JP2001206787A - Calcium phosphate porous sintered compact and method of producing the same - Google Patents

Calcium phosphate porous sintered compact and method of producing the same

Info

Publication number
JP2001206787A
JP2001206787A JP2000010851A JP2000010851A JP2001206787A JP 2001206787 A JP2001206787 A JP 2001206787A JP 2000010851 A JP2000010851 A JP 2000010851A JP 2000010851 A JP2000010851 A JP 2000010851A JP 2001206787 A JP2001206787 A JP 2001206787A
Authority
JP
Japan
Prior art keywords
calcium phosphate
porous sintered
sintered body
porosity
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000010851A
Other languages
Japanese (ja)
Other versions
JP3897220B2 (en
Inventor
Junzo Tanaka
順三 田中
Masanori Kikuchi
正紀 菊池
Akimichi Hojo
顯道 北條
Koichi Imura
浩一 井村
Hideo Uemoto
英雄 上本
Hiroshi Yamazaki
拓 山崎
Masami Kinoshita
雅実 木下
Nobuaki Minowa
信昭 蓑輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
National Institute for Research in Inorganic Material
Toshiba Denko Co Ltd
Original Assignee
National Institute for Research in Inorganic Material
Toshiba Denko Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Toshiba Denko Co Ltd, Toshiba Ceramics Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP2000010851A priority Critical patent/JP3897220B2/en
Publication of JP2001206787A publication Critical patent/JP2001206787A/en
Application granted granted Critical
Publication of JP3897220B2 publication Critical patent/JP3897220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous body characterized in that the mechanical strength is high and cells and/or tissues can enter into the porous body. SOLUTION: In a calcium phosphate porous sintered compact, the porosity is continuously distributed in the range from 5% or less to 85% or more in a gradient manner. A method of producing the calcium phosphate porous sintered body includes the process of controlling a slurry obtained by dispersing or dissolving a calcium phosphate powder and an organic substance capable of curing by crosslinking polymerization into a solvent, the process of adding a foaming agent to the slurry and foaming the slurry to a prescribed volume by either stirring or introducing a gas in order to obtain a slurry in the bubbled state, and the process of adding and mixing at least one of a crosslinking agent and a crosslinking initiator to the slurry in the bubbled state, further introducing the slurry into a mold and curing the slurry by the crosslinking polymerization to obtain a formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、骨補填材として使
用することができるリン酸カルシウム系多孔質焼結体と
その製造方法に関する。
[0001] The present invention relates to a calcium phosphate-based porous sintered body that can be used as a bone filling material and a method for producing the same.

【0002】[0002]

【従来の技術】現在、骨補填材として種々の多孔体が用
いられている。アルミナなどからなる多孔体の生体内死
組織となるものも考えられるが、一般に骨に置換される
リン酸カルシウム系多孔体が骨補填材として好ましい材
料であることが知れている。たとえば特許第29513
42号を参照。
2. Description of the Related Art At present, various porous materials are used as bone filling materials. A porous body made of alumina or the like, which can be a dead tissue in a living body, can be considered, but a calcium phosphate-based porous body that is generally replaced by bone is known to be a preferable material as a bone replacement material. For example, Japanese Patent No. 29513
See No. 42.

【0003】また、緻密体も骨補填材として用いられて
いる。
[0003] Dense bodies are also used as bone substitutes.

【0004】[0004]

【発明が解決しようとする課題】従来のリン酸カルシウ
ム系多孔体は機械的強度が低いため、特に椎体のように
大きな機械的負荷がかかる生体組織に置換することは難
しい。
Since the conventional calcium phosphate-based porous body has low mechanical strength, it is difficult to replace it with a living tissue which is subjected to a large mechanical load, such as a vertebral body.

【0005】また、緻密体が骨補填材として用いられる
が、緻密体は機械的強度が高いものの、細胞・組織が内
部に侵入することができないため、最終的には骨との機
械強度の違いによって生体力学的に周囲の骨が吸収され
たり、あるいは生体内の高電解質環境下で材料が劣化し
破壊するなどの問題がある。とりわけ身体の上半身を支
える椎体、頭部を支える頸椎などには、大きな荷重がか
かり、万一事故を起こした場合には生命の危険が生じた
り、寝たきりなどの重大な問題に発展することがある。
そのため、材料強度を確保することが大切である。
[0005] In addition, the dense body is used as a bone filling material. However, although the dense body has high mechanical strength, cells and tissues cannot penetrate into the inside. Therefore, there is a problem that the surrounding bone is biomechanically absorbed, or the material is deteriorated and destroyed in a high electrolyte environment in the living body. In particular, the vertebral body that supports the upper body and the cervical vertebra that supports the head are under heavy load. is there.
Therefore, it is important to secure material strength.

【0006】本発明の目的は、機械的強度が高く、細胞
・組織が侵入することができるような多孔体の特徴を兼
ね備えたリン酸カルシウム系多孔質焼結体とその製造方
法を提供するものである。
An object of the present invention is to provide a calcium phosphate-based porous sintered body having high mechanical strength and having the characteristics of a porous body through which cells and tissues can enter, and a method for producing the same. .

【0007】[0007]

【課題を解決するための手段】本発明の好ましい解決手
段は、前掲の請求項1〜16に記載のリン酸カルシウム
系多孔質焼結体とその製造方法である。
A preferred solution of the present invention is a calcium phosphate-based porous sintered body according to claims 1 to 16 and a method for producing the same.

【0008】[0008]

【発明の実施の形態】本発明によるリン酸カルシウム系
多孔質焼結体は、骨補填材として使用することができる
ものであり、機械的強度が高く、細胞・組織が侵入する
ことができるような多孔体の特徴を兼ね備えている。
BEST MODE FOR CARRYING OUT THE INVENTION The calcium phosphate-based porous sintered body according to the present invention can be used as a bone filling material, has high mechanical strength, and has a porous structure capable of invading cells and tissues. Has the characteristics of the body.

