminal. In the zoom lenses described in JP-A-11-196303, JP-A-2000-131610, and JP-A-9-138347, the first group is composed of two members, a lens and a reflecting member. Size and miniaturization are not enough. In addition, there is a problem of performance degradation due to a positional shift between the lens and the reflecting member that occurs when the lens and the reflecting member are assembled into the lens barrel.
[0004]
The present invention has been made in view of such a situation, and an object thereof is to provide a zoom lens system having a zoom ratio of about three times and to reduce the size enough to be mounted on a thin housing such as a mobile phone. And to provide an imaging lens device that achieves low cost.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an imaging lens device according to a first aspect of the present invention includes a zoom lens system including a plurality of groups and performing zooming by changing an interval between the groups, and an optical system formed by the zoom lens system. An image pickup device for converting an image into an electric signal, wherein the zoom lens system includes, in order from the object side, a first group having a fixed negative power in zooming, and A second group of moving positive power, wherein the first group has at least a prism for bending the optical path closest to the object side, and the object side surface of the prism is concave.
[0006]
An imaging lens device according to a second aspect is characterized in that, in the configuration according to the first aspect, the image side surface of the prism is a flat surface.
[0007]
An imaging lens device according to a third aspect is characterized in that, in the configuration of the first or second aspect, the following conditional expression (1) is satisfied.
1.5 <−f1 / fW <8.0 (1)
However,
f1: focal length of the first group,
fW: focal length of the entire zoom lens system at the wide-angle end,
It is.
[0008]
According to a fourth aspect of the present invention, in the imaging lens device according to the first, second, or third aspect, the object side surface of the prism is an aspherical surface.
[0009]
According to a fifth aspect of the present invention, in the imaging lens device according to the fourth aspect, the aspheric surface satisfies the following conditional expression (2).
0.1 <R0 / R1 <0.7 (2)
However,
R0: radius of curvature on the axis of the aspherical surface,
R1: radius of curvature at the effective diameter position of the aspherical surface,
It is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an imaging lens device embodying the present invention will be described with reference to the drawings. 2. Description of the Related Art An imaging lens device that optically captures an image of a subject and outputs it as an electrical signal is a camera used for still image shooting or moving image shooting of a subject {for example, a digital camera; a video camera; a digital video unit, a personal computer, and a mobile. It is a main component of a camera built-in or external to a computer, a mobile phone, a mobile communication terminal, a personal digital assistant (PDA), or the like. For example, as shown in FIG. 1, the imaging lens device includes, in order from an object (subject) side, a photographing lens system (TL) that forms an optical image of the object, and a parallel flat plate (PL) corresponding to an optical low-pass filter or the like. ) And an image sensor (SR) that converts an optical image formed by the taking lens system (TL) into an electric signal.
[0011]
The photographing lens system (TL) shown in FIG. 1 includes, in order from the object side, a first group (Gr1) having negative power, a second group (Gr2) having positive power, a third group (Gr3) having positive power, Is a zoom lens system having a three-group configuration. Then, the second group (Gr2) and the third group (Gr3) move along the optical axis (AX), and the magnification (magnification) is performed by changing the interval between the groups. The first group (Gr1) is a fixed group whose position is fixed in zooming, and includes only a prism (PR) for bending an optical path as an optical element. The object side surface (S1) of the prism (PR) is concave, and the reflection surface (S2) and the image side surface (S3) are flat. The negative power of the first lens unit (Gr1) is constituted by the concave object side surface (S1), and the bending of the optical path for using the imaging lens system (TL) as a bending optical system is performed by a flat reflecting surface (S2). ). Note that the zoom configuration of the photographing lens system (TL) is not limited to this as long as the zoom lens system includes a plurality of groups and changes the magnification by changing the interval between the groups.
[0012]
As the image sensor (SR), for example, a solid-state image sensor such as a CCD (Charge Coupled Device) comprising a plurality of pixels or a CMOS (Complementary Metal Oxide Semiconductor) sensor is used, and an optical image formed by a zoom lens system is used as the image sensor. (SR) is converted into an electrical signal. An optical image to be formed by the zoom lens system is composed of an optical low-pass filter / parallel plane plate (PL) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the image sensor (SR). By passing through}, the spatial frequency characteristic is adjusted such that so-called aliasing noise generated when converted into an electric signal is minimized. Examples of the optical low-pass filter include, for example, a birefringent low-pass filter made of quartz or the like whose crystal axis direction is adjusted, and a phase-type low-pass filter that achieves a required optical cutoff frequency characteristic by a diffraction effect. Etc. are applicable. The signal generated by the image sensor (SR) is subjected to predetermined digital image processing and image compression processing as necessary, and is recorded as a digital video signal in a memory (semiconductor memory, optical disk, or the like). Or is converted to an infrared signal and transmitted to another device.
[0013]
Note that, in the imaging lens device shown in FIG. 1, the reduction projection from the object on the enlargement side (the side with the longer conjugate length) to the image sensor (SR) on the reduction side (the side with the shorter conjugate length) is performed by the imaging lens system (TL). However, if a display element (for example, a liquid crystal display element) for displaying a two-dimensional image is used instead of the imaging element (SR) and the taking lens system (TL) is used as a projection lens system, the image display surface on the reduction side can be obtained. , An image projection apparatus that performs enlarged projection from the image to the screen surface on the enlargement side can be configured. That is, the zoom lens system used in the imaging lens device of the present invention is not limited to use as a photographing lens system (TL), but can be suitably used as a projection lens system.
[0014]
FIGS. 2 and 3 show zoom lens systems constituting the first and second embodiments of the imaging lens device in terms of lens arrangement and optical cross section at the wide-angle end (W). Arrows m2 and m3 in each lens configuration diagram schematically show movement of the second group (Gr2) and the third group (Gr3) during zooming from the wide-angle end (W) to the telephoto end (T). . In each lens configuration diagram, the surface marked with ri (i = 1, 2, 3,...) Is the i-th surface counted from the object side (the surface marked with * is an aspheric surface). ) And di (i = 1, 2, 3,...) Are the variable distances that change during zooming among the i-th axial distances counted from the object side.
[0015]
In each of the zoom lens systems according to the first and second embodiments, in order from the object side, a first unit (Gr1) having a negative power, a second unit (Gr2) having a positive power, and a positive unit A third group (Gr3) having power, and a three-group zoom lens having a zoom ratio of about three times that performs zooming by changing the interval between the respective groups. As a zoom lens system used for a camera (for example, a digital camera) having an image sensor (SR) such as a CCD, an optical filter such as an optical low-pass filter and a cover glass of the image sensor (SR) are provided on the image side. And a glass plane-parallel plate (PL) corresponding to. The position of the parallel plane plate (PL) and the first lens unit (Gr1) is fixed during zooming.
[0016]
The lens configuration of each embodiment will be described in more detail. In the zoom lens systems according to the first and second embodiments, the negative, positive, and positive groups (Gr1, Gr2, Gr3) are configured as follows in order from the object side. The first lens unit (Gr1) includes a prism (PR) whose object side surface (S1) is formed of an aspherical concave surface and whose reflection surface (S2) bends the optical axis (AX) by about 90 °. In the first embodiment (FIG. 2), the second group (Gr2) includes a biconvex positive lens (object side surface is aspherical) and a biconcave negative lens (image side surface is aspherical). The third group (Gr3) is composed of a biconvex positive lens (both surfaces are aspheric). In the second embodiment (FIG. 3), the second group (Gr2) is composed of a positive meniscus lens (both surfaces are aspheric) convex on the object side, and the third group (Gr3) is convex on the image side. (Both surfaces are aspheric). Note that the zoom lens system (FIG. 2) of the first embodiment has the same lens type as the photographing lens system (TL) in FIG.
[0017]
In the zoom lens system according to each of the embodiments, the negative first unit (Gr1) is fixed during zooming, and at least the interval between the units is changed by zoom movement of the positive second unit (Gr2). By fixing the first lens unit (Gr1) in zooming, it is possible to suppress a change in the overall length of the zoom lens system and an increase in the diameter of the front lens. Further, if a prism (PR) is arranged at least on the most object side in the first group (Gr1) having a fixed zoom position, and the optical path is bent at the reflection surface (S2), the direction of the incident optical axis of the zoom lens system (that is, The length (in the depth direction) is short and constant, so that further miniaturization and higher magnification can be achieved as compared with the related art. Therefore, an apparently thinner and smaller camera can be achieved, and a camera that does not change its thickness due to zooming or collapsing can be configured. If necessary, other prisms or mirrors may be used as reflecting members instead of the prism (PR) that bends the optical axis (AX) by about 90 °, and the bending angle of the optical axis (AX) is set to a value other than 90 °. May be set. If necessary, the reflecting surface of the reflecting member may have power, and the optical axis (AX) may be bent using a refracting surface or a diffractive surface instead of the reflecting surface.
[0018]
When the prism (PR) for bending the optical path is arranged in the first group (Gr1) for shortening in the depth direction, the negative power of the first group (Gr1) is given to the prism (PR) as in each embodiment. It is desirable. By appropriately setting the negative power of the first lens unit (Gr1), the first lens unit (Gr1) can be composed of one plastic member, and the cost and size can be reduced by reducing the number of lenses and the assembly process. It is possible to improve the optical performance by improving the accuracy of assembly and assembly. As a specific power setting for obtaining such an effect, it is preferable to satisfy the following conditional expression (1), and it is more preferable to satisfy the following conditional expression (1a).
[0019]
1.5 <−f1 / fW <8.0 (1)
2.5 <−f1 / fW <5.0 (1a)
However,
f1: focal length of the first lens unit (Gr1);
fW: focal length of the entire zoom lens system at the wide-angle end (W),
It is.
[0020]
If the upper limit of conditional expression (1) is exceeded, the power of the first lens unit (Gr1) will be too weak, and it will be difficult to secure a zoom ratio of about three times. Conversely, if the lower limit of conditional expression (1) is exceeded, the power of the first lens unit (Gr1) is too strong, and when a plastic member having a variance (ie, Abbe number) of 60 or less is used, particularly at the wide-angle end (W) Magnification chromatic aberration becomes large and cannot be corrected.
[0021]
As in each embodiment, the object side surface (S1) of the prism (PR) is desirably concave, and the image side surface (S3) of the prism (PR) is desirably flat. By providing the reflecting surface (S2) for bending the optical path and the refracting surface (S1) having a negative power on the same member, it is possible to prevent performance degradation due to a mounting error. Further, by making only the object side surface (S1) of the prism (PR) a curved surface, it is possible to prevent performance degradation due to misalignment between the object side surface (S1) and the image side surface (S3).
[0022]
Also, as in each embodiment, it is desirable that the object side surface (S1) of the prism (PR) be an aspherical surface, and the negative power becomes weaker as the object side surface (S1) of the prism (PR) goes to the periphery. More preferably, it is spherical. By making the object side surface (S1) of the prism (PR) an aspheric surface in which the negative power becomes weaker as going to the periphery, it is possible to satisfactorily correct the strong pincushion type distortion particularly occurring at the wide angle end (W). It becomes possible. As a specific surface shape setting for obtaining such an effect, it is preferable to satisfy the following conditional expression (2), and it is more preferable to satisfy the following conditional expression (2a).
[0023]
0.1 <R0 / R1 <0.7 (2)
0.2 <R0 / R1 <0.5 (2a)
However,
R0: radius of curvature on the axis of the aspherical surface,
R1: radius of curvature at the effective diameter position of the aspherical surface,
It is.
[0024]
The conditional expressions (2) and (2a) define a preferable surface shape of the aspheric surface used for the object side surface (S1) of the prism (PR). If the upper limit of conditional expression (2) is exceeded, it becomes difficult to sufficiently correct distortion (particularly strong pincushion distortion occurring at the wide-angle end (W)). If the lower limit of conditional expression (2) is exceeded, the correction will be excessive, and barrel distortion will occur.
[0025]
The zoom lens system according to each of the embodiments includes a refractive lens that deflects an incident light ray by a refraction action (that is, a lens of a type in which deflection is performed at an interface between media having different refractive indexes). Although used, usable lenses are not limited to this. For example, a diffractive lens that deflects an incident light beam by a diffractive action, a hybrid refraction / diffractive lens that deflects an incident light ray by a combination of a diffractive action and a refraction action, and a refractive index distribution that deflects the incident light ray by a refractive index distribution in a medium. A mold lens or the like may be used. Further, a light flux regulating plate, a diaphragm, and the like for cutting unnecessary light may be arranged as necessary.
[0026]
【Example】
Hereinafter, the configuration and the like of the zoom lens system used in the imaging lens device embodying the present invention will be described more specifically with reference to construction data and the like. Examples 1 and 2 listed here correspond to the first and second embodiments described above, respectively. The lens configuration diagrams (FIGS. 2 and 3) representing the first and second embodiments are shown in FIGS. And the corresponding lens configurations of Examples 1 and 2 are shown.
[0027]
In the construction data of each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature (mm) of the i-th surface counted from the object side, and di (i = 1, 2, 3,. ...) indicate the i-th axial top surface interval (mm) counted from the object side, and Ni (i = 1, 2, 3,...), Νi (i = 1, 2, 3,. .) Indicate the refractive index (Nd) and Abbe number (νd) of the i-th optical element counted from the object side with respect to the d-line. In the construction data, the distance between the upper surfaces of the axes that changes during zooming is variable air at the wide-angle end (short focal length end, W) to the middle (intermediate focal length state, M) to the telephoto end (long focal length end, T). The interval. The focal length (f, mm) and F number (FNO) of the entire system corresponding to each focal length state (W), (M), (T) are shown together with other data, and the corresponding value of each conditional expression is shown. It is shown in Table 1.
[0028]
Surfaces marked with an asterisk (*) in the radius of curvature ri are aspherical surfaces (refracting optical surfaces having an aspherical surface, surfaces having a refracting action equivalent to an aspherical surface, and the like), and the following expression representing the aspherical surface shape ( AS). The aspherical surface data of each embodiment is shown together with other data (however, the case of Ai = 0 is omitted).
X (H) = (C0 · H 2) / {1 + √ (1-ε · C0 2 · H 2)} + Σ (Ai · H i) ... (AS)
However, in the expression (AS),
X (H): displacement amount in the optical axis (AX) direction at the position of height H (based on the surface vertex),
H: height in a direction perpendicular to the optical axis (AX),
C0: paraxial curvature (= 1 / radius of curvature),
ε: quadratic surface parameter,
Ai: i-th order aspherical coefficient,
It is.
[0029]
4 and 5 are aberration diagrams respectively corresponding to the first embodiment and the second embodiment. (W) denotes the wide-angle end, (M) denotes the middle, (T) denotes various aberrations at the telephoto end. Aberration, astigmatism, and distortion. Y ′: maximum image height (mm)}. In the spherical aberration diagram, the solid line (d) represents the spherical aberration (mm) for the d line, the dashed line (g) represents the spherical aberration (mm) for the g line, and the dashed line (SC) represents the sine condition (mm). In the astigmatism diagram, a broken line (DM) represents astigmatism (mm) with respect to the d-line on the meridional surface, and a solid line (DS) represents astigmatism (mm) with respect to the d-line on the sagittal surface. I have. In the distortion diagrams, the solid line represents the distortion (%) with respect to the d-line.
[0030]
Figure 2004070235
[0031]
[Aspherical surface data of first surface (r1)]
ε = 0.10000 × 10, A4 = 0.45384 × 10 −2 , A6 = −0.25549 × 10 −3 , A8 = 0.19212 × 10 −4 , A10 = −0.50708 × 10 −6
[Aspherical surface data of fourth surface (r4)]
ε = 0.10000 × 10, A4 = −0.94029 × 10 −2 , A6 = 0.37587 × 10 −2 , A8 = −0.57140 × 10 −2 , A10 = 0.02264 × 10 −2
[Aspherical surface data of the seventh surface (r7)]
ε = 0.10000 × 10, A4 = 0.26196 × 10 -1 , A6 = 0.57695 × 10 -3 , A8 = 0.24640 × 10 -2 , A10 = -0.54217 × 10 -3
[Aspherical surface data of eighth surface (r8)]
ε = 0.10000 × 10, A4 = 0.22800 × 10 −1 , A6 = −0.16954 × 10 −1 , A8 = 0.35272 × 10 −2 , A10 = −0.26419 × 10 −3
[Aspherical surface data of ninth surface (r9)]
ε = 0.10000 × 10, A4 = 0.63864 × 10 −1 , A6 = −0.21319 × 10 −1 , A8 = 0.37922 × 10 −2 , A10 = −0.15800 × 10 −3
[0032]
Figure 2004070235
[0033]
[Aspherical surface data of first surface (r1)]
ε = 0.10000 × 10, A4 = 0.73161 × 10 −2 , A6 = −0.24828 × 10 −3 , A8 = 0.18751 × 10 −4 , A10 = 0.13968 × 10 −6
[Aspherical surface data of fourth surface (r4)]
ε = 0.10000 × 10, A4 = −0.70785 × 10 −2 , A6 = −0.30076 × 10 −3 , A8 = −0.10693 × 10 −2 , A10 = 0.32172 × 10 −3
[Aspherical surface data of fifth surface (r5)]
ε = 0.10000 × 10, A4 = 0.36883 × 10 −1 , A6 = −0.63352 × 10 −2 , A8 = 0.84942 × 10 −2 , A10 = −0.15771 × 10 −2
[Aspherical surface data of sixth surface (r6)]
ε = 0.10000 × 10, A4 = 0.90694 × 10 −2 , A6 = −0.34993 × 10 −2 , A8 = −0.10148 × 10 −2 , A10 = 0.38725 × 10 −3
[Aspherical surface data of the seventh surface (r7)]
ε = 0.10000 × 10, A4 = 0.42638 × 10 −1 , A6 = −0.11303 × 10 −1 , A8 = 0.22729 × 10 −2 , A10 = −0.87989 × 10 −4
[0034]
[Table 1]
Figure 2004070235
[0035]
【The invention's effect】
As described above, according to the present invention, an imaging lens including a zoom lens system having a zoom ratio of about three times and achieving a sufficiently small size and low cost to be mounted on a thin housing such as a mobile phone. The device can be realized. If the present invention is applied to a digital camera; a video camera; a digital video unit, a personal computer, a mobile computer, a mobile phone, a portable communication terminal, a personal digital assistant (PDA), or a camera built in or externally attached thereto, It can contribute to downsizing, low cost, high magnification and high performance of the equipment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic optical configuration of an imaging lens device according to the present invention.
FIG. 2 is a lens configuration diagram of the first embodiment (Example 1).
FIG. 3 is a lens configuration diagram of a second embodiment (Example 2).
FIG. 4 is an aberration diagram of the first embodiment.
FIG. 5 is an aberration diagram of the second embodiment.
[Explanation of symbols]
TL: photographing lens system (zoom lens system)
PR Prism Gr1 First group Gr2 Second group Gr3 Third group PL Parallel plane plate SR Image sensor AX Optical axis

Claims (5)

複数の群から成り各群の間隔を変化させることにより変倍を行うズームレンズ系と、そのズームレンズ系により形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、
前記ズームレンズ系が、物体側から順に、変倍において固定の負パワーの第1群と、変倍において移動する正パワーの第2群と、を少なくとも有し、前記第1群が最も物体側に光路折り曲げ用のプリズムを少なくとも有し、そのプリズムの物体側面が凹面であることを特徴とする撮像レンズ装置。
An imaging lens that includes a plurality of groups and includes a zoom lens system that changes magnification by changing the interval between the groups, and an imaging element that converts an optical image formed by the zoom lens system into an electric signal. A device,
The zoom lens system includes, in order from the object side, at least a first group having a fixed negative power at zooming and a second group having positive power moving at zooming, wherein the first group is closest to the object side. An optical path bending prism, wherein the object side surface of the prism is concave.
前記プリズムの像側面が平面であることを特徴とする請求項1記載の撮像レンズ装置。The imaging lens device according to claim 1, wherein an image side surface of the prism is a flat surface. 以下の条件式(1)を満足することを特徴とする請求項1又は2記載の撮像レンズ装置;
1.5<−f1/fW<8.0  …(1)
ただし、
f1:第1群の焦点距離、
fW:広角端でのズームレンズ系全体の焦点距離、
である。
The imaging lens device according to claim 1, wherein the following conditional expression (1) is satisfied;
1.5 <−f1 / fW <8.0 (1)
However,
f1: focal length of the first group,
fW: focal length of the entire zoom lens system at the wide-angle end,
It is.
前記プリズムの物体側面が非球面であることを特徴とする請求項1,2又は3記載の撮像レンズ装置。The imaging lens device according to claim 1, wherein an object side surface of the prism is an aspheric surface. 前記非球面が以下の条件式(2)を満足することを特徴とする請求項4記載の撮像レンズ装置;
0.1<R0/R1<0.7  …(2)
ただし、
R0:非球面の軸上での曲率半径、
R1:非球面の有効径位置での曲率半径、
である。
The imaging lens device according to claim 4, wherein the aspheric surface satisfies the following conditional expression (2):
0.1 <R0 / R1 <0.7 (2)
However,
R0: radius of curvature on the axis of the aspherical surface,
R1: radius of curvature at the effective diameter position of the aspherical surface,
It is.
JP2002232965A 2002-08-09 2002-08-09 Zoom lens system and imaging lens device Expired - Fee Related JP4281307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232965A JP4281307B2 (en) 2002-08-09 2002-08-09 Zoom lens system and imaging lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232965A JP4281307B2 (en) 2002-08-09 2002-08-09 Zoom lens system and imaging lens device

Publications (3)

Publication Number Publication Date
JP2004070235A true JP2004070235A (en) 2004-03-04
JP2004070235A5 JP2004070235A5 (en) 2005-09-15
JP4281307B2 JP4281307B2 (en) 2009-06-17

Family

ID=32018214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232965A Expired - Fee Related JP4281307B2 (en) 2002-08-09 2002-08-09 Zoom lens system and imaging lens device

Country Status (1)

Country Link
JP (1) JP4281307B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566680A1 (en) * 2004-02-19 2005-08-24 Seiko Epson Corporation Miniature zoom lens
JP2006058840A (en) * 2004-07-23 2006-03-02 Konica Minolta Opto Inc Imaging optical system, imaging lens device and digital equipment
KR100593177B1 (en) 2004-07-26 2006-06-26 삼성전자주식회사 Mobile phone camera module with optical zoom
JP2006171212A (en) * 2004-12-14 2006-06-29 Nidec Copal Corp Zoom lens
US7085071B2 (en) * 2002-08-29 2006-08-01 Olympus Corporation Zoom lens
JP2006330675A (en) * 2005-04-28 2006-12-07 Olympus Corp Zoom optical system and electronic equipment using the same
JP2007003873A (en) * 2005-06-24 2007-01-11 Olympus Corp Zoom lens and imaging apparatus using the same
JP2007033476A (en) * 2005-07-22 2007-02-08 Nidec Copal Corp Zoom lens
JP2007033819A (en) * 2005-07-26 2007-02-08 Konica Minolta Opto Inc Imaging optical system, imaging lens device, and digital equipment
CN100354683C (en) * 2004-10-21 2007-12-12 三菱电机株式会社 Focus multiple changing lens
US7382546B2 (en) 2004-10-29 2008-06-03 Konica Minolta Opto, Inc. Zoom optical system, imaging lens device, and digital apparatus
JP2009014947A (en) * 2007-07-04 2009-01-22 Olympus Imaging Corp Image-forming optical system and imaging apparatus using the same
WO2010011789A2 (en) * 2008-07-22 2010-01-28 Stereo Display, Inc. Compact auto-focus image taking lens system with a micromirror array lens and a lens-surfaced prism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139601B2 (en) 2015-05-08 2018-11-27 Samsung Electronics Co., Ltd. Thin telephoto lens and image pickup apparatus including the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085071B2 (en) * 2002-08-29 2006-08-01 Olympus Corporation Zoom lens
US7136232B2 (en) 2004-02-19 2006-11-14 Seiko Epson Corporation Miniature zoom lens
EP1566680A1 (en) * 2004-02-19 2005-08-24 Seiko Epson Corporation Miniature zoom lens
JP2006058840A (en) * 2004-07-23 2006-03-02 Konica Minolta Opto Inc Imaging optical system, imaging lens device and digital equipment
KR100593177B1 (en) 2004-07-26 2006-06-26 삼성전자주식회사 Mobile phone camera module with optical zoom
CN100354683C (en) * 2004-10-21 2007-12-12 三菱电机株式会社 Focus multiple changing lens
US7382546B2 (en) 2004-10-29 2008-06-03 Konica Minolta Opto, Inc. Zoom optical system, imaging lens device, and digital apparatus
JP2006171212A (en) * 2004-12-14 2006-06-29 Nidec Copal Corp Zoom lens
JP2006330675A (en) * 2005-04-28 2006-12-07 Olympus Corp Zoom optical system and electronic equipment using the same
JP2007003873A (en) * 2005-06-24 2007-01-11 Olympus Corp Zoom lens and imaging apparatus using the same
JP2007033476A (en) * 2005-07-22 2007-02-08 Nidec Copal Corp Zoom lens
JP2007033819A (en) * 2005-07-26 2007-02-08 Konica Minolta Opto Inc Imaging optical system, imaging lens device, and digital equipment
JP2009014947A (en) * 2007-07-04 2009-01-22 Olympus Imaging Corp Image-forming optical system and imaging apparatus using the same
WO2010011789A2 (en) * 2008-07-22 2010-01-28 Stereo Display, Inc. Compact auto-focus image taking lens system with a micromirror array lens and a lens-surfaced prism
WO2010011789A3 (en) * 2008-07-22 2010-04-22 Stereo Display, Inc. Compact auto-focus image taking lens system with a micromirror array lens and a lens-surfaced prism

Also Published As

Publication number Publication date
JP4281307B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP3656089B2 (en) Imaging lens device
JP4055599B2 (en) Imaging lens device and electronic apparatus equipped with the same
JP3598971B2 (en) Imaging lens device
JP4103475B2 (en) Imaging lens device
JP4867383B2 (en) Variable magnification optical system
JP5045267B2 (en) Zoom lens and imaging device
US7180542B2 (en) Imaging lens device and digital camera having the imaging lens device
JP3433733B2 (en) Imaging lens device
JP3864897B2 (en) Imaging lens device
JP2002055278A (en) Image pickup lens device
JP2007072263A (en) Variable power optical system
JP2005338143A (en) Imaging lens device
JP3750672B2 (en) Imaging lens device
JP2006317478A (en) Variable magnification optical system
CN102576146A (en) Zoom lens system, image-capturing device, and camera
JP2008039838A (en) Zoom lens system, image pickup apparatus, and camera
JP4281307B2 (en) Zoom lens system and imaging lens device
JP2005037576A (en) Imaging lens device
JP2004037967A (en) Image pickup lens device
JP3821087B2 (en) Imaging lens device
JP2003287681A (en) Image pickup lens device
US7440195B2 (en) Zoom lens system and imaging device having the same
JP2006323051A (en) Variable power optical system
JP2004226510A (en) Imaging lens device
US7050241B2 (en) Image-taking lens apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees