JP2008029680A - Anchor member and artificial ligament - Google Patents

Anchor member and artificial ligament Download PDF

Info

Publication number
JP2008029680A
JP2008029680A JP2006207816A JP2006207816A JP2008029680A JP 2008029680 A JP2008029680 A JP 2008029680A JP 2006207816 A JP2006207816 A JP 2006207816A JP 2006207816 A JP2006207816 A JP 2006207816A JP 2008029680 A JP2008029680 A JP 2008029680A
Authority
JP
Japan
Prior art keywords
anchor member
ligament
porous composite
bone
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207816A
Other languages
Japanese (ja)
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006207816A priority Critical patent/JP2008029680A/en
Priority to US12/282,205 priority patent/US20090157194A1/en
Priority to CA002643586A priority patent/CA2643586A1/en
Priority to AU2007225892A priority patent/AU2007225892A1/en
Priority to KR1020087022123A priority patent/KR20080108447A/en
Priority to EP07738054A priority patent/EP2005975A4/en
Priority to PCT/JP2007/054564 priority patent/WO2007105600A1/en
Priority to TW096108172A priority patent/TW200803803A/en
Publication of JP2008029680A publication Critical patent/JP2008029680A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anchor member capable of intensifying the fixing strength at both ends of a ligament member by the early connection to living bones above and below a knee joint; and an artificial ligament with intensified fixing strength and without a risk of being extended or ruptured even if the tensile force is repeatedly applied. <P>SOLUTION: The anchor member 21 has a porous complex layer 21d made of biodegradable/bioabsorbable polymers including bioceramic power layered and integrated on a part of or the whole of the surface of a dense complex 21c made of biodegradable/bioabsorbable polymers including bioceramic powder. The anchor members 22 and 23 include bioceramic powder and are composed of a porous complex made of biodegradable/bioabsorbable polymers which vary gradually so that the porosity becomes higher from the core toward the outer periphery or from an end to which the ligament member, etc. is attached toward the opposite end. These anchor members 21, 22 and 23 are attached to both ends of the artificial ligament member 1 so that they are not to be detached to form the artificial ligament AL1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は損傷した靭帯や腱を、生体由来又は人工の靭帯部材や腱部材で再建、固定する場合に使用されるアンカー部材と、このアンカー部材を両端に取付けた人工靱帯に関し、更に詳しくは、膝関節の上下(大腿骨側と脛骨側)の生体骨に対して、靱帯部材の自然な動きと両端部の固定の信頼性と、強度を高めることができるアンカー部材と人工靱帯に関する。   The present invention relates to an anchor member used in the case of reconstructing and fixing a damaged ligament or tendon with a biological or artificial ligament member or tendon member, and an artificial ligament in which the anchor member is attached to both ends. The present invention relates to an anchor member and an artificial ligament that can increase the reliability and strength of natural movement of a ligament member and fixation of both ends thereof with respect to living bones above and below the knee joint (femoral side and tibia side).

良く知られているように、膝関節には4つ(2つのグループ)の靭帯がある。1つは内側側副靭帯と外側側副靭帯であり、今ひとつは前十字靭帯と後十字靭帯である。スポ-ツ行動に伴う膝の捻り運動関係して、最も多く起きる例は前十字靭帯「Anterior Cruciate Ligament (ACL)」の損傷である。現在、その治療には、患者の正常な骨付きACL靭帯、パテラ腱「Patella Tendon (PT)を利用するBTB(Bone Tendon Bone)法、骨付きでないハムストリング腱「hamstring tendon」を利用するSemitendon方法、および人工靭帯を利用する方法が採られている。そして、自己組織(autographs)、他己組織(allografts)、および死体由来の骨付き腱、靭帯に限らず、人工靱帯を含めたそれらを、自然な動きをともなって、高い信頼度を持って固定するために、種々の工夫がなされてきた。ACLの損傷靭帯をこれらの正常な靭帯で骨間に固定するBTB(Bone Tendon Bone)法および骨がついていない靱帯、腱のみを軟組織の骨間で固定する方法の代表的な例には、以下の3つがある。
1)インターフェアレンス スクリュー (interference screw) による固定。
2)クロスピン(cross pin)を用いる固定。
3)ハムストリング腱のエンドボタンを用いた固定。
As is well known, there are four (two groups) ligaments in the knee joint. One is the medial collateral ligament and the lateral collateral ligament, and the other is the anterior cruciate ligament and the posterior cruciate ligament. In relation to the torsional movement of the knee associated with sports behavior, the most frequent example is an anterior cruciate ligament (Anterior Cruciate Ligament (ACL)) injury. Currently, the treatment includes normal bone-attached ACL ligaments, BTB (Bone Tendon Bone) method using Patella Tendon (PT), and Semitendon method using hamstring tendon without bone. And a method using an artificial ligament has been adopted. And, not only self-organizations (autographs), self-organizations (allografts), and cadaver-derived tendons with bones, ligaments, but also artificial ligaments are fixed with high reliability with natural movement. In order to do this, various ideas have been made. Typical examples of the BTB (Bone Tendon Bone) method for fixing an ACL damaged ligament between bones with these normal ligaments and the method for fixing only a ligament without a bone and a tendon between soft bones include the following: There are three.
1) Fixing by interference screw.
2) Fixing using a cross pin.
3) Fixation using the end button of the hamstring tendon.

しかし、これらの固定法は総じて靭帯、腱の固定部が経時的に緩みを伴う欠点を持つ。1)による固定は従来、金属製のスクリューが主流であったが、正座などの極端な膝の屈伸に不具合を生ずるので、近年各種の吸収性スクリューがかなりの比率で使われるようになってきた。しかし、これらのスクリュー固定の欠点はスクリューが埋入部位の骨と直接結合しないことであり、それが、長期にわたって屈伸による負荷を受けることにより、緩みの原因の一つになる。3)もまた同様の問題が指摘されている。2)の場合、この懸念は比較的少ないが、金属製のクロスピンは激しい動きを伴う関節部位に長期に存在すると、クロスピンの移動や、それに伴う刺激により、時として、重篤な為害性の問題を併発する恐れは免れない。また、吸収性のそれは、曲げ強度とその緩和による変形に信頼性がない。   However, these fixing methods generally have a drawback that the fixed portion of the ligament and tendon is loosened with time. In the past, metal screws were mainly used for fixing in 1). However, since various problems occur in extreme knee flexion and extension such as sitting, various absorptive screws have been used in a considerable proportion in recent years. . However, the disadvantage of these screw fixations is that the screw does not directly connect with the bone at the implantation site, which is one of the causes of loosening due to the long-term bending and stretching loads. The same problem is pointed out in 3). In the case of 2), this concern is relatively small. However, if a metal cross pin is present in a joint part with intense movement for a long period of time, the movement of the cross pin and the accompanying stimulus sometimes cause serious problems. The fear of co-occurring is inevitable. Also, it is unreliable in bending strength and deformation due to its relaxation.

ここで、損傷ACL靭帯の靱帯を用いた再建を例に挙げ説明する。靱帯の両端を金属製のインターフェアランススクリュー(interference screw)で固定する方法が良く知られている。この場合、骨付き靱帯は、その両端の骨の部分を、膝関節の上下(大腿骨側と脛骨側)の生体骨にあけた孔に通し、骨の部分と孔の内面との間に金属製のインターフェアランススクリューをねじ込んで、靱帯両端の骨の部分を固定する。また、この再建に使用する人工靱帯としては、実質的に一列に整列され、延伸された多数のフィラメントからなる人工靱帯であって、その端部をループ状に加工してスクリュー等で固定するようにしたものが知られている(特許文献1)。
特表平7−505326号公報
Here, the reconstruction using the ligament of the damaged ACL ligament will be described as an example. A method of fixing both ends of a ligament with a metal interference screw is well known. In this case, the ligament with bone passes through the holes in the living bones above and below the knee joint (on the femur side and the tibia side), and the metal part between the bone part and the inner surface of the hole. A bone interference screw is screwed in to fix the bone part at both ends of the ligament. The artificial ligament used for this reconstruction is an artificial ligament made up of a number of filaments that are substantially aligned in a row and stretched, and the end portion is processed into a loop shape and fixed with a screw or the like. What was made into is known (patent document 1).
JP 7-505326 A

しかしながら、骨付き靱帯を金属製のインターフェアランススクリューで固定する方法では、インターフェアランススクリューが骨関節の上下の生体骨と化学的に直接結合するものではなく、インターフェアランススクリュー自体のスクリュー形状の凹凸によって、物理的に固定されているため、靱帯両端部の骨の部分の固定強度が長期にわたって充分に補償されているとは言い難いものであった。特に、特許文献1のような人工靱帯を用いてその端部のループ部分をスクリューで固定すると、ループ部分が関節の上下の生体骨と直接結合しないため、生体骨から離脱する可能性が高く、しかも、繰り返し引張力が作用すると、人工靭帯の応力緩和により、伸びたり、スクリューのネジ山によって切断されたりする恐れが多分にあった。   However, in the method of fixing a ligament with bone with a metal interference screw, the interference screw is not directly bonded directly to living bones above and below the bone joint, but physically due to the screw-shaped irregularities of the interference screw itself. Therefore, it was difficult to say that the fixation strength of the bone portions at both ends of the ligament was sufficiently compensated for a long period of time. In particular, when using an artificial ligament like Patent Document 1 and fixing the loop portion at the end thereof with a screw, the loop portion does not directly connect to the living bone above and below the joint, so there is a high possibility of detachment from the living bone. Moreover, when a tensile force is applied repeatedly, there is a possibility that the artificial ligament may be stretched or cut by a screw thread due to stress relaxation of the artificial ligament.

本発明は上記事情の下になされたもので、靱帯部材又は腱部材の端部に取付けられるアンカー部材(骨付き靭帯や腱の骨に相当するアンカー部材)であって、膝関節の上下の生体骨(大腿骨と脛骨)と早期に結合するため、従来の金属製または吸収性インターフェアランススクリューで固定する場合に比べて、靱帯部材や腱部材の端部の固定の時期が早められ、固定強度も大幅に高められるアンカー部材と、このアンカー部材を両端部に取付けた人工靱帯を提供することを解決課題としている。   The present invention has been made under the above circumstances, and is an anchor member (an anchor member corresponding to a ligament with a bone or a tendon bone) attached to an end portion of a ligament member or a tendon member, Faster connection with bones (femur and tibia), leading to earlier fixation of the ends of ligament and tendon members than with conventional metal or resorbable interference screws. An object of the present invention is to provide an anchor member that can be significantly increased and an artificial ligament in which the anchor member is attached to both ends.

上記課題を解決するため、本発明に係る第一のアンカー部材は、靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの緻密質複合体の一部表面又は全表面に、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体層を積層一体化したものであることを特徴としている。   In order to solve the above problems, a first anchor member according to the present invention is an artificial anchor member that is attached so as not to be detached from an end portion of a ligament member or a tendon member, and is a bioabsorbable and bioactive biomaterial. Pore of biodegradable absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive on a part or all of the dense composite of biodegradable absorbable polymer containing ceramic powder It is characterized in that a composite layer is laminated and integrated.

この第一のアンカー部材においては、気孔質複合体層の気孔率が50〜90%で、連続気孔が気孔全体の50%以上を占め、気孔質複合体層の深層部から表層部に近づくほど気孔率が大きくなるように順次傾斜的に変化していることが、強度の観点から好ましい。そして、気孔質複合体層のバイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体層の深層部から表層部に近づくほど高くなるように順次傾斜的に変化していることが、直接周囲骨と結合する、骨伝導性の観点から好ましい。   In this first anchor member, the porosity of the porous composite layer is 50 to 90%, the continuous pores account for 50% or more of the entire pores, and the closer to the surface layer portion from the deep layer portion of the porous composite layer. It is preferable from the standpoint of strength that the porosity is changed sequentially and gradually so as to increase the porosity. And the content rate of the bioceramics powder in the porous composite layer is changed in an inclined manner so that the content increases from the deep part to the surface part of the porous composite layer within the range of 30 to 80% by mass. It is preferable from the viewpoint of osteoconductivity that directly bonds with surrounding bone.

また、上記課題を解決する本発明の第二のアンカー部材は、靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体からなり、その気孔率が0〜90%の範囲内で、該複合体の軸芯部から骨と接触する外周部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とするものである。   The second anchor member of the present invention that solves the above-mentioned problems is an artificial anchor member that is attached so as not to be detached from the end of the ligament member or tendon member, and is a bioceramic that is bioabsorbable and bioactive. It consists of a porous complex of biodegradable polymer containing powder, and the porosity is in the range of 0 to 90%, and the larger it is the closer to the outer peripheral part in contact with the bone from the axial core part of the complex It is characterized in that it changes sequentially in an inclined manner.

この第二のアンカー部材においては、バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体の軸芯部から骨と接触する外周部に近づくほど大きくなるように順次傾斜的に変化していることが好ましい。   In the second anchor member, the content of the bioceramic powder is increased within a range of 30 to 80% by mass from the axial core portion of the porous composite to the outer peripheral portion in contact with the bone. It is preferable that the slope is changed sequentially.

また、上記課題を解決する本発明の第三のアンカー部材は、靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体からなり、その気孔率が0〜90%の範囲内で、該複合体の靱帯部材又は腱部材が取付けられる端部から反対側端部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とするものである。   The third anchor member of the present invention that solves the above problem is an artificial anchor member that is attached so as not to be detached from the end of the ligament member or the tendon member, and is a bioceramic that is bioabsorbable and bioactive. It is composed of a porous composite of biodegradable absorbable polymer containing powder, and the porosity is within a range of 0 to 90%, and the opposite end from the end to which the ligament member or tendon member of the composite is attached It is characterized in that it gradually changes so as to increase as it approaches the part.

この第三のアンカー部材においては、バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体の靱帯部材又は腱部材が取付けられる端部から反対側端部に近づくほど大きくなるように順次傾斜的に変化していることが好ましい。   In this third anchor member, the content of the bioceramic powder is within the range of 30 to 80% by mass, and approaches the opposite end from the end to which the ligament member or tendon member of the porous composite is attached. It is preferable that the slope gradually changes so as to increase.

更に、上記第一のアンカー部材においては気孔質複合体層に、また、上記第二及び第三のアンカー部材においては気孔質複合体に、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-β)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)の少なくとも一種、及び/又は生体由来の骨芽細胞が含浸されていることが望ましい。   Furthermore, in the first anchor member, in the porous composite layer, and in the second and third anchor members, in the porous composite layer, BMP (Bone Morphogenic Protein) which is a biological bone growth factor is used. Impregnated with at least one of TGF-β (Transforming Growth Factor-β), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast Growth Factor), PRP (platelet-rich plasma) and / or living osteoblasts It is desirable that

加えて、上記第一、第二、第三のアンカー部材においては、その端部に、靭帯部材又は腱部材を取付けるための多数の小孔又は小突起を形成することが好ましい。   In addition, in the first, second, and third anchor members, it is preferable that a large number of small holes or small protrusions for attaching a ligament member or a tendon member are formed at the ends thereof.

また、本発明の人工靱帯は、人工の靱帯部材の両端部に上記のアンカー部材を離脱しないように取付けたことを特徴とするものである。この人工靱帯においては、人工の靱帯部材が、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体、或いは、有機繊維の組紐からなるものであることが好ましい。   The artificial ligament of the present invention is characterized in that the above-mentioned anchor member is attached to both ends of the artificial ligament member so as not to be detached. In this artificial ligament, the artificial ligament member is made of a tissue structure in which organic fibers are triaxial or multi-axial three-dimensional woven or knitted structures or composite structures thereof, or an organic fiber braid. It is preferable.

本発明に係る第一、第二、第三のアンカー部材を、例えば靱帯部材の両端部に離脱しないように取付け、膝関節の上下の生体骨(大腿骨と脛骨)に穿設した孔に靱帯部材の両端部のアンカー部材を挿入して、このアンカー部材と孔の内面との間にインターフェアランススクリューをねじ込むことにより、靱帯の再建固定を行うと、第一のアンカー部材を取付けたものでは、アンカー部材の緻密質複合体の一部表面又は全表面に積層一体化された気孔質複合体層が、その表面に接触する体液や連続気孔に浸透する体液によって表面と内部からすみやかに加水分解されると共に、この加水分解に伴って骨組織が生体活性なバイオセラミックス粉体の骨誘導能により気孔質複合体層の内部まで誘導形成されて、気孔質複合体層が早期に生体骨に置換され、アンカー部材と膝関節の上下の生体骨に形成された孔の内面とが結合する。そして、第二、第三のアンカー部材を取付けたものでは、アンカー部材を構成する気孔質複合体の表面に接触する体液や、該複合体の気孔率の高い外周部や端部の連続気孔に浸透する体液によって、外周部や端部が表面と内部からすみやかに加水分解されると共に、この加水分解に伴って骨組織が生体活性なバイオセラミックス粉体の骨誘導能により気孔率の高い外周部や端部から内部へ誘導形成されて、この外周部や端部が早期に生体骨に置き換わり、アンカー部材と膝関節の上下の生体骨に形成された孔の内面とが結合する。このように、本発明に係る第一、第二、第三のアンカー部材を靱帯部材の端部に取付けたものはいずれも、アンカー部材が早期に生体骨(孔の内面)と結合するため、従来のようにインターフェアランススクリューのみで物理的に固定する場合に比べて、靱帯部材両端部の固定強度が大幅に向上する。   The first, second, and third anchor members according to the present invention are attached so as not to be detached from both ends of the ligament member, for example, and the ligament is formed in the hole formed in the upper and lower living bones (femur and tibia) of the knee joint When the anchor member at both ends of the member is inserted and the interference screw is screwed between the anchor member and the inner surface of the hole to rebuild and fix the ligament, the anchor attached to the first anchor member is The porous composite layer laminated and integrated on a part or all of the dense composite of the member is quickly hydrolyzed from the surface and inside by the body fluid contacting the surface or the body fluid penetrating the continuous pores. Along with this hydrolysis, bone tissue is induced to the inside of the porous composite layer by the osteoinductive ability of the bioactive bioceramic powder, and the porous composite layer is replaced with living bone at an early stage. , The inner surface of the anchor member and the knee joint of the upper and lower living bone hole formed binds. And in what attached the 2nd, 3rd anchor member, it is in the body fluid which contacts the surface of the porous complex which constitutes an anchor member, the peripheral part with the high porosity of this complex, and the continuous pore of an end. The peripheries and edges are quickly hydrolyzed from the surface and inside by the permeating body fluid, and the bone tissue is accompanied by this hydrolysis, and the outer peripheries have high porosity due to the osteoinductive ability of bioactive ceramic powder. The outer peripheral portion and the end portion are quickly replaced with the living bone, and the anchor member and the inner surface of the hole formed in the living bone above and below the knee joint are combined. As described above, since the first, second, and third anchor members according to the present invention are attached to the end portion of the ligament member, the anchor member is quickly coupled with the living bone (inner surface of the hole), The fixing strength at both ends of the ligament member is significantly improved as compared with the conventional case where the fixing is physically performed only with the interference screw.

一方、第一のアンカー部材は、その緻密質複合体が硬くて強度があり、加水分解が気孔質複合体層よりも遥かに遅く、加水分解がある程度進行するまでの期間、十分な強度を維持するが、最終的には全てが加水分解され、生体活性なバイオセラミックス粉体により伝導形成された生体骨と置換しつつ消失して、膝関節の上下の生体骨に形成された孔が生体骨で埋まるようになる。また、第二、第三のアンカー部材は、気孔質複合体の気孔率の低い軸芯部や、靱帯部材が取付けられた端部が強度を備え、加水分解が気孔率の高い外周部や反対側端部よりも遥かに遅く、加水分解がある程度進行するまでの期間、十分な強度を維持するが、最終的には全てが加水分解され、生体活性なバイオセラミックス粉体により伝導形成された生体骨と置換しつつ消失して、生体骨にあけた孔が生体骨で埋まるようになる。そして、これら第一、第二、第三のアンカー部材は、気孔質複合体層、緻密質複合体、気孔質複合体のそれぞれに含まれるバイオセラミックス粉体が生体内吸収性であるため、置換、再生された生体骨にバイオセラミックス粉体が残存、堆積することがなく、また、軟組織や血管内に浸出することもない。   On the other hand, the first anchor member is strong and strong in the dense composite, and the hydrolysis is much slower than the porous composite layer and maintains sufficient strength until the hydrolysis proceeds to some extent. In the end, however, all the body is hydrolyzed and disappears while replacing the living bone formed by conduction with the bioactive bioceramic powder, and the holes formed in the upper and lower living bones of the knee joint become the living bone. It will be filled with. In addition, the second and third anchor members have a low-porosity axial core portion of the porous composite, and an end portion to which the ligament member is attached have strength, and the outer peripheral portion where hydrolysis is highly porous or the opposite. It is much slower than the side edges and maintains sufficient strength for a period of time until hydrolysis proceeds to some extent, but eventually all is hydrolyzed and conductively formed by bioactive bioceramics powder. It disappears while replacing the bone, and the hole in the living bone is filled with the living bone. These first, second, and third anchor members are replaced by bioceramic powders contained in each of the porous composite layer, the dense composite, and the porous composite. The bioceramic powder does not remain and accumulate in the regenerated living bone, and does not leach into soft tissues or blood vessels.

また、第一のアンカー部材において、その気孔質複合体層の気孔率が50〜90%で、連続気孔が気孔全体の50%以上を占め、気孔質複合体層の深層部から表層部に近づくほど気孔率が高くなるように順次傾斜的に変化させたものは、気孔率の高い気孔質複合体層の表層部に体液や骨芽細胞が一層侵入しやすくなって加水分解や骨組織の誘導形成が速やかに行われるため、アンカー部材がより早期に生体骨(孔の内面)と結合する利点を有する。そして、気孔質複合体層のバイオセラミックス粉体の含有率を、30〜80質量%の範囲内で、気孔質複合体層の深層部から表層部に近づくほど高くなるように順次傾斜的に変化させたものは、バイオセラミックス粉体の比率の高い表層部の生体活性が高くなるため、該表層部への骨芽細胞や骨組織の誘導形成が特に活発となり、生体骨(孔の内面)との置換や結合が更に促進される利点を有する。   Further, in the first anchor member, the porosity of the porous composite layer is 50 to 90%, and the continuous pores occupy 50% or more of the entire pores, approaching the surface layer portion from the deep layer portion of the porous composite layer. In order to increase the porosity, the gradient was gradually changed so that body fluid and osteoblasts were more likely to invade the surface of the porous composite layer with high porosity, leading to hydrolysis and bone tissue induction. Since the formation is performed promptly, the anchor member has an advantage of being coupled to the living bone (inner surface of the hole) earlier. Then, the content of the bioceramic powder in the porous composite layer is gradually changed in a range of 30 to 80% by mass so as to increase from the deep part to the surface part of the porous composite layer. Since the bioactivity of the surface layer portion with a high ratio of the bioceramic powder becomes high, the induced formation of osteoblasts and bone tissue on the surface layer portion is particularly active, and the living bone (inner surface of the hole) and This has the advantage that the substitution and bonding of are further promoted.

また、第二のアンカー部材において、その気孔質複合体のバイオセラミックス粉体の含有率を、30〜80質量%の範囲内で、気孔質複合体の軸芯部から骨と接触する外周部に近づくほど大きくなるように順次傾斜的に変化させたものや、第三のアンカー部材において、バイオセラミックス粉体の含有率を、30〜80質量%の範囲内で、気孔質複合体の靱帯部材又は腱部材が取付けられる端部から反対側端部に近づくほど大きくなるように順次傾斜的に変化させたものも、バイオセラミックス粉体の含有率が高い外周部や反対側端部の生体活性が高くなるため、この外周部や反対側端部における骨芽細胞や骨組織の誘導形成が特に活発になり、生体骨との置換や結合が一層促進される利点を有する。   In the second anchor member, the bioceramic powder content of the porous composite is within a range of 30 to 80% by mass from the axial core portion of the porous composite to the outer peripheral portion in contact with the bone. In the third anchor member, the content ratio of the bioceramic powder within the range of 30 to 80% by mass or the ligament member of the porous composite or Those that are gradually changed so as to increase from the end where the tendon member is attached to the opposite end also have a high bioactivity at the outer peripheral portion and the opposite end where the content of bioceramics powder is high. Therefore, the induction formation of osteoblasts and bone tissue in the outer peripheral portion and the opposite end portion becomes particularly active, and there is an advantage that replacement and bonding with living bone are further promoted.

更に、第一のアンカー部材において、その気孔質複合体層に生物学的骨成長因子であるBMP、TGF−β、EP4、b−FGF、PRPの少なくとも一種、及び/又は、生体由来の骨芽細胞を含浸させたものや、第二、第三のアンカー部材において、その連続気孔質複合体に上記の生物学的骨成長因子の一種、及び/又は、生体由来の骨芽細胞を含浸させたものは、骨芽細胞の増殖、成長が大幅に促進されるため、骨組織の形成が旺盛になって生体骨との結合や置換が一層すみやかに行われる利点を有する。   Further, in the first anchor member, at least one of BMP, TGF-β, EP4, b-FGF, and PRP which are biological bone growth factors and / or a bone bud derived from a living body are formed in the porous composite layer. In the cells impregnated or in the second and third anchor members, the continuous porous complex was impregnated with one of the above biological bone growth factors and / or osteoblasts derived from living organisms. Since the proliferation and growth of osteoblasts are greatly promoted, the one has the advantage that the formation of bone tissue is vigorous and the connection and replacement with living bone is performed more promptly.

そして、端部に、靱帯部材又は腱部材を取付けるための多数の小孔又は小突起を形成したものは、生体由来又は人工の靱帯部材又は腱部材の有機繊維を該小孔に通して掛止するか、又は、該小突起に掛止することによって、離脱しないように確実に取付けることができる利点がある。   And in the case where a large number of small holes or small protrusions for attaching the ligament member or tendon member are formed at the end, the organic fiber of the living body or artificial ligament member or tendon member is passed through the small hole and latched. Or by hooking on the small protrusion, there is an advantage that it can be securely attached so as not to be detached.

また、本発明に係る人工靱帯は、上記のアンカー部材を人工の靱帯部材の両端部に離脱しないように取付けたものであるから、アンカー部材が膝関節の上下の骨(孔の内面)と早期に結合して、固定強度が大幅に向上する。そして、人工の靱帯部材が、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体、或いは、有機繊維の組紐からなる人工靱帯は、この人工の靱帯部材が生体の靱帯と同等もしくはそれ以上の引張強度と柔軟性を有するので、伸びたり断裂したりする心配が殆どなく、生体の靱帯に似た変形挙動を示す利点がある。   Further, the artificial ligament according to the present invention is such that the anchor member is attached so as not to be detached at both ends of the artificial ligament member, so that the anchor member is connected to the upper and lower bones (the inner surface of the hole) of the knee joint. The fixing strength is greatly improved. The artificial ligament member is an artificial ligament composed of a multi-axial three-dimensional woven or knitted structure having three or more axes of organic fibers, or a composite structure thereof, or an organic fiber braid. Since the ligament member has a tensile strength and flexibility equal to or higher than that of a living body ligament, there is almost no fear of stretching or tearing, and there is an advantage of exhibiting deformation behavior similar to that of a living body ligament.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る人工靱帯の一実施形態を示す斜視図、図2は同人工靱帯に使用された本発明のアンカー部材の一実施形態を示す斜視図、図3は図2のA−A線断面図、図4は図2のB−B線断面図である。   1 is a perspective view showing an embodiment of an artificial ligament according to the present invention, FIG. 2 is a perspective view showing an embodiment of an anchor member of the present invention used for the artificial ligament, and FIG. A sectional view taken along line A, and FIG. 4 is a sectional view taken along line BB in FIG.

この人工靱帯AL1は、有機繊維を材料として造られた人工の靱帯部材1の両端部に、バイオセラミックス粉体を含んだ生体内分解吸収性ポリマーを材料として造られたアンカー部材21,21を離脱しないように取付けたものである。   This artificial ligament AL1 separates the anchor members 21 and 21 made of biodegradable absorbable polymer containing bioceramic powder at both ends of the artificial ligament member 1 made of organic fiber. It is attached so as not to.

更に詳しく説明すると、人工の靱帯部材1は、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体、或いは、有機繊維の組紐などからなるもので、生体の靱帯と同等もしくはそれ以上の引張強度と柔軟性を有し、生体の靱帯に似た変形挙動を示すものである。人工の靱帯部材1を構成する上記の組織構造体は、本出願人が既に出願した特願平6−254515号(特許第3243679号)に記載された組織構造体と同様のものであって、その幾何学的形状を次元数で表し、繊維配列の方位数を軸数で表すと、上記のように3軸以上の多軸三次元組織からなる構造体が採用される。   More specifically, the artificial ligament member 1 is composed of a multi-axial three-dimensional or three-dimensional woven or knitted structure or a composite structure of these, or a braid of organic fibers. It has a tensile strength and flexibility equivalent to or higher than that of a living body ligament and exhibits a deformation behavior similar to that of a living body ligament. The above-described tissue structure constituting the artificial ligament member 1 is the same as the tissue structure described in Japanese Patent Application No. 6-254515 (Patent No. 3243679) already filed by the present applicant, When the geometric shape is represented by the number of dimensions and the orientation number of the fiber array is represented by the number of axes, a structure composed of a multiaxial three-dimensional structure having three or more axes as described above is employed.

3軸三次元組織は、縦、横、垂直の3軸の方向の繊維を立体的に組織したもので、その構造体の代表的な形状は図1に示すような厚みのある帯形状であるが、円筒状とすることも可能である。この3軸三次元組織は、組織の違いによって、直交組織、非直交組織、絡み組織、円筒組織などに分類される。また、4軸以上の多軸三次元組織の構造体は、4,5,6,7,9,11軸等の多軸方位を配列することによって、構造体の強度的な等方性を向上させることができるものであり、これらの選択によって生体の靱帯に酷似した人工の靱帯部材1を造ることができる。   The three-axis three-dimensional structure is a three-dimensional structure of fibers in the three directions of length, width, and vertical, and the typical shape of the structure is a thick band shape as shown in FIG. However, it may be cylindrical. This three-axis three-dimensional structure is classified into an orthogonal structure, a non-orthogonal structure, a tangled structure, a cylindrical structure, and the like depending on the difference in structure. In addition, a multi-axis three-dimensional structure with four or more axes improves the strength isotropy of the structure by arranging multi-axis orientations such as 4, 5, 6, 7, 9, and 11 axes. With these options, an artificial ligament member 1 that closely resembles a living body ligament can be produced.

上記の組織構造体よりなる人工の靱帯部材1の内部空隙率は、20〜90%の範囲内にあることが好ましい。内部空隙率が20%を下回る場合は、靱帯部材1が緻密になって柔軟性や変形性が損なわれるため、生体由来の靱帯の代替品として不満足なものとなる。一方、90%を上回る場合は、靱帯部材1の保形性が低下すると共に、伸びが大きくなりすぎるため、やはり生体由来の靱帯の代替品として不満足なものとなる。   The internal porosity of the artificial ligament member 1 made of the above tissue structure is preferably in the range of 20 to 90%. When the internal porosity is less than 20%, the ligament member 1 becomes dense and the flexibility and deformability are impaired, so that it becomes unsatisfactory as a substitute for a ligament derived from a living body. On the other hand, when it exceeds 90%, the shape retaining property of the ligament member 1 is lowered and the elongation becomes too large, which is also unsatisfactory as a substitute for a ligament derived from a living body.

人工靱帯部材の材料となる有機繊維としては、生体不活性な合成樹脂繊維、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどの繊維や、有機の芯繊維を上記の生体不活性な樹脂で被覆して生体不活性とした被覆繊維などが好ましく使用される。特に、超高分子ポリエチレンの芯繊維を直鎖状の低密度ポリエチレンの被膜で被覆した直径0.2〜0.5mm程度の被覆繊維は、強度、硬さ、弾力性、織編のしやすさ等の点で最適な繊維である。   Organic fibers used as the material of the artificial ligament member include bioinert synthetic resin fibers such as polyethylene, polypropylene, polytetrafluoroethylene, and organic core fibers coated with the above-mentioned bioinert resin. For example, coated fibers that are bioinert are preferably used. In particular, a coated fiber having a diameter of about 0.2 to 0.5 mm in which a core fiber of ultra high molecular weight polyethylene is coated with a linear low-density polyethylene film has strength, hardness, elasticity, and ease of weaving and knitting. It is the most suitable fiber in terms of etc.

人工の靱帯部材1を構成する有機繊維の組織構造体については、前記の特願平6−254515号(特許第3243679号)に詳細に開示されているので、これ以上の説明は省略することにする。   The tissue structure of the organic fibers constituting the artificial ligament member 1 is disclosed in detail in the aforementioned Japanese Patent Application No. 6-254515 (Patent No. 3243679), so that further explanation will be omitted. To do.

なお、上記の有機繊維の組織構造体や組紐(Braid)の他に、生体内吸収性のポリ乳酸繊維による組紐や三次元織物も、人工の靱帯部材1として使用可能である。   In addition to the above-described organic fiber tissue structure and braid, braids and three-dimensional woven fabrics made of bioabsorbable polylactic acid fibers can also be used as the artificial ligament member 1.

人工の靱帯部材1の両端部に取付けられるアンカー部材21は、図2に示すように一端面(靱帯部材1側の端面)の中央部から突出片21aを形成した楕円柱状の部材であって、該突出片21aには靱帯部材1を取付けるための多数の小孔21bが穿設されている。そして、これらの小孔21bに靱帯部材1の有機繊維を通して掛止させることにより、人工の靱帯部材1の端部にアンカー部材21が離脱しないように取付けられている。尚、アンカー部材21の形状は上記の楕円柱状に限定されるものではなく、後述するように膝関節の上下の生体骨にあけた孔に挿入しやすく、かつ、該孔の内面とアンカー部材との隙間にねじ込むインターフェアランススクリューによって安定良く固定される形状であれば、どのような形状でもよい。   The anchor member 21 attached to both ends of the artificial ligament member 1 is an elliptical columnar member in which a protruding piece 21a is formed from the center of one end surface (end surface on the ligament member 1 side) as shown in FIG. A large number of small holes 21b for attaching the ligament member 1 are formed in the protruding piece 21a. Then, the anchor member 21 is attached to the end portion of the artificial ligament member 1 by suspending the organic fibers of the ligament member 1 through these small holes 21b. The shape of the anchor member 21 is not limited to the elliptical column shape described above, and can be easily inserted into a hole formed in a living bone above and below the knee joint, as will be described later, and the inner surface of the hole and the anchor member Any shape may be used as long as it is stably fixed by an interference screw screwed into the gap.

図3,図4に示すように、このアンカー部材21は、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーからなる楕円柱状の緻密質複合体21cの一部表面、即ち、この実施形態では外周面に、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体層21dを積層一体化したものであって、前記の突出片21aは楕円柱状の緻密質複合体21cの一端面から一体に突設されている。   As shown in FIGS. 3 and 4, the anchor member 21 is a part of an ellipsoidal column-shaped dense composite 21 c made of a biodegradable absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive. A porous composite layer 21d of a biodegradable and absorbable polymer containing bioabsorbable and bioactive bioceramic powder is laminated and integrated on the surface, that is, the outer peripheral surface in this embodiment, The protruding piece 21a is integrally protruded from one end face of the elliptical columnar dense composite 21c.

上記の緻密質複合体21cは、アンカー部材21のコア材として大きい強度が要求されるものであるから、材料の生体内分解吸収性ポリマーとしては、結晶性のポリ−L−乳酸やポリグリコール酸などが好ましく使用される。特に、粘度平均分子量が15万以上、好ましくは20万〜60万程度のポリ−L−乳酸を使用した緻密質複合体21cは好適である。   Since the dense composite 21c is required to have high strength as the core material of the anchor member 21, the biodegradable absorbable polymer of the material may be crystalline poly-L-lactic acid or polyglycolic acid. Etc. are preferably used. In particular, the dense complex 21c using poly-L-lactic acid having a viscosity average molecular weight of 150,000 or more, preferably about 200,000 to 600,000 is suitable.

この緻密質複合体21cに含有させるバイオセラミックス粉体としては、生体活性があり、生体内吸収性で生体に全吸収されて骨組織と完全に置換され、良好な骨伝導(誘導)能と良好な生体親和性を有する、未仮焼かつ未焼成のハイドロキシアパタイト、ジカルシウムホスフェート、トリカルシウムホスフェート、テトラカルシウムホスフェート、オクタカルシウムホスフェート、カルサイト、セラバイタル、ジオプサイト、天然珊瑚等の粉体が好ましく使用される。その中でも、未仮焼かつ未焼成のハイドロキシアパタイト、トリカルシウムホスフェート、オクタカルシウムホスフェートは、生体活性が極めて高く、骨伝導能に優れ、為害性が低く、短期間で生体に吸収されるので、最適である。これらのバイオセラミックス粉体は、生体内分解吸収性ポリマーへの分散性や生体への吸収性を考慮すると、30μm以下、好ましくは10μm以下、更に好ましくは0.1〜5μm程度の粒径を有するものが使用される。なお、バイオセラミックス粉体の含有率については後で説明する。   The bioceramic powder to be contained in the dense composite 21c is bioactive, absorbs in vivo, is completely absorbed by the living body, and completely replaces bone tissue, and has good bone conduction (induction) ability and good. Non-calcined and uncalcined hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, diopsite, smallpox, etc., which have excellent biocompatibility Is done. Among them, uncalcined and uncalcined hydroxyapatite, tricalcium phosphate, and octacalcium phosphate are optimal because they have extremely high bioactivity, excellent osteoconductivity, low toxicity and are absorbed into the body in a short period of time. It is. These bioceramic powders have a particle size of about 30 μm or less, preferably about 10 μm or less, more preferably about 0.1 to 5 μm in consideration of dispersibility in the biodegradable absorbable polymer and absorbability to the living body. Things are used. The content of bioceramic powder will be described later.

上記の緻密質複合体21cは、バイオセラミックス粉体を含んだ生体内分解吸収性ポリマーを、一端面に突出片21aを有する楕円柱状に射出成形して、その突出片21aに孔開け加工を施すか、或いは、バイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの成形塊を、一端面に突出片21aを有する楕円柱状に切削加工して、その突出片21aに孔開け加工を施すなどの方法によって作製される。特に、後者の方法において圧縮成形や鍛造成形の手段によりポリマー分子や結晶を配向させた成形塊を造り、これを切削加工して得られる緻密質複合体21cは、圧縮されて緻密の程度が高く、ポリマー分子や結晶が三次元に配向して強度が一段と大きくなるため、極めて好適である。その他、延伸成形した成形塊を切削加工して得られる緻密質複合体も使用される。   The dense composite 21c is formed by injection-molding a biodegradable absorbent polymer containing bioceramic powder into an elliptic cylinder having a protruding piece 21a on one end surface, and subjecting the protruding piece 21a to perforation. Alternatively, a molded lump of biodegradable absorbent polymer containing bioceramic powder is cut into an elliptical column having a protruding piece 21a on one end surface, and the protruding piece 21a is punched. Produced by the method. In particular, in the latter method, the compact composite 21c obtained by forming a molded ingot in which polymer molecules and crystals are oriented by means of compression molding or forging molding and cutting this is compressed, and the degree of compactness is high. The polymer molecules and crystals are three-dimensionally oriented and the strength is further increased, which is extremely suitable. In addition, a dense composite obtained by cutting a stretched molded ingot is also used.

一方、気孔質複合体層21dは、内部に連続気孔を有し、生体内吸収性かつ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーからなる多孔体であって、この気孔質複合体層21dの表面や連続気孔の内面にはバイオセラミックス粉体が一部露出している。この実施形態のアンカー部材21は、気孔質複合体層21dを楕円柱状の緻密質複合体21cの外周面のみに積層しているが、緻密質複合体21cの突出片21aを除いた全表面、即ち、緻密質複合体21cの外周面と両端面に気孔質複合体層21dを積層して一体化してもよい。   On the other hand, the porous composite layer 21d is a porous body made of a biodegradable absorbent polymer having continuous pores inside and containing bioceramic powder that is bioabsorbable and bioactive. Part of the bioceramic powder is exposed on the surface of the composite layer 21d and the inner surface of the continuous pores. In the anchor member 21 of this embodiment, the porous composite layer 21d is laminated only on the outer peripheral surface of the elliptical columnar dense composite 21c, but the entire surface excluding the protruding piece 21a of the dense composite 21c, That is, the porous composite layer 21d may be laminated and integrated on the outer peripheral surface and both end surfaces of the dense composite 21c.

気孔質複合体層21dの厚さは緻密質複合体21cよりも薄ければ特に限定されるものではないが、骨組織の誘導形成や生体骨との結合性を考慮すると、0.5〜15mm程度であることが好ましい。また、気孔質複合体層21dの厚さは必ずしも均一にする必要がなく、例えば、凸凹状に起伏する気孔質複合体層のように部分的に厚みが増減するものであってもよい。   The thickness of the porous composite layer 21d is not particularly limited as long as it is thinner than the dense composite 21c. However, in consideration of induced formation of bone tissue and connectivity with living bone, 0.5 to 15 mm. It is preferable that it is a grade. Further, the thickness of the porous composite layer 21d does not necessarily need to be uniform. For example, the thickness may be partially increased or decreased like a porous composite layer that undulates.

上記の気孔質複合体層21dは、緻密質複合体21cのような大きい強度が必要でなく、すみやかに加水分解して生体骨との結合や全置換が早期に行われることが必要なものであるから、気孔質複合体層21dの材料となる生体内分解吸収性ポリマーとしては、安全で、分解が速く、あまり脆くない、非晶質もしくは結晶と非晶の混在したポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とカプロラクトンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とパラ−ジオキサノンの共重合体などが適しており、これらは単独で、或いは二種以上混合して使用される。これらの生体内分解吸収性ポリマーは、気孔質複合体層21dに要求される強度や生体内での分解吸収の期間などを考慮すると、5万〜60万程度の粘度平均分子量を有するものが好ましく使用される。   The porous composite layer 21d does not need to be as strong as the dense composite 21c, and needs to be promptly hydrolyzed and bonded to the living bones or replaced completely. Therefore, the biodegradable and absorbable polymer used as the material of the porous composite layer 21d is safe, rapidly decomposed, not so brittle, and is amorphous or a mixture of crystalline and amorphous poly-D, L- Lactic acid, L-lactic acid and D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and caprolactone copolymer, lactic acid and ethylene glycol copolymer, lactic acid and para-dioxanone copolymer A combination or the like is suitable, and these may be used alone or in admixture of two or more. These biodegradable and absorbable polymers are preferably those having a viscosity average molecular weight of about 50,000 to 600,000 considering the strength required for the porous composite layer 21d and the period of in vivo degradation and absorption. used.

また、上記の気孔質複合体層21dは、物理的な強度、骨芽細胞の侵入及び安定化などを考慮すると、その気孔率が50〜90%、好ましくは60〜80%で、連続気孔が気孔全体の50%以上、好ましくは70〜90%を占め、連続気孔の孔径が50〜600μm、好ましくは100〜400μmであることが望ましい。気孔率が90%を上回り、孔径が600μmより大きくなると、気孔質複合体層21dの物理的な強度が低下して脆くなる。一方、気孔率が50%を下回ると共に連続気孔が気孔全体の50%を下回り、孔径が50μmよりも小さくなると、体液や骨芽細胞の侵入が困難になり、気孔質複合体層21dの加水分解や骨組織の誘導形成が遅くなって生体骨との結合や全置換に要する時間が長くなる。ただし、上記の好適な孔径と併存して1〜0.1μmのサブミクロン程度微細な連続気孔が存在すると、骨誘導性が発現されることが見出されている。   In addition, considering the physical strength, invasion and stabilization of osteoblasts, the porosity composite layer 21d has a porosity of 50 to 90%, preferably 60 to 80%, and has continuous pores. It is desirable to occupy 50% or more of the total pores, preferably 70 to 90%, and the pore diameter of the continuous pores to be 50 to 600 μm, preferably 100 to 400 μm. When the porosity exceeds 90% and the pore diameter is larger than 600 μm, the physical strength of the porous composite layer 21d is lowered and becomes brittle. On the other hand, when the porosity is less than 50% and the continuous pores are less than 50% of the total pores, and the pore diameter is smaller than 50 μm, it is difficult for the body fluid and osteoblasts to enter, and the porous composite layer 21d is hydrolyzed. In addition, the induction of bone tissue is slowed down, and the time required for connection with the whole bone and total replacement becomes longer. However, it has been found that osteoinductivity is expressed when there are continuous pores as fine as about 1 to 0.1 μm in combination with the above preferable pore diameter.

気孔質複合体層21dの気孔率は、該複合体層の全体に亘って一定していてもよいが、生体骨との結合性や伝導・誘導形成を考慮すると、気孔質複合体層21dの深層部から表層部に近づくほど気孔率が大きくなるように順次傾斜的的に変化していることが好ましい。このように気孔率が傾斜した気孔質複合体層21dでは、気孔率が50〜90%の範囲内、好ましくは60〜80%の範囲内で、深層部から表層部に向かって順次連続的に高くなり、連続気孔の孔径が50〜600μmの範囲内で、深層部から表層部に向かって順次大きくなっていることが望ましい。かかる気孔質複合体層21dは、その表層部側の加水分解が速く、骨芽細胞の侵入、骨組織の誘導形成が活発で、早期に生体骨と結合するため、膝関節の上下の生体骨に対するアンカー部材21の固定強度を早期に高めることができる。   The porosity of the porous composite layer 21d may be constant over the entire composite layer, but considering the connectivity with living bones and the formation of conduction / induction, the porosity of the porous composite layer 21d It is preferable that the slope gradually changes so as to increase the porosity as it approaches the surface layer portion from the deep layer portion. As described above, in the porous composite layer 21d having the sloped porosity, the porosity is continuously within the range of 50 to 90%, preferably within the range of 60 to 80%. It is desirable that the pore diameter of the continuous pores increases gradually from the deep layer portion toward the surface layer portion within the range of 50 to 600 μm. Since the porous composite layer 21d is rapidly hydrolyzed on the surface layer side, the invasion of osteoblasts and the induction formation of bone tissue are active, and the bone bone is bonded to the living bone at an early stage. The anchoring strength of the anchor member 21 with respect to can be increased early.

この気孔質複合体層21dに含有させるバイオセラミックス粉体は、前述の緻密質複合体21cに含有させるバイオセラミックス粉体と同じものが使用されるが、特に、0.1〜5μm程度の粒径を有するバイオセラミックス粉体は、後述する方法で気孔質複合体層21dを作製する際にスプレー等の手段で形成される繊維を短く切断する心配がなく、また、生体への吸収性も良好であるため、好ましく使用される。   The bioceramic powder to be contained in the porous composite layer 21d is the same as the bioceramic powder to be contained in the dense composite 21c described above, and in particular, a particle size of about 0.1 to 5 μm. The bioceramics powder having the above has no fear of cutting the fibers formed by means such as spray when the porous composite layer 21d is produced by the method described later, and has good absorbability to living bodies. Because it is, it is preferably used.

気孔質複合体層21dのバイオセラミックス粉体の含有率は、気孔質複合体層21dの全体に亘って一定していてもよいし、変化していてもよい。含有率が一定している前者の場合、バイオセラミックス粉体の含有率は60〜80質量%であることが好ましい。80質量%を上回ると、気孔質複合体層21dの気孔率が高いことと相俟って、気孔質複合体層21dの物理的強度の低下を招くという不都合が生じ、60質量%を下回ると、気孔質複合体層21dの生体活性が低下するため、骨組織の誘導形成が遅くなって、生体骨との結合や全置換に時間がかかり過ぎるという不都合が生じる。バイオセラミックス粉体の更に好ましい含有率は、60〜70質量%である。   The content of the bioceramic powder in the porous composite layer 21d may be constant over the entire porous composite layer 21d or may vary. In the former case where the content is constant, the content of the bioceramic powder is preferably 60 to 80% by mass. If it exceeds 80% by mass, combined with the high porosity of the porous composite layer 21d, there is a disadvantage in that the physical strength of the porous composite layer 21d is reduced, and if it is below 60% by mass, Since the bioactivity of the porous composite layer 21d is lowered, the inductive formation of the bone tissue is delayed, and there is a disadvantage that it takes too much time to bond with the whole bone or to completely replace it. The more preferable content rate of bioceramics powder is 60-70 mass%.

一方、含有率が変化する後者の場合、気孔質複合体層21dのバイオセラミックス粉体の含有率は、緻密質複合体21cのバイオセラミックス粉体の含有率よりも高く、且つ、30〜80質量%の範囲内で、気孔質複合体層21dの深層部から表層部に近づくほど高くなるように順次傾斜的に変化していることが好ましい。即ち、気孔質複合体層21dの深層部から表層部に近づくにつれて、バイオセラミックス粉体/生体内分解吸収性ポリマーの質量比率が、緻密質複合体21cにおける該質量比率よりも大きく、且つ、30/70〜80/20の範囲内で順次傾斜的に大きくなるように変化していることが好ましい。このようにバイオセラミックス粉体の含有率が傾斜した気孔質複合体層21dは、含有率の高い表層部側の生体活性が大きく、表層部側への骨芽細胞や骨組織の誘導形成が特に活発で、早期に生体骨と結合しつつ置換されるので、膝関節の上下の生体骨に対するアンカー部材21の固定強度を早期に高めることが可能となる。   On the other hand, in the latter case where the content ratio changes, the content ratio of the bioceramic powder of the porous composite layer 21d is higher than the content ratio of the bioceramic powder of the dense composite body 21c, and 30 to 80 mass. % Of the porous composite layer 21d, it is preferable that the slope gradually changes so as to increase from the deep layer portion toward the surface layer portion. That is, the mass ratio of the bioceramic powder / biodegradable absorbent polymer is larger than the mass ratio of the dense composite 21c as it approaches the surface layer portion from the deep layer portion of the porous composite layer 21d, and 30 It is preferable to change so as to increase gradually in the range of / 70 to 80/20. As described above, the porous composite layer 21d with the inclined content of the bioceramic powder has a high bioactivity on the surface layer side with a high content rate, and the formation of induced osteoblasts and bone tissue on the surface layer side is particularly important. Since the replacement is performed while being coupled with the living bone at an early stage, the anchoring strength of the anchor member 21 to the living bone above and below the knee joint can be increased at an early stage.

これに対し、緻密質複合体21cのバイオセラミックス粉体の含有率は、気孔質複合体層21dのバイオセラミックス粉体の含有率よりも低く、且つ、30〜60質量%の範囲内であることが好ましい。60質量%を上回ると、強度を要求される緻密質複合体21cが脆弱化して強度不足を招き、30質量%を下回ると、バイオセラミックス粉体による骨伝導形成が不充分になって生体骨と全置換するのに長期間を要するといった不都合が生じる。このバイオセラミックス粉体の含有率は、上記のように気孔質複合体層21dにおける含有率よりも低く、且つ、30〜60質量%の範囲内で、緻密質複合体21cの全体に亘って一定していてもよいし、また、緻密質複合体21cの軸芯部から外周部に向かって順次高くなるように順次傾斜的に変化していてもよい。このようにバイオセラミックス粉体の含有率が傾斜した緻密質複合体21cは、含有率の低い軸芯部が強度を保持したまま含有率の高い外周部に骨組織が伝導形成され、やがては全置換される。   In contrast, the content of the bioceramic powder of the dense composite 21c is lower than the content of the bioceramic powder of the porous composite layer 21d and is in the range of 30 to 60% by mass. Is preferred. If it exceeds 60% by mass, the dense composite 21c required for strength becomes weak and causes insufficient strength. If it is less than 30% by mass, the formation of bone conduction by the bioceramic powder becomes insufficient, and The inconvenience arises that it takes a long time to completely replace. The content of the bioceramic powder is lower than the content in the porous composite layer 21d as described above, and is constant over the entire dense composite 21c within the range of 30 to 60% by mass. Alternatively, it may be changed in an inclined manner so as to increase sequentially from the axial core portion to the outer peripheral portion of the dense composite 21c. In this way, the dense composite body 21c in which the content ratio of the bioceramic powder is inclined has the bone tissue conductively formed in the outer peripheral portion having a high content ratio while the shaft core portion having a low content ratio maintains strength, and eventually the whole Replaced.

尚、緻密質複合体21cと気孔質複合体層21dの双方のバイオセラミックス粉体の含有率を傾斜させる場合は、緻密質複合体21cの軸芯部から気孔質複合体層21dの表層部に近づくほど含有率が高くなるように、30〜80質量%の範囲内で順次連続的に傾斜させることが好ましい。   When the content of the bioceramics powder in both the dense composite 21c and the porous composite layer 21d is tilted, the axial core portion of the dense composite 21c extends from the surface portion of the porous composite layer 21d. It is preferable to sequentially incline within the range of 30 to 80% by mass so that the content rate becomes higher as it gets closer.

上記のような気孔質複合体層21dが緻密質複合体21cの表面に存在すると、骨成長因子や各種の薬剤を含浸させることが可能となるので、この点においても有用である。即ち、この気孔質複合体層21dには、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-b)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)などの少なくとも一種、及び/又は、生体由来の骨芽細胞を含浸させることが望ましく、これらの生物学的骨成長因子や骨芽細胞を含浸させると、骨芽細胞の増殖、成長が大幅に促進され、極く短期間(1週間程度)で気孔質複合体層21dの表層部に骨組織が形成されて生体骨と結合し、その後すみやかに気孔質複合体層21dの全体が生体骨と置換される。上記の因子のうち、BMP、EP4は硬骨の成長に特に有効であるから、膝関節の上下の大腿骨や頚骨などの硬骨に形成した孔に埋入固定するアンカー部材21の気孔質複合体層21dには、上記の因子のなかでも特にBMP、EP4sを含浸させることが好ましい。また、PRPは、血小板が豊富に濃縮された血漿であり、これを添加すると新生骨の形成が促進される。尚、場合によってはIL−1、TNF−α、TNF−β、IFN−γなどの他の成長因子や薬剤を含浸させてもよい。   When the porous composite layer 21d as described above is present on the surface of the dense composite 21c, it is possible to impregnate bone growth factors and various drugs, which is also useful in this respect. That is, the porous composite layer 21d has biological bone growth factors such as BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-b), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast). It is desirable to impregnate at least one kind of growth factor), PRP (platelet-rich plasma) and / or osteoblasts derived from a living body, and impregnating these biological bone growth factors and osteoblasts, Proliferation and growth of osteoblasts are greatly promoted, and bone tissue is formed in the surface layer portion of the porous composite layer 21d in a very short period (about 1 week), and is immediately combined with living bones. The entire composite layer 21d is replaced with living bone. Among the above factors, BMP and EP4 are particularly effective for the growth of bones. Therefore, the porous structure of the anchor member 21 to be embedded and fixed in the holes formed in the bones such as the femur and the tibia above and below the knee joint. The layer 21d is particularly preferably impregnated with BMP and EP4s among the above factors. PRP is plasma rich in platelets, and the addition of this promotes the formation of new bone. In some cases, other growth factors such as IL-1, TNF-α, TNF-β, and IFN-γ may be impregnated.

また、上記の気孔質複合体層21dの表面には、コロナ放電、プラズマ処理、過酸化水素処理などの酸化処理を施してもよく、このような酸化処理を施すと、気孔質複合体層21dの表面の濡れ特性が改善され、骨芽細胞が該複合体層21dの連続気孔内に一層効果的に侵入して成長するため、生体骨との結合や置換が更に促進されて、より早期にアンカー部材21の固定強度が向上するようになる。このような酸化処理は、緻密質複合体21cの露出表面に施しても勿論よい。   Further, the surface of the porous composite layer 21d may be subjected to oxidation treatment such as corona discharge, plasma treatment, hydrogen peroxide treatment, etc. When such oxidation treatment is carried out, the porous composite layer 21d. The surface wettability is improved, and osteoblasts more effectively invade and grow into the continuous pores of the composite layer 21d, so that the binding and replacement with living bone is further promoted, and the earlier The fixing strength of the anchor member 21 is improved. Of course, such an oxidation treatment may be performed on the exposed surface of the dense composite 21c.

上記の気孔質複合体層21dは、例えば、次の方法で造られる。まず、揮発性溶媒に生体内分解吸収性ポリマーを溶解すると共に、バイオセラミックス粉体を混合して懸濁液を調製し、この懸濁液をスプレー等の手段で繊維化して繊維の絡み合った繊維集合体を形成する。そして、この繊維集合体を、メタノール、エタノール、イソプロパノール、ジクロロエタン(メタン)、クロロホルムなどの揮発性溶剤に浸漬して膨潤または半溶融状態とし、これを加圧して楕円筒状の多孔質の繊維融着集合体となし、この繊維融着集合体の繊維を収縮、融合させながら実質的に繊維状の形態を消失させてマトリクス化し、繊維間空隙が丸みを有する連続気孔となった楕円筒状の気孔質複合体層に形態変化させて作製する。その場合、半楕円筒状の気孔質複合体層を作製して、これを2つ合体させて使用するようにしてもよい。   The above-mentioned porous composite layer 21d is produced by the following method, for example. First, a biodegradable polymer is dissolved in a volatile solvent, and a bioceramic powder is mixed to prepare a suspension. The suspension is made into a fiber by means of spraying or the like, and the fibers are intertwined. Form an aggregate. Then, this fiber assembly is immersed in a volatile solvent such as methanol, ethanol, isopropanol, dichloroethane (methane), chloroform, etc. to be in a swollen or semi-molten state, and this is pressed to apply elliptical cylindrical porous fiber fusion. An elliptical cylindrical shape in which the fibers are made into a matrix by substantially eliminating the fibrous form while shrinking and fusing the fibers of the fiber fusion aggregate, and forming a matrix with rounded pores between the fibers. It is produced by changing the shape of the porous composite layer. In that case, a semi-elliptical cylindrical porous composite layer may be prepared and used by combining two of them.

この方法で気孔率が深層部から表層部に近づくほど大きくなる気孔質複合体層を造る場合は、繊維集合体を上記の揮発性溶剤に浸漬して膨潤又は半溶融状態とし、これを加圧して楕円筒状又は半楕円筒状の多孔質の繊維融着集合体とする際に、深層部から表層部に近づくほど繊維集合体の量を少なくすればよい。また、バイオセラミックス粉体の含有率が深層部から表層部に近づくほど高くなる気孔質複合体層を造る場合は、バイオセラミックス粉体の混合量が異なる数種類の懸濁液を調製して、バイオセラミックス粉体の含有率が異なる数種類の繊維集合体を形成し、これらの繊維集合体をバイオセラミックス粉体の含有率が低いものから順々に重ねて膨潤又は半溶融状態として加圧すればよい。   When producing a porous composite layer whose porosity increases as it approaches the surface layer portion from the deep layer portion by this method, the fiber assembly is immersed in the volatile solvent to be in a swollen or semi-molten state, and this is pressurized. Thus, when the porous fiber fusion aggregate having an elliptic cylinder shape or a semi-elliptical cylinder shape is used, the amount of the fiber aggregate may be reduced as the depth layer portion approaches the surface layer portion. In addition, when creating a porous composite layer in which the content of bioceramic powder increases from the deep layer to the surface layer, several types of suspensions with different mixing amounts of bioceramic powder are prepared, Several types of fiber aggregates with different ceramic powder contents may be formed, and these fiber aggregates may be stacked in order from the one with the lowest content of bioceramic powder and pressed as a swollen or semi-molten state. .

図2〜図4に示すアンカー部材21は、上記の楕円筒状の気孔質複合体層21dの内側に前記の楕円柱状の緻密質複合体21cを嵌め込むか、又は、上記の半楕円筒状の気孔質複合体層を2つ合体させて前記の楕円柱状の緻密質複合体21cの外周面に重ね合わせ、熱溶着等の手段によって積層一体化して得られるものである。緻密質複合体21cと気孔質複合体層21dを積層一体化する手段は熱溶着に限定されるものではなく、例えば、接着により一体化したり、緻密質複合体21cと気孔質複合体層21dとの接触面のいずれか一方にアリ溝を、他方にアリを形成して、このアリをアリ溝に嵌着させるなどの手段によって一体化してもよい。   The anchor member 21 shown in FIGS. 2 to 4 is configured such that the ellipsoidal cylindrical dense composite 21c is fitted inside the elliptic cylindrical porous composite layer 21d or the semi-elliptical cylindrical shape described above. The two porous composite layers are combined and superposed on the outer peripheral surface of the elliptic columnar dense composite 21c, and are laminated and integrated by means such as heat welding. The means for laminating and integrating the dense composite 21c and the porous composite layer 21d is not limited to heat welding. For example, the dense composite 21c and the porous composite layer 21d can be integrated by adhesion or the dense composite 21c and the porous composite layer 21d. Alternatively, a dovetail groove may be formed on either one of the contact surfaces, and an ant may be formed on the other, and the ants may be integrated into the dovetail.

図13は、以上のような人工靱帯AL1の一使用例についての説明図である。   FIG. 13 is an explanatory diagram of one usage example of the artificial ligament AL1 as described above.

この使用例は、大腿骨3と脛骨4の間の膝関節に人工靱帯AL1を移植、再建する場合を例示したものであって、これによれば、先ず、大腿骨3と脛骨4にそれぞれ孔3a,4aをあけ、人工靱帯AL1を上記の孔から膝関節に通して、その人工の靱帯部材1の両端部のアンカー部材21,21を双方の孔3a,4aに挿入する。そして、大腿骨3の孔3aの内面と一方のアンカー部材21との隙間にインターフェアランススクリュー5をねじ込んで、一方のアンカー部材21を該スクリュー5と反対側の孔3aの内面に圧接固定し、更に、人工の靱帯部材1に適度の弛みをとりながら、脛骨4の孔4aの内面と他方のアンカー部材21との隙間にインターフェアランススクリュー5をねじ込んで、他方のアンカー部材21を該スクリュー5と反対側の孔4aの内面に圧接固定することにより、人工靱帯AL1を膝関節に移植、固定している。   This use example illustrates the case where the artificial ligament AL1 is transplanted and reconstructed into the knee joint between the femur 3 and the tibia 4, and according to this, first, the femur 3 and the tibia 4 are respectively perforated. 3a and 4a are opened, the artificial ligament AL1 is passed through the knee joint through the hole, and the anchor members 21 and 21 at both ends of the artificial ligament member 1 are inserted into the holes 3a and 4a. Then, the interference screw 5 is screwed into the gap between the inner surface of the hole 3 a of the femur 3 and one anchor member 21, and the one anchor member 21 is press-fixed to the inner surface of the hole 3 a opposite to the screw 5. The interference lance screw 5 is screwed into the gap between the inner surface of the hole 4a of the tibia 4 and the other anchor member 21 while taking an appropriate slack in the artificial ligament member 1, and the other anchor member 21 is placed on the side opposite to the screw 5 The artificial ligament AL1 is transplanted and fixed to the knee joint by pressing and fixing to the inner surface of the hole 4a.

このように人工靱帯AL1を移植すると、アンカー部材21の気孔質複合体層21dが、その表面に接触する体液や連続気孔に浸透する体液によって表面と内部からすみやかに加水分解されると共に、この加水分解に伴って孔3a,4aの内面の骨組織が生体活性なバイオセラミックス粉体の骨誘導能により気孔質複合体層21dの内部まで誘導形成されて、気孔質複合体層21aが早期に骨組織と置換され、これによってアンカー部材21は大腿骨3及び脛骨4の孔3a,4aの内面の骨組織と結合する。そのため、従来のようにインターフェアランススクリューのみで靱帯両端部を固定する場合に比べて、人工靱帯両端部のアンカー部材21の固定強度が大幅に向上する。一方、アンカー部材21の緻密質複合体21cは硬くて強度があり、加水分解が気孔質複合体層21dよりも遥かに遅く、加水分解がある程度進行するまでの期間、十分な強度を維持する。そして、最終的には全てが加水分解され、生体活性なバイオセラミックス粉体により伝導形成された生体骨と置換、消失するため、膝関節の大腿骨3や脛骨4にあけた孔3a,4aの殆ど全てが生体骨で埋まることになる。しかも、アンカー部材21の気孔質複合体層21dや緻密質複合体21cに含まれるバイオセラミックス粉体は生体内吸収性であるため、置換、再生された生体骨にバイオセラミックス粉体が残存、堆積することがなく、軟組織や血管内に浸出することもない。 When the artificial ligament AL1 is transplanted in this way, the porous composite layer 21d of the anchor member 21 is rapidly hydrolyzed from the surface and inside by the body fluid contacting the surface and the body fluid penetrating the continuous pores. Along with the decomposition, the bone tissues on the inner surfaces of the holes 3a, 4a are guided and formed to the inside of the porous composite layer 21d by the osteoinductive ability of the bioactive bioceramic powder, and the porous composite layer 21a is rapidly formed into the bone. By replacing the tissue, the anchor member 21 is coupled with the bone tissue on the inner surfaces of the holes 3a and 4a of the femur 3 and the tibia 4. Therefore, the fixing strength of the anchor members 21 at both ends of the artificial ligament is greatly improved as compared with the conventional case where both ends of the ligament are fixed only by the interference screw. On the other hand, the dense composite 21c of the anchor member 21 is hard and strong, the hydrolysis is much slower than the porous composite layer 21d, and maintains sufficient strength until the hydrolysis proceeds to some extent. Finally, all of the holes are hydrolyzed and replaced with the living bone formed by conduction with the bioactive bioceramic powder, so that the bones are removed, so that the holes 3a and 4a in the femur 3 and tibia 4 of the knee joint are opened. Almost everything is buried with living bones. In addition, since the bioceramic powder contained in the porous composite layer 21d and the dense composite 21c of the anchor member 21 is in vivo absorbable, the bioceramic powder remains on the deposited and regenerated biological bone and is deposited. Without leaching into soft tissue or blood vessels.

また、生体不活性な有機繊維の組織構造体よりなる人工の靱帯部材1は、生体の靱帯と同等もしくはそれ以上の強度と柔軟性があり、生体の靱帯に似た変形挙動を示すため、膝関節の屈伸により引張力が繰り返し作用しても人工の靱帯部材1が断裂する心配は皆無に等しく、屈伸の際に違和感を感じることもない。   Further, the artificial ligament member 1 made of a tissue structure of a biologically inert organic fiber has a strength and flexibility equal to or higher than that of a living body ligament and exhibits a deformation behavior similar to that of a living body ligament. Even if a tensile force is repeatedly applied due to bending and stretching of the joint, there is no fear that the artificial ligament member 1 is torn, and there is no sense of incongruity when bending and stretching.

尚、インターフェアランススクリュー5として、アンカー部材21の緻密質複合体21cと同様のバイオセラミックス粉体を含有した生体内分解吸収性ポリマーからなるスクリューを使用すると、このスクリューも加水分解されて生体骨と置換し、孔3a,4aが生体骨で完全に埋まる利点がある。   In addition, when the screw made from the biodegradable absorbable polymer containing the bioceramic powder similar to the dense complex 21c of the anchor member 21 is used as the interference screw 5, this screw is also hydrolyzed to replace the living bone. However, there is an advantage that the holes 3a and 4a are completely filled with living bones.

図5は本発明の他の実施形態に係るアンカー部材を示す斜視図である。   FIG. 5 is a perspective view showing an anchor member according to another embodiment of the present invention.

このアンカー部材21は、靱帯部材1側の端面から突設された突出片21aの上下左右の面に、前記の小孔21bに代えて多数の小突起21eを設け、人工の靱帯部材1の有機繊維を該小突起21eに掛止することによって、アンカー部材21を人工の靱帯部材1の両端部に離脱しないように取付けることができるものである。小突起21eは、図示のように根元から先端まで太さが一様であってもよいが、掛止した有機繊維が外れないように、小突起21eの先端を膨らませた形状としたり屈曲させたりすることが好ましい。このアンカー部材21の他の構成は、前述の図2〜図4に示すアンカー部材と同様であるから、説明を省略する。   This anchor member 21 is provided with a large number of small protrusions 21e instead of the small holes 21b on the upper, lower, left and right surfaces of the protruding piece 21a protruding from the end surface on the ligament member 1 side, and the organic material of the artificial ligament member 1 By anchoring the fiber to the small protrusion 21e, the anchor member 21 can be attached to both ends of the artificial ligament member 1 so as not to be detached. The small protrusion 21e may have a uniform thickness from the base to the tip as shown in the figure, but the tip of the small protrusion 21e is inflated or bent so that the organic fiber that is hooked does not come off. It is preferable to do. Since the other structure of this anchor member 21 is the same as that of the anchor member shown in above-mentioned FIGS. 2-4, description is abbreviate | omitted.

上記のアンカー部材21も、人工の靱帯部材1の有機繊維を小突起21eに係止することにより、靱帯部材1から離脱しないように取付けられて、移植再建に用いられ、前述した人工靱帯AL1の靱帯アンカー部材21と同様の作用効果を奏することは言うまでもない。   The anchor member 21 is also attached so as not to be detached from the ligament member 1 by locking the organic fiber of the artificial ligament member 1 to the small protrusion 21e, used for transplantation reconstruction, and the artificial ligament AL1 described above. Needless to say, the same effect as the ligament anchor member 21 can be obtained.

図6は本発明の更に他の実施形態に係るアンカー部材を示す縦断面図である。   FIG. 6 is a longitudinal sectional view showing an anchor member according to still another embodiment of the present invention.

このアンカー部材21は、その緻密質複合体21cの外周面に鋸歯状の断面形状を有する環状突起21fを形成し、前述の気孔質複合体層21dを、これらの環状突起21fと環状突起21fの間の凹部に充填した状態で緻密質複合体21cの外周面に積層一体化したものである。このアンカー部材21の他の構成は、前述の人工靱帯AL1のアンカー部材21と同一であるので、説明を省略する。   The anchor member 21 is formed with an annular protrusion 21f having a sawtooth cross-sectional shape on the outer peripheral surface of the dense composite 21c, and the porous composite layer 21d described above is formed between the annular protrusion 21f and the annular protrusion 21f. In this state, the concave portions are filled and integrated on the outer peripheral surface of the dense composite 21c. Since the other structure of this anchor member 21 is the same as the anchor member 21 of the above-mentioned artificial ligament AL1, description is abbreviate | omitted.

このようなアンカー部材21は、前述した人工靱帯AL1のアンカー部材21の作用効果に加えて、このアンカー部材21を図13に示すようにインターフェアランススクリュー5で膝関節の大腿骨3と脛骨4の孔3a,4aに圧接固定した場合、アンカー部材21の緻密質複合体21cの鋸歯状の環状突起21fの先端が孔3a,4aの内面に若干食い込むため、アンカー部材21の気孔質複合体層21dが孔3a,4aの内面の骨組織と結合する前に、膝関節の屈伸に伴う引張力が人工靱帯に作用してアンカー部材21に図6の矢印方向の力Fが加わったときでも、アンカー部材21が孔3a,4aから抜け出す心配がないといった効果を奏する。   In addition to the above-described effects of the anchor member 21 of the artificial ligament AL1 as described above, the anchor member 21 is inserted into the holes of the femur 3 and the tibia 4 of the knee joint with the interference screw 5 as shown in FIG. When press-fixed to 3a and 4a, the tip of the serrated annular projection 21f of the dense composite 21c of the anchor member 21 slightly bites into the inner surfaces of the holes 3a and 4a, so that the porous composite layer 21d of the anchor member 21 is Even when the tensile force accompanying the bending and stretching of the knee joint acts on the artificial ligament and the anchor member 21 is applied with the force F in the direction of the arrow in FIG. There is an effect that 21 does not have to worry about coming out of the holes 3a and 4a.

図7は本発明の更に他の実施形態に係るアンカー部材を示す横断面図である。   FIG. 7 is a cross-sectional view showing an anchor member according to still another embodiment of the present invention.

このアンカー部材21は、楕円柱状の緻密質複合体21cの外周面に三角断面形状の凸条21gを形成し、前述の気孔質複合体層21dを、これらの凸条21gと凸条21gとの間の凹部に充填した状態で緻密質複合体21cの外周面に積層一体化したものである。その他の構成は前述した人工靱帯AL1のアンカー部材21と同一であるので、説明を省略する。   This anchor member 21 is formed with a convex section 21g having a triangular cross-sectional shape on the outer peripheral surface of an ellipsoidal columnar dense composite body 21c, and the above-mentioned porous composite layer 21d is made up of the convex strip 21g and the convex strip 21g. In this state, the concave portions are filled and integrated on the outer peripheral surface of the dense composite 21c. Since the other structure is the same as the anchor member 21 of the artificial ligament AL1 described above, the description thereof is omitted.

このようなアンカー部材21を人工の靱帯部材の両端部に取付けたものも、凸条21gの先端が膝関節の上下の生体骨の孔の内面に若干食い込むため、アンカー部材21の気孔質複合体層21dが生体骨の孔の内面の骨組織と結合するまでのアンカー部材21の固定強度を向上させることができるといった効果を奏する。   Even when such an anchor member 21 is attached to both ends of the artificial ligament member, the distal end of the ridge 21g slightly bites into the inner surface of the hole of the living bone above and below the knee joint. There is an effect that it is possible to improve the fixing strength of the anchor member 21 until the layer 21d is combined with the bone tissue on the inner surface of the hole of the living bone.

図8は本発明の更に他の実施形態に係るアンカー部材を示す横断面図である。   FIG. 8 is a cross-sectional view showing an anchor member according to still another embodiment of the present invention.

このアンカー部材21は、前述した楕円柱状の緻密質複合体21cの外周面の片側、即ち、骨関節の双方の生体骨にあけた孔3a(4a)の内面に圧接される片側外周面に、前述の気孔質複合体層21dを積層一体化したものである。その他の構成は前記人工靱帯AL1のアンカー部材21と同様であるので、説明を省略する。   The anchor member 21 is provided on one side of the outer peripheral surface of the above-described elliptic cylinder-like dense composite 21c, that is, on one side outer peripheral surface pressed against the inner surface of the hole 3a (4a) formed in both living bones of the bone joint. The aforementioned porous composite layer 21d is laminated and integrated. Since the other structure is the same as that of the anchor member 21 of the artificial ligament AL1, description thereof will be omitted.

このように緻密質複合体21cの片側外周面のみに気孔質複合体層21dを積層一体化したアンカー部材21を人工の靱帯部材1の両端部に取付けた人工靱帯も、孔3a(4a)の内面に圧接される気孔質複合体層21dがすみやかに加水分解され、骨組織と置換して孔3a(4a)の内面に結合するため、早期にアンカー部材21の結合強度を向上させることができる。ただし、気孔質複合体層が積層されていない緻密質複合体1の反対側外周面は、加水分解も骨組織の伝導形成も遅いため、孔3a(4a)の大半が生体骨で埋まるまでにはかなりの時間がかかることになる。   In this way, the artificial ligament in which the anchor member 21 in which the porous composite layer 21d is laminated and integrated only on one outer peripheral surface of the dense composite 21c is attached to both ends of the artificial ligament member 1 is also formed in the hole 3a (4a). Since the porous composite layer 21d pressed against the inner surface is quickly hydrolyzed and replaced with bone tissue and bonded to the inner surface of the hole 3a (4a), the bond strength of the anchor member 21 can be improved early. . However, the opposite outer peripheral surface of the dense composite 1 where the porous composite layer is not laminated is slow in hydrolysis and formation of conduction in bone tissue, so that most of the holes 3a (4a) are filled with living bone. Will take quite a while.

図9は本発明の更に他の実施形態に係るアンカー部材を示す縦断面図である。   FIG. 9 is a longitudinal sectional view showing an anchor member according to still another embodiment of the present invention.

このアンカー部材21は、緻密質複合体21cよりなる芯層の上下両面に気孔質複合体層21d,21dを積層一体化した三層構造の部材であって、全体としては楕円柱状に形成されたものである。そして、人工の靱帯部材1の有機繊維を掛止させる前記の小孔や突起を形成した突出片(不図示)は、緻密質複合体21cよりなる芯層の一端面から突設されている。   The anchor member 21 has a three-layer structure in which the porous composite layers 21d and 21d are laminated and integrated on the upper and lower surfaces of the core layer made of the dense composite 21c. The anchor member 21 is formed in an elliptic column shape as a whole. Is. And the protrusion piece (not shown) which formed the said small hole and protrusion which latches the organic fiber of the artificial ligament member 1 is protrudingly provided from the end surface of the core layer which consists of the dense complex 21c.

このようなアンカー部材21を人工の靱帯部材1の両端部に取付けた人工靱帯も、アンカー部材21の片側の気孔質複合体層21dが骨関節の生体骨の前記孔3a(4a)の内面に密接し、すみやかに加水分解されながら骨組織と置換して前記孔3a(4a)の内面に結合するため、早期にアンカー部材21の結合強度を向上させることができる。そして、反対側の気孔質複合体層21dも早期に加水分解され、バイオセラミックス粉体により骨芽細胞が連続気孔に誘導されて骨組織が形成されるため、図8に示すアンカー部材21よりも前記の孔3a(4a)の大半が生体骨で埋まるのに要する期間を短縮することができる。   Also in the artificial ligament in which such an anchor member 21 is attached to both ends of the artificial ligament member 1, the porous composite layer 21d on one side of the anchor member 21 has an inner surface of the hole 3a (4a) of the living bone of the bone joint. Since the bone tissue is replaced and replaced with the bone tissue while being hydrolyzed promptly, the bond strength of the anchor member 21 can be improved at an early stage. The opposite side porous composite layer 21d is also hydrolyzed early, and osteoblasts are induced into the continuous pores by the bioceramic powder to form a bone tissue, so that it is more than the anchor member 21 shown in FIG. The period required for most of the holes 3a (4a) to be filled with living bone can be shortened.

図10は本発明の更に他の実施形態に係るアンカー部材を示す縦断面図、図11は同アンカー部材の横断面図である。   FIG. 10 is a longitudinal sectional view showing an anchor member according to still another embodiment of the present invention, and FIG. 11 is a transverse sectional view of the anchor member.

このアンカー部材22は、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体22cからなる楕円柱状の部材であって、前述の人工の靱帯部材1の両端部に離脱しないように取付けられるものである。気孔質複合体22cの材料となる生体内分解吸収性ポリマーやバイオセラミックス粉体は、前述したアンカー部材21の気孔質複合体層21dのそれらと同じものが使用される。   The anchor member 22 is an elliptical columnar member made of a porous composite 22c of a biodegradable and absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive, and is the artificial ligament member 1 described above. It is attached so that it may not detach | leave at the both ends. The same biodegradable absorbent polymer and bioceramic powder as the material of the porous composite 22c are the same as those of the porous composite layer 21d of the anchor member 21 described above.

上記のアンカー部材22を構成する気孔質複合体22cは、その気孔率が0〜90%の範囲内、好ましくは15〜80%の範囲内で、該複合体22cの軸芯部22dから外周部22eに近づくほど大きくなるように順次傾斜的に変化したものである。この気孔質複合体22cは、連続気孔が気孔全体の50以上、なかんずく70〜90%を占めることが好ましく、また、連続気孔の孔径が50〜600μmの範囲内、好ましくは100〜400μmの範囲内に調整されて、気孔率の高い外周部22eに近づくほど孔径が大きくなっていることが好ましい。   The porous composite 22c constituting the anchor member 22 has a porosity in the range of 0 to 90%, preferably in the range of 15 to 80%, from the axial core portion 22d of the composite 22c to the outer peripheral portion. It gradually changes so as to increase as it approaches 22e. In the porous composite 22c, it is preferable that the continuous pores account for 50 or more of the total pores, especially 70 to 90%, and the pore diameter of the continuous pores is in the range of 50 to 600 μm, preferably in the range of 100 to 400 μm. It is preferable that the hole diameter becomes larger as it approaches the outer peripheral portion 22e having a higher porosity.

このように気孔率や孔径が変化していると、孔径が大きくて気孔率が高い気孔質複合体22cの外周部22e(以下、高気孔率外周部と記す)は、体液の浸透が容易で速やかに加水分解され、しかも、骨芽細胞が侵入し易く、後述するように生体活性なバイオセラミックス粉体の含有率が高いことと相俟って、早期に骨組織が誘導形成されて生体骨と置換、結合される。従って、この気孔質複合体22cよりなるアンカー部材22を、膝関節の上下の生体骨にあけた前記孔3a(4a)に挿入してインターフェアランススクリューで固定すると、早期にアンカー部材22の高気孔率外周部22eが前記孔3a(4a)の内面の生体骨と結合し、インターフェアランススクリューのみで固定する場合よりも固定強度が向上する。高気孔率外周部22eの気孔率が90%を上回り、孔径が600μmよりも大きくなると、高気孔率外周部22eの物理的な強度が低下して脆くなるので好ましくない。また、連続気孔が気孔全体の50%を下回り、且つ、孔径が50μmよりも小さくなると、体液や骨芽細胞の侵入が困難になり、加水分解や骨組織の誘導形成が遅くなって、生体骨との置換や結合に要する時間が長くなるので好ましくない。   When the porosity and the pore diameter are changed in this way, the outer peripheral portion 22e of the porous composite body 22c (hereinafter referred to as a high porosity outer peripheral portion) having a large pore diameter and a high porosity can easily penetrate body fluid. Combined with the rapid hydrolysis and the invasion of osteoblasts and the high content of bioactive bioceramic powder as described later, bone tissue is induced and formed at an early stage. Replaced and combined with Therefore, when the anchor member 22 made of the porous composite 22c is inserted into the hole 3a (4a) formed in the living bone above and below the knee joint and fixed with the interference screw, the high porosity of the anchor member 22 is quickly achieved. The outer peripheral portion 22e is combined with the living bone on the inner surface of the hole 3a (4a), and the fixing strength is improved as compared with the case where the outer peripheral portion 22e is fixed only by the interference screw. If the porosity of the high-porosity outer peripheral portion 22e exceeds 90% and the pore diameter is larger than 600 μm, the physical strength of the high-porosity outer peripheral portion 22e is lowered and becomes brittle. In addition, if the continuous pores are less than 50% of the total pores and the pore diameter is smaller than 50 μm, it is difficult for the body fluid and osteoblasts to enter, and hydrolysis and bone tissue induction formation are slowed down. This is not preferable because the time required for substitution and bonding with is increased.

一方、気孔質複合体22の気孔率が低い軸芯部22d(以下、低気孔率軸芯部と記す)は強度を有し、気孔率が低くなるほど低気孔率軸芯部22dの強度は向上することになる。従って、人工靱帯のアンカー部材に大きい強度が要求される場合には、低気孔率軸芯部22dの気孔率を上記のように0%にする必要はあるが、大きい強度が要求されない場合は必ずしも0%にする必要はない。それ故、低気孔率軸芯部22dの気孔率の下限を、上記のように好ましくは15%として、靱帯アンカー部材に適した強度を付与すると共に、加水分解や生体骨との全置換に要する時間を短縮するのが良い。そして、この強度のある低気孔率軸芯部22dの一端面から突出片22aが一体に突設され、該突出片22aに形成した小孔22bに人工の靱帯部材1の有機繊維を通して掛止させることにより、靱帯部材1の端部にアンカー部材22が離脱しないように取付けられるようになっている。尚、人工の靱帯部材1の端部の有機繊維は、アンカー部材22の強度のある低気孔率軸芯部22dに抜けないよう埋入固定しても勿論良い。   On the other hand, the shaft core portion 22d having a low porosity of the porous composite 22 (hereinafter referred to as a low porosity shaft core portion) has strength, and the strength of the low porosity shaft core portion 22d is improved as the porosity is lowered. Will do. Therefore, when high strength is required for the anchor member of the artificial ligament, the porosity of the low-porosity axial core portion 22d needs to be 0% as described above, but it is not always required when high strength is not required. It is not necessary to make it 0%. Therefore, the lower limit of the porosity of the low-porosity axial core portion 22d is preferably set to 15% as described above, and it provides strength suitable for the ligament anchor member and is required for hydrolysis and total replacement with living bone. It is good to shorten the time. Then, a projecting piece 22a is integrally projected from one end face of the strong low-porosity axial core portion 22d, and the small hole 22b formed in the projecting piece 22a is hooked through the organic fiber of the artificial ligament member 1. Thus, the anchor member 22 is attached to the end portion of the ligament member 1 so as not to be detached. Of course, the organic fibers at the end of the artificial ligament member 1 may be embedded and fixed so as not to come out of the strong low-porosity axial core portion 22d of the anchor member 22.

アンカー部材22を構成する気孔質複合体22eのバイオセラミックス粉体の含有率は、該複合体22eの全体に亘って一定していてもよいが、30〜80質量%の範囲内で、低気孔率軸芯部22dから高気孔率外周部22eに近づくほど高くなるように順次傾斜的に変化していることが好ましい。即ち、低気孔率軸芯部22dから高気孔率外周部22eに近づくにつれて、バイオセラミックス粉体/生体内分解吸収性ポリマーの質量比率が30/70〜80/20の範囲内で順次連続的に大きくなるように変化していることが好ましい。このようにバイオセラミックス粉体の含有率が傾斜していると、高気孔率外周部22eの生体活性が大きく、骨芽細胞や骨組織の誘導形成が特に活発になるため、生体骨との置換、結合が一層促進される利点がある。高気孔率外周部22eにおけるバイオセラミックス粉体の含有率が80質量%を上回ると、高気孔率外周部22eの物理的強度の低下を招くという不都合が生じ、低気孔率軸芯部22dにおける含有率が30質量%を下回ると、低気孔率軸芯部22dのバイオセラミックス粉体による骨組織の誘導形成が不活発になるため、生体骨との全置換に時間がかかり過ぎるという不都合が生じる。バイオセラミックス粉体の更に好ましい含有率の上限は70質量%である。   The content of the bioceramics powder of the porous composite 22e constituting the anchor member 22 may be constant over the entire composite 22e, but within the range of 30 to 80% by mass, the low porosity It is preferable that the slope gradually changes so as to increase as it approaches the high porosity outer peripheral portion 22e from the rate axis portion 22d. That is, as the low porosity axial core portion 22d approaches the high porosity outer peripheral portion 22e, the mass ratio of bioceramic powder / biodegradable absorbent polymer is successively and continuously within a range of 30/70 to 80/20. It is preferable to change so that it may become large. When the content of the bioceramic powder is inclined as described above, the bioactivity of the high-porosity outer peripheral portion 22e is large, and the induction formation of osteoblasts and bone tissue becomes particularly active. There is an advantage that the bonding is further promoted. When the content of the bioceramic powder in the high porosity outer peripheral portion 22e exceeds 80% by mass, there is a disadvantage in that the physical strength of the high porosity outer peripheral portion 22e is lowered, and the content in the low porosity axial core portion 22d is caused. If the rate is less than 30% by mass, guided formation of the bone tissue by the bioceramic powder of the low-porosity axial core portion 22d becomes inactive, which causes inconvenience that it takes too much time to completely replace the living bone. The upper limit of the more preferable content rate of bioceramics powder is 70 mass%.

また、アンカー部材22を構成する気孔質複合体22cには、前述の生物学的骨成長因子や生体由来の骨芽細胞を含浸させることによって、骨芽細胞の増殖、成長を大幅に促進し、極く短期間(1週間程度)で気孔質複合体22cの高気孔率外周部22eに骨組織を形成して前記孔3a(4a)の内面との結合を更に早めると共に、気孔質複合体22cの全置換によって前記孔3a(4a)の大半が生体骨で埋まるのに要する期間を短縮させることが好ましい。さらに、この気孔質複合体22cの表面にコロナ放電、プラズマ処理、過酸化水素処理などの酸化処理を施すことによって、気孔質複合体2の表面の濡れ特性を改善し、骨芽細胞の侵入、成長を更に促進させるようにしてもよい。   Further, the porous composite 22c constituting the anchor member 22 is impregnated with the above-described biological bone growth factor or living osteoblasts, thereby greatly promoting the proliferation and growth of osteoblasts, In a very short period (about one week), a bone tissue is formed on the high porosity outer peripheral portion 22e of the porous composite 22c to further accelerate the bonding with the inner surface of the hole 3a (4a), and the porous composite 22c. It is preferable to shorten the period required for most of the holes 3a (4a) to be filled with living bone by the total replacement. Further, by subjecting the surface of the porous composite 22c to oxidation treatment such as corona discharge, plasma treatment, and hydrogen peroxide treatment, the wettability of the surface of the porous composite 2 is improved, and osteoblast invasion, Growth may be further promoted.

上記の気孔質複合体22cよりなるアンカー部材22は、例えば、次の方法で製造される。まず、揮発性溶媒に生体内分解吸収性ポリマーを溶解すると共に、バイオセラミックス粉体を混合して懸濁液を調製し、この懸濁液をスプレー等の手段で繊維化して繊維の絡み合った繊維集合体を形成する。そして、この繊維集合体を、中央部から周囲に近づくほど繊維量が少なくなるように楕円筒内に充填し、さらに揮発性溶剤に浸漬して膨潤または半溶融状態とし、これを楕円筒の軸線方向に加圧して楕円柱状の多孔質の繊維融着集合体となし、この繊維融着集合体の繊維を収縮、融合させながら実質的に繊維状の形態を消失させてマトリクス化し、繊維間空隙が丸みを有する連続気孔となった気孔質複合体に形態変化させ、この楕円柱状の気孔質複合体の一端部を切削加工して突出片と小孔を形成すると、アンカー部材22が製造される。なお、バイオセラミックス粉体の含有率が低気孔率軸芯部22dから高気孔率外周部22eに近づくほど高くなる気孔質複合体22cを製造する場合は、バイオセラミックス粉体の混合量が異なる数種類の懸濁液を調製して、バイオセラミックス粉体の含有率が異なる数種類の繊維集合体を形成し、中央に含有率の最も低い繊維集合体を配置すると共に、周囲に近づくほど含有率の高い繊維集合体を配置するようにして、これらの繊維集合体を楕円筒内に充填し、揮発性溶剤で膨潤又は半溶融状態となして加圧すればよい。   The anchor member 22 made of the above porous composite 22c is manufactured, for example, by the following method. First, a biodegradable polymer is dissolved in a volatile solvent, and a bioceramic powder is mixed to prepare a suspension. The suspension is made into a fiber by means of spraying or the like, and the fibers are intertwined. Form an aggregate. Then, this fiber assembly is filled in the elliptic cylinder so that the amount of fibers decreases from the center to the periphery, and further immersed in a volatile solvent to be in a swollen or semi-molten state, which is the axis of the elliptic cylinder Pressing in the direction to form an elliptical columnar porous fiber fusion aggregate, while the fibers of this fiber fusion aggregate are contracted and fused, the fibrous form disappears substantially into a matrix, and the inter-fiber voids When the shape is changed to a porous composite having rounded continuous pores, and one end of this elliptical columnar porous composite is cut to form protruding pieces and small holes, the anchor member 22 is manufactured. . In the case of producing a porous composite 22c in which the content of the bioceramic powder increases from the low-porosity axial core portion 22d toward the high-porosity outer peripheral portion 22e, several types of mixed bioceramic powders are different. The suspension is prepared to form several types of fiber aggregates with different bioceramic powder content, and the fiber aggregate with the lowest content is placed at the center, and the content increases as it approaches the periphery. As long as the fiber aggregates are arranged, these fiber aggregates are filled in an elliptical cylinder, and are swelled or semi-molten with a volatile solvent and pressed.

図12は本発明の更に他の実施形態に係るアンカー部材の縦断面図である。   FIG. 12 is a longitudinal sectional view of an anchor member according to still another embodiment of the present invention.

このアンカー部材23も、バイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体からなる楕円柱状の部材であるが、このアンカー部材23を構成する気孔質複合体23cは、その気孔率が、0〜90%の範囲内、好ましくは15〜80%の範囲内で、該複合体23cの一端部、即ち、靱帯部材1が取付けられる端部23dから反対側端部23eに近づくほど高くなるように順次傾斜的に変化しており、また、バイオセラミックス粉体の含有率も、30〜80質量%の範囲内で、一端部23dから反対側端部23eに近づくほど高くなるように順次傾斜的に変化している。そして、気孔率が低いか又は0%で、強度のある一端部から突設された突出片23aに多数の小孔23bが形成され、この小孔23bに人工の靱帯部材1の有機繊維を挿通することによって、靱帯部材1の端部に離脱しないように取付けられるものである。このアンカー部材23の他の構成は、前記のアンカー部材22と同様であるので、説明を省略する。   The anchor member 23 is also an elliptical columnar member made of a biocomposite-absorbable polymer porous composite containing bioceramic powder, and the porous composite 23c constituting the anchor member 23 has a pore structure. When the rate is in the range of 0 to 90%, preferably in the range of 15 to 80%, the one end of the composite 23c, that is, the end 23d to which the ligament member 1 is attached approaches the opposite end 23e. The content of the bioceramics powder is gradually changed so as to increase, and the content of the bioceramic powder is increased within a range of 30 to 80% by mass from the one end 23d to the opposite end 23e. It changes gradually in an inclined manner. A large number of small holes 23b are formed in the projecting piece 23a projecting from one end having a low porosity or 0%, and the organic fibers of the artificial ligament member 1 are inserted into the small holes 23b. By doing so, the ligament member 1 is attached so as not to be detached. Since the other structure of this anchor member 23 is the same as that of the anchor member 22, the description thereof is omitted.

このようなアンカー部材23を靱帯部材1の両端に取付けた人工靱帯の該アンカー部材23を、膝関節の上下の生体骨にあけた前記孔3a(4a)に挿入してインターフェアランススクリューで固定すると、高気孔率の反対側端部23eの上面と外周面、及び、高気孔率の反対側端部23eより下側の気孔率が比較的高い部分の外周面がすみやかに加水分解されて、早期に生体骨と置換しつつ前記孔3a(4a)の内面に結合するため、アンカー部材23の固定強度が早期に向上する。そして、気孔率が低いか又は0%である一端部23dは加水分解が遅く、ある程度の期間は強度を維持するが、やがては全て生体骨と置換して消失し、孔3a(4a)の大半が置換した生体骨で埋まることになる。   When the anchor member 23 of an artificial ligament in which such an anchor member 23 is attached to both ends of the ligament member 1 is inserted into the hole 3a (4a) formed in the living bone above and below the knee joint and fixed with an interference screw, The upper surface and the outer peripheral surface of the opposite end portion 23e with high porosity and the outer peripheral surface of the portion with a relatively high porosity below the opposite end portion 23e with high porosity are rapidly hydrolyzed, so that Since it is bonded to the inner surface of the hole 3a (4a) while replacing the living bone, the fixing strength of the anchor member 23 is improved early. The one end portion 23d having a low porosity or 0% is slowly hydrolyzed and maintains strength for a certain period of time, but eventually disappears by being replaced with living bone, and most of the holes 3a (4a). Will be buried with the replaced bone.

尚、上記のアンカー部材22,23はいずれも楕円柱状に形成されているが、楕円柱状に限定されるものではなく、膝関節の上下の生体骨にあけた孔3a(4a)に挿入しやすくインターフェアランススクリューにより安定良く固定される形状であれば、どのような形状としてもよいものである。   The anchor members 22 and 23 are both formed in an elliptical column shape, but are not limited to the elliptical column shape, and can be easily inserted into the holes 3a (4a) formed in the living bones above and below the knee joint. Any shape can be used as long as it is stably fixed by the interference screw.

また、上記のアンカー部材21,22,23はいずれも、生体由来の靱帯部材や腱部材、或いは、人工の腱部材などの端部に離脱しないように取付けて使用できるものである。   Further, any of the anchor members 21, 22, and 23 can be attached and used so as not to be detached from an end portion of a living body-derived ligament member, a tendon member, or an artificial tendon member.

本発明の一実施形態に係る人工靱帯の斜視図である。It is a perspective view of the artificial ligament which concerns on one Embodiment of this invention. 同人工靱帯に使用された本発明のアンカー部材の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the anchor member of this invention used for the artificial ligament. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 本発明の他の実施形態に係るアンカー部材の斜視図である。It is a perspective view of an anchor member concerning other embodiments of the present invention. 本発明の更に他の実施形態に係るアンカー部材の縦断面図である。It is a longitudinal cross-sectional view of the anchor member which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係るアンカー部材の横断面図である。It is a cross-sectional view of an anchor member according to still another embodiment of the present invention. 本発明の更に他の実施形態に係るアンカー部材の横断面図である。It is a cross-sectional view of an anchor member according to still another embodiment of the present invention. 本発明の更に他の実施形態に係るアンカー部材の横断面図である。It is a cross-sectional view of an anchor member according to still another embodiment of the present invention. 本発明の更に他の実施形態に係るアンカー部材の縦断面図である。It is a longitudinal cross-sectional view of the anchor member which concerns on other embodiment of this invention. 同アンカー部材の横断面図である。It is a cross-sectional view of the anchor member. 本発明の更に他の実施形態に係るアンカー部材の縦断面図である。It is a longitudinal cross-sectional view of the anchor member which concerns on other embodiment of this invention. 本発明に係る人工靱帯の一使用例の説明図である。It is explanatory drawing of the example of 1 use of the artificial ligament which concerns on this invention.

符号の説明Explanation of symbols

1 人工の靱帯部材
21,22,23 アンカー部材
21a,22a,23a 突出片
21b,22b,23b 小孔
21c 緻密質複合体
21d 気孔質複合体層
21e 小突起
22c,23c 気孔質複合体
22d 気孔質複合体の軸芯部
22e 気孔質複合体の外周部
23d 気孔質複合体の靱帯部材又は腱部材が取付けられる端部
23e 気孔質複合体の反対側端部
AL1 人工靱帯
DESCRIPTION OF SYMBOLS 1 Artificial ligament member 21, 22, 23 Anchor member 21a, 22a, 23a Protruding piece 21b, 22b, 23b Small hole 21c Dense complex 21d Porous complex layer 21e Small projection 22c, 23c Porous complex 22d Porous Axial core portion 22e Peripheral portion 23d of porous composite body End 23d End portion to which ligament member or tendon member of porous composite body is attached 23e Opposite end portion of porous composite body AL1 Artificial ligament

Claims (12)

靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの緻密質複合体の一部表面又は全表面に、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体層を積層一体化したものであることを特徴とするアンカー部材。   An artificial anchor member that is attached to an end of a ligament member or tendon member so as not to be detached, and is a dense composite of biodegradable and absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive. An anchor member comprising a biodegradable / absorbable polymer porous composite layer containing a bioceramic powder that is bioabsorbable and bioactive on a partial surface or the entire surface. . 気孔質複合体層の気孔率が50〜90%で、連続気孔が気孔全体の50%以上を占め、気孔質複合体層の深層部から表層部に近づくほど気孔率が大きくなるように順次傾斜的に変化していることを特徴とする請求項1に記載のアンカー部材。   The porosity of the porous composite layer is 50 to 90%, continuous pores account for 50% or more of the total pores, and the slope gradually increases so that the porosity increases from the deep layer portion to the surface layer portion of the porous composite layer The anchor member according to claim 1, wherein 気孔質複合体層のバイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体層の深層部から表層部に近づくほど高くなるように順次傾斜的に変化していることを特徴とする請求項1又は請求項2に記載のアンカー部材。   The content of the bioceramics powder in the porous composite layer is gradually changed so as to increase from the deep layer portion to the surface layer portion of the porous composite layer within the range of 30 to 80% by mass. The anchor member according to claim 1 or 2, wherein the anchor member is provided. 気孔質複合体層に、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-β)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)の少なくとも一種、及び/又は、生体由来の骨芽細胞が含浸されていることを特徴とする請求項1ないし請求項3のいずれかに記載のアンカー部材。   BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-β), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast Growth Factor), PRP, which are biological bone growth factors, are formed on the porous composite layer. The anchor member according to any one of claims 1 to 3, wherein the anchor member is impregnated with at least one kind of (platelet-rich plasma) and / or osteoblasts derived from a living body. 靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体からなり、その気孔率が0〜90%の範囲内で、該複合体の軸芯部から骨と接触する外周部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とするアンカー部材。   An artificial anchor member that is attached so as not to be detached from an end portion of a ligament member or a tendon member, and is composed of a biocomposite and bioactive bioceramic powder containing a biodegradable and absorbable polymer porous composite. The anchor is characterized in that the porosity is gradually changed so as to increase as it approaches the outer peripheral portion in contact with the bone from the axial portion of the composite in the range of 0 to 90%. Element. バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体の軸芯部から骨と接触する外周部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とする請求項5に記載のアンカー部材。   The content ratio of the bioceramics powder is gradually changed so as to increase from the axial core part of the porous composite to the outer peripheral part in contact with the bone within the range of 30 to 80% by mass. The anchor member according to claim 5. 靱帯部材又は腱部材の端部に離脱しないように取付けられる人工のアンカー部材であって、生体内吸収性且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの気孔質複合体からなり、その気孔率が0〜90%の範囲内で、該複合体の靱帯部材又は腱部材が取付けられる端部から反対側端部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とするアンカー部材。   An artificial anchor member that is attached so as not to be detached from an end portion of a ligament member or a tendon member, and is composed of a biocomposite and bioactive bioceramic powder containing a biodegradable and absorbable polymer porous composite. And within a range of 0 to 90%, the slope of the composite gradually changes so as to increase from the end to which the ligament member or tendon member is attached toward the opposite end. An anchor member characterized by the above. バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、気孔質複合体の靱帯部材又は腱部材が取付けられる端部から反対側端部に近づくほど大きくなるように順次傾斜的に変化していることを特徴とする請求項7に記載のアンカー部材。   In order to increase the content of the bioceramic powder within a range of 30 to 80% by mass from the end where the ligament member or tendon member of the porous composite is attached to the opposite end, The anchor member according to claim 7, wherein the anchor member is changed. 気孔質複合体に、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-β)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)の少なくとも一種、及び/又は、生体由来の骨芽細胞が含浸されていることを特徴とする請求項5ないし請求項8のいずれかに記載のアンカー部材。   BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-β), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast Growth Factor), PRP (BRP) are biological bone growth factors. The anchor member according to any one of claims 5 to 8, wherein the anchor member is impregnated with at least one of platelet-rich plasma) and / or osteoblasts derived from a living body. 端部に、靭帯部材又は腱部材を取付けるための多数の小孔又は小突起を形成したことを特徴とする請求項1ないし請求項9のいずれかに記載のアンカー部材。   The anchor member according to any one of claims 1 to 9, wherein a plurality of small holes or small projections for attaching a ligament member or a tendon member are formed at an end portion. 人工の靱帯部材の両端部に、請求項1ないし請求項10のいずれかに記載されたアンカー部材を離脱しないように取付けたことを特徴とする人工靱帯。   An artificial ligament, wherein the anchor member according to any one of claims 1 to 10 is attached to both ends of the artificial ligament member so as not to be detached. 人工の靱帯部材が、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体、或いは、有機繊維の組紐からなることを特徴とする請求項11に記載の人工靱帯。   The artificial ligament member is composed of an organic fiber made of a multi-axial three-dimensional multi-dimensional three-dimensional woven or knitted structure or a composite structure thereof, or an organic fiber braid. The described artificial ligament.
JP2006207816A 2006-03-10 2006-07-31 Anchor member and artificial ligament Pending JP2008029680A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006207816A JP2008029680A (en) 2006-07-31 2006-07-31 Anchor member and artificial ligament
US12/282,205 US20090157194A1 (en) 2006-03-10 2007-03-08 Implant composite material
CA002643586A CA2643586A1 (en) 2006-03-10 2007-03-08 Implant composite material
AU2007225892A AU2007225892A1 (en) 2006-03-10 2007-03-08 Composite implant material
KR1020087022123A KR20080108447A (en) 2006-03-10 2007-03-08 Composite implant material
EP07738054A EP2005975A4 (en) 2006-03-10 2007-03-08 Composite implant material
PCT/JP2007/054564 WO2007105600A1 (en) 2006-03-10 2007-03-08 Composite implant material
TW096108172A TW200803803A (en) 2006-03-10 2007-03-09 Composite implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207816A JP2008029680A (en) 2006-07-31 2006-07-31 Anchor member and artificial ligament

Publications (1)

Publication Number Publication Date
JP2008029680A true JP2008029680A (en) 2008-02-14

Family

ID=39119692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207816A Pending JP2008029680A (en) 2006-03-10 2006-07-31 Anchor member and artificial ligament

Country Status (1)

Country Link
JP (1) JP2008029680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068776A (en) * 2012-09-28 2014-04-21 Kyocera Medical Corp Prosthetic member for living body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271856A (en) * 1989-04-14 1990-11-06 Mitsubishi Materials Corp Ceramics artificial bone and production thereof
JP2000157626A (en) * 1998-11-27 2000-06-13 Takiron Co Ltd Concentration gradient material
JP2000166937A (en) * 1998-11-30 2000-06-20 Takiron Co Ltd In-vivo decomposition absorptive screw
JP2001206787A (en) * 2000-01-19 2001-07-31 Natl Inst For Research In Inorganic Materials Mext Calcium phosphate porous sintered compact and method of producing the same
WO2003045460A1 (en) * 2001-11-27 2003-06-05 Takiron Co., Ltd. Implant material and process for producing the same
JP2006006822A (en) * 2004-06-29 2006-01-12 Takiron Co Ltd Screw for bone of living body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271856A (en) * 1989-04-14 1990-11-06 Mitsubishi Materials Corp Ceramics artificial bone and production thereof
JP2000157626A (en) * 1998-11-27 2000-06-13 Takiron Co Ltd Concentration gradient material
JP2000166937A (en) * 1998-11-30 2000-06-20 Takiron Co Ltd In-vivo decomposition absorptive screw
JP2001206787A (en) * 2000-01-19 2001-07-31 Natl Inst For Research In Inorganic Materials Mext Calcium phosphate porous sintered compact and method of producing the same
WO2003045460A1 (en) * 2001-11-27 2003-06-05 Takiron Co., Ltd. Implant material and process for producing the same
JP2006006822A (en) * 2004-06-29 2006-01-12 Takiron Co Ltd Screw for bone of living body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068776A (en) * 2012-09-28 2014-04-21 Kyocera Medical Corp Prosthetic member for living body

Similar Documents

Publication Publication Date Title
US6113640A (en) Reconstructive bioabsorbable joint prosthesis
US20090157194A1 (en) Implant composite material
CA2674456C (en) Tendon or ligament bioprostheses and methods of making same
KR100903761B1 (en) Implant material and process for producing the same
CA2825242C (en) Device for tissue repair
JP2003500162A (en) Connective tissue reconstruction implant
JP2006230722A (en) Biomaterial for artificial cartilage
EP2687188A1 (en) Artificial tendon or ligament with varying stiffness along its length
JP2007236803A (en) Implant composite material
WO2009084559A1 (en) Biomaterial for artificial cartilages
JP4170744B2 (en) Biomaterial for artificial cartilage
EP1272127B1 (en) Methods for production of ligament replacement constructs
JP5242271B2 (en) Biodegradable absorbable spring
JP2008029746A (en) Interference screw for fixing tendon or ligament, and fixation set for tendon or ligament
JP2008029680A (en) Anchor member and artificial ligament
JP4327565B2 (en) Biomaterial for artificial cartilage
Durand et al. Smart features in fibrous implantable medical devices
JP2009226079A (en) Free standing implant material with fixing reliability
JP2008264562A (en) Biomaterial for artificial cartilage
JP5268140B2 (en) Implant material with reliable fixation to bone defect
Boss et al. Studies on a novel anterior cruciate ligament polyethylene fiber prosthesis: the histomorphological pattern of organization and bony anchorage of a polyethylene fiber prosthesis in the stifle of the goat
Peixoto Scaffold development for Rotator Cuff repair
CN116549174A (en) Fixation structure for centrally fixed ligament grafts
CN115315277A (en) Braided surgical implant
JP2004121301A (en) Implant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120530