【0009】本発明によるリン酸カルシウム系多孔質焼
結体の気孔率は、5%以下から85%以上まで実質的に
連続して傾斜的に分布している。
[0009] The porosity of the calcium phosphate-based porous sintered body according to the present invention is substantially continuously and inclinedly distributed from 5% or less to 85% or more.

【0010】好ましくは、本発明によるリン酸カルシウ
ム系多孔質焼結体の気孔率は、1%以下から90%以上
まで実質的に連続的して傾斜的に分布している。
[0010] Preferably, the porosity of the calcium phosphate-based porous sintered body according to the present invention is substantially continuously and inclinedly distributed from 1% or less to 90% or more.

【0011】いずれの場合も、気孔率の高い領域(たと
えば75%以上の領域)においては、気孔間の連通部分
の平均的な直径が50μm以上であり、かつ、気孔径が
150μm以上であり、かつ、その三点曲げ強さが5M
Pa以上であるのが好ましい。 なお、「実質的に連続
して」とは、境目なく気孔率が変化することを意味する
が、5層以上の層構造によって徐々に気孔率を変化させ
るような場合も含む。
In any case, in a region having a high porosity (for example, a region of 75% or more), the average diameter of the communicating portion between the pores is 50 μm or more, and the pore diameter is 150 μm or more; And its three-point bending strength is 5M
It is preferably Pa or more. In addition, “substantially continuously” means that the porosity changes without boundaries, but also includes a case where the porosity is gradually changed by a layer structure of five or more layers.

【0012】気孔率の低い領域(たとえば10%以下の
領域)においては、三点曲げ強度が30MPa以上であ
るのが好ましい。50MPa以上であれば特に好まし
い。
In a region having a low porosity (for example, a region of 10% or less), the three-point bending strength is preferably 30 MPa or more. It is particularly preferable if the pressure is 50 MPa or more.

【0013】気孔率の傾斜のしかたは、外部が粗であ
り、内部が密であってもよいし、その逆であってもよ
く、また一方から反対方向に傾斜していてもよく、さら
に粗密の部分が交互であってもよい。
[0013] The porosity may be inclined in such a manner that the outside is rough and the inside is dense or vice versa. Alternatively, the porosity may be inclined from one side in the opposite direction. May be alternated.

【0014】多孔質セラミック焼結体の好ましい構成
は、CaHPO4、Ca3(PO42、Ca5(PO43
OH、Ca4O(PO42、Ca10(PO46(O
H)2、CaP411、Ca(PO32、Ca227
Ca(H2PO42、Ca227、Ca(H2PO42
・H2O等を主成分とする、リン酸カルシウムと称され
る1群の化合物からなる。Ca成分の一部がSr、B
a、Mg、Zn、Fe、Al、Y、La、Na、K、H
などから選ばれる一種以上で置換されてもよい。また、
(PO4)成分の一部が、VO4、BO3、SO4、C
3、SiO4などから選ばれる一種以上で置換されても
よい。さらに、(OH)成分の一部が、F、Cl、O、
CO3等から選ばれる一種以上で置換されてもよい。
The preferred structure of the porous ceramic sintered body is CaHPO 4 , Ca 3 (PO 4 ) 2 , Ca 5 (PO 4 ) 3
OH, Ca 4 O (PO 4 ) 2 , Ca 10 (PO 4 ) 6 (O
H) 2 , CaP 4 O 11 , Ca (PO 3 ) 2 , Ca 2 P 2 O 7 ,
Ca (H 2 PO 4) 2 , Ca 2 P 2 O 7, Ca (H 2 PO 4) 2
· The main component of H 2 O or the like, comprising a compound of a group called calcium phosphate. Part of the Ca component is Sr, B
a, Mg, Zn, Fe, Al, Y, La, Na, K, H
It may be substituted with one or more kinds selected from such as. Also,
Part of the (PO 4 ) component is VO 4 , BO 3 , SO 4 , C
It may be substituted by one or more selected from O 3 and SiO 4 . Further, part of the (OH) component is F, Cl, O,
It may be substituted by one or more selected from CO 3 and the like.

【0015】リン酸カルシウムは、通常の結晶体のみで
なく、同型固溶体、置換型固溶体、侵入型固溶体のいず
れであってもよく、さらに非量論的欠陥を含むものであ
ってもよい。
The calcium phosphate may be not only a normal crystal but also a solid solution of the same type, a solid solution of a substitution type, or a solid solution of an interstitial type, and may further contain a non-stoichiometric defect.

【0016】本発明によるリン酸カルシウム系多孔質焼
結体の好ましい製造方法は、リン酸カルシウム系粉末お
よび架橋重合により硬化し得る有機物質を溶媒に分散ま
たは溶解させたスラリーを調整する工程と、このスラリ
ーに起泡剤を添加し撹拌および/または気体導入により
所定の容積まで起泡し、泡沫状態のスラリーとする工程
と、泡沫状態のスラリーに架橋剤および/または架橋開
始剤(硬化剤)を添加して混合し、型内に導入して架橋
重合により硬化し成形体とする工程を含む。その際、回
転装置などに入れて回転させることにより、密度が回転
中心部で粗で、回転外縁部で密な傾斜分布を得るように
するのが好ましい。また、他の方法によって、傾斜分布
をもたせることができる。
A preferred method for producing a calcium phosphate-based porous sintered body according to the present invention comprises the steps of: preparing a slurry in which a calcium phosphate-based powder and an organic substance curable by cross-linking polymerization are dispersed or dissolved in a solvent; A step of adding a foaming agent and foaming to a predetermined volume by stirring and / or introducing gas to form a foamed slurry; and adding a crosslinking agent and / or a crosslinking initiator (curing agent) to the foamed slurry. Mixing, introducing into a mold, and curing by cross-linking polymerization to form a molded article. At this time, it is preferable that the rotation is carried out in a rotating device or the like so that the density is coarse at the center of rotation and a dense gradient distribution is obtained at the outer edge of the rotation. In addition, a gradient distribution can be provided by another method.

【0017】本発明によるリン酸カルシウム系多孔質焼
結体の好ましい製造方法は、得られた成形体を乾燥し、
焼結する工程を具備する。
In a preferred method for producing a calcium phosphate-based porous sintered body according to the present invention, the obtained molded body is dried,
And a sintering step.

【0018】また、本発明の好ましい実施態様によれ
ば、リン酸カルシウム系多孔質セラミック焼結体は、焼
抜き用のビーズの含有量を違えたスラリー、粉末等を緻
密体の上に複数回積み重ね、成形、乾燥、焼成すること
によって得てもよいし、発泡の量を制御し、気孔径、量
を変えたものを積み重ねて、乾燥、焼成することによっ
て得てもよい。この場合、後者の方法がより好ましい。
According to a preferred embodiment of the present invention, the calcium phosphate-based porous ceramic sintered body is obtained by stacking a plurality of slurries or powders having different contents of beads for baking on a dense body. It may be obtained by molding, drying and baking, or by stacking and controlling the amount of foaming and changing the pore diameter and amount, and drying and baking. In this case, the latter method is more preferable.

【0019】傾斜方向によってリン酸カルシウムの種類
をかえてもよいが、強度の必要な部位に用いる場合は、
全体をハイドロキシアパタイトとすることがよい。特
に、緻密体の三点曲げ強さは、好ましくは50MPa以
上であり、椎体等に適用され得るものとするのがよい。
The type of calcium phosphate may be changed depending on the direction of inclination.
The whole is preferably made of hydroxyapatite. In particular, the three-point bending strength of the dense body is preferably 50 MPa or more, and it is preferable that the body can be applied to a vertebral body or the like.

【0020】なお、実用的には、一方向の傾斜でなく、
2方向、3方向以上の傾斜にした方がよい。椎体など
は、中心部が緻密体で表面に向かって多孔体となる構造
が好ましい。
In practice, it is not a one-way tilt,
It is better to incline in two directions, three directions or more. The vertebral body or the like preferably has a structure in which the central portion is dense and porous toward the surface.

【0021】本発明によるリン酸カルシウム系多孔質焼
結体の好ましい適用例は、次のとおりである。
Preferred examples of application of the calcium phosphate-based porous sintered body according to the present invention are as follows.

【0022】(1)骨伝導能をもつ生体骨置換型骨再建
材としての利用法。
(1) Use as a living bone replacement type bone reconstruction material having osteoconductive ability.

【0023】(2)粗鬆症・骨欠損の補填材としての利
用法。
(2) Use as a filler for osteoporosis and bone defects.

【0024】(3)プリオン(低分子量タンパクに起因
するヤコブ病)などの疾病対策として頭蓋骨に利用でき
る人工硬膜。
(3) An artificial dura that can be used on the skull as a countermeasure for diseases such as prions (Jakob's disease caused by low molecular weight proteins).

【0025】(4)アミノ酸・糖質・サイトカインを含
み組織工学に用いられる生理活性基材。
(4) A bioactive substrate containing amino acids, carbohydrates and cytokines and used for tissue engineering.

【0026】(5)抗癌剤などの生体融和型薬剤徐放性
基材。
(5) Biocompatible drug sustained release base such as anticancer drug.

【0027】(6)幹細胞や肝臓組織などの培養容器。(6) Culture vessels for stem cells, liver tissue, etc.

【0028】(7)飲料水や発酵した飲み物などのフィ
ルターとしての用途。
(7) Use as a filter for drinking water or fermented drinks.

【0029】(8)吸着・分離に用いるカラム材料。(8) Column material used for adsorption / separation.

【0030】さらに本発明を別の観点から説明する。The present invention will be further described from another viewpoint.

【0031】気孔率0.1%以上から99.9%以下で傾斜的
に分布しているリン酸カルシウム系多孔質焼結体が好ま
しい。気孔率の高い領域においては、細胞・生体組織が
浸入しやすい気孔径(150μm以上、導通径50μm以上)
をもち、その三点曲げ強度が5MPa以上であることが
好ましい。気孔率の低い領域においては、外部が粗く、
強度が高く、三点曲げ強度が30MPa以上であること
が好ましい。気孔率の傾斜は、外部が粗であり内部が密
であってもよいし、その逆であってもよく、また一方か
ら反対方向に傾斜ていてもよく、さらに粗密の部分が交
互であってもよい。
A calcium phosphate-based porous sintered body having a porosity of 0.1% or more and 99.9% or less and having a gradient distribution is preferred. In areas with high porosity, pores (150 μm or more, conduction diameter 50 μm or more) into which cells and biological tissues can easily enter
The three-point bending strength is preferably 5 MPa or more. In areas with low porosity, the outside is rough,
It is preferable that the strength is high and the three-point bending strength is 30 MPa or more. The slope of the porosity may be coarse on the outside and dense on the inside, or vice versa, or may be sloped in the opposite direction from one side, and the dense and dense parts are alternated. Is also good.

【0032】本発明においては、気孔率が傾斜的に分布
することにより、気孔率が密の領域では機械的強度が高
く、術後2〜3ヶ月までの初期において材料にかかる荷重
を支えることができる。また、気孔率が粗な領域では、
細胞・組織が内部に浸入するため術後3ヶ月以降から生
体組織にきわめて近い状態になり強度が上がり荷重を支
えることができる。
In the present invention, since the porosity is inclinedly distributed, the mechanical strength is high in a region where the porosity is dense, and it is possible to support the load applied to the material in the initial period of 2 to 3 months after the operation. it can. In the region where the porosity is coarse,
Since the cells and tissues penetrate into the interior, it becomes very close to the living tissue from 3 months after the operation, and the strength is increased and the load can be supported.

【0033】主な用途は、骨誘導および骨伝導能をもつ
生体骨置換型骨再建材、骨粗しょう症・骨欠損の補填
材、アミノ酸・糖質・サイトカインをふくみ組織工学に
用いられる生理活性基材、抗癌剤などの薬剤徐放性基
材、幹細胞や肝臓組織などの培養容器である。飲料水や
発酵した飲み物などのフィルターとしての用途もある。
吸着・分離に用いるカラム材料としても使用できる。
The main uses are a bone-replacement material for living bone having osteoinductive and osteoconductive capabilities, a material for filling in osteoporosis and bone defects, and a physiologically active group used for tissue engineering, including amino acids, carbohydrates and cytokines. Materials, sustained-release base materials for anticancer agents and the like, and culture vessels for stem cells and liver tissues. It is also used as a filter for drinking water and fermented drinks.
It can also be used as a column material for adsorption and separation.

【0034】代表的な製造方法においては、原料である
水酸アパタイト粉末(100g)をイオン交換水(80g)
に懸濁し、架橋重合剤(ポリエチレンイミン:数平均分
子量8000〜10500)を加えてボールミルで5時間混合す
る。得られたスラリー(192g)に起泡剤(ポリオキシ
エチレンラウリルエーテル:非イオン性界面活性剤、O.
8 g)を添加し機械的にかく拌して300cm3になるまで
起泡する。これに、架橋剤(エポキシ化合物:ソルビト
ールポリグリシジルエーテル、4g)を添加し十分 にか
く拌し、円筒型内に導入する。回転台の上に載せ60rp
mで回転することにより泡の分布を傾斜的にする。架橋
重合により流動性を失いバンドリングが可能な強度がで
た時点で脱型し、加湿乾燥器および乾燥器により十分に
乾燥し1200℃で焼結する。
In a typical production method, hydroxyapatite powder (100 g) as a raw material is mixed with ion-exchanged water (80 g).
And a cross-linking polymerizing agent (polyethyleneimine: number average molecular weight: 8000-10500) is added and mixed by a ball mill for 5 hours. A foaming agent (polyoxyethylene lauryl ether: a nonionic surfactant, O.D.) was added to the obtained slurry (192 g).
Add 8 g) and stir mechanically until foam to 300 cm 3 . To this, a crosslinking agent (epoxy compound: sorbitol polyglycidyl ether, 4 g) is added, thoroughly stirred, and introduced into a cylindrical mold. 60rpm on the turntable
By rotating at m, the distribution of bubbles is made sloping. When the fluidity is lost due to the cross-linking polymerization and the strength at which bundling can be obtained is obtained, the mold is released, sufficiently dried with a humidifier and a dryer, and sintered at 1200 ° C.

【0035】得られる水酸アパタイト多孔質焼結体は、
円筒内側において気孔率60%、平均気孔径200μm、平
均連通径70μm、三点曲げ強度15MPaであり、また
周辺部においては気孔率20%、平均気孔径50μm、平均
連通径20μm、三点曲げ強度45MPaである。
The obtained hydroxyapatite porous sintered body is
The inside of the cylinder has a porosity of 60%, an average pore diameter of 200 μm, an average communicating diameter of 70 μm, and a three-point bending strength of 15 MPa. In the peripheral portion, a porosity of 20%, an average pore diameter of 50 μm, an average communicating diameter of 20 μm, and a three-point bending strength It is 45 MPa.

【0036】[0036]

【実施例】以下、本発明の好ましい実施例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0037】実施例1(遠心力利用) 水酸アパタイト粉末100重量部、イオン交換水58.
0重量部に懸濁し、架橋重合剤(ポリエチレンイミン)
8.7重量部を混合し、ボールミルで一昼夜混合粉砕し
てスラリーを調整した。このスラリーを195g取り出
し、これに起泡剤としてポリオキシエチレンラウリルエ
ーテルを1.5g添加し攪拌により起泡して体積を20
0cm3とした。ここで硬化剤としてソルビトールポリ
グリシジルエーテルを2.9g添加し十分混合した後
に、内寸直径46mm、長さ100mmの型に鋳込み、
型長手方向を水平にした状態で円柱回転軸を中心に40
0rpmの回転速度で回転させ、この状態で1時間放置
し、回転を停止した。さらに1時間静置した後に脱型
し、ゆっくり乾燥した後、1200℃で2時間保持して
焼結し、直径30mm、長さ65mmの円柱状の焼結体
を得た。
Example 1 (Utilizing centrifugal force) Hydroxyapatite powder 100 parts by weight, ion-exchanged water
0 parts by weight, cross-linking polymerization agent (polyethyleneimine)
8.7 parts by weight were mixed and mixed and ground with a ball mill for 24 hours to prepare a slurry. 195 g of this slurry was taken out, 1.5 g of polyoxyethylene lauryl ether was added as a foaming agent, and the mixture was foamed by stirring to reduce the volume to 20%.
0 cm 3 . Here, 2.9 g of sorbitol polyglycidyl ether as a curing agent was added and mixed well, and then cast into a mold having an inner diameter of 46 mm and a length of 100 mm.
With the mold longitudinal direction horizontal, 40 around the cylindrical rotation axis
It was rotated at a rotation speed of 0 rpm, left for 1 hour in this state, and stopped. After leaving still for 1 hour, it was removed from the mold, dried slowly, and sintered at 1200 ° C. for 2 hours to obtain a cylindrical sintered body having a diameter of 30 mm and a length of 65 mm.

【0038】得られた焼結体の円中心からの距離と気孔
率の関係を表に示す。なお、気孔率は試料を樹脂中に包
埋後研磨した部分を顕微鏡観察し、観察範囲における樹
脂部分つまり気孔部分の面積比を用いて求めた。
The relationship between the distance from the center of the circle of the obtained sintered body and the porosity is shown in the table. The porosity was determined by observing the polished portion of the sample after embedding it in a resin, using a microscope, and using the area ratio of the resin portion, that is, the pore portion, in the observation range.

【0039】[0039]

【表1】 さらに、顕微鏡観察により気孔率72%を示した円中心
部からの距離6mm以下の部分においては気孔間の連通
部分の平均的な直径が50μmを超えており、気孔径は
150μmを超えていた。また、気孔率の低い円柱表面
部分より、厚さ3mm、幅4mm、長さ40mmの三点
曲げ強度測定用試験片を作製し、スパン30mm、クロ
スヘッド速度0.5mm/minの測定条件で三点曲げ
強さを測定したところ、n=5平均の三点曲げ強さが、
80.5MPaであった。
[Table 1] Furthermore, in a portion at a distance of 6 mm or less from the center of the circle showing a porosity of 72% by microscopic observation, the average diameter of the communicating portion between the pores exceeded 50 μm, and the pore diameter exceeded 150 μm. In addition, a test piece for measuring three-point bending strength having a thickness of 3 mm, a width of 4 mm, and a length of 40 mm was prepared from the surface of the cylinder having a low porosity, and the measurement was performed under the measurement conditions of a span of 30 mm and a crosshead speed of 0.5 mm / min. When the point bending strength was measured, n = 5 average three-point bending strength was:
It was 80.5 MPa.

【0040】実施例2(積層法) 水酸アパタイト粉末100重量部、イオン交換水58重
量部、ポリエチレンイミン8.7重量部を混合し、ボー
ルミルで一昼夜混合粉砕してスラリーAを調整した。こ
のスラリーAに対して、実施例1と同じ要領で硬化剤を
加えて混合した後に内径16mmの型に鋳込んで円柱状
成形体Aを得た。次いで、スラリーAに起泡剤を添加
し、さらに攪拌して起泡させた後に硬化剤を添加して混
合し、スラリーBを調整した。このスラリーを前述の円
柱状成形体Aを中心に置いた内径22mmの型と成形体
Aの間に鋳込んで、成形体Aの円柱表面にスラリーBが
3mmの厚さで固化して接着した円柱状成形体を得た。
さらに、この円柱状成形体の表面に同様にして別の起泡
させたスラリーを鋳込み、固化して接着させる作業を繰
り返した。最終的に成形体Aを中心にして同心円状に5
層の成型物が積層した外径46mmの成形体を得た。そ
れぞれの成型物の層は、成形体Aから外周方向に向かう
順に、焼結体の気孔率がそれぞれ10%、30%、50
%、70%および90%となるように起泡量を調整して
作製した。この積層した円柱状成形体をゆっくり乾燥し
た後、1200℃で2時間保持して焼結し、直径30m
mで積層構造が一体化した円柱状焼結体を得た。得られ
た円柱状焼結体は、中心の直径約10mmの部分が気孔
率0%の緻密体であり、実施例1と同様に求めた積層部
分の気孔率は、中心から外周方向に向けてそれぞれ12
%、33%、52%、71%、および91%であった。
Example 2 (Lamination Method) A slurry A was prepared by mixing 100 parts by weight of hydroxyapatite powder, 58 parts by weight of ion-exchanged water, and 8.7 parts by weight of polyethyleneimine, and mixing and pulverizing the mixture all day and night with a ball mill. A curing agent was added to the slurry A in the same manner as in Example 1, mixed, and then cast into a mold having an inner diameter of 16 mm to obtain a columnar molded body A. Next, a foaming agent was added to the slurry A, and the mixture was stirred and foamed, and then a curing agent was added and mixed to prepare a slurry B. This slurry was cast between the mold A having an inner diameter of 22 mm and the center of the above-mentioned cylindrical compact A, and the slurry B was solidified and adhered to the cylindrical surface of the compact A at a thickness of 3 mm. A cylindrical molded body was obtained.
Further, the operation of casting another foamed slurry in the same manner on the surface of the columnar molded body, solidifying and bonding the same was repeated. Finally, 5 concentrically around the molded body A
A molded product having an outer diameter of 46 mm was obtained by laminating the molded products of the layers. The porosity of the sintered body is 10%, 30%, and 50%, respectively, in the order from the molded body A toward the outer peripheral direction.
%, 70% and 90%. After slowly drying the laminated columnar molded body, it is sintered at 1200 ° C. for 2 hours, and has a diameter of 30 m.
With m, a columnar sintered body having an integrated laminated structure was obtained. The obtained columnar sintered body is a dense body having a porosity of 0% at the center with a diameter of about 10 mm, and the porosity of the laminated portion obtained in the same manner as in Example 1 is from the center toward the outer periphery. 12 each
%, 33%, 52%, 71%, and 91%.

【0041】[0041]

【発明の効果】気孔率が傾斜的に分布することにより、
気孔が粗の部分は機械的強度が高く、術後2〜3ヶ月の
初期において生体内でかかる荷重を支えることができ
る。
According to the present invention, the porosity is inclinedly distributed,
The portion with coarse pores has high mechanical strength and can support a load applied in a living body in an early stage of two to three months after the operation.

【0042】また、気孔が密な部分は、細胞・組織が内
部に侵入することができ、生体組織にきわめて近い状態
になり、術後徐々に強度が向上して荷重を支えることが
できる。
Further, cells and tissues can penetrate into the parts having dense pores and become very close to living tissues, and the strength can be gradually increased after the operation to support the load.

【0043】術後2〜3ヶ月の期間で多孔体の内部に骨
組織が侵入して強度を向上する。
Bone tissue penetrates into the porous body within a period of two to three months after the operation to improve the strength.

【0044】とくにアパタイト単体で緻密質から多孔質
へ徐々に気孔率が変化する場合、徐々に気孔率が変化す
ることにより次のような顕著な効果が得られる。
In particular, when the porosity of apatite alone changes gradually from dense to porous, the following remarkable effects can be obtained by gradually changing the porosity.

【0045】気孔率が徐々に変化すると、人工骨として
用いた場合、表面から徐々に自分の骨に置換される時、
気孔率の大きいところ(弱いところ)から置換され、よ
り緻密な方向へ進む。そのため、毎日強度の向上が見ら
れる。これに対して、全体を一定気孔率の多孔質とした
場合、一定気孔の部分全体が置換されないと、強度向上
が望めない。
When the porosity gradually changes, when used as an artificial bone, when it is gradually replaced with its own bone from the surface,
The porosity is replaced from a place with a large porosity (a weak place), and the porosity proceeds in a denser direction. Therefore, the strength is improved every day. On the other hand, when the whole is made of a porous material having a constant porosity, the strength cannot be improved unless the entire part of the fixed pores is replaced.

【0046】また、徐々に気孔率を変化させると、最も
外側(表面)の気孔率を十分大きくすることができる。
よって早く骨に置換され、骨の固定も早い。
When the porosity is gradually changed, the outermost (surface) porosity can be sufficiently increased.
Therefore, the bone is quickly replaced and the bone is fixed quickly.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000221122 東芝セラミックス株式会社 東京都新宿区西新宿七丁目5番25号 (71)出願人 591121410 東芝電興株式会社 東京都港区新橋5丁目22番10号 松岡田村 町ビル (72)発明者 田中 順三 茨城県つくば市並木1丁目1番地 無機材 質研究所内 (72)発明者 菊池 正紀 茨城県つくば市並木1丁目1番地 無機材 質研究所内 (72)発明者 北條 顯道 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 井村 浩一 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 上本 英雄 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 山崎 拓 東京都港区新橋5丁目22番地10号 東芝電 興株式会社内 (72)発明者 木下 雅実 東京都港区新橋5丁目22番地10号 東芝電 興株式会社内 (72)発明者 蓑輪 信昭 東京都港区新橋5丁目22番地10号 東芝電 興株式会社内 Fターム(参考) 4C081 AB04 BA13 BB06 BB08 CE02 CF011 CF22 CF24 DA01 DA11 DB03 DB05 DB06 DC02 EA04  ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 000221122 Toshiba Ceramics Co., Ltd. 7-25-5 Nishi Shinjuku, Shinjuku-ku, Tokyo (71) Applicant 591121410 Toshiba Denko Co., Ltd. 5--22-10 Shimbashi, Minato-ku, Tokyo No. Matsuokadamura-cho Building (72) Inventor Junzo Tanaka 1-1-1 Namiki, Tsukuba City, Ibaraki Prefecture Inorganic Materials Research Laboratory (72) Inventor Masaki Kikuchi 1-1-1 Namiki Tsukuba City, Ibaraki Prefecture Inorganic Materials Research Laboratory (72 Inventor Akimichi Hojo 30 Soya, Hadano-shi, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd. (72) Inventor Koichi Imura 30-Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Uemoto The hero 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. 5-22-22 Shimbashi, Minato-ku, Kyoto Toshiba Denko Kogyo Co., Ltd. (72) Inventor Masami Kinoshita 5-22-10 Shimbashi, Minato-ku, Tokyo Toshiba Denko Kogyo Co., Ltd. (72) Nobuaki Minowa Inventor 5-22-22 Shimbashi-ku, Tokyo Toshiba Denko Kogyo Co., Ltd. F-term (reference) 4C081 AB04 BA13 BB06 BB08 CE02 CF011 CF22 CF24 DA01 DA11 DB03 DB05 DB06 DC02 EA04

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 気孔率が5%以下から85%以上まで実
質的に連続して傾斜的に分布しているリン酸カルシウム
系多孔質焼結体。
1. A calcium phosphate-based porous sintered body having a porosity substantially continuously and gradiently distributed from 5% or less to 85% or more.
【請求項2】 気孔率が1%以下から90%以上まで連
続的でかつ傾斜的に分布しているリン酸カルシウム系多
孔質焼結体。
2. A calcium phosphate-based porous sintered body having a porosity continuously and gradiently distributed from 1% or less to 90% or more.
【請求項3】 気孔率の高い領域において、気孔間の連
通部分の平均的な直径が50μm以上であり、かつ、気
孔径が150μm以上であることを特徴とする請求項1
〜2のいずれか1項に記載のリン酸カルシウム系多孔質
焼結体。
3. An area having a high porosity, wherein an average diameter of a communicating portion between pores is 50 μm or more, and a pore diameter is 150 μm or more.
3. The calcium phosphate-based porous sintered body according to any one of items 1 to 2.
【請求項4】 気孔率の高い領域において、三点曲げ強
度が5MPa以上であることを特徴とする請求項1〜3
のいずれか1項に記載のリン酸カルシウム系多孔質焼結
体。
4. A three-point bending strength of 5 MPa or more in a region having a high porosity.
The calcium phosphate-based porous sintered body according to any one of the above.
【請求項5】 気孔率の低い領域において、三点曲げ強
度が30MPa以上であることを特徴とする請求項1〜
4のいずれか1項に記載のリン酸カルシウム系多孔質焼
結体。
5. The method according to claim 1, wherein the three-point bending strength is 30 MPa or more in a region having a low porosity.
5. The calcium phosphate-based porous sintered body according to any one of 4.
【請求項6】 気孔率の低い領域において、三点曲げ強
度が50MPa以上であることを特徴とする請求項5記
載のリン酸カルシウム系多孔質焼結体。
6. The calcium phosphate-based porous sintered body according to claim 5, wherein the three-point bending strength is 50 MPa or more in a region having a low porosity.
【請求項7】 気孔率の傾斜は、外部が粗で、内部が密
であることを特徴とする請求項1〜6のいずれか1項に
記載のリン酸カルシウム系多孔質焼結体。
7. The calcium phosphate-based porous sintered body according to claim 1, wherein the slope of the porosity is rough on the outside and dense on the inside.
【請求項8】 気孔率の傾斜は、外部が密で、内部が粗
であることを特徴とする請求項1〜6のいずれか1項に
記載のリン酸カルシウム系多孔質焼結体。
8. The calcium phosphate-based porous sintered body according to any one of claims 1 to 6, wherein the slope of the porosity is such that the outside is dense and the inside is coarse.
【請求項9】 気孔率の粗密の部分が交互であることを
特徴とする請求項1〜6のいずれか1項に記載のリン酸
カルシウム系多孔質焼結体。
9. The calcium phosphate-based porous sintered body according to any one of claims 1 to 6, wherein portions having a porosity of alternating density are alternated.
【請求項10】 リン酸カルシウム系多孔質焼結体は、
CaHPO4、Ca3(PO42、Ca5(PO43
H、Ca4O(PO42、Ca10(PO46(OH)2
CaP411、Ca(PO32、Ca227、Ca(H
2PO42、Ca 227、Ca(H2PO42・H2Oの
少くとも1つの成分を主成分とすることを特徴とする請
求項1〜9のいずれか1項に記載のリン酸カルシウム系
多孔質焼結体。
10. A calcium phosphate-based porous sintered body,
CaHPOFour, CaThree(POFour)Two, CaFive(POFour)ThreeO
H, CaFourO (POFour)Two, CaTen(POFour)6(OH)Two,
CaPFourO11, Ca (POThree)Two, CaTwoPTwoO7, Ca (H
TwoPOFour)Two, Ca TwoPTwoO7, Ca (HTwoPOFour)Two・ HTwoO's
A contractor characterized by comprising at least one component as a main component.
10. The calcium phosphate according to any one of claims 1 to 9
Porous sintered body.
【請求項11】 Ca成分の一部が、Sr、Ba、M
g、Zn、Fe、Al、Y、La、Na、K、Hから選
ばれる一種以上で置換されていることを特徴とする請求
項1〜10のいずれか1項に記載のリン酸カルシウム系
多孔質焼結体。
11. A part of the Ca component is Sr, Ba, M
The calcium phosphate porous sinter according to any one of claims 1 to 10, wherein the sinter is substituted with at least one selected from g, Zn, Fe, Al, Y, La, Na, K, and H. Union.
【請求項12】 (PO4)の成分の一部が、VO4、B
3、SO4、CO3、SiO4から選ばれる一種以上で置
換されていることを特徴とする請求項1〜1 1のいず
れか1項に記載のリン酸カルシウム系多孔質焼結体。
12. Part of the component (PO 4 ) is VO 4 , B
O 3, SO 4, CO 3 , calcium phosphate porous sintered body according to any one of claims 1 to 1 1, characterized in that it is substituted with SiO 4 from one or more selected.
【請求項13】 (OH)成分の一部が、F、Cl、
O、CO3から選ばれる一種以上で置換されていること
を特徴とする請求項1〜12のいずれか1項に記載のリ
ン酸カルシウム系多孔質焼結体。
13. Part of the (OH) component is F, Cl,
O, calcium phosphate porous sintered body according to any one of claims 1 to 12, characterized in that they have been substituted with one or more kinds selected from CO 3.
【請求項14】 リン酸カルシウム系粉末および架橋重
合により硬化し得る有機物質を溶媒に分散または溶解さ
せたスラリーを調整する工程と、このスラリーに起泡剤
を添加し、撹拌および気体導入の少なくとも一方により
所定の容積まで起泡し、泡沫状態のスラリーとする工程
と、泡沫状態のスラリーに架橋剤および架橋開始剤の少
なくとも一方を添加して混合し、型内に導入して架橋重
合により硬化して気孔率が連続して傾斜的に分布した成
形体とする工程を含むことを特徴とするリン酸カルシウ
ム系多孔質焼結体の製造方法。
14. A step of preparing a slurry in which a calcium phosphate-based powder and an organic substance curable by cross-linking polymerization are dispersed or dissolved in a solvent, adding a foaming agent to the slurry, and performing at least one of stirring and gas introduction. Foaming to a predetermined volume, a step of forming a slurry in a foam state, adding and mixing at least one of a crosslinking agent and a crosslinking initiator to the slurry in the foam state, introducing into a mold, and curing by crosslinking polymerization. A method for producing a calcium phosphate-based porous sintered body, comprising a step of forming a molded body in which porosity is continuously and inclinedly distributed.
【請求項15】 回転により、気孔が、回転中心部で粗
となり、回転外縁部で密となって、傾斜分布を得ること
を特徴とする請求項14に記載のリン酸カルシウム系多
孔質焼結体の製造方法。
15. The calcium phosphate-based porous sintered body according to claim 14, wherein the pores are coarsened at the center of rotation and dense at the outer edge of the rotation to obtain a gradient distribution. Production method.
【請求項16】 成形体を乾燥し、焼結する工程を具備
することを特徴とする請求項14〜15のいずれか1項
に記載のリン酸カルシウム系多孔質焼結体の製造方法。
16. The method for producing a calcium phosphate-based porous sintered body according to any one of claims 14 to 15, further comprising a step of drying and sintering the molded body.
JP2000010851A 2000-01-19 2000-01-19 Calcium phosphate porous sintered body and method for producing the same Expired - Fee Related JP3897220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010851A JP3897220B2 (en) 2000-01-19 2000-01-19 Calcium phosphate porous sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010851A JP3897220B2 (en) 2000-01-19 2000-01-19 Calcium phosphate porous sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001206787A true JP2001206787A (en) 2001-07-31
JP3897220B2 JP3897220B2 (en) 2007-03-22

Family

ID=18538815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010851A Expired - Fee Related JP3897220B2 (en) 2000-01-19 2000-01-19 Calcium phosphate porous sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3897220B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290418A (en) * 2003-03-27 2004-10-21 Toshiba Ceramics Co Ltd Member for alveolar bone and jawbone
JP2005512614A (en) * 2001-09-24 2005-05-12 ミレニアム・バイオロジクス,インコーポレイテッド Porous ceramic composite bone graft
FR2862962A1 (en) * 2003-11-27 2005-06-03 Pentax Corp CERAMIC MATERIAL BASED ON POROUS CALCIUM PHOSPHATE AND PROCESS FOR PRODUCING THE SAME
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material
JP2007236802A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Material for implant inclination
WO2007105600A1 (en) * 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
JP2008029680A (en) * 2006-07-31 2008-02-14 Takiron Co Ltd Anchor member and artificial ligament
JP2009119206A (en) * 2007-11-11 2009-06-04 Univ Nagoya Multi-layer porous scaffold and its manufacture process
US8034117B2 (en) 2003-12-09 2011-10-11 Hoya Corporation Bone replacement material
EP2474286A1 (en) * 2004-02-03 2012-07-11 Vita Special Purpose Corporation Bone graft substitute
US8303967B2 (en) 2006-06-29 2012-11-06 Orthovita, Inc. Bioactive bone graft substitute
US8685429B2 (en) 1999-08-13 2014-04-01 Orthovita, Inc. Shaped bodies and methods for their production and use
US8951462B2 (en) 2012-05-18 2015-02-10 Snu R&Db Foundation Method for manufacturing porous ceramic bodies with gradient of porosity
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
CN108451673A (en) * 2017-02-20 2018-08-28 中国科学院沈阳自动化研究所 A kind of Invasive lumbar fusion device material-structure
WO2019146012A1 (en) * 2018-01-24 2019-08-01 オリンパス株式会社 Bone prosthetic material and bone prosthetic material manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734822B2 (en) 1999-08-13 2014-05-27 Orthovita, Inc. Composite shaped bodies and methods for their production and use
US8685429B2 (en) 1999-08-13 2014-04-01 Orthovita, Inc. Shaped bodies and methods for their production and use
JP4691322B2 (en) * 2001-09-24 2011-06-01 ワルソー・オーソペディック,インコーポレイテッド Porous ceramic composite bone graft
JP2005512614A (en) * 2001-09-24 2005-05-12 ミレニアム・バイオロジクス,インコーポレイテッド Porous ceramic composite bone graft
US7875342B2 (en) 2001-09-24 2011-01-25 Warsaw Orthopedic, Inc. Porous ceramic composite bone grafts
JP2004290418A (en) * 2003-03-27 2004-10-21 Toshiba Ceramics Co Ltd Member for alveolar bone and jawbone
FR2862962A1 (en) * 2003-11-27 2005-06-03 Pentax Corp CERAMIC MATERIAL BASED ON POROUS CALCIUM PHOSPHATE AND PROCESS FOR PRODUCING THE SAME
US8034117B2 (en) 2003-12-09 2011-10-11 Hoya Corporation Bone replacement material
US8287915B2 (en) 2004-02-03 2012-10-16 Orthovita, Inc. Bone restorative carrier mediums
EP2474286A1 (en) * 2004-02-03 2012-07-11 Vita Special Purpose Corporation Bone graft substitute
US9789225B2 (en) 2004-06-23 2017-10-17 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
US10441683B2 (en) 2004-06-23 2019-10-15 Orthovita, Inc. Method for restoring bone using shapeable bone graft substitute and instruments for delivery thereof
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
WO2007105600A1 (en) * 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
JP2007236802A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Material for implant inclination
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material
WO2007108411A1 (en) * 2006-03-17 2007-09-27 Hi-Lex Corporation Medical material
US8460686B2 (en) 2006-06-29 2013-06-11 Orthovita, Inc. Bioactive bone graft substitute
US8303967B2 (en) 2006-06-29 2012-11-06 Orthovita, Inc. Bioactive bone graft substitute
JP2008029680A (en) * 2006-07-31 2008-02-14 Takiron Co Ltd Anchor member and artificial ligament
JP2009119206A (en) * 2007-11-11 2009-06-04 Univ Nagoya Multi-layer porous scaffold and its manufacture process
US8951462B2 (en) 2012-05-18 2015-02-10 Snu R&Db Foundation Method for manufacturing porous ceramic bodies with gradient of porosity
CN108451673A (en) * 2017-02-20 2018-08-28 中国科学院沈阳自动化研究所 A kind of Invasive lumbar fusion device material-structure
WO2019146012A1 (en) * 2018-01-24 2019-08-01 オリンパス株式会社 Bone prosthetic material and bone prosthetic material manufacturing method

Also Published As

Publication number Publication date
JP3897220B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2001206787A (en) Calcium phosphate porous sintered compact and method of producing the same
Chevalier et al. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field
JP3362267B2 (en) Bioimplant material and method for producing the same
Maazouz et al. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks
KR100805303B1 (en) Porous ceramic materials with various pore configuration and preparation thereof
Rodrıguez-Lorenzo et al. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems
US6358532B2 (en) Calcium phosphate microcarriers and microspheres
Duan et al. Encapsulation and release of biomolecules from Ca–P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering
Potoczek et al. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose
JP2000302567A (en) Calcium phosphate porous sintered compact and its production
KR100814730B1 (en) Hierarchically nanoporous-macroporous bioactive glass and method for preparing thereof
KR101278098B1 (en) Method for producing porous bioceramics for bone regeneration and porous bioceramics manufactured thereby
CN100540071C (en) Medical reinforced porous biological ceramic and preparation method thereof
Raja et al. Low-temperature fabrication of calcium deficient hydroxyapatite bone scaffold by optimization of 3D printing conditions
KR101031121B1 (en) Artificial bone and the method of preparing the same
KR20130038701A (en) Method for producing porous bioceramics using vacuum-assisted foaming technique and porous bioceramics manufactured thereby
EP1293220B1 (en) Porous calcium phosphate ceramics for in vivo use
JPH07124241A (en) Ceramic functional material offering field for bone derivation and osteogenesis and its manufacture
Raja et al. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
Hesaraki Feasibility of alumina and alumina-silica nanoparticles to fabricate strengthened betatricalcium phosphate scaffold with improved biological responses
JP3873085B2 (en) Calcium phosphate porous sintered body and method for producing the same
JP2002121087A (en) Ceramics porous sintered compact and method for producing the same
Lee et al. Photocuring-assisted emulsion of ceramic suspensions containing phase-separable camphene/photopolymer vehicle for porous ceramic spheres
EP1351721B1 (en) Method for the production of a biocompatible polymer-ceramic composite material with a predetermined porosity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061214

R150 Certificate of patent or registration of utility model

Ref document number: 3897220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees