JP2006230722A - Biomaterial for artificial cartilage - Google Patents

Biomaterial for artificial cartilage Download PDF

Info

Publication number
JP2006230722A
JP2006230722A JP2005050076A JP2005050076A JP2006230722A JP 2006230722 A JP2006230722 A JP 2006230722A JP 2005050076 A JP2005050076 A JP 2005050076A JP 2005050076 A JP2005050076 A JP 2005050076A JP 2006230722 A JP2006230722 A JP 2006230722A
Authority
JP
Japan
Prior art keywords
biomaterial
plate
artificial cartilage
biodegradable
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005050076A
Other languages
Japanese (ja)
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2005050076A priority Critical patent/JP2006230722A/en
Publication of JP2006230722A publication Critical patent/JP2006230722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomaterial for an artificial cartilage, which is soft, has deformation characteristics close to the ones of the cartilage of a living body, is surely connected with a living body bone with strong fixing force and does not cause fine powder due to friction. <P>SOLUTION: The biomaterial for the artificial cartilage is provided with the deformation characteristics close to the ones of the cartilage of the living body by making an organic fiber into a composite tissue of a multi-axis three dimensional woven composition or braided composition with three or more axes or complex composition as a core material 1. On one surface or both surfaces of the core material 1, plates 2 composed of a biodegradably absorbable polymer including bioactive bioceramic powder with many through-holes 2a and 2b formed in a thickness direction are laminated. By filling a biodegradable and absorbable material 5 having osteoconductivity and/or osteoinductivity to be biodegraded faster than the plates in the through-holes of the plates 2, connection with the living body bone is ensured, the fixing force is increased and the generation of fine powder is eliminated as well. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、人工椎間板や人工半月板あるいは種々の関節軟骨などとして使用が見込まれる人工軟骨用生体材料に関する。   The present invention relates to a biomaterial for artificial cartilage that is expected to be used as an artificial intervertebral disc, an artificial meniscus, or various articular cartilages.

人工軟骨用生体材料として有力視されているものの一つに、チタン合金などの上下の金属製プレートの間に、ボールベアリングの機能を目的とする超高分子量ポリエチレンの球体を設けて椎間板としての可動性をもたせたサンドイッチ構造の人工椎間板がある。この人工椎間板は上下の椎体の動きを許容するものであるが、その動的挙動は生体の椎間板と大きく異なるものである。また、内部にスプリングをもつ全金属製の人工椎間板もあるが、その動的挙動も生体の椎間板とは大きくかけ離れ、生体の椎間板を代替できるとは考え難いものである。   One of the promising biomaterials for artificial cartilage is an ultra-high-molecular-weight polyethylene sphere that serves as a ball bearing between upper and lower metal plates such as titanium alloy, making it movable as an intervertebral disc. There is an artificial intervertebral disc with a sandwich structure. This artificial intervertebral disc allows the movement of the upper and lower vertebral bodies, but its dynamic behavior is very different from that of living body intervertebral discs. There are also all-metal artificial discs with springs inside, but their dynamic behavior is also far away from the living intervertebral disc, and it is difficult to think that the intervertebral disc can be replaced.

そこで、本出願人は、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした繊維構造体よりなるコア材の両面に、連続気孔を有し且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの多孔体よりなるスペーサを積層した、自立型の人工椎間板等として使用される人工軟骨用生体材料を開発して、既に提案した(特許文献1)。   Therefore, the applicant of the present invention has continuous pores on both surfaces of a core material made of a fiber structure in which organic fibers are multiaxial three-dimensional woven or knitted structures of three or more axes or a composite structure thereof, and is bioactive. A biomaterial for artificial cartilage, which is used as a self-supporting artificial intervertebral disc, in which spacers made of a porous body of biodegradable absorbable polymer containing bioceramics powder are laminated, has already been proposed (Patent Document 1). ).

かかる人工軟骨用生体材料を人工椎間板として上下の椎体の間に挿入すると、繊維構造体よりなるコア材が生体の椎間板と同程度の機械的柔軟性(可動性)を備えるため、その変形特性が極めてバイオミメティックであり、しかも、積層されたスペーサが上下の椎体と直接結合し、経時的に骨組織と置換してコア材表面と上下の椎体を固定するので、生体の椎間板の機能を有効に代替し得るものである。   When such a biomaterial for artificial cartilage is inserted between the upper and lower vertebral bodies as an artificial intervertebral disc, the core material made of a fiber structure has the same mechanical flexibility (movability) as the intervertebral intervertebral disc. Is very biomimetic, and the laminated spacers directly connect with the upper and lower vertebral bodies, and replace the bone tissue over time to fix the core material surface and the upper and lower vertebral bodies, so the function of the intervertebral disc in the living body Can be effectively substituted.

けれども、上記の人工軟骨用生体材料は、スペーサが旺盛な骨伝導性ないし骨誘導性をもつため椎体との結合に極めて効果的であるものの、スペーサへの骨組織の侵入、成長と併行して荷重により圧縮され、変形するという危惧を有するため、スペーサの骨組織による置換及び椎体と人工軟骨用生体材料との結合が不完全になって上下の椎体との結合固定力が弱くなる心配があった。また、多孔体よりなるスペーサは脆弱であるため、スペーサの周縁部分が摩耗して細粉が発生する心配もあった。
特開2003−230583号公報
However, although the biomaterial for artificial cartilage described above is extremely effective for the connection with the vertebral body because the spacer has a strong osteoconductivity or osteoinductivity, it is accompanied by the penetration and growth of the bone tissue into the spacer. Therefore, the replacement of the spacer with bone tissue and the incomplete connection between the vertebral body and the biomaterial for artificial cartilage will weaken the bonding and fixing force between the upper and lower vertebral bodies. I was worried. Moreover, since the spacer which consists of porous bodies is weak, there also existed a possibility that the peripheral part of a spacer might wear and fine powder might generate | occur | produce.
Japanese Patent Laid-Open No. 2003-230583

本発明は上記事情に鑑みてなされたものであって、有機繊維の組織構造体をコア材とした柔軟で生体の軟骨に近い変形特性を備え、生体骨との結合が確実で固定力が大きく、摩耗による細粉の発生もない人工軟骨用生体材料を提供することを解決課題としている。   The present invention has been made in view of the above circumstances, and has a flexible deformation property similar to that of living body cartilage using a tissue structure of organic fibers as a core material, and is firmly connected to living bones and has a large fixing force. An object of the present invention is to provide a biomaterial for artificial cartilage that does not generate fine powder due to wear.

上記課題を解決するため、本発明に係る人工軟骨用生体材料は、有機繊維を3軸以上の多軸三次元織組織もくしは編組織又はこれらの複合組織とした組織構造体よりなるコア材の片面又は両面に、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーからなるプレートであって厚み方向に多数の貫通孔を形成したプレートを積層すると共に、このプレートの全ての貫通孔又は一部の貫通孔に、骨伝導性及び/又は骨誘導性を有し且つ生体内での分解が上記プレートよりも速い生体内分解吸収性材料を充填したことを特徴とするものである。   In order to solve the above-mentioned problems, the biomaterial for artificial cartilage according to the present invention is a core material composed of a tissue structure in which organic fibers are multiaxial three-dimensional or three-dimensional woven tissue or knitted tissue or a composite structure thereof. A plate made of biodegradable and absorbent polymer containing bioactive bioceramic powder and laminated with a plate with many through holes in the thickness direction is laminated on one or both sides of A hole or a part of the through hole is filled with a biodegradable and absorbable material having osteoconductivity and / or osteoinductivity and faster in vivo degradation than the plate. .

本発明の人工軟骨用生体材料においては、プレートの表面又は表裏両面に、骨伝導性及び/又は骨誘導性を有し且つ生体内での分解が上記プレートよりも速い生体内分解吸収性材料からなる被覆層を積層することが好ましい。生体内分解吸収性材料としては、内部に連続気孔を有する生体内分解吸収性ポリマーの多孔体であって、骨伝導能を持つバイオセラミックス粉体、及び/又は、骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子のいずれか少なくとも一つを含んだものや、或いは、コラーゲンに骨伝導能を持つバイオセラミックス粉体、及び/又は、骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子のいずれか少なくとも一つを含んだものが好適である。   In the biomaterial for artificial cartilage of the present invention, a biodegradable and absorbable material having osteoconductivity and / or osteoinductivity and faster in vivo degradation than the plate is formed on the surface or both surfaces of the plate. It is preferable to laminate | stack the coating layer which becomes. Biodegradable / absorbable materials include biodegradable / absorbable polymer porous bodies having continuous pores therein, bioceramics powder having osteoconductivity, and / or cytokines having osteoinductivity, bone A drug containing at least one of an inductive agent, an osteoinductive factor, a bioceramic powder having osteoconductivity in collagen, and / or a cytokine having osteoinductive ability, an osteoinductive ability Those containing at least one of a drug possessed and an osteoinductive factor are preferred.

本発明の人工軟骨用生体材料を例えば人工椎間板として頸椎あるいは脊椎(特に腰椎)の椎体間に挿入すると、有機繊維を3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体よりなるコア材が軟骨の椎間板と同程度の機械的強度及び柔軟性を備え、その変形が極めてバイオミメティックであるため、椎間板としての役目を十分に果たす。そして、コア材に積層されたプレートの貫通孔に充填されている生体内分解吸収性材料は、体液との接触によってプレートよりも速く分解し、その旺盛な骨伝導性及び/又は骨誘導性によりすみやかに骨組織が伝導形成及び/又は誘導形成され、早期に骨組織と置換して椎体と直接結合する。一方、プレートは、貫通孔内の生体内分解吸収性材料よりも強度が遥かに大きく、しかも、分解吸収の速さが骨組織の成長の速さと実質的に均衡して貫通孔内の生体内分解吸収性材料よりも遅れて分解が進行するため、椎体とコア材との界面に存在して貫通孔内の生体内分解吸収性材料が骨組織とある程度置換されるまでの期間、十分な強度を維持する。このため、上下の椎体の大きい挟圧力の下で人工軟骨用生体材料のコア材がバイオミメティックな変形を繰り返しても、プレートから細粉が発生したり、貫通孔内の生体内分解吸収性材料から細粉が発生することはない。そして、その後のプレートの分解吸収に伴ってプレートが徐々に破壊するのと同時並行的に骨組織が成長してプレートと骨組織との結合が進行し、最終的にプレートが骨組織と完全に置換してコア材と椎体が直接結合するため、十分な椎体との結合固定力が得られる。   When the biomaterial for artificial cartilage of the present invention is inserted between the vertebral bodies of the cervical vertebra or the spine (particularly the lumbar vertebra) as an artificial intervertebral disc, for example, organic fibers are combined with a multiaxial three-dimensional woven tissue or knitted tissue or a composite tissue thereof. Since the core material made of the tissue structure has the same mechanical strength and flexibility as the intervertebral disc of cartilage, and its deformation is extremely biomimetic, it sufficiently serves as an intervertebral disc. And the biodegradable and absorbable material filled in the through-hole of the plate laminated on the core material decomposes faster than the plate by contact with body fluid, and due to its vigorous osteoconductivity and / or osteoinductivity Immediately, the bone tissue is formed by conduction and / or induction, and replaces the bone tissue at an early stage to directly connect with the vertebral body. On the other hand, the plate is much stronger than the biodegradable and absorbable material in the through hole, and the rate of decomposition and absorption is substantially balanced with the speed of bone tissue growth, so Decomposition progresses later than the degradable and absorbable material, so there is enough time for the biodegradable and absorbable material in the through hole to be replaced with bone tissue to some extent by being present at the interface between the vertebral body and the core material. Maintain strength. For this reason, even if the core material of the artificial cartilage biomaterial repeatedly undergoes biomimetic deformation under a large clamping force between the upper and lower vertebral bodies, fine powder is generated from the plate, and the biodegradable absorbability in the through hole Fine powder is not generated from the material. Then, the bone tissue grows in parallel with the gradual destruction of the plate with the subsequent decomposition and absorption of the plate, and the connection between the plate and the bone tissue proceeds. Finally, the plate is completely separated from the bone tissue. Since the core material and the vertebral body are directly coupled by the replacement, a sufficient fixing force for coupling with the vertebral body is obtained.

また、プレートの表面又は表裏両面に、骨伝導性及び/又は骨誘導性を有し且つ生体内での分解がプレートよりも速い生体内分解吸収性材料からなる被覆層を積層した人工軟骨用生体材料は、これを例えば人工椎間板として上下の椎体間に挿入すると、早期に骨組織がプレート表面にほぼ均等に形成される利点があり、特に、被覆層が上述の生体内分解吸収性ポリマーの多孔体に骨伝導能を持つバイオセラミックス粉体、及び/又は、骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子のいずれか少なくとも一つを含有させたものである場合は、この被覆層がクッション材の役目を果たして圧縮変形により椎体と密着し、骨芽細胞の多孔体内部への侵入が容易になるため、骨組織の伝導形成及び/又は誘導形成が一層速やかになって、短期間の内に骨組織がプレート表面に形成されるようになる。   Further, a living body for artificial cartilage in which a coating layer made of a biodegradable and absorbable material having osteoconductivity and / or osteoinductivity and faster in vivo degradation than the plate is laminated on the surface or both sides of the plate. When the material is inserted between the upper and lower vertebral bodies, for example, as an artificial intervertebral disc, there is an advantage that bone tissue is formed almost uniformly on the surface of the plate at an early stage. In particular, the covering layer is made of the biodegradable absorbable polymer described above. In the case where the porous material contains at least one of bioceramics powder having osteoconductivity and / or cytokine having osteoinductive ability, drug having osteoinductive ability, and osteoinductive factor, This coating layer acts as a cushioning material and is in close contact with the vertebral body by compressive deformation, facilitating the penetration of osteoblasts into the porous body, so that the conduction formation and / or induction formation of the bone tissue is further accelerated. Te, so that the bone tissue is formed on the plate surface within a short period of time.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態に係る人工軟骨用生体材料の斜視図、図2は図1のA−A線断面図、図3は同人工軟骨用生体材料の一使用例の説明図、図4は同人工軟骨用生体材料のプレートの断面図である。   1 is a perspective view of a biomaterial for artificial cartilage according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is an explanatory view of an example of use of the biomaterial for artificial cartilage. FIG. 4 is a cross-sectional view of the artificial cartilage biomaterial plate.

この人工軟骨用生体材料11は、前半が長方形に形成され、後半が半円形に形成された、略前方後円形の平面形状を有するブロック状の生体材料であり、図3に示すように、全置換型の人工椎間板として脊椎(特に腰椎)や頸椎の上下の椎体20,20間に前方(図3では左方)から挿入して使用されるものである。この人工軟骨用生体材料11の大きさは、頸椎用の人工椎間板として使用する場合と、腰椎用の人工椎間板として使用する場合とで異なり、また、成人用の場合と子供用の場合でも異なるが、例えば、成人の頸椎用の人工椎間板として使用する場合の標準的な大きさは、横幅寸法が18mm程度、前後寸法が15mm程度、厚み寸法が7mm程度であり、成人の腰椎用の人工椎間板として使用する場合の標準的な大きさは、横幅寸法が40mm程度、前後寸法が30mm程度、厚み寸法が15mm程度である。   The artificial cartilage biomaterial 11 is a block-shaped biomaterial having a substantially front-rear circular planar shape in which the first half is formed in a rectangular shape and the second half is formed in a semicircular shape. As shown in FIG. The replacement type intervertebral disc is used by being inserted from the front (left side in FIG. 3) between the upper and lower vertebral bodies 20 and 20 of the spine (particularly the lumbar vertebra) and the cervical vertebra. The size of the biomaterial 11 for artificial cartilage differs depending on whether it is used as an artificial disc for cervical vertebrae or an artificial disc for lumbar vertebrae, and is different for adults and children. For example, the standard size when used as an artificial vertebral disc for adult cervical vertebrae has a width dimension of about 18 mm, a front-rear dimension of about 15 mm, and a thickness dimension of about 7 mm. When used, the standard size is about 40 mm in width, about 30 mm in front and back, and about 15 mm in thickness.

この人工軟骨用生体材料11は、図1、図2に示すように、コア材1の上下両面に、大小の貫通孔2a,2bを形成したプレート2,2が積層されており、各貫通孔2a,2bに生体内分解吸収性材料5が充填されている。そして、貫通孔2a,2bを利用して3本の生体内分解吸収性のピン3がコア材1とプレート2に貫通されており、各ピン3の尖った両端がプレート2,2の表面から少し突出している。   As shown in FIGS. 1 and 2, the biomaterial 11 for artificial cartilage is formed by laminating plates 2 and 2 having large and small through holes 2 a and 2 b on both upper and lower surfaces of a core material 1. 2a and 2b are filled with the biodegradable absorbent material 5. And three biodegradable and absorbable pins 3 are penetrated by the core material 1 and the plate 2 using the through holes 2a and 2b, and the sharp ends of each pin 3 are from the surface of the plates 2 and 2. It protrudes a little.

上記のコア材1は、有機繊維を三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体よりなるものであって、生体の椎間板などの軟骨と同程度の機械的強度と柔軟性を有し、変形が極めてバイオミメティック(生体模倣的)なコア材である。このコア材1の組織構造体は、本出願人が既に出願した特願平6−254515号(特開平7−148243号)に記載された組織構造体と同様のものであって、その幾何学的形状を次元数で表し、繊維配列の方位数を軸数で表すと、3軸以上の多軸−三次元組織よりなる構造体が好ましく採用される。   The core material 1 is composed of a tissue structure in which an organic fiber is a three-dimensional woven or knitted structure or a composite structure thereof, and has mechanical strength and flexibility similar to those of cartilage such as a living intervertebral disc. And is a core material that is extremely biomimetic (biomimetic) in deformation. The tissue structure of the core material 1 is the same as the tissue structure described in Japanese Patent Application No. 6-254515 (Japanese Patent Laid-Open No. 7-148243) already filed by the present applicant, and its geometrical structure. When the target shape is represented by the number of dimensions and the number of orientations of the fiber array is represented by the number of axes, a structure composed of a multi-axis-three-dimensional structure having three or more axes is preferably employed.

3軸−三次元組織は、縦、横、垂直の3軸の方向の繊維を立体的に組織したもので、その構造体の代表的な形状は、上記コア材1のような厚みのあるバルク状(板状ないしブロック状)であるが、円筒状やハニカム状とすることも可能である。この3軸−三次元組織は、組織の違いによって、直交組織、非直交組織、絡み組織、円筒組織などに分類される。また、4軸以上の多軸−三次元組織の構造体は、4,5,6,7,9,11軸等の多軸方位を配列することによって、構造体の強度的な等方性を向上させることができるものである。そして、これらの選択により、より生体の軟骨組織に酷似した、よりバイオミメティックなコア材1を得ることができる。   The three-axis-three-dimensional structure is a three-dimensional structure of fibers in three vertical, horizontal, and vertical directions. A typical shape of the structure is a thick bulk like the core material 1 described above. The shape (plate shape or block shape) may be a cylindrical shape or a honeycomb shape. This three-axis-three-dimensional structure is classified into an orthogonal structure, a non-orthogonal structure, an entangled structure, a cylindrical structure, and the like depending on the structure. In addition, a multi-axis-three-dimensional structure having four or more axes has a strength isotropy of the structure by arranging multi-axis orientations such as 4, 5, 6, 7, 9, and 11 axes. It can be improved. And by these selections, the more biomimetic core material 1 more closely resembling a living cartilage tissue can be obtained.

上記の組織構造体よりなるコア材1の内部空隙率は、20〜90%の範囲にあることが好ましく、20%を下回る場合は、コア材1が緻密になって柔軟性や変形性が損なわれるため、人工軟骨用生体材料のコア材としては不満足なものとなる。また90%を上回る場合は、コア材1の圧縮強度や保形性が低下するので、やはり人工軟骨用生体材料のコア材として不適当である。   The internal porosity of the core material 1 made of the above-described structural structure is preferably in the range of 20 to 90%, and when it is less than 20%, the core material 1 becomes dense and the flexibility and deformability are impaired. Therefore, the core material of the biomaterial for artificial cartilage is unsatisfactory. On the other hand, if it exceeds 90%, the compressive strength and shape retention of the core material 1 are lowered, so that it is also unsuitable as a core material for biomaterials for artificial cartilage.

コア材1を構成する有機繊維としては、生体不活性な合成樹脂繊維、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどの繊維や、有機の芯繊維を上記の生体不活性な樹脂で被覆して生体不活性とした被覆繊維などが好ましく使用される。特に、超高分子量ポリエチレンの芯繊維を直鎖状の低密度ポリエチレンの被膜で被覆した直径が0.2〜0.5mm程度の被覆繊維は、強度、硬さ、弾力性、織編のしやすさ等の点で最適な繊維である。また、これとは別に生体活性(例えば骨伝導能又は骨誘導能をもつ)のある繊維を選ぶこともできる。   The organic fiber constituting the core material 1 is a bioinert synthetic resin fiber, for example, a fiber such as polyethylene, polypropylene, polytetrafluoroethylene, or an organic core fiber covered with the above bioinert resin. For example, coated fibers that are bioinactive are preferably used. In particular, a coated fiber having a diameter of about 0.2 to 0.5 mm obtained by coating a core fiber of ultrahigh molecular weight polyethylene with a linear low density polyethylene film has strength, hardness, elasticity, and ease of knitting. It is the most suitable fiber in terms of size. In addition to this, a fiber having bioactivity (for example, having a bone conduction ability or an osteoinductive ability) can be selected.

なお、コア材1を構成する組織構造体については、前記の特願平6−254515号(特開平7−148243号)に詳細に開示されているので、これ以上の説明は省略する。   The structure of the core material 1 is disclosed in detail in the aforementioned Japanese Patent Application No. 6-254515 (Japanese Patent Application Laid-Open No. 7-148243), and will not be described further.

コア材1の上下両面に積層されるプレート2,2は、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーからなる無孔質のプレートに大小の貫通孔2a,2bを多数穿孔したものであって、上記ポリマーを溶融成形して得られるプレートに貫通孔を穿孔したものや、溶融成形物を更に冷間(上記ポリマーのガラス転移温度以上、溶融温度未満の温度域)で鍛造して得られるプレートに貫通孔を穿孔したものが使用される。   The plates 2 and 2 laminated on the upper and lower surfaces of the core material 1 are perforated with large and small through holes 2a and 2b in a nonporous plate made of a biodegradable absorbent polymer containing bioactive bioceramic powder. In this case, a plate obtained by melt molding the above-mentioned polymer and through-holes are drilled, or a melt-molded product is further forged in the cold (temperature range above the glass transition temperature of the polymer and below the melting temperature). A plate obtained by drilling through holes is used.

後者の鍛造したプレートは、溶融成形物を一回鍛造したものでもよいし、複数回鍛造したものでもよいが、特に、一回鍛造したものを更に機械方向を変えてもう一回鍛造したプレートは、ポリマーの分子鎖もしくは結晶が軸方向のランダムに異なる多数の基準軸に沿って配向した構造、又は、これらのランダムに異なる多数の基準軸をもったクラスターが多数集合した構造、又は、分子鎖、結晶、クラスターが三次元方向に配向した構造となるため、外力を受けて変形を繰り返しても機械的劣化や破壊を生じにくいという長所がある。従って、このような二回鍛造のプレート2に貫通孔2a,2bを穿孔したものをコア材1の両面に積層した人工軟骨用生体材料11は、これを人工椎間板として椎体20,20間に挿入すると、上下の椎体20,20の挟圧力によってプレート2がコア材1と共に変形を繰り返しても、プレート2の大半が分解吸収されるまで機械的劣化や破壊等を生ずることはない。また、一回鍛造のプレートに貫通孔を穿孔したものでも圧縮されて緻密になり、ポリマーの分子鎖や結晶が一つの基準軸又は基準面に向かって斜めに配向した構造、或いは、上記のように多軸配向した構造となるため、溶融成形しただけのプレートに比べると機械的強度が向上して破壊し難くなる。   The latter forged plate may be a forged one-time or a plurality of times of forging, but in particular, a plate that has been forged once again with the machine direction changed once more. A structure in which molecular chains or crystals of a polymer are oriented along a number of randomly different reference axes in the axial direction, or a structure in which a large number of clusters having a number of these randomly different reference axes are assembled, or a molecular chain Since crystals and clusters have a structure oriented in a three-dimensional direction, there is an advantage that mechanical deterioration and destruction are hardly caused even when deformation is repeated by receiving external force. Therefore, the biomaterial 11 for artificial cartilage in which the through-holes 2a and 2b are drilled in such a forged plate 2 and laminated on both surfaces of the core material 1 is used as an artificial intervertebral disc between the vertebral bodies 20 and 20. When inserted, even if the plate 2 is repeatedly deformed together with the core material 1 due to the clamping force between the upper and lower vertebral bodies 20, 20, no mechanical deterioration or destruction occurs until most of the plate 2 is decomposed and absorbed. Also, even if a through-hole is drilled in a once forged plate, it is compressed and becomes dense, and the polymer molecular chains and crystals are oriented obliquely toward one reference axis or reference plane, or as described above Therefore, the mechanical strength is improved and it is difficult to break as compared with a plate formed only by melt molding.

プレート2の原料となる生体内分解吸収性ポリマーとしては、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−D,L−乳酸などのポリ乳酸や、或いは、L−ラクチド、D−ラクチド、DL−ラクチドのいずれかと、グリコリドによる共重合体、カプロラクトンによる共重合体、ジオキサノンによる共重合体、エチレンオキシドによる共重合体、プロピレンオキシドによる共重合体などが好適であり、これらは単独で若しくは複数混合して使用される。これらのポリマーのうちポリ乳酸は、骨組織の成長と均衡するプレート2の分解吸収の速さや期間(1年余り)、椎体の挟圧力等に耐え得る機械的強度などを考慮すると、5万〜50万程度の粘度平均分子量を有するものが好ましい。   Examples of the biodegradable absorbable polymer used as a raw material for the plate 2 include polylactic acid such as poly-L-lactic acid, poly-D-lactic acid, poly-D, and L-lactic acid, or L-lactide, D-lactide, Any one of DL-lactide, a copolymer by glycolide, a copolymer by caprolactone, a copolymer by dioxanone, a copolymer by ethylene oxide, a copolymer by propylene oxide, etc. are suitable, and these may be used alone or in combination. Used. Among these polymers, polylactic acid is 50,000 in view of the speed and period of decomposition and absorption of the plate 2 in balance with the growth of bone tissue, the mechanical strength that can withstand the clamping force of the vertebral body, etc. Those having a viscosity average molecular weight of about ˜500,000 are preferable.

上記の生体内分解吸収性ポリマーからなるプレート2に含有させるバイオセラミックス粉体としては、生体活性があり、良好な骨伝導能と良好な生体親和性を有する、未仮焼、未焼成のハイドロキシアパタイト、ジカルシウムホスフェート、トリカルシウムホスフェート、テトラカルシウムホスフェート、オクタカルシウムホスフェート、カルサイト、セラバイタル、ジオプサイト、天然珊瑚等の粉体が使用される。そして、これらの粉体表面にアルカリ性の無機化合物や塩基性の有機物を付着させたものも使用可能である。これらのなかでも、生体内で全吸収され骨組織と完全に置換される生体内全吸収性のバイオセラミックス粉体が好ましく、特に、未仮焼、未焼成のハイドロキシアパタイト、トリカルシウムホスフェート、オクタカルシウムホスフェートは、活性が極めて大きく、骨伝導能に優れ、為害性が低く、短期間で生体に吸収されるので最適である。これらのバイオセラミックス粉体は、10μm以下の平均粒径を有するもの、好ましくは0.2〜5μm程度の粒径を有するものが使用される。   The bioceramic powder to be contained in the above-mentioned biodegradable and absorbable polymer plate 2 is bioactive, has good bone conductivity and good biocompatibility, and has not been calcined or calcined hydroxyapatite. , Powders such as dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, diopsite, and smallpox are used. And what adhered the alkaline inorganic compound and the basic organic substance to the surface of these powders can also be used. Among these, bioresorbable bioceramic powders that are totally resorbed in vivo and completely replaced with bone tissue are preferable. In particular, uncalcined and unfired hydroxyapatite, tricalcium phosphate, octacalcium Phosphate is optimal because it has extremely high activity, excellent osteoconductivity, low toxicity, and is absorbed by the living body in a short period of time. As these bioceramic powders, those having an average particle size of 10 μm or less, preferably those having a particle size of about 0.2 to 5 μm are used.

バイオセラミックス粉体の含有量は25〜60質量%とすることが好ましく、60質量%を越えると、プレート2が脆弱化するため椎体の挟圧力によって破壊しやすくなり、25重量%を下回ると、骨組織の伝導形成が遅くなるためプレート2が骨組織と置換するのに長期間を要するといった不都合が生じる。バイオセラミックスの更に好ましい含有量は30〜50重量%である。   The content of the bioceramic powder is preferably 25 to 60% by mass, and if it exceeds 60% by mass, the plate 2 becomes brittle and is easily broken by the clamping pressure of the vertebral body. In addition, since the conduction formation of the bone tissue is delayed, there is a disadvantage that it takes a long time for the plate 2 to replace the bone tissue. A more preferable content of bioceramics is 30 to 50% by weight.

このプレート2には、上記のバイオセラミックス粉体の他に、骨誘導能をもつ各種のサイトカインや骨誘導能をもつ薬剤を適量含有させてもよく、その場合はプレート2の分解吸収に伴う骨組織の成長,置換が著しく促進されてコア材1と椎体20が早期に直接結合する利点がある。また、骨誘導因子(Bone Morphogenetic Protein)をプレート2に含有させてもよく、その場合は骨誘導が発現されるので結合一体化に一層効果的である。尚、必要とあらば、種々の薬効を有する薬剤(治療薬等)をプレート2に含有させてもよい。更に、プレート2の両面にコロナ放電、プラズマ処理、過酸化水素処理などの酸化処理を施してもよく、その場合は表面に露出するバイオセラミックス粉体の濡れ特性が改善され、増殖させるべき骨細胞の侵入、成長が効果的になる。   In addition to the bioceramic powder described above, this plate 2 may contain appropriate amounts of various cytokines having osteoinductive ability and drugs having osteoinductive ability. There is an advantage that the core material 1 and the vertebral body 20 are directly coupled to each other at an early stage because the growth and replacement of the tissue is remarkably promoted. In addition, an osteoinductive factor (Bone Morphogenetic Protein) may be included in the plate 2, and in that case, osteoinduction is expressed, which is more effective for binding integration. If necessary, drugs having various medicinal effects (such as therapeutic drugs) may be included in the plate 2. Furthermore, both surfaces of the plate 2 may be subjected to oxidation treatment such as corona discharge, plasma treatment, hydrogen peroxide treatment, etc. In this case, the wet characteristics of the bioceramic powder exposed on the surface are improved and bone cells to be proliferated Invasion and growth become effective.

上記のバイオセラミックス粉体、サイトカイン、薬剤、骨誘導因子等は、コア材1の表面に吹き付けてもよく、その場合はコア材1の表面が生体活性化され、伝導形成された骨組織がこの活性化された表面に結合するため、椎体20とコア材1との直接結合が短期間に行われて強度が保たれる利点がある。   The above-mentioned bioceramic powder, cytokine, drug, osteoinductive factor, etc. may be sprayed on the surface of the core material 1, in which case the surface of the core material 1 is bioactivated and the bone tissue formed by conduction is this Since it is bonded to the activated surface, there is an advantage that the vertebral body 20 and the core material 1 are directly bonded in a short time and the strength is maintained.

上記のプレート2は、その開口率が15〜60%となるように、大小の貫通孔2a,2bをほぼ均等に分散させて多数穿孔することが好ましく、このように開口率を15〜60%にした孔開きのプレート2は、上下の椎体20,20の挟圧力に耐え得る強度を備え、しかも、プレート全体の分解吸収の速さが適度で骨組織の成長の速さと均衡し、完全に骨組織で置換されて椎体20と強固に結合できる利点を有する。開口率が60%より高くなると、プレート2の強度が低下するといった不都合を生じ、また、開口率が15%より低くなると、プレート2の分解吸収に要する期間が長くなり、孔開きのプレートのわりには骨組織との置換が遅くなる傾向が見られるので好ましくない。   The plate 2 is preferably perforated with a large number of large and small through-holes 2a and 2b so as to have an aperture ratio of 15 to 60%. Thus, the aperture ratio is 15 to 60%. The perforated plate 2 is strong enough to withstand the clamping force of the upper and lower vertebral bodies 20 and 20, and the entire plate has a moderate rate of decomposition and resorption and is balanced with the bone tissue growth rate. It has the advantage that it can be firmly connected to the vertebral body 20 by being replaced with bone tissue. When the aperture ratio is higher than 60%, the strength of the plate 2 is reduced, and when the aperture ratio is lower than 15%, the period required for the decomposition and absorption of the plate 2 becomes longer. Is not preferable because replacement with bone tissue tends to be delayed.

大小の貫通孔2a,2bの直径は特に限定されないが、0.5〜5mmの範囲内で大きい貫通孔2aと小さい貫通孔2bの直径をそれぞれ設定することが好ましい。大きい貫通孔2aの直径が5mmを越えると、成長する骨組織によって貫通孔2aが完全に埋まりにくくなり、コア材1の表面全体に骨組織を成長、形成させることが困難になる恐れがあるので好ましくない。   The diameters of the large and small through holes 2a and 2b are not particularly limited, but it is preferable to set the diameters of the large and small through holes 2a and 2b within a range of 0.5 to 5 mm. If the diameter of the large through-hole 2a exceeds 5 mm, the through-hole 2a is not completely buried by the growing bone tissue, and it may be difficult to grow and form the bone tissue on the entire surface of the core material 1. It is not preferable.

なお、このプレート2には、大小の貫通孔に区別しないで直径が同じ貫通孔を分散させて穿孔してもよい。また、貫通孔2a,2bの形状は、この実施形態のような真円形に限定されるものではなく、楕円形、長円形、四角形その他の多角形、不定形など、任意の孔形状とすることができる。従って、例えば四角形の大きさが同じ貫通孔を縦横に配列形成して、プレート2をネット状に構成することもできる。   The plate 2 may be perforated by dispersing through holes having the same diameter without distinguishing between large and small through holes. Further, the shape of the through holes 2a and 2b is not limited to a true circle as in this embodiment, but may be any hole shape such as an ellipse, an oval, a rectangle, other polygons, and an indefinite shape. Can do. Therefore, for example, the plate 2 can be configured in a net shape by arranging through-holes having the same square size vertically and horizontally.

プレート2の厚さは0.3〜1.2mmの範囲内とするのが適当であり、特に1mm程度とすることが好ましい。このように厚みを限定したプレート2は、上下の椎体20,20の挟圧力に耐え得る強度を有し、骨組織の成長と均衡した速さで1年余りで分解吸収されて骨組織と完全に置換し、強固に椎体20と結合できる利点がある。プレート2の厚みが0.3mmより薄くなると、強度が不足してプレート2が椎体20,20の挟圧力で破壊する恐れが生じ、1.2mmより厚くなると、プレート2の分解吸収に要する期間が長くなって骨組織との置換が遅れるといった不都合を生じる。   The thickness of the plate 2 is suitably in the range of 0.3 to 1.2 mm, particularly preferably about 1 mm. Thus, the plate 2 having a limited thickness has a strength capable of withstanding the clamping pressure between the upper and lower vertebral bodies 20, 20, and is decomposed and absorbed in about one year at a speed balanced with the growth of the bone tissue. There is an advantage that it can be completely replaced and firmly connected to the vertebral body 20. If the thickness of the plate 2 is less than 0.3 mm, the strength is insufficient and the plate 2 may be broken by the clamping force of the vertebral bodies 20 and 20. If the thickness is greater than 1.2 mm, the period required for the decomposition and absorption of the plate 2. As a result, the inconvenience occurs that the replacement with the bone tissue is delayed.

上記プレート2の貫通孔2a,2bに充填される生体内分解吸収性材料5は、骨伝導性及び/又は骨誘導性を有して生体活性が優れ、且つ、生体内での分解がプレート2よりも速い材料である。この生体内分解吸収性材料5は、全ての貫通孔2a,2bに充填する必要が必ずしもなく、例えば大きい貫通孔2aのみに充填するといったように、一部の貫通孔にのみ充填してもよい。   The biodegradable / absorbable material 5 filled in the through holes 2a and 2b of the plate 2 has osteoconductivity and / or osteoinductivity, is excellent in bioactivity, and is decomposed in vivo in the plate 2. Faster material. The biodegradable and absorbable material 5 does not necessarily need to be filled in all the through holes 2a and 2b, and may be filled in only some of the through holes, for example, only in the large through holes 2a. .

生体内分解吸収性材料5としては、内部に連続気孔を有する生体内分解吸収性ポリマーの多孔体であって、骨伝導能を持つ前記のバイオセラミックス粉体、及び/又は、骨誘導能を持つ各種サイトカイン、骨誘導能を持つ薬剤、骨誘導因子(BMF)のいずれか少なくとも一つを含有させたものが好ましく使用される。また、コラーゲンに生体活性なバイオセラミックス粉体、及び/又は、骨誘導能を持つ各種サイトカイン、骨誘導能を持つ薬剤、骨誘導因子(BMF)のいずれか少なくとも一つを含有させた多孔体又は無孔体も好ましく使用される。そして、生体内分解吸収性ポリマーにプレート2よりもバイオセラミックス粉体を多く含有させた無孔体も使用される。これらの多孔体又は無孔体におけるバイオセラミックス粉体の含有量は、60〜90質量%とするのが好ましい。骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子の含有量は適量でよい。尚、必要とあらば、種々の薬効を有する薬剤(治療薬等)を上記の多孔体やコラーゲンに含有させてもよい。   The biodegradable / absorbable material 5 is a biodegradable / absorbable polymer porous body having continuous pores therein, and has the above-described bioceramic powder having osteoconductivity and / or osteoinductivity. Those containing at least one of various cytokines, drugs having osteoinductive ability, and osteoinductive factor (BMF) are preferably used. In addition, a porous body containing at least one of bioactive bioceramics powder in collagen and / or various cytokines having osteoinductive ability, drugs having osteoinductive ability, and osteoinductive factor (BMF) Nonporous materials are also preferably used. And the nonporous body which made biobiodegradable polymer contain more bioceramics powder than the plate 2 is also used. The content of the bioceramic powder in these porous or nonporous materials is preferably 60 to 90% by mass. The content of cytokine having osteoinductive ability, drug having osteoinductive ability, and osteoinductive factor may be appropriate. If necessary, the porous body or collagen may contain drugs having various medicinal effects (such as therapeutic drugs).

生体内分解吸収性材料5の多孔体は大きい強度が要求されず、プレート2よりも速く分解して、伝導形成及び/又は誘導形成される骨組織とすみやかに置換することが必要なものであるから、その原料となる生体内分解吸収性ポリマーとしては、安全で、分解が比較的速く、あまり脆くない、非晶質あるいは結晶と非晶の混在したポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とカプロラクトンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とパラ−ジオキサノンの共重合体などが適しており、これらは単独であるいは2種以上混合して使用される。これらのポリマーは、多孔体の形成のし易さや、生体内での分解吸収の期間などを考慮すると、5万〜100万程度の粘度平均分子量を有するものが好ましく使用される。   The porous body of the biodegradable / absorbable material 5 is not required to have a high strength, and needs to be quickly decomposed and replaced with bone tissue that is conductively formed and / or induced and formed faster than the plate 2. Therefore, the biodegradable and absorbable polymer used as a raw material thereof is safe, relatively quick to decompose, not very brittle, amorphous or a mixture of crystalline and amorphous poly-D, L-lactic acid, L-lactic acid. And D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and caprolactone copolymer, lactic acid and ethylene glycol copolymer, lactic acid and para-dioxanone copolymer, etc. are suitable. These may be used alone or in combination of two or more. Among these polymers, those having a viscosity average molecular weight of about 50,000 to 1,000,000 are preferably used in consideration of the ease of forming a porous body and the period of decomposition and absorption in vivo.

上記ポリマーからなる多孔体は、物理的な強度、骨芽細胞の浸入及び安定化などを考慮すると、その気孔率が50〜90%で、連続気孔が気孔全体の50〜90%を占め、連続気孔の孔径が略100〜略400μmであることが望ましい。気孔率が90%を上回り、孔径が400μmより多くなると、多孔体の物理的な強度が低下して脆くなる。一方、気孔率が50%を下回ると共に、連続気孔が気孔全体の50%を下回り、孔径が100μmより小さくなると、体液や骨芽細胞の浸入が困難となり、多孔体の加水分解や骨組織の成長が遅くなって、多孔体が骨組織と置換するのに要する時間が長くなる。より好ましい多孔体は、気孔率が60〜80%で、連続気孔が気孔全体の70〜90%を占め、連続気孔の孔径が略150〜略350μmのものである。   In consideration of physical strength, osteoblast invasion and stabilization, the porous body made of the above polymer has a porosity of 50 to 90%, and continuous pores account for 50 to 90% of the total pores. The pore diameter is preferably about 100 to about 400 μm. When the porosity exceeds 90% and the pore diameter is more than 400 μm, the physical strength of the porous body is lowered and becomes brittle. On the other hand, when the porosity is less than 50%, the continuous pores are less than 50% of the total pores, and the pore diameter is smaller than 100 μm, it is difficult for the body fluid and osteoblasts to enter, and the porous body is hydrolyzed and the bone tissue is grown. And the time required for the porous body to replace the bone tissue becomes longer. A more preferable porous body has a porosity of 60 to 80%, continuous pores occupying 70 to 90% of the total pores, and continuous pores having a pore diameter of about 150 to about 350 μm.

多孔体の作製方法は特に制限がなく、どのような方法で作製してもよい。例えば、揮発性溶剤に上記の生体内分解吸収性ポリマーを溶解すると共にバイオセラミックス粉体等を混合して懸濁液を調製し、この懸濁液をスプレー等の手段で繊維化して繊維の絡み合った繊維集合体となし、積層前のプレート2の貫通孔2a,2bに上記の繊維集合体を詰め込んで、繊維の融着可能な温度に加熱することにより、繊維同士を部分的に融着して多孔質の繊維融着集合体となし、この繊維融着集合体をプレート2と一緒に揮発性溶剤に浸漬して多孔体に形態変化させる方法等によって作製することができる。   The method for producing the porous body is not particularly limited, and any method may be used. For example, the above biodegradable absorbent polymer is dissolved in a volatile solvent and a bioceramic powder is mixed to prepare a suspension. The suspension is made into a fiber by means of spraying or the like, and the fibers are entangled. The above fiber aggregates are packed into the through holes 2a and 2b of the plate 2 before lamination, and heated to a temperature at which the fibers can be fused, so that the fibers are partially fused. It can be produced by a method of forming a porous fiber fusion aggregate and immersing the fiber fusion aggregate in a volatile solvent together with the plate 2 to change the shape into a porous body.

コア材1及び両面のプレート2,2を上下方向に貫通するピン3は、プレート2と同様の前述した乳酸系ポリマーからなるものであって、一回又は二回の鍛造あるいは延伸によりポリマー分子や結晶を配向させて強度を高めたピンが好ましく使用される。プレート2,2から突出するピン3の両端は、0.3〜2mm程度の高さを有する円錐状に形成されており、この人工軟骨用生体材料11を人工椎間板として椎体20,20間に挿入したとき、ピン3の両端が椎体20,20の終板に食い込んで人工軟骨用生体材料11の位置ズレ・脱転が確実に防止されるようになっている。ピン3の太さは、椎体20,20の挟圧力で折損することがないように、直径を0.5〜3mm程度、好ましくは1mm程度とするのがよい。   The pin 3 that penetrates the core material 1 and the plates 2 and 2 on both sides in the vertical direction is made of the above-described lactic acid-based polymer similar to the plate 2, and polymer molecules or A pin whose crystal is oriented to increase the strength is preferably used. Both ends of the pin 3 protruding from the plates 2 and 2 are formed in a conical shape having a height of about 0.3 to 2 mm. The artificial cartilage biomaterial 11 is used as an artificial intervertebral disc between the vertebral bodies 20 and 20. When inserted, both ends of the pin 3 bite into the end plates of the vertebral bodies 20 and 20 so that the displacement / reversion of the artificial cartilage biomaterial 11 is reliably prevented. The thickness of the pin 3 is about 0.5 to 3 mm, preferably about 1 mm, so that the pin 3 is not broken by the clamping force of the vertebral bodies 20 and 20.

ピン3の本数は1本でもよいが、1本の場合は、人工軟骨用生体材料11の横方向の位置ずれを防止できても、人工軟骨用生体材料11の回転を防止できないという不都合があるので、2本以上、好ましくは図1,図2に示すように左右対称の配置で3本貫通させるのがよい。このように3本のピン3を貫通させると、3点支持により人工軟骨用生体材料11を安定良く上下の椎体20,20間に装着できる利点がある。但し、頸椎用の全置換型の人工椎間板として使用する小さいサイズの人工軟骨用生体材料11の場合は、左右2本のピン3を貫通させるだけでよい。   The number of pins 3 may be one, but in the case of one, there is a disadvantage that even if the lateral displacement of the artificial cartilage biomaterial 11 can be prevented, the rotation of the artificial cartilage biomaterial 11 cannot be prevented. Therefore, two or more, preferably three may be penetrated in a symmetrical arrangement as shown in FIGS. If the three pins 3 are penetrated in this way, there is an advantage that the biomaterial 11 for artificial cartilage can be stably mounted between the upper and lower vertebral bodies 20 and 20 by supporting three points. However, in the case of a small size biomaterial 11 for artificial cartilage used as a total replacement type artificial disc for cervical vertebrae, it is only necessary to penetrate two pins 3 on the left and right.

なお、このピン3にも前述のバイオセラミックス粉体、各種サイトカイン、薬剤、骨誘導因子などを適量含有させることが好ましい。また、場合によってはピン3とプレート2,2を接着もしくは融着などにより一体化してもよい。更に、ピン3を上下に分断し、上側のピンの上端部と下側のピンの下端部を上下のプレート2,2の表面から突出させてもよい。   The pin 3 preferably contains an appropriate amount of the above-mentioned bioceramic powder, various cytokines, drugs, osteoinductive factors, and the like. In some cases, the pin 3 and the plates 2 and 2 may be integrated by adhesion or fusion. Furthermore, the pin 3 may be divided into upper and lower portions, and the upper end portion of the upper pin and the lower end portion of the lower pin may protrude from the surfaces of the upper and lower plates 2 and 2.

以上のような構成の人工軟骨用生体材料11を例えば人工椎間板として頸椎あるいは脊椎(特に腰椎)の椎体20,20間に前方から挿入すると、図3に示すように、人工軟骨用生体材料11のプレート2,2の表面から突出するピン3の尖った両端が椎体20,20の終板に食い込んで、位置ズレ・脱転を生じることなく椎体20,20間に挟着され、生体の椎間板と同程度の機械的強度及び柔軟性を備えた有機繊維の組織構造体よりなるコア材1がバイオミメティックに変形して椎間板としての役目を十分に果たす。そして、プレート2,2の貫通孔2a,2bに充填されている生体内分解吸収性材料5が、体液との接触によってプレート2,2よりも速く分解し、その旺盛な骨伝導性及び/又は骨誘導性によってすみやかに骨組織が伝導形成及び/又は誘導形成され、早期に骨組織と置換して椎体20,20と直接結合する。一方、プレート2,2は、貫通孔2a,2b内の生体内分解吸収性材料5よりも強度が遥かに大きく、しかも、分解吸収の速さが骨組織の成長の速さと実質的に均衡して生体内分解吸収性材料5よりも遅れて分解が進行するため、椎体20,20とコア材1との界面に存在して貫通孔内の生体内分解吸収性材料5が骨組織とある程度置換されるまでの期間、十分な強度を維持する。このため、上下の椎体20,20の大きい挟圧力の下で人工軟骨用生体材料11のコア材1がバイオミメティックな変形を繰り返しても、プレート2,2から細粉が発生したり、貫通孔内の生体内分解吸収性材料5から細粉が発生することはない。そして、その後のプレート2,2の分解吸収に伴ってプレート2,2が徐々に破壊するのと同時並行的に骨組織が成長してプレート2,2と骨組織との結合が進行し、最終的にプレート2,2が骨組織と完全に置換してコア材1と椎体20,20が直接結合するため、十分な椎体との結合固定力が得られる。   When the artificial cartilage biomaterial 11 configured as described above is inserted from the front between the vertebral bodies 20 and 20 of the cervical vertebra or spine (particularly the lumbar spine) as an artificial intervertebral disc, for example, as shown in FIG. The sharp ends of the pin 3 projecting from the surfaces of the plates 2 and 2 bite into the end plates of the vertebral bodies 20 and 20, and are pinched between the vertebral bodies 20 and 20 without causing displacement or dislocation. The core material 1 made of an organic fiber tissue structure having the same mechanical strength and flexibility as that of the intervertebral disc is transformed into biomimetic and sufficiently fulfills the role as an intervertebral disc. And the biodegradable and absorbable material 5 filled in the through holes 2a and 2b of the plates 2 and 2 is decomposed faster than the plates 2 and 2 by contact with the body fluid, and its vigorous bone conductivity and / or Due to the osteoinductivity, the bone tissue is promptly formed and / or induced, and is replaced with the bone tissue at an early stage and directly connected to the vertebral bodies 20 and 20. On the other hand, the plates 2 and 2 are much stronger than the biodegradable and absorbable material 5 in the through holes 2a and 2b, and the speed of decomposition and absorption is substantially balanced with the speed of bone tissue growth. Therefore, the decomposition proceeds later than the biodegradable absorbable material 5, so that the biodegradable absorbable material 5 in the through-hole existing at the interface between the vertebral bodies 20, 20 and the core material 1 has a certain degree of bone tissue. Maintain sufficient strength until replaced. For this reason, even if the core material 1 of the biomaterial 11 for artificial cartilage repeats biomimetic deformation under a large clamping force between the upper and lower vertebral bodies 20, 20, fine powder is generated from the plates 2, 2 or penetrated Fine powder is not generated from the biodegradable absorbent material 5 in the pores. Then, the bone tissue grows in parallel with the gradual destruction of the plates 2 and 2 with the subsequent decomposition and absorption of the plates 2 and 2, and the connection between the plates 2 and 2 and the bone tissue proceeds. In particular, the plates 2 and 2 are completely replaced with the bone tissue, and the core material 1 and the vertebral bodies 20 and 20 are directly coupled to each other.

上記の人工軟骨用生体材料11においては、コア材1の両面に積層する孔開きのプレートとして、図4に示すような細かい凹凸を表裏両面に形成した孔開きのプレート2を使用してもよい。このような細かい凹凸のある孔開きプレート2の貫通孔2a(2b)に前述の生体内分解吸収性材料5を充填してコア材1の両面に積層した人工軟骨用生体材料は、これを人工椎間板として椎体20,20間に挿入すると、プレート2表面の凹凸の凸部2cが椎体20の終板に食い込んで人工軟骨用生体材料の位置ズレ・脱転を阻止できると共に、凹凸により椎体20との接触面積が著しく増えて結合性が更に向上する利点があり、また、プレート2裏面の凹凸の凸部2cがコア材1に食い込んでプレート2とコア材1との相対的な位置ズレも阻止できる利点がある。従って、この場合は、ピン3を省略することも可能である。   In the biomaterial 11 for artificial cartilage described above, a perforated plate 2 in which fine irregularities as shown in FIG. 4 are formed on both front and back surfaces may be used as the perforated plate laminated on both surfaces of the core material 1. . The biomaterial for artificial cartilage in which the through-hole 2a (2b) of the perforated plate 2 having such fine irregularities is filled with the biodegradable absorbent material 5 described above and laminated on both surfaces of the core material 1 is artificially made. When inserted between the vertebral bodies 20 and 20 as an intervertebral disc, the convex and concave portions 2c on the surface of the plate 2 can bite into the end plate of the vertebral body 20 and prevent displacement of the biomaterial for artificial cartilage and slippage. There is an advantage that the contact area with the body 20 is remarkably increased and the bonding property is further improved, and the uneven projection 2c on the back surface of the plate 2 bites into the core material 1 so that the relative position between the plate 2 and the core material 1 is increased. There is an advantage that the deviation can be prevented. Therefore, in this case, the pin 3 can be omitted.

上記の細かい凹凸は、ランダムな凹凸形状を有するものでもよいが、凹凸の凸部2cを小さな四角錘形状(例えば、正四角形底面の一辺が0.6mm程度で高さが0.3mm程度の正四角錘形状)にして前後左右に隙間をあけないで多数配列形成したものが好ましい。このような凹凸を形成すると、四角錐形状の凸部2cが椎体20の終板及びコア材1に食い込みやすいため、人工軟骨用生体材料の位置ズレ・脱転や、プレート2とコア材1との相対的位置ズレをより確実に阻止できる利点がある。   The fine unevenness may have a random uneven shape, but the uneven protrusion 2c may be formed into a small quadrangular pyramid shape (for example, a regular square base having a side of about 0.6 mm and a height of about 0.3 mm). A quadrangular pyramid shape is preferable in which a large number of arrays are formed without gaps in the front, rear, left, and right. When such irregularities are formed, the quadrangular pyramid-shaped convex portions 2 c easily bite into the end plate and the core material 1 of the vertebral body 20. There is an advantage that the relative positional deviation can be prevented more reliably.

細かい凹凸を表裏両面に形成したプレート2の厚さについては、その最小厚み部分(両面の凹部と凹部の間の部分)の厚みを0.3mm以上とし、最大厚み部分(両面の凸部2cと凸部2cの間の部分)の厚みを1.2mm以下とすることが好ましい。このように厚みを限定したプレート2は、上下の椎体20,20の挟圧力に耐え得る強度を有し、骨組織の成長と均衡した速さで1年余りで分解吸収されて骨組織と完全に置換し、強固に椎体20と結合できる利点がある。   Regarding the thickness of the plate 2 having fine irregularities formed on both the front and back surfaces, the thickness of the minimum thickness portion (the portion between the concave portions on both sides) is 0.3 mm or more, and the maximum thickness portion (the convex portions 2c on both sides) The thickness of the portion between the convex portions 2c is preferably 1.2 mm or less. Thus, the plate 2 having a limited thickness has a strength capable of withstanding the clamping pressure between the upper and lower vertebral bodies 20, 20, and is decomposed and absorbed in about one year at a speed balanced with the growth of the bone tissue. There is an advantage that it can be completely replaced and firmly connected to the vertebral body 20.

尚、上記の人工軟骨用生体材料11では、コア材1の上下両面にプレート2,2を積層しているが、このプレート2は、本発明の人工軟骨用生体材料が代替しようとする軟骨の種類や部位に対応して、コア材1の片面のみに積層してもよいものである。   In the biomaterial 11 for artificial cartilage described above, the plates 2 and 2 are laminated on the upper and lower surfaces of the core material 1, and this plate 2 is used for the replacement of the biomaterial for artificial cartilage of the present invention. Corresponding to the type and part, the core material 1 may be laminated only on one side.

図5は本発明の他の実施形態に係る人工軟骨用生体材料の斜視図、図6は図5のB−B線断面である。   FIG. 5 is a perspective view of a biomaterial for artificial cartilage according to another embodiment of the present invention, and FIG. 6 is a cross section taken along line BB in FIG.

この人工軟骨用生体材料12は、表裏両面に前述の細かい凹凸が形成され且つ大小の貫通孔2a,2bに生体内分解吸収性材料5が充填された前述のプレート2,2を、前述のコア材1の上下両面に積層すると共に、プレート2,2の周縁部に位置する大小の貫通孔2a,2bに糸4を通してプレート2,2の周縁部を纏うようにコア材1に縫い付け、前述のピン3を省略したものである。   The biomaterial 12 for artificial cartilage includes the above-described plates 2 and 2 in which the above-described fine irregularities are formed on both the front and back surfaces, and the biodegradable absorbent material 5 is filled in the large and small through holes 2a and 2b. The material 1 is laminated on both upper and lower surfaces of the material 1, and is sewed on the core material 1 so that the peripheral portions of the plates 2 and 2 are put together through the thread 4 through the large and small through holes 2a and 2b located at the peripheral portions of the plates 2 and 2. The pin 3 is omitted.

この人工軟骨用生体材料12のように、プレート2,2の周縁部が糸4でコア材1に縫い付けられていると、前述のピン3を省略しても、コア材1とプレート2,2との相対的な位置ズレや、プレート2,2の剥離を生じることがなく、また、プレート2,2の表裏両面に細かい凹凸が形成されていると、前述したように、凹凸の凸部2cが椎体20,20の終板に食い込むので、前述のピン3を省略しても、人工軟骨用生体材料12の位置ズレ・脱転を阻止することができる。   When the peripheral portion of the plates 2 and 2 is sewn to the core material 1 with the thread 4 like the biomaterial 12 for artificial cartilage, the core material 1 and the plates 2 and 2 can be omitted even if the pin 3 is omitted. 2 and the plate 2, 2 are not peeled off, and if there are fine irregularities on both the front and back surfaces of the plates 2, 2, Since 2c bites into the end plates of the vertebral bodies 20 and 20, even if the aforementioned pin 3 is omitted, it is possible to prevent the displacement / reversion of the biomaterial 12 for artificial cartilage.

上記の糸4は生体不活性な繊維や生分解性繊維などからなるものであり、前者の生体不活性なものとしては前述のコア材1を構成する有機繊維が、また、後者の生分解性のものとしては前述の乳酸系ポリマーからなる繊維が使用され、好ましくは太さが0.2〜0.3mm程度の糸(モノフィラメント)であって、更に好ましくは一軸延伸された引張り強度の大きい糸が使用される。   The yarn 4 is made of a bioinert fiber, a biodegradable fiber, or the like. As the former bioinert, the organic fiber constituting the core material 1 is used, and the latter is biodegradable. As the thread, a fiber made of the above-mentioned lactic acid polymer is used, preferably a thread (monofilament) having a thickness of about 0.2 to 0.3 mm, more preferably a uniaxially stretched thread having a high tensile strength. Is used.

このような人工軟骨用生体材料12を人工椎間板として上下の椎体間に挿入すると、プレート2,2表面の凸部2cが椎体20,20の終板に食い込んで、位置ズレ・脱転を生じることなく椎体20,20間に挟着される。そして、前述の人工軟骨用生体材料11と同様に、コア材1がバイオミメティックに変形して椎間板としての役目を十分に果たし、細粉を発生することもなく、上下の椎体に直接結合して十分な結合固定力が得られる。   When such a biomaterial 12 for artificial cartilage is inserted between the upper and lower vertebral bodies as an artificial intervertebral disc, the convex portions 2c on the surfaces of the plates 2 and 2 bite into the end plates of the vertebral bodies 20 and 20 to cause positional deviation / reversion. It is sandwiched between the vertebral bodies 20 and 20 without occurring. As in the case of the biomaterial 11 for artificial cartilage described above, the core material 1 is transformed into a biomimetic and sufficiently functions as an intervertebral disc, and is directly bonded to the upper and lower vertebral bodies without generating fine powder. And sufficient bond fixing force can be obtained.

上記の人工軟骨用生体材料12においては、コア材1の両面に積層するプレートとして、図7に示す孔開きのプレート2や図8に示す孔開きのプレート2を使用してもよい。図7に示すプレート2は、前述の図4に示す細かい凹凸を表裏両面に形成した孔開きプレート2の表面に、細かい凹凸よりも高さが大きい複数の角錘状又は円錐状の突起2d(高さ0.5〜1.5mm)を更に形成したものであり、このような図7のプレート2の貫通孔2a(2b)に前述の生体内分解吸収性材料5を充填してコア材1の両面に積層した人工軟骨用生体材料は、これを椎体間に挿入すると突起2dが椎体20の終板に深く食い込むため、前述のピン3がなくても、人工軟骨用生体材料の位置ズレ・脱転をより確実に防止できる利点がある。また、図8に示すプレート2は、その表面に断面が鋸歯形状の凹凸2eを形成した点を除いて、前述の図4に示す孔開きプレート2と同様のものであり、このようなプレート2を鋸歯形状の凹凸2eの斜面が前向き(挿入方向前方)となるようにコア材1の両面に積層した人工軟骨用生体材料は、椎体20,20間に挿入するときの抵抗が少なく挿入作業が容易であり、挿入後、簡単に抜け出すことがないという利点を有する。図7、図8のプレート2は、前述の人工軟骨用生体材料11のコア材1の両面に積層しても勿論よい。なお、図7、図8のプレート2において、図4のプレート2と共通する部分には同一符号を付けてある。   In the biomaterial 12 for artificial cartilage, the perforated plate 2 shown in FIG. 7 or the perforated plate 2 shown in FIG. 8 may be used as a plate laminated on both surfaces of the core material 1. The plate 2 shown in FIG. 7 has a plurality of pyramidal or conical protrusions 2d (with a height higher than the fine unevenness on the surface of the perforated plate 2 in which the fine unevenness shown in FIG. Further, the core material 1 is formed by filling the through-hole 2a (2b) of the plate 2 shown in FIG. When the artificial cartilage biomaterial laminated on both sides is inserted between the vertebral bodies, the protrusion 2d deeply bites into the end plate of the vertebral body 20, so that the position of the artificial cartilage biomaterial can be obtained even without the pin 3 described above. There is an advantage that displacement and slippage can be prevented more reliably. Further, the plate 2 shown in FIG. 8 is the same as the perforated plate 2 shown in FIG. 4 except that the surface 2 is formed with unevenness 2e having a sawtooth shape in cross section. The biomaterial for artificial cartilage laminated on both surfaces of the core material 1 so that the slope of the sawtooth-shaped irregularities 2e faces forward (forward in the insertion direction) has little resistance when inserted between the vertebral bodies 20 and 20, and is inserted. Is easy, and has the advantage that it cannot be easily pulled out after insertion. Of course, the plate 2 of FIGS. 7 and 8 may be laminated on both surfaces of the core material 1 of the biomaterial 11 for artificial cartilage described above. In FIG. 7 and FIG. 8, the same reference numerals are given to portions common to the plate 2 of FIG.

図9は本発明の更に他の実施形態に係る人工軟骨用生体材料の断面図である。   FIG. 9 is a sectional view of a biomaterial for artificial cartilage according to still another embodiment of the present invention.

この人工軟骨用生体材料13は、前述した人工軟骨用生体材料11において、そのプレート2,2の表裏両面に前述の骨伝導性及び/又は骨誘導性を有する生体内分解吸収性材料からなる被覆層6,6を積層すると共に、各ピン3の両端を被覆層6,6の表面から少し突出させたものである。この被覆層6は、プレート2の表裏両面に積層する必要が必ずしもなく、プレート2の表面にのみ積層してもよい。   The artificial cartilage biomaterial 13 is a coating made of the biodegradable absorbable material having the above-described osteoconductivity and / or osteoinductivity on both the front and back surfaces of the artificial cartilage biomaterial 11 described above. The layers 6 and 6 are laminated, and both ends of each pin 3 are slightly protruded from the surface of the coating layers 6 and 6. The coating layer 6 is not necessarily laminated on both the front and back surfaces of the plate 2 and may be laminated only on the surface of the plate 2.

被覆層6の厚さは特に限定されないが、被覆層6を構成する生体内分解吸収性材料が前述した生体内分解吸収性ポリマーの多孔体にバイオセラミックス粉体やサイトカインや薬剤や骨誘導因子などを含有させたものである場合には、その厚さを0.5〜2mm程度とすることが好ましい。被覆層6が0.5mmよりも薄い場合は、圧縮変形による椎体20との密着性が低下する心配があり、2mmより厚い場合は、分解吸収及び骨組織との置換に要する時間が長くなるといった不都合を生じる。   The thickness of the covering layer 6 is not particularly limited, but the biodegradable and absorbable material constituting the covering layer 6 is made of a bioceramic powder, cytokine, drug, osteoinductive factor, etc. In the case where it is contained, the thickness is preferably about 0.5 to 2 mm. If the covering layer 6 is thinner than 0.5 mm, the adhesion with the vertebral body 20 due to compressive deformation may be reduced. If the covering layer 6 is thicker than 2 mm, the time required for decomposition and resorption and replacement with bone tissue becomes longer. This causes inconvenience.

このような人工軟骨用生体材料13を人工椎間板として上下の椎体20,20の間に挿入すると、前述した人工軟骨用生体材料11の作用効果に加えて、被覆層6の分解に伴い早期に骨組織がプレート2の表面にほぼ均等に形成されて椎体20と結合するようになり、特に、被覆層6が前述の生体内分解吸収性ポリマーの多孔体にバイオセラミックス粉体やサイトカインや薬剤や骨誘導因子などを含有させたものである場合には、この被覆層6がクッション材の役目を果たして圧縮変形により椎体20と密着し、骨芽細胞の多孔体内部への侵入が容易になるため、骨組織の伝導形成及び/又は誘導形成が速やかになって、短期間の内に椎体20と結合するようになる。   When such a biomaterial for artificial cartilage 13 is inserted between the upper and lower vertebral bodies 20 and 20 as an artificial intervertebral disc, in addition to the action and effect of the biomaterial for artificial cartilage 11 described above, it becomes early as the covering layer 6 is decomposed. Bone tissue is formed almost uniformly on the surface of the plate 2 so as to be bonded to the vertebral body 20. In particular, the coating layer 6 is made of the aforementioned biodegradable polymer porous body, bioceramics powder, cytokine or drug. In the case of containing a bone inducing factor or the like, the coating layer 6 serves as a cushioning material and is brought into close contact with the vertebral body 20 by compressive deformation, so that osteoblasts can easily enter the porous body. Therefore, the conduction formation and / or induction formation of the bone tissue is accelerated, and the vertebral body 20 is joined within a short period of time.

次に、部分置換型の人工椎間板として使用される人工軟骨用生体材料のいくつかの実施形態について説明する。   Next, some embodiments of the biomaterial for artificial cartilage used as the partial replacement type artificial disc will be described.

図10に示す人工軟骨用生体材料14は、脊椎(特に腰椎)の椎間板の半分を置換する部分置換型の人工椎間板として使用されるものであって、前述の全置換型の人工軟骨用生体材料11を左右に二分割した形状を有している。この人工軟骨用生体材料14の構造は前述の人工軟骨用生体材料11と同様であって、有機繊維の組織構造体よりなるコア材1の上下両面に、生体活性なバイオセラミックス粉体を含み且つ厚み方向に大小の貫通孔2a,2bを形成した生体内分解吸収性ポリマーよりなるプレート2,2を積層して、該貫通孔2a,2bに前述の骨伝導性及び/又は骨誘導性を備えた分解の速い生体内分解吸収性材料5を充填すると共に、2本の生体内分解吸収性のピン3を上下に貫通させてピン3の両端をプレート2,2の表面から少し突出させた構造となっている。   The biomaterial 14 for artificial cartilage shown in FIG. 10 is used as a partial replacement type artificial disc for replacing half of the intervertebral disc of the spine (particularly the lumbar vertebra). 11 is divided into left and right parts. The structure of the artificial cartilage biomaterial 14 is the same as that of the artificial cartilage biomaterial 11 described above, and includes a bioactive bioceramics powder on both upper and lower surfaces of the core material 1 made of an organic fiber tissue structure. Plates 2 and 2 made of biodegradable absorbable polymers having large and small through holes 2a and 2b formed in the thickness direction are laminated, and the through holes 2a and 2b are provided with the aforementioned osteoconductivity and / or osteoinductivity. A structure in which the biodegradable bioabsorbable material 5 that is rapidly decomposed is filled and two biodegradable / absorbable pins 3 are vertically penetrated so that both ends of the pins 3 protrude slightly from the surfaces of the plates 2 and 2. It has become.

このような部分置換型の人工軟骨用生体材料14は、腰椎の背後から椎体20,20間の片側に挿入できるので、全置換型の人工軟骨用生体材料11のように腰椎の前方(腹側)から椎体間に挿入するものに比べると、簡単に手術を行うことができる。そして、椎体間に挿入された人工軟骨用生体材料14は位置ズレ・脱転がなく、コア材1が柔軟で生体の椎間板に近い変形特性を備え、椎体20と直接結合して固定力が大きく、摩耗による細粉の発生もないので、部分置換型の人工椎間板として極めて好適である。   Such a partial replacement type biomaterial 14 for artificial cartilage can be inserted into one side between the vertebral bodies 20 and 20 from the back of the lumbar vertebrae. Compared to those inserted between the vertebral bodies from the side, surgery can be performed easily. The artificial cartilage biomaterial 14 inserted between the vertebral bodies has no displacement or slippage, the core material 1 is flexible and has deformation characteristics close to that of the intervertebral disc of the living body, and is directly coupled to the vertebral body 20 for fixing force. And fine powder due to wear does not occur, which is extremely suitable as a partial replacement type artificial disc.

尚、この部分置換型の人工軟骨用生体材料14において、プレート2を鍛造体にしたり、プレート2の両面に細かい凹凸を形成したり、プレート2の表面に複数の突起2dを形成したり、プレート2の表面又は表裏両面に上記生体内分解吸収材料5からなる被覆層を設けたり、プレート2の周縁部を糸で縫い付けてピン3を省略したりしてもよいことは言うまでもない。   In this partial replacement type artificial cartilage biomaterial 14, the plate 2 is formed as a forged body, fine irregularities are formed on both surfaces of the plate 2, a plurality of protrusions 2 d are formed on the surface of the plate 2, Needless to say, a coating layer made of the biodegradable absorbent material 5 may be provided on the surface 2 or both of the front and back surfaces, or the peripheral edge of the plate 2 may be sewn with a thread and the pin 3 may be omitted.

図11に示す部分置換型の人工軟骨用生体材料15は円弧状の生体材料であって、その一端(先端)が丸く形成されており、脊椎(特に腰椎)の椎体間に左右一対挿入されるものである。この人工軟骨用生体材料15の標準的な大きさは、例えば成人の腰椎用の人工椎間板として使用する場合には、横幅寸法が9mm程度、厚み寸法が11mm程度、円弧状の中心線の曲率半径が22〜23mm程度、円弧状の中心線に沿った長さ寸法が30mm程度である。   A partial replacement type artificial cartilage biomaterial 15 shown in FIG. 11 is an arc-shaped biomaterial, and one end (tip) thereof is rounded, and a pair of left and right is inserted between vertebral bodies of the spine (particularly the lumbar vertebra). Is. When the artificial cartilage biomaterial 15 is used as an artificial disc for an adult lumbar vertebra, for example, the lateral width is about 9 mm, the thickness is about 11 mm, and the radius of curvature of the arc-shaped center line is as follows. Is about 22 to 23 mm, and the length dimension along the arc-shaped center line is about 30 mm.

この人工軟骨用生体材料15は、全置換型の人工軟骨用生体材料11とは形状が異なるけれども、その構造は同様である。即ち、有機繊維の組織構造体よりなるコア材1の上下両面に、生体活性なバイオセラミックス粉体を含み且つ厚み方向に大小の貫通孔2a,2bを形成した生体内分解吸収性ポリマーよりなるプレート2,2(中心線上に大きい貫通孔2aを複数穿孔し周縁部に小さい貫通孔2bを複数穿孔したもの)を積層して、該貫通孔2a,2bに前述の骨伝導性及び/又は骨誘導性を備えた分解の速い生体内分解吸収性材料5を充填すると共に、中心線上の大きい貫通孔3aを利用して3本の生体内分解吸収性のピン3を上下に貫通させ、各ピン3の両端をプレート2,2から少し突出させた構造となっている。   The artificial cartilage biomaterial 15 is different in shape from the total replacement type artificial cartilage biomaterial 11 but has the same structure. That is, a plate made of a biodegradable absorbent polymer containing bioactive bioceramic powder on both upper and lower surfaces of a core material 1 made of an organic fiber tissue structure and having large and small through holes 2a and 2b in the thickness direction. 2 and 2 (a plurality of large through holes 2a on the center line and a plurality of small through holes 2b on the periphery) are stacked, and the osteoconductivity and / or osteoinduction described above is formed in the through holes 2a and 2b. The biodegradable biodegradable absorbent material 5 having the ability to be decomposed is filled, and the three biodegradable absorbable pins 3 are vertically penetrated using the large through-holes 3a on the center line, so that each pin 3 It has a structure in which both ends are slightly protruded from the plates 2 and 2.

このような部分置換型の人工軟骨用生体材料15は、腰椎の背後から図12に示すように椎体20間に左右一対挿入されるので、全置換型の人工軟骨用生体材料に比べると手術が簡単であり、しかも、人工軟骨用生体材料15の先端が丸く形成されているので、先端が椎体20に引掛かることなくスムーズに挿入することができる。そして、この人工軟骨用生体材料15は位置ズレ・脱転がなく、コア材1が柔軟で生体の椎間板に近いバイオミメティックな変形をし、椎体20と直接結合して固定力が大きく、摩耗による細粉の発生もないので、椎間板としての役割を充分に果たすことができる。   Such a partial replacement type biomaterial for artificial cartilage 15 is inserted from the back of the lumbar vertebrae between the vertebral bodies 20 as shown in FIG. 12, and therefore, compared with a total replacement type biomaterial for artificial cartilage. In addition, since the tip of the artificial cartilage biomaterial 15 is formed in a round shape, the tip can be smoothly inserted without being caught by the vertebral body 20. The biomaterial 15 for artificial cartilage has no displacement or dislocation, the core material 1 is flexible and deforms biomimeticly close to the intervertebral disc of the living body, and is directly coupled to the vertebral body 20 to provide a large fixing force and wear. Since there is no generation of fine powder due to, it can fully serve as an intervertebral disc.

上記のように左右一対の人工軟骨用生体材料15,15を椎体20間に挿入する場合には、左右の人工軟骨用生体材料15,15の中間部に、この生体材料15と同様の構造を備えた部分置換型の勾玉形状の人工軟骨用生体材料16を挿入するのがよい。   When the pair of left and right artificial cartilage biomaterials 15 and 15 are inserted between the vertebral bodies 20 as described above, a structure similar to that of the biomaterial 15 is provided in the middle of the left and right artificial cartilage biomaterials 15 and 15. It is preferable to insert a partially-placed slant-shaped artificial cartilage biomaterial 16 comprising

なお、上記の部分置換型の人工軟骨用生体材料15,16においても、プレート2を鍛造体にしたり、プレート2の両面に細かい凹凸を形成したり、プレート2の表面に複数の突起2dを形成したり、プレート2の表面又は表裏両面に前記生体内分解吸収材料5からなる被覆層を設けたり、プレート2の周縁部を糸で縫い付けてピン3を省略したりしても勿論よい。   In the partial replacement type artificial cartilage biomaterials 15 and 16 described above, the plate 2 is formed as a forged body, fine irregularities are formed on both surfaces of the plate 2, and a plurality of protrusions 2 d are formed on the surface of the plate 2. Of course, a coating layer made of the biodegradable absorbent material 5 may be provided on the surface or both front and back surfaces of the plate 2, or the peripheral portion of the plate 2 may be sewn with a thread to omit the pins 3.

以上、全置換型及び部分置換型の人工椎間板として使用される人工軟骨用生体材料の主な実施形態を挙げて本発明を説明したが、本発明の人工軟骨用生体材料の形状や大きさは、挿入部位に応じて適宜変更され得ることは言うまでもない。また、本発明の人工軟骨用生体材料の形状や大きさを椎間板以外の半月板や各種の関節軟骨に似た形状に変更すれば、人工半月板や各種の人工関節軟骨等としても勿論使用し得るものである。   As described above, the present invention has been described with reference to the main embodiments of the biomaterial for artificial cartilage used as the total replacement and partial replacement artificial discs, but the shape and size of the biomaterial for artificial cartilage of the present invention are as follows. Needless to say, it can be appropriately changed according to the insertion site. In addition, if the shape and size of the biomaterial for artificial cartilage of the present invention is changed to a shape similar to a meniscus other than an intervertebral disc or various articular cartilages, it can be used as an artificial meniscus or various articular cartilage. To get.

本発明の一実施形態に係る人工軟骨用生体材料の斜視図である。It is a perspective view of the biomaterial for artificial cartilage which concerns on one Embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 同人工軟骨用生体材料の一使用例の説明図である。It is explanatory drawing of one example of use of the biomaterial for artificial cartilage. 本発明の人工軟骨用生体材料に用いるプレートの他の例を示す断面図である。It is sectional drawing which shows the other example of the plate used for the biomaterial for artificial cartilage of this invention. 本発明の他の実施形態に係る人工軟骨用生体材料の斜視図である。It is a perspective view of the biomaterial for artificial cartilage which concerns on other embodiment of this invention. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line B-B in FIG. 5. 本発明の人工軟骨用生体材料に用いるプレートの更に他の例を示す断面図である。It is sectional drawing which shows the further another example of the plate used for the biomaterial for artificial cartilage of this invention. 本発明の人工軟骨用生体材料に用いるプレートの更に他の例を示す断面図である。It is sectional drawing which shows the further another example of the plate used for the biomaterial for artificial cartilage of this invention. 本発明の更に他の実施形態に係る人工軟骨用生体材料の断面図である。It is sectional drawing of the biomaterial for artificial cartilage which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る人工軟骨用生体材料の斜視図である。It is a perspective view of the biomaterial for artificial cartilage which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る人工軟骨用生体材料の斜視図である。It is a perspective view of the biomaterial for artificial cartilage which concerns on other embodiment of this invention. 同人工軟骨用生体材料の挿入位置を示す平面図である。It is a top view which shows the insertion position of the biomaterial for artificial cartilage.

符号の説明Explanation of symbols

1 コア材
2 プレート
2a,2b 貫通孔
3 ピン
4 糸
5 生体内分解吸収性材料
6 被覆層
11,12,13,14,15,16 人工軟骨用生体材料
20 椎体
DESCRIPTION OF SYMBOLS 1 Core material 2 Plate 2a, 2b Through-hole 3 Pin 4 Thread 5 Biodegradable absorbable material 6 Coating layer 11, 12, 13, 14, 15, 16 Biomaterial for artificial cartilage 20 Vertebral body

Claims (4)

有機繊維を3軸以上の多軸三次元織組織もくしは編組織又はこれらの複合組織とした組織構造体よりなるコア材の片面又は両面に、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーからなるプレートであって厚み方向に多数の貫通孔を形成したプレートを積層すると共に、このプレートの全ての貫通孔又は一部の貫通孔に、骨伝導性及び/又は骨誘導性を有し且つ生体内での分解が上記プレートよりも速い生体内分解吸収性材料を充填したことを特徴とする人工軟骨用生体材料。   A living body containing bioactive bioceramics powder on one or both sides of a core material composed of a multi-axial three-dimensional or three-dimensional woven or comb structure of organic fibers made of organic fibers. A plate made of a degradable and absorbable polymer, which is laminated with a number of through-holes in the thickness direction, and has osteoconductivity and / or osteoinductivity in all or some of the through-holes of this plate. And a biomaterial for artificial cartilage, which is filled with a biodegradable and absorbable material that is faster to decompose in vivo than the plate. 上記プレートの表面又は表裏両面に、骨伝導性及び/又は骨誘導性を有し且つ生体内での分解が上記プレートよりも速い生体内分解吸収性材料からなる被覆層を積層した請求項1に記載の人工軟骨用生体材料。   The coating layer made of a biodegradable and absorbable material having osteoconductivity and / or osteoinductivity and faster in vivo degradation than the plate is laminated on the surface or both sides of the plate. The biomaterial for artificial cartilage described. 上記生体内分解吸収性材料が、内部に連続気孔を有する生体内分解吸収性ポリマーの多孔体であって、骨伝導能を持つバイオセラミックス粉体、及び/又は、骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子のいずれか少なくとも一つを含んだものである請求項1又は請求項2に記載の人工軟骨用生体材料。   The biodegradable / absorbable material is a porous body of biodegradable / absorbable polymer having continuous pores therein, bioceramics powder having osteoconductivity, and / or cytokine having osteoinductivity, bone The biomaterial for artificial cartilage according to claim 1 or 2, wherein the biomaterial for artificial cartilage includes at least one of a drug having an inductive ability and an osteoinductive factor. 上記生体内分解吸収性材料が、コラーゲンに骨伝導能を持つバイオセラミックス粉体、及び/又は、骨誘導能を持つサイトカイン、骨誘導能を持つ薬剤、骨誘導因子のいずれか少なくとも一つを含んだものである請求項1又は請求項2に記載の人工軟骨用生体材料。   The biodegradable and absorbable material includes at least one of bioceramics powder having osteoconductivity in collagen and / or cytokine having osteoinductive ability, drug having osteoinductive ability, and osteoinductive factor. The biomaterial for artificial cartilage according to claim 1 or 2, wherein the biomaterial is an artificial cartilage.
JP2005050076A 2005-02-25 2005-02-25 Biomaterial for artificial cartilage Pending JP2006230722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050076A JP2006230722A (en) 2005-02-25 2005-02-25 Biomaterial for artificial cartilage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050076A JP2006230722A (en) 2005-02-25 2005-02-25 Biomaterial for artificial cartilage

Publications (1)

Publication Number Publication Date
JP2006230722A true JP2006230722A (en) 2006-09-07

Family

ID=37039001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050076A Pending JP2006230722A (en) 2005-02-25 2005-02-25 Biomaterial for artificial cartilage

Country Status (1)

Country Link
JP (1) JP2006230722A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084559A1 (en) * 2007-12-28 2009-07-09 Takiron Co., Ltd. Biomaterial for artificial cartilages
JP2010046283A (en) * 2008-08-21 2010-03-04 Takiron Co Ltd Implant material having fixing reliability toward defective bone part
WO2010116511A1 (en) * 2009-04-09 2010-10-14 タキロン株式会社 Self-establishing implant material with reliable affixability
WO2012036286A1 (en) * 2010-09-16 2012-03-22 国立大学法人大阪大学 Artificial bone, artificial bone manufacturing device, and artificial bone manufacturing method
WO2012105647A1 (en) * 2011-02-04 2012-08-09 Hoya株式会社 Implement for surgery
EP2561834A1 (en) * 2010-04-21 2013-02-27 Yasuo Shikinami Standalone biomimetic artificial intervertebral disc
JP2013528111A (en) * 2010-06-08 2013-07-08 スミス アンド ネフュー インコーポレーテッド Implant components and methods
JP2016512096A (en) * 2013-03-15 2016-04-25 ブラックストーン メディカル,インコーポレイテッド Composite interbody device and method
JP2016525415A (en) * 2013-07-24 2016-08-25 レノビス サージカル テクノロジーズ,インコーポレイテッド Surgical implant device incorporating a porous surface
JP2017047283A (en) * 2011-02-24 2017-03-09 スパイナル・エレメンツ・インコーポレーテッド Vertebral facet joint fusion implant and method for fusion
CN108514465A (en) * 2018-06-12 2018-09-11 深圳市立心科学有限公司 Invasive lumbar fusion device filled with artificial bone
US10085776B2 (en) 2004-02-06 2018-10-02 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
USD834194S1 (en) 2011-10-26 2018-11-20 Spinal Elements, Inc. Interbody bone implant
US10194955B2 (en) 2013-09-27 2019-02-05 Spinal Elements, Inc. Method of placing an implant between bone portions
JP2019034071A (en) * 2017-08-21 2019-03-07 日本特殊陶業株式会社 Vertebral body spacer
US10251679B2 (en) 2013-03-14 2019-04-09 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US10368921B2 (en) 2011-02-24 2019-08-06 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
US10426524B2 (en) 2013-03-14 2019-10-01 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
JP2020032175A (en) * 2018-08-02 2020-03-05 グローバス メディカル インコーポレイティッド Intervertebral spinal implants, associated instruments, and methods therefor
US10624680B2 (en) 2013-09-27 2020-04-21 Spinal Elements, Inc. Device and method for reinforcement of a facet
JP2020518301A (en) * 2017-05-04 2020-06-25 ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. Bone implant with struts
US10758361B2 (en) 2015-01-27 2020-09-01 Spinal Elements, Inc. Facet joint implant
US11304733B2 (en) 2020-02-14 2022-04-19 Spinal Elements, Inc. Bone tie methods
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
CN115154673A (en) * 2022-06-28 2022-10-11 北京航空航天大学宁波创新研究院 Artificial cartilage implant preformed body, preparation method and application thereof, and in-situ construction method of collagen fibers of bionic artificial cartilage implant
US11464552B2 (en) 2019-05-22 2022-10-11 Spinal Elements, Inc. Bone tie and bone tie inserter
US11478275B2 (en) 2014-09-17 2022-10-25 Spinal Elements, Inc. Flexible fastening band connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033656A (en) * 1996-07-23 1998-02-10 Olympus Optical Co Ltd Pyramid fixing member
JP2003230583A (en) * 2001-12-03 2003-08-19 Takiron Co Ltd Biological material for artificial cartilage
JP2004081257A (en) * 2002-08-23 2004-03-18 Takiron Co Ltd Implant material
WO2004108023A1 (en) * 2003-06-05 2004-12-16 Sdgi Holdings, Inc. Fusion implant and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033656A (en) * 1996-07-23 1998-02-10 Olympus Optical Co Ltd Pyramid fixing member
JP2003230583A (en) * 2001-12-03 2003-08-19 Takiron Co Ltd Biological material for artificial cartilage
JP2004081257A (en) * 2002-08-23 2004-03-18 Takiron Co Ltd Implant material
WO2004108023A1 (en) * 2003-06-05 2004-12-16 Sdgi Holdings, Inc. Fusion implant and method of making same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085776B2 (en) 2004-02-06 2018-10-02 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
WO2009084559A1 (en) * 2007-12-28 2009-07-09 Takiron Co., Ltd. Biomaterial for artificial cartilages
JP2010046283A (en) * 2008-08-21 2010-03-04 Takiron Co Ltd Implant material having fixing reliability toward defective bone part
WO2010116511A1 (en) * 2009-04-09 2010-10-14 タキロン株式会社 Self-establishing implant material with reliable affixability
EP2561834A1 (en) * 2010-04-21 2013-02-27 Yasuo Shikinami Standalone biomimetic artificial intervertebral disc
EP2561834A4 (en) * 2010-04-21 2013-09-11 Yasuo Shikinami Standalone biomimetic artificial intervertebral disc
KR101904030B1 (en) 2010-06-08 2018-10-05 스미스 앤드 네퓨, 인크. Implant components and methods
JP2013528111A (en) * 2010-06-08 2013-07-08 スミス アンド ネフュー インコーポレーテッド Implant components and methods
WO2012036286A1 (en) * 2010-09-16 2012-03-22 国立大学法人大阪大学 Artificial bone, artificial bone manufacturing device, and artificial bone manufacturing method
JP5909197B2 (en) * 2011-02-04 2016-04-26 Hoya株式会社 Surgical tools
WO2012105647A1 (en) * 2011-02-04 2012-08-09 Hoya株式会社 Implement for surgery
US11464551B2 (en) 2011-02-24 2022-10-11 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
JP2017047283A (en) * 2011-02-24 2017-03-09 スパイナル・エレメンツ・インコーポレーテッド Vertebral facet joint fusion implant and method for fusion
US10022161B2 (en) 2011-02-24 2018-07-17 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
US10368921B2 (en) 2011-02-24 2019-08-06 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
USD958366S1 (en) 2011-10-26 2022-07-19 Spinal Elements, Inc. Interbody bone implant
USD884896S1 (en) 2011-10-26 2020-05-19 Spinal Elements, Inc. Interbody bone implant
USD979062S1 (en) 2011-10-26 2023-02-21 Spinal Elements, Inc. Interbody bone implant
USD834194S1 (en) 2011-10-26 2018-11-20 Spinal Elements, Inc. Interbody bone implant
USD857900S1 (en) 2011-10-26 2019-08-27 Spinal Elements, Inc. Interbody bone implant
USD926982S1 (en) 2011-10-26 2021-08-03 Spinal Elements, Inc. Interbody bone implant
US10251679B2 (en) 2013-03-14 2019-04-09 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US11272961B2 (en) 2013-03-14 2022-03-15 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US10426524B2 (en) 2013-03-14 2019-10-01 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
JP2016512096A (en) * 2013-03-15 2016-04-25 ブラックストーン メディカル,インコーポレイテッド Composite interbody device and method
JP2016525415A (en) * 2013-07-24 2016-08-25 レノビス サージカル テクノロジーズ,インコーポレイテッド Surgical implant device incorporating a porous surface
US10624680B2 (en) 2013-09-27 2020-04-21 Spinal Elements, Inc. Device and method for reinforcement of a facet
US11918258B2 (en) 2013-09-27 2024-03-05 Spinal Elements, Inc. Device and method for reinforcement of a facet
US10194955B2 (en) 2013-09-27 2019-02-05 Spinal Elements, Inc. Method of placing an implant between bone portions
US11517354B2 (en) 2013-09-27 2022-12-06 Spinal Elements, Inc. Method of placing an implant between bone portions
US11478275B2 (en) 2014-09-17 2022-10-25 Spinal Elements, Inc. Flexible fastening band connector
US11998240B2 (en) 2014-09-17 2024-06-04 Spinal Elements, Inc. Flexible fastening band connector
US10758361B2 (en) 2015-01-27 2020-09-01 Spinal Elements, Inc. Facet joint implant
JP2020518301A (en) * 2017-05-04 2020-06-25 ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. Bone implant with struts
JP7002885B2 (en) 2017-08-21 2022-01-20 日本特殊陶業株式会社 Vertebral spacer
JP2019034071A (en) * 2017-08-21 2019-03-07 日本特殊陶業株式会社 Vertebral body spacer
CN108514465A (en) * 2018-06-12 2018-09-11 深圳市立心科学有限公司 Invasive lumbar fusion device filled with artificial bone
JP7058628B2 (en) 2018-08-02 2022-04-22 グローバス メディカル インコーポレイティッド Intervertebral spinal implants, related instruments, and methods
JP2020032175A (en) * 2018-08-02 2020-03-05 グローバス メディカル インコーポレイティッド Intervertebral spinal implants, associated instruments, and methods therefor
US11464552B2 (en) 2019-05-22 2022-10-11 Spinal Elements, Inc. Bone tie and bone tie inserter
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
US11304733B2 (en) 2020-02-14 2022-04-19 Spinal Elements, Inc. Bone tie methods
CN115154673A (en) * 2022-06-28 2022-10-11 北京航空航天大学宁波创新研究院 Artificial cartilage implant preformed body, preparation method and application thereof, and in-situ construction method of collagen fibers of bionic artificial cartilage implant
CN115154673B (en) * 2022-06-28 2023-07-14 北京航空航天大学宁波创新研究院 Artificial cartilage implant preform, preparation method and application thereof, and in-situ construction method of artificial cartilage implant collagen fiber

Similar Documents

Publication Publication Date Title
JP2006230722A (en) Biomaterial for artificial cartilage
US20060173542A1 (en) Biomaterial for artificial cartilage
KR100903761B1 (en) Implant material and process for producing the same
US9308076B2 (en) Bi-phasic compressed porous reinforcement materials suitable for implant
FI120333B (en) A porous medical device and a method of making it
US10709539B2 (en) Three-dimensional polymeric medical implants
JP5008164B2 (en) Self-supporting biomimetic artificial disc
US20080103596A1 (en) Artificial-Intervertebral-Disk Insertion Jigs, Jig Set, And Artificial Intervertebral Disk
WO2009084559A1 (en) Biomaterial for artificial cartilages
US20090148489A1 (en) Bioabsorbable material
JP4170744B2 (en) Biomaterial for artificial cartilage
JP4327565B2 (en) Biomaterial for artificial cartilage
WO2010116511A1 (en) Self-establishing implant material with reliable affixability
JP2009226079A (en) Free standing implant material with fixing reliability
JP4280968B2 (en) Implant complex
TWI252112B (en) Implant material and process for producing the same
JP2004121301A (en) Implant material
JP2008029680A (en) Anchor member and artificial ligament
TW201029682A (en) Biomaterial for artificial cartilage
AU2007229341A1 (en) Implant material and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100811