JP2007236802A - Material for implant inclination - Google Patents

Material for implant inclination Download PDF

Info

Publication number
JP2007236802A
JP2007236802A JP2006066291A JP2006066291A JP2007236802A JP 2007236802 A JP2007236802 A JP 2007236802A JP 2006066291 A JP2006066291 A JP 2006066291A JP 2006066291 A JP2006066291 A JP 2006066291A JP 2007236802 A JP2007236802 A JP 2007236802A
Authority
JP
Japan
Prior art keywords
surface layer
bone
porosity
implant
gradient material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066291A
Other languages
Japanese (ja)
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006066291A priority Critical patent/JP2007236802A/en
Priority to CA002643586A priority patent/CA2643586A1/en
Priority to EP07738054A priority patent/EP2005975A4/en
Priority to CNA2007800086265A priority patent/CN101400381A/en
Priority to AU2007225892A priority patent/AU2007225892A1/en
Priority to US12/282,205 priority patent/US20090157194A1/en
Priority to PCT/JP2007/054564 priority patent/WO2007105600A1/en
Priority to KR1020087022123A priority patent/KR20080108447A/en
Priority to TW096108172A priority patent/TW200803803A/en
Publication of JP2007236802A publication Critical patent/JP2007236802A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for implant inclination excellent in a bonding property with living bone tissue and reconstructability, to be used for treating an articular bone cartilage disorder or the like and reinforcing the bone articulation attaching part of ligament or the like. <P>SOLUTION: The material 10 for implant inclination is composed of the continuous porous complex 1 of an in vivo degradable and absorptive polymer containing in vivo absorptive and bioactive bioceramics powder, and porosity is successively changed so as to be higher from the surface layer part 1a on one side of the complex 1 to the surface layer part 1b on the opposite side or from the intermediate part or center part of the complex 1 to the surface layer part on both sides or the periphery within the range of 10-90%. The surface layer part 1b of the high porosity is promptly hydrolyzed, is replaced with the living (cartilage) bone tissue while being bonded with the tissue and disappears in a short time. The surface layer part or the intermediate part or the center part of the low porosity maintains strength for a certain degree of a period, is finally replaced with the living (cartilage) bone tissue and disappears, and thus the tissue is reconstructed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、股関節の大腿骨頭壊死、膝関節の膝骨頭壊死などの関節骨軟骨障害の治療や、靱帯の骨関節付着部の補強などに用いられるインプラント傾斜材料に関する。   The present invention relates to an implant gradient material used for the treatment of osteoarticular cartilage disorders such as femoral head necrosis of the hip joint and knee head necrosis of the knee joint, and reinforcement of the bone joint attachment portion of the ligament.

従来、大きく破壊、損傷した硬骨、軟骨部分の再建、再生あるいは補強のために、再生医療の諸技術が検討されている。そして、本質的に、ある形を持った損傷部位の再建には、組織の再生が完了するまでの期間、外部からの力学的負荷や、細胞学的、生理学的侵襲を避けて、求められる形を形成、維持させて、再建を完成させるための足場(Scaffold)が必要であることは広く認識されている。   Conventionally, various techniques of regenerative medicine have been studied for the reconstruction, regeneration, or reinforcement of bones and cartilage that have been greatly destroyed or damaged. In essence, the reconstruction of a damaged site with a certain shape requires the form required to avoid mechanical load from the outside, cytological and physiological invasion during the period until tissue regeneration is completed. It is widely recognized that a scaffold is needed to form, maintain and complete the reconstruction.

現在、股関節や膝関節などの関節骨軟骨に異常があり該軟骨を修復、再生、再建する必要がある場合に使用される足場材料について、種々のアイデアが示されている。しかしながら、関節骨頭の壊死部の治療、再建や、靱帯の骨関節付着部を強化するための足場となるに足り得るものは、材料学的な困難さから、いまだ開発されていない。理由は、それが用いられる部位が、異質の機能と物質からなり、軟骨と硬骨が動きを伴って接触する非連続的骨結合部位である境界面、即ち、関節の位置に適用すべき足場であるからである。   At present, various ideas have been presented for scaffold materials used when there is an abnormality in articular cartilage such as a hip joint and a knee joint and the cartilage needs to be repaired, regenerated and reconstructed. However, what is sufficient to serve as a scaffold for treating and reconstructing the necrotic part of the joint bone head and strengthening the bone-joint attachment part of the ligament has not been developed due to material difficulties. The reason for this is that the site where it is used is a scaffold that should be applied to the interface, i.e. the location of the joint, which is a discontinuous osteosynthesis site where the cartilage and bone contact with movement, consisting of different functions and materials. Because there is.

斯かる、足場の開発策の一つとして、軟骨代替物と硬骨代替物を組み合わせて一体化した補綴材料を作製し、関節頭骨の部分には硬骨代替物を、関節軟骨の部分には軟骨代替物を埋入、固定することが考えられる。しかし、この両方の代替物が一体物でなく、別々の分かれたものの組み合わせから成る場合は、軟骨と硬骨の組織の連続的な接続的移行の形態が得られず、また、関節の稼動時に、両者が剥離する問題が生ずる。したがって、関節部位に用いるに値する足場材料は、硬骨に納まる部位は硬骨と生体組織学的、力学的によく親和性を持ち、軟骨に納まる部位は軟骨と生体組織学的、力学的によく親和性を持つことにより、可動界面である骨関節に在って、脱転しないように安定に保たれるものでなければならない。   As one of the development measures for such a scaffold, a prosthetic material is produced by combining a cartilage substitute and a bone substitute, and a bone substitute is used for the joint skull and a cartilage substitute for the articular cartilage. It is conceivable to insert and fix objects. However, if both of these alternatives are not monolithic and consist of a combination of separate parts, a continuous connective transition form of cartilage and bone tissue cannot be obtained, and when the joint is in operation, There arises a problem that the two peel off. Therefore, the scaffold material worthy of being used for the joint part has a good affinity for bone in the bone and biohistologically and mechanically, and the part in the cartilage has a good affinity for the cartilage and biohistologically and mechanically. It must be stable in the bone joint, which is a movable interface, so that it does not fall out.

この場合、目的とする補綴材が金属や、セラミック、ポリマーなどの生体内で非吸収性であれば、経時的に生体組織と置き換わらず、長期埋入時に感染や、機械的な故障のような問題発生の危惧を抱え続ける。それゆえ、生体組織と置き換わりつつ、形を再建しながら、ついには、自らは生体内に分解吸収され、消失する、生体活性と生体内分解吸収性を合わせ持つ必要がある。そして、緻密質と多孔質の部分の両方の形態を同時に共有し、しかも、軟骨側を代替する多孔質の部分は、軟骨表面に近いほど、高開放率であり、硬骨を代替する緻密質の部分は、緻密質に埋入している部分ほど、低開放率であることが、力学的にも、生理学的にも望ましい。   In this case, if the target prosthetic material is non-absorbable in the living body such as metal, ceramic, polymer, etc., it will not be replaced with living tissue over time, and infection or mechanical failure may occur during long-term implantation. Continuing to worry about the occurrence of new problems. Therefore, it is necessary to have both the bioactivity and the biodegradability that can be decomposed and absorbed in the living body and disappear in the living body while being replaced with the living tissue and reconstructing the shape. In addition, the porous part that shares both the dense and porous parts at the same time, and the porous part that substitutes for the cartilage side has a higher open rate as it is closer to the cartilage surface, and the dense part that substitutes for the bone. It is desirable from a mechanical and physiological viewpoint that the portion of the portion that is densely embedded has a lower open rate.

すなわち、関節骨軟骨障害等の治療、再建の足場は、多孔質部は細胞が速やかに侵入し、足場の分解に伴って軟骨組織が表層部に誘導形成されて生体組織と交換し、緻密層は分解されるまでのある程度の期間、硬骨を伝導、密着して、十分な強度を維持するが、最終的には全て分解されて硬骨組織と完全置換するような材料の開発が求められる。   That is, scaffolds for the treatment and reconstruction of articular osteochondral disorders, etc., in the porous part, cells rapidly invade, the cartilage tissue is induced and formed in the surface layer part with the degradation of the scaffold, and exchanges with the biological tissue, the dense layer For a certain period until it is decomposed, the bone is conducted and closely adhered to maintain a sufficient strength, but finally, development of a material that is completely decomposed and completely replaces the bone tissue is required.

ところで、本発明者は、海綿骨の表層(外側)に皮質骨を備えた生体骨の欠損部分を修復、再建するインプラント材料として、その内部に連続気孔を有し且つ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーよりなる立体状の多孔体の表面の一部に、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーよりなる緻密質な表皮層を重ねて一体化した人工骨を既に提案した(特許文献1)。   By the way, the present inventor, as an implant material for repairing and reconstructing a defect portion of a living bone having cortical bone on the surface layer (outside) of the cancellous bone, has a continuous pore inside and is a bioactive bioceramic powder. A dense skin layer made of biodegradable absorbable polymer containing bioactive bioceramic powder is laminated on a part of the surface of a three-dimensional porous material made of biodegradable absorbable polymer containing An artificial bone has already been proposed (Patent Document 1).

このインプラント材料は、上記生体骨の内層部の海綿骨欠損部分に充当して立体状の多孔体を埋入し、表層部の皮質骨欠損部分に充当して緻密質な表皮層を埋入するものである。これは自家移植(autograft)骨片、同種移植(allograft)骨片の代替材料として好適に使用される人工骨である。けれども、異質の機能と物質からなり、軟骨と硬骨が動きを伴って接触する非連続的骨結合部位である境界面、即ち、関節の位置に適応すべき足場として相応しいものでない。
特開2004−121301号公報
This implant material is applied to the cancellous bone defect portion of the inner layer of the living bone to embed a three-dimensional porous body, and is applied to the cortical bone defect portion of the surface layer to embed a dense epidermis layer. Is. This is an artificial bone preferably used as a substitute material for autograft bone fragments and allograft bone fragments. However, it is not suitable as a scaffold to be adapted to the boundary surface, which is a discontinuous osteosynthesis site where the cartilage and the bone come into contact with each other with movement, which is composed of different functions and materials, that is, the position of the joint.
JP 2004-121301 A

本発明は上記事情の下になされたもので、股関節や膝関節などの関節骨軟骨に異常があり該軟骨を修復、再生、再建する必要がある場合、つまり関節骨頭の壊死部の治療、再建や、靱帯の骨関節付着部を強化する場合に使用される一時的補綴・足場材料として、当該医療分野で希求されている上述の物性ないし機能を備えて骨関節に安定的に埋入固定できるインプラント傾斜材料を提供することを解決課題としている。   The present invention has been made under the above circumstances, and when there is an abnormality in the articular bone cartilage such as the hip joint and the knee joint, it is necessary to repair, regenerate and reconstruct the cartilage, that is, treatment and reconstruction of the necrotic part of the joint bone head. As a temporary prosthesis / scaffold material used to strengthen the bone joint attachment part of the ligament, it can be stably embedded and fixed in the bone joint with the above-mentioned physical properties and functions that are desired in the medical field. The problem to be solved is to provide an implant gradient material.

上記の課題を解決するため、本発明に係る第一のインプラント傾斜材料は、生体内吸収性、かつ、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体からなり、気孔率が10〜90%の範囲内で該複合体の片側の表層部から反対側の表層部に近づくほど高くなるように順次連続的に変化していることを特徴とするものである。
そして、本発明に係る第二のインプラント傾斜材料は、生体内吸収性、かつ、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体からなり、気孔率が10〜90%の範囲内で該複合体の中間部から両側の表層部に近づくほど、又は、該複合体の中央部から周囲の表層部に近づくほど高くなるように順次連続的に変化していることを特徴とするものである。
In order to solve the above problems, the first implant gradient material according to the present invention is a bioresorbable and bioactive bioceramic powder-containing biodegradable absorbable polymer continuous porous composite. In the range of 10 to 90%, the porosity is successively changed so as to increase from the surface layer portion on one side to the surface layer portion on the opposite side. .
And the 2nd implant inclination material which concerns on this invention consists of a continuous porous composite body of the biodegradable absorptive polymer containing the bioresorbable and bioactive bioceramics powder, and the porosity is 10 Within the range of ˜90%, it is successively changed so as to become higher as it approaches the surface layer part on both sides from the intermediate part of the complex or from the center part of the complex to the surrounding surface layer part. It is characterized by this.

第一のインプラント傾斜材料にあっては、バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、連続気孔質複合体の片側の表層部から反対側の表層部に近づくほど高くなるように順次連続的に変化していることが好ましい。また、第二のインプラント傾斜材料にあっては、バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、連続気孔質複合体の中間部から両側の表層部に近づくほど、又は、該複合体の中央部から周囲の表層部に近づくほど高くなるように順次連続的に変化していることが好ましい。そして、これらのインプラント傾斜材料はいずれも、連続気孔質複合体に、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-b)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)などの少なくとも一種、及び/又は、生体由来の骨芽細胞が含浸されていることが好ましい。   In the first implant gradient material, the content of the bioceramic powder is higher in the range of 30 to 80% by mass as it approaches the surface layer on the opposite side from the surface layer on one side of the continuous porous composite. It is preferable to change continuously so that it may become. Moreover, in the second implant gradient material, the content of the bioceramic powder is within the range of 30 to 80% by mass, and the closer to the surface layer parts on both sides from the middle part of the continuous porous composite, or It is preferable that the thickness of the composite is continuously changed so as to increase from the central portion toward the surrounding surface layer portion. All of these implant gradient materials are formed into a continuous pore composite, BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-b), EP4 (Prostanoid Receptor), biological bone growth factors, It is preferable to be impregnated with at least one of b-FGF (basic fibroblast growth factor), PRP (platelet-rich plasma) and / or living osteoblasts.

このような本発明のインプラント傾斜材料は、関節骨軟骨障害の治療、再生又は靱帯の骨関節付着部の再建もしくは補強に用いられ、関節頭と関節軟骨が接している膝、股、足、肩、肘、脊椎(頚椎、腰椎)などの関節部に一時的な補綴材、足場および生物学的骨形成因子の除放のための担持体として適用される。   Such an implant gradient material of the present invention is used for treatment, regeneration, or reconstruction or reinforcement of a bone-joint attachment portion of a ligament, and the joint head and the joint cartilage are in contact with the knee, crotch, foot, and shoulder. It is applied to joints such as elbows and spine (cervical vertebrae, lumbar vertebrae) as temporary prosthetic materials, scaffolds and carriers for the release of biological osteogenic factors.

本発明のインプラント傾斜材料は、連続気孔質複合体の気孔率の高い表層部の連続気孔に体液が浸透し易いため、表層部の表面に接触する体液や連続気孔に浸透する体液によって表面と内部から速やかに加水分解される。そして、この気孔率の高い表層部は骨芽細胞も侵入し易いため、加水分解に伴って(軟)骨組織が生体活性なバイオセラミックス粉体が引き金となって気孔率の高い表層部から内部へ誘導形成されて、短期間で表層部やこれに連なる気孔率の比較的高い内層部が(軟)骨組織と置換する。一方、連続気孔質複合体の気孔率の低い片側の表層部や中間部や中央部は強度があり、加水分解が気孔率の高い表層部よりも遥かに遅く、加水分解がある程度進行するまでの期間、強度を維持し、最終的には全てが分解されて、生体活性なバイオセラミックス粉体により生体骨が伝導形成されて、骨組織と置換する。そして、この連続気孔質複合体に含まれるバイオセラミックス粉体は生体内吸収性であるため、置換、再生された(軟)骨組織に残存、堆積することもない。また、軟組織や血管内に浸出することもない。このように、本発明のインプラント傾斜材料は、関節骨軟骨障害の治療などに使用される足場材料として要求される物性ないし機能を有するものであるため、例えば、第一のインプラント傾斜材料を、関節骨頭の壊死部を切除した部分に、気孔率の高い表層部が関節骨頭表面の軟骨側となるように埋入固定すると、気孔率の高い表層部やこれに連なる気孔率の比較的高い内層部が早期に誘導形成された軟骨組織と全置換して消失し、強度を有する気孔率の低い反対側の部分も最終的には伝導形成された硬骨組織と全置換して消失し、バイオセラミックス粉体も完全に吸収されて、関節骨頭の壊死した硬骨部分と軟骨部分が再生される。また、第二のインプラント傾斜材料を関節骨頭の切除部分に埋入すると、上記の作用効果に加えて、切除部分の硬骨と接する気孔率の高い表層部に硬骨組織が速やかに誘導形成され、インプラント傾斜材料が短期間で関節骨頭の切除部分と結合して固定される。   In the implant gradient material of the present invention, the body fluid easily penetrates into the continuous pores of the surface layer portion having a high porosity of the continuous porous composite, so that the body fluid contacting the surface of the surface layer portion and the body fluid penetrating the continuous pores are Is rapidly hydrolyzed. And since the surface part with high porosity is easy for osteoblasts to invade, the (soft) bone tissue is triggered by bio-ceramics powder that is bioactive during hydrolysis, and the inside of the surface part with high porosity is In a short period of time, the surface layer portion and the inner layer portion having a relatively high porosity connected thereto are replaced with (soft) bone tissue in a short period of time. On the other hand, the surface part, middle part and central part on one side with low porosity of the continuous porous composite are strong, hydrolysis is much slower than the surface part with high porosity, and hydrolysis proceeds to some extent. The strength is maintained for a period of time, and finally, everything is decomposed, and the living bone is formed by conduction with the bioactive bioceramic powder to replace the bone tissue. And since the bioceramics powder contained in this continuous porous composite is in vivo absorbable, it does not remain or deposit in the replaced and regenerated (soft) bone tissue. Moreover, it does not leach into soft tissues or blood vessels. Thus, since the implant gradient material of the present invention has physical properties or functions required as a scaffold material used for the treatment of osteoarticular cartilage disorders, for example, the first implant gradient material is used as the joint material. If the surface layer part with high porosity is embedded and fixed in the part where the necrotic part of the bone head is excised, the surface layer part with high porosity and the inner layer part with relatively high porosity connected thereto are fixed. Disappears by replacing the cartilage tissue that was induced and formed early, and disappearing by replacing the bone part with the low porosity, which has strength, with the total replacement with the bone tissue formed by conduction. The body is also completely absorbed and the necrotic bone and cartilage parts of the joint head are regenerated. Moreover, when the second implant gradient material is embedded in the excised portion of the joint bone head, in addition to the above-described effects, the bone tissue is rapidly induced and formed in the surface layer portion having a high porosity in contact with the bone of the excised portion. The tilted material is fixed in combination with the excised part of the articular head in a short period of time.

バイオセラミックス粉体の含有率は、連続気孔質複合体の全体に亘って一定していてもよいが、バイオセラミックス粉体の含有率が30〜80質量%の範囲内で連続気孔質複合体の片側の表層部から反対側の表層部に近づくほど高くなるように順次連続的に変化しているインプラント傾斜材料や、バイオセラミックス粉体の含有率が30〜80質量%の範囲内で、連続気孔質複合体の中間部から両側の表層部に近づくほど、又は、該複合体の中央部から周囲の表層部に近づくほど高くなるように順次連続的に変化しているインプラント傾斜材料は、バイオセラミックス粉体の含有率が高い表層部の生体活性が高くなるため、表層部における骨芽細胞や(軟)骨組織の誘導形成が特に活発になり、(軟)骨組織との置換が一層促進される。   The content of the bioceramic powder may be constant throughout the continuous porous composite, but the content of the bioceramic powder is within the range of 30 to 80% by mass of the continuous porous composite. Within the range of the content of the implant gradient material or bioceramics powder that is successively changed so as to increase from the surface layer portion on one side to the surface layer portion on the opposite side, the continuous pores The implant gradient material which is successively changed so as to increase from the middle part of the porous composite to the surface layer part on both sides or from the center part of the composite to the surrounding surface part part is bioceramics. Since the bioactivity of the surface layer portion with a high powder content increases, the induction formation of osteoblasts and (soft) bone tissue in the surface layer portion becomes particularly active, and the replacement with (soft) bone tissue is further promoted. The

また、連続気孔質複合体に生物学的骨成長因子であるBMP、TGF−β、EP4、b−FGF、PRPの少なくとも一種、及び/又は、生体由来の骨芽細胞が含浸されているインプラント傾斜材料は、骨芽細胞の増殖、成長が大幅に促進されるため、(軟)骨組織の形成が旺盛になって一層速やかに再生される。   In addition, an implant gradient in which a continuous pore complex is impregnated with at least one of biological bone growth factors BMP, TGF-β, EP4, b-FGF, and PRP and / or living osteoblasts Since the material greatly promotes the proliferation and growth of osteoblasts, the formation of (soft) bone tissue is vigorous and is regenerated more rapidly.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1の(a)は本発明の一実施形態に係るインプラント傾斜材料の斜視図、(b)は同インプラント傾斜材料の断面図、図2は同インプラント傾斜材料の一使用例の説明図である。   1A is a perspective view of an implant gradient material according to an embodiment of the present invention, FIG. 1B is a cross-sectional view of the implant gradient material, and FIG. 2 is an explanatory diagram of an example of use of the implant gradient material. .

このインプラント傾斜材料10は、生体内吸収性、かつ、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体1からなるものであって、その気孔率が10〜90%の範囲内で該複合体の片側の表層部1a(下面側の表層部)から反対側の表層部(上面側の表層部)に近づくほど高くなるように順次連続的に変化している。この連続気孔質複合体1からなるインプラント傾斜材料は、図1の(a)に示すように円柱状に形成されているが、これに限定されるものではなく、埋入される関節部位に応じて、四角柱状、楕円柱状、平板状その他の種々の形状となし得るものであり、また、その大きさも埋入される関節部位に応じて最適の大きさとすればよいものである。   This implant gradient material 10 is composed of a continuous porous composite 1 of a biodegradable and absorbable polymer containing a bioceramic powder that is bioabsorbable and bioactive, and has a porosity of 10 to 10. Within 90% of the range, the composite layer successively changes so as to increase from the surface layer portion 1a on the one side (surface layer portion on the lower surface side) toward the surface layer portion on the opposite side (surface layer portion on the upper surface side). . The implant gradient material made of the continuous porous composite 1 is formed in a columnar shape as shown in FIG. 1 (a), but is not limited to this, and depends on the joint site to be implanted. Various shapes such as a rectangular column shape, an elliptic column shape, a flat plate shape, and the like can be obtained, and the size may be set to an optimum size according to the joint site to be embedded.

この連続気孔質複合体1の原料となる生体内分解吸収性ポリマーとしては、結晶性のポリ−L−乳酸やポリグリコール酸なども使用されるが、この連続気孔質複合体1の気孔率の高い表層部1aやこれに連なる気孔率の比較的高い内層部は軟骨程度の強度と柔軟性が要求され、且つ、速やかに分解して生体(軟)骨との結合や全置換が早期に行われることが必要なものであるから、連続気孔質複合体1の原料となる生体内分解吸収性ポリマーとしては、安全で、分解が速く、あまり脆くない、非晶質もしくは結晶と非晶の混在したポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とカプロラクトンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とパラ−ジオキサノンの共重合体などが適しており、これらは単独で、或いは二種以上混合して使用される。これらの生体内分解吸収性ポリマーは、連続気孔質複合体1に要求される強度や生体内での分解吸収の期間などを考慮すると、5万〜60万程度の粘度平均分子量を有するものが好ましく使用される。   Crystalline poly-L-lactic acid, polyglycolic acid, or the like is also used as the biodegradable absorbable polymer that is a raw material of the continuous porous composite 1. The high surface layer portion 1a and the inner layer portion having a relatively high porosity are required to be as strong and flexible as cartilage, and are quickly decomposed so that they can be quickly combined with living (soft) bone or replaced completely. As a biodegradable absorbent polymer used as a raw material for the continuous porous composite 1, it is safe, decomposes quickly, is not very brittle, and is a mixture of amorphous or crystalline and amorphous. Poly-D, L-lactic acid, L-lactic acid and D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and caprolactone copolymer, lactic acid and ethylene glycol copolymer, lactic acid And para-dioxanone copolymer, etc. Suitable are, they alone or used by mixing two or more. These biodegradable and absorbable polymers are preferably those having a viscosity average molecular weight of about 50,000 to 600,000 in consideration of the strength required for the continuous porous composite 1 and the period of in vivo degradation and absorption. used.

上記のインプラント傾斜材料10を構成する連続気孔質複合体1は、内部に連続気孔を有し、この連続気孔の内面や複合体1の表面にバイオセラミックス粉体が一部露出した状態で含有されているものである。そして、この連続気孔質複合体1の気孔率は、上述したように、10〜90%の範囲内、好ましくは20〜80%の範囲内で、片側の表層部1a(下面側の表層部)から反対側の表層部1b(上面側の表層部)に近づくほど高くなるように順次連続的に変化している。連続気孔は気孔全体の50〜90%、なかんずく70〜90%を占めることが好ましい。また、連続気孔の孔径は50〜600μmの範囲内、好ましくは100〜400μmの範囲内に調整されており、気孔率の高い片側の表層部1bに近づくほど、孔径が大きくなっている。   The continuous porous composite 1 constituting the implant gradient material 10 has continuous pores therein, and is contained in a state where a part of the bioceramic powder is exposed on the inner surface of the continuous pores or on the surface of the composite 1. It is what. And as above-mentioned, the porosity of this continuous porous composite 1 is within the range of 10 to 90%, preferably within the range of 20 to 80%, and the surface layer portion 1a (the surface layer portion on the lower surface side) on one side. To the surface layer portion 1b on the opposite side (surface layer portion on the upper surface side). The continuous pores preferably account for 50 to 90% of the total pores, especially 70 to 90%. In addition, the pore diameter of the continuous pores is adjusted in the range of 50 to 600 μm, preferably in the range of 100 to 400 μm, and the pore diameter increases as it approaches the surface layer portion 1b on one side having a higher porosity.

このように気孔率等が傾斜していると、連続気孔質複合体1の気孔率の高い片側の表層部1b(以下、高気孔率表層部と記す)は、体液の浸透が容易で速やかに加水分解され、しかも、骨芽細胞が侵入し易く、後述するように生体活性なバイオセラミックス粉体の含有率が高いことと相俟って、早期に(軟)骨組織が誘導形成されて生体(軟)骨と結合、置換される。高気孔率表層部1bの気孔率が90%を上回り、孔径が600μmよりも大きくなると、高気孔率表層部1bの物理的な強度が低下して脆くなるので好ましくない。また、連続気孔が気孔全体の50%を下回り、且つ、孔径が50μmよりも小さくなると、体液や骨芽細胞の侵入が困難になり、加水分解や骨組織の誘導形成が遅くなって、生体(軟)骨との結合や置換に要する時間が長くなるので好ましくない。ただし、上記の好適な孔径と併存して1〜0.1μmのサブミクロン程度微細な連続気孔が存在すると、骨誘導性が発現されることが見出されている。   When the porosity or the like is inclined as described above, the surface layer portion 1b (hereinafter referred to as a high porosity surface layer portion) having a high porosity of the continuous porous composite 1 can easily and quickly penetrate body fluid. Coupled with the fact that it is hydrolyzed and osteoblasts easily invade and the content of bioactive bioceramic powder is high as described later, (soft) bone tissue is induced and formed at an early stage. Combined and replaced with (soft) bone. If the porosity of the high-porosity surface layer portion 1b exceeds 90% and the pore diameter is larger than 600 μm, the physical strength of the high-porosity surface layer portion 1b is lowered and becomes brittle. In addition, if the continuous pores are less than 50% of the total pores and the pore diameter is smaller than 50 μm, it is difficult for the body fluid and osteoblasts to enter, and hydrolysis and induced formation of bone tissue are slowed down. (Soft) It is not preferable because it takes a long time to bond and replace bone. However, it has been found that osteoinductivity is expressed when there are continuous pores as fine as about 1 to 0.1 μm in combination with the above preferable pore diameter.

一方、連続気孔質複合体1の気孔率が低い反対側(下面側)の表層部1a(以下、低気孔率表層部と記す)は、気孔率が低くなるほど強度が向上することになるが、関節部に足場として適応されるインプラント傾斜材料には極端に大きい強度が要求されないので、低気孔率表層部1aの気孔率を零に近づける必要はない。そこで、低気孔率表層部1aの気孔率の下限を10%、好ましくは20%として、足場に適した強度を付与すると共に、加水分解や(軟)骨細胞との全置換に要する時間を短縮できるようにしている。   On the other hand, the strength of the surface layer portion 1a on the opposite side (lower surface side) where the porosity of the continuous porous composite 1 is low (hereinafter referred to as a low porosity surface layer portion) is improved as the porosity decreases. Since an extremely high strength is not required for the implant gradient material adapted as a scaffold for the joint, it is not necessary to bring the porosity of the low-porosity surface layer portion 1a close to zero. Therefore, the lower limit of the porosity of the low-porosity surface layer portion 1a is set to 10%, preferably 20%, to give strength suitable for a scaffold and to shorten the time required for hydrolysis and total replacement with (soft) bone cells. I can do it.

この連続気孔質複合体1に含有させるバイオセラミックス粉体としては、生体活性があり、生体内吸収性で生体に全吸収されて骨組織と完全に置換され、良好な骨伝導(誘導)能と良好な生体親和性を有する、未仮焼かつ未焼成のハイドロキシアパタイト、ジカルシウムホスフェート、トリカルシウムホスフェート、テトラカルシウムホスフェート、オクタカルシウムホスフェート、カルサイト、セラバイタル、ジオプサイト、天然珊瑚等の粉体が好ましく使用される。その中でも、未仮焼かつ未焼成のハイドロキシアパタイト、トリカルシウムホスフェート、オクタカルシウムホスフェートは、生体活性が極めて高く、骨伝導能に優れ、為害性が低く、短期間で生体に吸収されるので、最適である。   The bioceramic powder to be contained in the continuous porous composite 1 is bioactive, absorbs in vivo, is totally absorbed by the living body, and is completely replaced with bone tissue, and has good bone conduction (induction) ability. Non-calcined and uncalcined hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, diopsite, smallpox, etc. having good biocompatibility are preferred used. Among them, uncalcined and uncalcined hydroxyapatite, tricalcium phosphate, and octacalcium phosphate are optimal because they have extremely high bioactivity, excellent osteoconductivity, low toxicity and are absorbed into the body in a short period of time. It is.

これらのバイオセラミックス粉体は、生体内分解吸収性ポリマーへの分散性や生体への吸収性を考慮すると、30μm以下、好ましくは10μm以下、更に好ましくは0.1〜5μm程度の粒径を有するものが使用される。特に、0.1〜5μm程度の粒径を有するバイオセラミックス粉体は、生体への吸収性が良好であることに加えて、後述する方法で連続気孔質複合体1を作製する際にスプレー等の手段で形成される繊維を短く切断する心配もないので好ましく使用される。   These bioceramic powders have a particle size of about 30 μm or less, preferably about 10 μm or less, more preferably about 0.1 to 5 μm in consideration of dispersibility in the biodegradable absorbable polymer and absorbability to the living body. Things are used. In particular, the bioceramic powder having a particle size of about 0.1 to 5 μm has good absorbability to the living body, and sprays and the like when producing the continuous porous composite 1 by the method described later. It is preferably used because there is no fear of cutting the fiber formed by the above method.

連続気孔質複合体1のバイオセラミックス粉体の含有率は、連続気孔質複合体1の全体に亘って一定していてもよいが、30〜80質量%の範囲内で、低気孔率表層部1aから高気孔率表層部1bに近づくほど高くなるように順次連続的に変化していることが好ましい。即ち、低気孔率表層部1aから高気孔率表層部1bに近づくにつれて、バイオセラミックス粉体/生体内分解吸収性ポリマーの質量比率が30/70〜80/20の範囲内で順次連続的に大きくなるように変化していることが好ましい。このようにバイオセラミックス粉体の含有率が傾斜していると、高気孔率表層部1bの生体活性が大きく、骨芽細胞や(軟)骨組織の誘導形成が特に活発になるため、生体(軟)骨との結合や置換が一層促進される。   The content of the bioceramic powder of the continuous porous composite 1 may be constant throughout the continuous porous composite 1, but within the range of 30 to 80% by mass, the low porosity surface layer portion It is preferable that the ratio is successively changed so as to increase from 1a toward the high porosity surface layer portion 1b. That is, as the low porosity surface layer portion 1a approaches the high porosity surface layer portion 1b, the mass ratio of the bioceramic powder / biodegradable absorbent polymer is successively increased within a range of 30/70 to 80/20. It is preferable to change so that. When the content of the bioceramic powder is inclined as described above, the bioactivity of the high-porosity surface layer portion 1b is large, and the induction formation of osteoblasts and (soft) bone tissue is particularly active. Bonding and replacement with (soft) bone is further promoted.

高気孔率表層部1bにおけるバイオセラミックス粉体の含有率が80質量%を上回ると、高気孔率表層部1bの物理的強度の低下を招くという不都合が生じ、低気孔率表層部1aにおける含有率が30質量%を下回ると、低気孔率表層部1aのバイオセラミックス粉体による(軟)骨組織の誘導形成が不活発になるため、生体(軟)骨との結合や全置換に時間がかかり過ぎるという不都合が生じる。バイオセラミックス粉体の更に好ましい含有率の上限は70質量%である。   When the content ratio of the bioceramic powder in the high porosity surface layer portion 1b exceeds 80% by mass, there is a disadvantage in that the physical strength of the high porosity surface layer portion 1b is reduced, and the content ratio in the low porosity surface layer portion 1a. Is less than 30% by mass, the induction of formation of (soft) bone tissue by the bioceramic powder of the low-porosity surface layer 1a becomes inactive. The inconvenience of passing is caused. The upper limit of the more preferable content rate of bioceramics powder is 70 mass%.

この連続気孔質複合体1には、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-b)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)などの少なくとも一種、及び/又は、生体由来の骨芽細胞を含浸させることが好ましい。これらの生物学的骨成長因子や骨芽細胞を含浸させると、骨芽細胞の増殖、成長が大幅に促進され、極く短期間(1週間程度)で連続気孔質複合体1の高気孔率表層部1bに(軟)骨組織が形成されるようになり、その後、連続気孔質複合体1の全体が(軟)骨組織と全置換されて生体(軟)骨が修復、再建される。上記の因子のうち、TGF−β、b−FGFは軟骨の成長に特に有効であり、BMP、EP4は硬骨の成長に特に有効であるから、再生すべき生体骨が軟骨の場合はTGF−βやb−FGFを、再生すべき生体骨が硬骨の場合はBMPやEP4を含浸させることが好ましい。また、PRPは、血小板が豊富に濃縮された血漿であり、これを添加すると、新生骨の形成が促進される。なお、場合によっては、IL−1、TNF−α、TNF−β、IFN−γなどの他の成長因子や薬剤を含浸させてもよい。   This continuous pore complex 1 includes biological bone growth factors BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-b), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast Growth Factor). ) And / or PRP (platelet-rich plasma) and / or a living osteoblast is preferably impregnated. When impregnated with these biological bone growth factors and osteoblasts, the proliferation and growth of osteoblasts are greatly promoted, and the high porosity of the continuous pore complex 1 is extremely short (about 1 week). A (soft) bone tissue is formed in the surface layer portion 1b, and then the whole of the continuous porous composite 1 is completely replaced with the (soft) bone tissue, and the living body (soft) bone is repaired and reconstructed. Among the above factors, TGF-β and b-FGF are particularly effective for the growth of cartilage, and BMP and EP4 are particularly effective for the growth of bone. Therefore, when the living bone to be regenerated is cartilage, TGF-β And b-FGF are preferably impregnated with BMP or EP4 when the living bone to be regenerated is a hard bone. PRP is plasma rich in platelets, and the addition of this promotes the formation of new bone. In some cases, other growth factors such as IL-1, TNF-α, TNF-β, and IFN-γ may be impregnated.

また、この連続気孔質複合体1の表面には、コロナ放電、プラズマ処理、過酸化水素処理などの酸化処理を施してもよく、このような酸化処理を施すと、連続気孔質複合体2の表面の濡れ特性が改善され、骨芽細胞が該複合体2の連続気孔内に一層効果的に侵入して成長するため、生体(軟)骨との結合や全置換が更に促進される利点がある。   Further, the surface of the continuous porous composite 1 may be subjected to oxidation treatment such as corona discharge, plasma treatment, hydrogen peroxide treatment, and the like. Since the wettability of the surface is improved and osteoblasts invade and grow more effectively into the continuous pores of the complex 2, there is an advantage that the binding to the living body (soft) bone and the total replacement are further promoted. is there.

上記の連続気孔質複合体1よりなるインプラント傾斜材料は、例えば、次の方法で製造される。まず、揮発性溶媒に生体内分解吸収性ポリマーを溶解すると共に、バイオセラミックス粉体を混合して懸濁液を調製し、この懸濁液をスプレー等の手段で繊維化して繊維の絡み合った繊維集合体を形成する。そして、この繊維集合体をメタノール、エタノール、イソプロパノール、ジクロロエタン(メタン)、クロロホルムなどの揮発性溶剤に浸漬して膨潤または半溶融状態とし、これを加圧して図1に示すような円柱状の多孔質の繊維融着集合体となし、この繊維融着集合体をの繊維を収縮、融合させながら実質的に繊維状の形態を消失させてマトリクス化し、繊維間空隙が丸みを有する連続気孔となった連続気孔質複合体に形態変化させる。その場合、上記のように繊維集合体を揮発性溶剤に浸漬して膨潤又は半溶融状態とし,これを加圧して繊維融着集合体とする際に、繊維集合体の量を片側(下面側)から反対側(上面側)に近づくほど少なくすると、片側の表層部1aから反対側の表層部1bに向かって気孔率が順次連続的に大きくなる連続気孔質複合体1を得ることができる。また、バイオセラミックス粉体の含有率が低気孔率表層部1aから高気孔率表層部1bに近づくほど高くなる連続気孔質複合体を製造する場合は、バイオセラミックス粉体の混合量が異なる数種類の懸濁液を調製して、バイオセラミックス粉体の含有率が異なる数種類の繊維集合体を形成し、これらの繊維集合体をバイオセラミックス粉体の含有率が低いものから順々に重ねて膨潤又は半溶融状態となして加圧すればよい。   The implant gradient material made of the continuous porous composite 1 is manufactured by, for example, the following method. First, a biodegradable polymer is dissolved in a volatile solvent, and a bioceramic powder is mixed to prepare a suspension. The suspension is made into a fiber by means of spraying or the like, and the fibers are intertwined. Form an aggregate. Then, this fiber assembly is immersed in a volatile solvent such as methanol, ethanol, isopropanol, dichloroethane (methane), chloroform, etc. to be in a swollen or semi-molten state, and this is pressurized to form a cylindrical porous body as shown in FIG. The fiber fusion aggregate is formed into a matrix with the fiber-like form disappearing while the fibers of the fiber fusion aggregate are contracted and fused to form a matrix, and the inter-fiber voids become round pores. It is transformed into a continuous porous composite. In that case, when the fiber assembly is immersed in a volatile solvent to be in a swollen or semi-molten state as described above and pressed into a fiber fusion assembly, the amount of the fiber assembly is reduced to one side (lower surface side). ) From the surface layer portion 1a on one side to the surface layer portion 1b on the opposite side, the continuous porosity composite 1 can be obtained in which the porosity increases successively in sequence. Further, when producing a continuous porous composite in which the content of bioceramic powder increases from the low porosity surface layer portion 1a to the high porosity surface layer portion 1b, several kinds of bioceramic powders having different mixing amounts are produced. A suspension is prepared to form several types of fiber aggregates with different bioceramic powder content, and these fiber aggregates are swelled or stacked one after another in order from the one with the lowest bioceramic powder content. What is necessary is just to pressurize in a semi-molten state.

以上のようなインプラント傾斜材料10を用いて、例えば膝骨頭壊死などの関節骨軟骨障害を治療する場合は、図2に示すように、膝骨頭2の壊死部分を切除して、その切除部分3にインプラント傾斜材料10(好ましくは硬骨の成長に有効なBMP、EP4あるいはPRPを低気孔率表層部1aやこれに連なる気孔率の比較的低い内層部に含有させ、軟骨に有効な生物学的成長因子であるTGF−β、b−FGFを高気孔率表層部1bやこれに連なる気孔率の比較的高い内層部に含有させたもの)を、高気孔率表層部1bが軟骨4側となるように面一に埋入固定する。このようにインプラント傾斜材料10を埋入すると、高気孔率表層部1bがその表面に接触する体液や内部の連続気孔に浸透する体液によって表面と内部から速やかに加水分解され、生体活性なバイオセラミックス粉体によって、軟骨4と接する高気孔率表層部1bの周側面に軟骨組織が極く短期間で誘導形成されて、高気孔率表層部1bと軟骨4が結合し、その後、高気孔率表層部1bやこれに連なる気孔率の比較的高い内層部がすみやかに軟骨組織と全置換されて消失する。一方、連続気孔質複合体1の低気孔率表層部1aやこれに連なる気孔率の比較的低い内層部は、加水分解がある程度進行するけれども、高気孔率表層部1bが軟骨組織に置換される頃までは十分な強度を維持する。そして、加水分解の更なる進行に伴って、膝関節頭2の硬骨組織がバイオセラミックス粉体の骨伝導能により低気孔率表層部1aやこれに連なる気孔率の比較的低い内層部に伝導形成され、最終的には硬骨組織と置換されて消失する。また、この連続気孔質複合体1に含まれていたバイオセラミックス粉体も、完全に吸収されて消失する。これによって、膝関節骨軟骨障害部分は完全に修復、再建される。   In the case of treating an articular osteochondral disorder such as knee osteonecrosis using the implant gradient material 10 as described above, as shown in FIG. The implant gradient material 10 (preferably BMP, EP4 or PRP effective for bone growth is contained in the low-porosity surface layer portion 1a or the inner layer portion having a relatively low porosity, which is effective for cartilage growth. TGF-β and b-FGF, which are factors, are contained in the high-porosity surface layer portion 1b and the inner layer portion having a relatively high porosity connected thereto, so that the high-porosity surface layer portion 1b is on the cartilage 4 side. Immediately bury and fix. When the implant gradient material 10 is embedded in this manner, the high porosity surface layer portion 1b is rapidly hydrolyzed from the surface and inside by body fluid contacting the surface or body fluid penetrating the internal continuous pores, and bioactive bioceramics. By the powder, cartilage tissue is induced and formed on the peripheral side surface of the high-porosity surface layer portion 1b in contact with the cartilage 4 in a very short period of time, and the high-porosity surface layer portion 1b and the cartilage 4 are combined, and then the high-porosity surface layer The part 1b and the inner layer part having a relatively high porosity connected to the part 1b are immediately replaced with the cartilage tissue and disappear. On the other hand, although the low-porosity surface layer portion 1a of the continuous porous composite 1 and the inner layer portion having a relatively low porosity connected thereto are hydrolyzed to some extent, the high-porosity surface layer portion 1b is replaced with cartilage tissue. Sufficient strength is maintained until that time. As the hydrolysis proceeds further, the bone tissue of the knee joint head 2 is conductively formed in the low porosity surface layer portion 1a and the inner layer portion having a relatively low porosity connected thereto due to the osteoconductivity of the bioceramic powder. Finally, it is replaced with bone tissue and disappears. The bioceramic powder contained in the continuous porous composite 1 is also completely absorbed and disappears. As a result, the damaged part of the knee articular cartilage is completely repaired and reconstructed.

図3は、本発明の他の実施形態に係るインプラント傾斜材料の断面図である。   FIG. 3 is a cross-sectional view of an implant gradient material according to another embodiment of the present invention.

このインプラント傾斜材料11は、前述したインプラント傾斜材料10と同様に、生体内吸収性かつ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体1からなる円柱状のものであるが、その気孔率が10〜90%の範囲内、好ましくは20〜80%の範囲内で、連続気孔質複合体1の中央部1cから周囲の表層部1dに近づくほど高くなるように順次連続的に変化している点、及び、バイオセラミックス粉体が30〜80質量%の範囲内で、連続気孔質複合体の中央部1cから周囲の表層部1dに近づくほど高くなるように順次連続的に変化している点で、前述したインプラント傾斜材料10と相違している。   This implant gradient material 11 is, like the implant gradient material 10 described above, a columnar shape made of a continuous porous composite 1 of a biodegradable and absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive. However, when the porosity is in the range of 10 to 90%, preferably in the range of 20 to 80%, the porosity increases from the central portion 1c of the continuous porous composite 1 to the surrounding surface layer portion 1d. In the range of 30 to 80% by mass, the bioceramic powder is gradually increased from the central portion 1c of the continuous porous composite to the surrounding surface layer portion 1d. It is different from the implant gradient material 10 described above in that it changes sequentially and continuously.

このようなインプラント傾斜材料11を関節骨の切除部分3に埋入すると、前述したインプラント傾斜材料10の作用効果に加えて、切除部分3の内面に接触する気孔率及びバイオセラミックス粉体含有率の高い表層部1dに硬骨組織が速やかに伝導形成され、短期間で関節骨の切除部分3の内面と結合して固定されるという利点がある。   When such an implant gradient material 11 is embedded in the excised portion 3 of the joint bone, in addition to the effects of the implant gradient material 10 described above, the porosity and bioceramic powder content of the inner surface of the excised portion 3 are in contact. There is an advantage that the bone tissue is rapidly formed in the high surface layer 1d and is fixed in combination with the inner surface of the resection portion 3 of the joint bone in a short period of time.

図4は、本発明の更に他の実施形態に係るインプラント傾斜材料の断面図である。   FIG. 4 is a cross-sectional view of an implant gradient material according to still another embodiment of the present invention.

このインプラント傾斜材料12も、前述したインプラント傾斜材料10と同様に、生体内吸収性かつ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体1からなるものであるが、角柱状に形成されている点、及び、気孔率が10〜90%の範囲内、好ましくは20〜80%の範囲内で、連続気孔質複合体1の中間部1eから上下両側の表層部1f,1fに近づくほど高くなるように順次連続的に変化している点、及び、バイオセラミックス粉体が30〜80質量%の範囲内で、連続気孔質複合体1の中間部1eから上下両側の表層部1f,1fに近づくほど高くなるように順次連続的に変化している点で、前述したインプラント傾斜材料10と相違している。   This implant gradient material 12 is also composed of a continuous porous composite 1 of a biodegradable absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive in the same manner as the implant gradient material 10 described above. Are formed in a prismatic shape, and the porosity is in the range of 10 to 90%, preferably in the range of 20 to 80%, and the upper and lower surface layers from the middle portion 1e of the continuous porous composite 1 Within the range of 30 to 80% by mass of the bioceramic powder, the upper and lower sides from the intermediate portion 1e of the continuous porous composite 1 are successively changed so as to become higher toward the portions 1f and 1f. It is different from the implant gradient material 10 described above in that it gradually changes so as to become higher as it approaches the surface layer portions 1f, 1f on both sides.

このようなインプラント傾斜材料12は、例えば、図5に示すように、脊椎、腰椎、頸椎などの関節部の椎骨5,5間にスペーサとして挿入される。このように挿入すると、上下の椎骨5,5に接する気孔率及びバイオセラミックス粉体含有率の高い表層部1f,1fは速やかに加水分解し、上下の椎骨5,5から骨組織が表層部1f,1fに伝導形成されて、短期間で結合するため、インプラント傾斜材料12が関節部から脱転することはない。そして、表層部1f,1fは早期に骨組織と全置換して消失し、中間部1eはある程度の期間、強度を維持するが、その後、骨組織の伝導形成が進行し、最終的には骨組織と全置換して消失する。   For example, as shown in FIG. 5, the implant gradient material 12 is inserted as a spacer between vertebrae 5, 5 of a joint such as a spine, a lumbar vertebra, and a cervical vertebra. When inserted in this manner, the surface layer portions 1f and 1f having a high porosity and bioceramics powder content in contact with the upper and lower vertebrae 5 and 5 are rapidly hydrolyzed, and the bone tissue is transferred from the upper and lower vertebrae 5 and 5 to the surface layer portion 1f. , 1f and formed in a short time, the implant gradient material 12 does not fall off from the joint. Then, the surface layer portions 1f and 1f are completely replaced with the bone tissue at an early stage and disappear, and the intermediate portion 1e maintains the strength for a certain period of time, but then the conduction formation of the bone tissue proceeds, and finally the bone Disappears with complete replacement of tissue.

上記のように椎骨間にスペーサとして挿入されるインプラント傾斜材料12は、気孔率の高い上下の表層部1f,1fの厚みが大きくなると、該表層部1f,1fが上下から圧縮されて椎骨5,5の上下間隔が小さくなる恐れがあるので、上下の表層部1f,1fの厚みは0.1〜2.0mm程度と薄くするのがよい。また、このような恐れを完全になくすためには、このインプラント傾斜材料12を90度回転させて低気孔率の中間部1eの左右両側に高気孔率の表層部1f,1fを位置させた状態で椎骨5,5間に挿入すれば良い。このようにすると、強度のある低気孔率の中間部1eによって上下の椎骨5,5の間隔を確実に保ったまま、左右両側の高気孔率表層部1f,1fの上下端面により上下の椎骨5,5と早期に橋渡し状態で結合してインプラント複合材料12の脱転を防止することができる。   As described above, the implant gradient material 12 inserted as a spacer between the vertebrae is compressed from above and below when the thickness of the upper and lower surface layer portions 1f and 1f having a high porosity is increased. Therefore, the thickness of the upper and lower surface layer portions 1f and 1f is preferably as thin as about 0.1 to 2.0 mm. Further, in order to completely eliminate such fear, the implant gradient material 12 is rotated 90 degrees and the high porosity surface layer portions 1f and 1f are positioned on the left and right sides of the low porosity intermediate portion 1e. And then inserted between the vertebrae 5 and 5. In this way, the upper and lower vertebrae 5 are supported by the upper and lower end surfaces of the high-porosity surface layer portions 1f and 1f on both the left and right sides while the distance between the upper and lower vertebrae 5 and 5 is reliably maintained by the strong low-porosity intermediate portion 1e. , 5 in an early bridging state to prevent the implant composite material 12 from slipping out.

図6は、本発明の更に他の実施形態に係るインプラント傾斜材料の断面図である。   FIG. 6 is a cross-sectional view of an implant gradient material according to still another embodiment of the present invention.

このインプラント傾斜材料13も、前述したインプラント傾斜材料10と同様に、生体内吸収性かつ生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体1からなるものであるが、靱帯の骨関節付着部の再建、補強に適合するようにピース状(小片状)に形成されている点、及び、気孔率が10〜90%の範囲内、好ましくは20〜80%の範囲内で、連続気孔質複合体1の中間部1eから左右両側の表層部1g,1gに近づくほど高くなるように順次連続的に変化している点、及び、バイオセラミックス粉体が30〜80質量%の範囲内で、連続気孔質複合体1の中間部1eから左右両側の表層部1g,1gに近づくほど高くなるように順次連続的に変化している点で、前述したインプラント傾斜材料10と相違している。   This implant gradient material 13 is also composed of a continuous porous composite 1 of a biodegradable and absorbable polymer containing bioceramic powder that is bioabsorbable and bioactive in the same manner as the implant gradient material 10 described above. However, it is formed in a piece shape (small piece shape) so as to be suitable for reconstruction and reinforcement of the bone joint joint portion of the ligament, and the porosity is in the range of 10 to 90%, preferably 20 to 80%. Within the range, the point where the bioceramic powder is continuously changed from the middle portion 1e of the continuous porous composite 1 to the surface layer portions 1g, 1g on both the left and right sides so as to become higher, and the bioceramic powder is 30 to Within the range of 80% by mass, the implant gradient material described above is that the intermediate gradient portion 1e of the continuous porous composite 1 is successively changed so as to increase toward the surface layer portions 1g and 1g on the left and right sides. 0 and is different.

このインプラント傾斜材料13は、図9に示すように、靱帯の骨関節付着部の再建もしくは補強に使用されるものである。即ち、図9に示すように骨関節の双方の骨に孔6,6をあけ、靱帯8の両端部7,7を孔6,6に通し、靱帯8の両端部7,7と孔6の片側内面との間にインプラント傾斜材料13を挟んで、該両端部7,7と孔6の反対側内面との間にインターフェアランススクリュー9をねじ込んで固定すればよい。このようにすると、インプラント傾斜材料14の両側の高気孔率表層部1g,1gが靱帯8の両端部7、7と孔6の内面に結合し、その後すみやかに骨組織と全置換して消失すると共に、強度のある低気孔率中間部1eもやがては骨組織に全置換して消失するため、靱帯8の両端部7,7は全置換した骨組織を介して孔6に結合される。その場合、インターフェアランススクリュー9が生体活性なバイオセラミックス粉体を含む生体内分解吸収性ポリマーからなるものであれば、このスクリュー9もやがては骨組織に置換されて孔6の内面と靱帯8の両端部7,7に結合するため、靱帯付着部分の固定強度は一層向上することになる。   As shown in FIG. 9, the implant gradient material 13 is used for reconstruction or reinforcement of the bone joint joint portion of the ligament. That is, as shown in FIG. 9, holes 6 and 6 are made in both bones of the bone joint, both ends 7 and 7 of the ligament 8 are passed through the holes 6 and 6, and both ends 7 and 7 of the ligament 8 and the hole 6 are formed. The implant gradient material 13 may be sandwiched between the inner surface of one side and the interference screw 9 may be screwed and fixed between the end portions 7 and 7 and the inner surface on the opposite side of the hole 6. In this way, the high-porosity surface layer portions 1g and 1g on both sides of the implant gradient material 14 are bonded to both end portions 7 and 7 of the ligament 8 and the inner surface of the hole 6 and then immediately replaced with bone tissue to disappear. At the same time, since the strong low-porosity intermediate portion 1e eventually disappears after being completely replaced with bone tissue, both end portions 7 and 7 of the ligament 8 are coupled to the hole 6 through the completely replaced bone tissue. In this case, if the interference screw 9 is made of a biodegradable and absorbable polymer containing bioactive bioceramic powder, the screw 9 is eventually replaced with bone tissue and the inner surface of the hole 6 and both ends of the ligament 8. Since it couple | bonds with the parts 7 and 7, the fixed strength of a ligament adhesion part will improve further.

尚、上記のインプラント傾斜材料11,12,13のいずれにも、前述の生物学的骨成長因子や生体由来の骨芽細胞を含浸させることが好ましいことは言うまでもない。   Needless to say, any of the implant gradient materials 11, 12, 13 is preferably impregnated with the aforementioned biological bone growth factor or living osteoblasts.

(a)は本発明の一実施形態に係るインプラント傾斜材料の斜視図、(b)は同インプラント傾斜材料の概略断面図である。(A) is a perspective view of the implant gradient material which concerns on one Embodiment of this invention, (b) is a schematic sectional drawing of the implant gradient material. 同インプラント傾斜材料の一使用例の説明図である。It is explanatory drawing of one example of use of the implant gradient material. 本発明の他の実施形態に係るインプラント傾斜材料の概略断面図である。It is a schematic sectional drawing of the implant gradient material which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係るインプラント傾斜材料の概略断面図である。It is a schematic sectional drawing of the implant gradient material which concerns on other embodiment of this invention. 同インプラント傾斜材料の一使用例の説明図である。It is explanatory drawing of one example of use of the implant gradient material. 本発明の更に他の実施形態に係るインプラント傾斜材料の概略断面図である。It is a schematic sectional drawing of the implant gradient material which concerns on other embodiment of this invention. 同インプラント傾斜材料の一使用例の説明図である。It is explanatory drawing of one example of use of the implant gradient material.

符号の説明Explanation of symbols

1 連続気孔質複合体
1a 片側の表層部
1b 反対側の表層部
1c 中央部
1d 周囲の表層部
1e 中間部
1f 上下両側の表層部
1g 左右両側の表層部
2 関節骨頭
3 関節骨頭の切除部分
4 軟骨
8 靱帯
10,11,12,13 インプラント傾斜材料
DESCRIPTION OF SYMBOLS 1 Continuous porous composite body 1a One surface layer part 1b Opposite surface layer part 1c Center part 1d Surrounding surface layer part 1e Middle part 1f Upper and lower both surface layer parts 1g Left and right both surface layer parts 2 Joint head 3 Joint bone head resection part 4 Cartilage 8 Ligament 10, 11, 12, 13 Implant gradient material

Claims (7)

生体内吸収性、かつ、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体からなり、気孔率が10〜90%の範囲内で該複合体の片側の表層部から反対側の表層部に近づくほど高くなるように順次連続的に変化していることを特徴とする、生体内吸収性、かつ、生体活性なインプラント傾斜材料。   It is composed of a continuous porous composite of biodegradable and absorbent polymer containing bioabsorbable and bioactive bioceramic powder, and the surface layer on one side of the composite within a porosity of 10 to 90% A bioabsorbable and bioactive implant gradient material characterized by being successively and continuously changed so as to approach the surface layer portion on the opposite side from the portion. 生体内吸収性、かつ、生体活性なバイオセラミックス粉体を含んだ生体内分解吸収性ポリマーの連続気孔質複合体からなり、気孔率が10〜90%の範囲内で該複合体の中間部から両側の表層部に近づくほど、又は、該複合体の中央部から周囲の表層部に近づくほど高くなるように順次連続的に変化していることを特徴とする、生体内吸収性、かつ、生体活性なインプラント傾斜材料。   It consists of a continuous porous composite of a biodegradable and absorbable polymer containing bioabsorbable and bioactive bioceramic powder, and the porosity is within the range of 10 to 90% from the middle part of the composite The in vivo absorbability and the living body characterized by being continuously changed so as to increase toward the surface layer part on both sides or from the center part of the complex toward the surrounding surface layer part. Active implant gradient material. バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、連続気孔質複合体の片側の表層部から反対側の表層部に近づくほど高くなるように順次連続的に変化している、請求項1に記載のインプラント傾斜材料。   The content ratio of the bioceramic powder is successively changed within a range of 30 to 80% by mass so as to increase from the surface layer portion on one side of the continuous porous composite to the surface layer portion on the opposite side. The implant gradient material according to claim 1. バイオセラミックス粉体の含有率が、30〜80質量%の範囲内で、連続気孔質複合体の中間部から両側の表層部に近づくほど、又は、該複合体の中央部から周囲の表層部に近づくほど高くなるように順次連続的に変化している、請求項2に記載のインプラント傾斜材料。   The content of the bioceramic powder is within a range of 30 to 80% by mass, from the middle part of the continuous porous composite to the surface layer part on both sides, or from the center part of the composite to the surrounding surface layer part. The implant gradient material according to claim 2, which is successively and continuously changed so as to become higher as approaching. 連続気孔質複合体に、生物学的骨成長因子であるBMP(Bone Morphogenic Protein)、TGF−β(Transforming Growth Factor-b)、EP4(Prostanoid Receptor)、b−FGF(basic Fibroblast Growth Factor)、PRP(platelet-rich plasma)の少なくとも一種、及び/又は、生体由来の骨芽細胞が含浸されている、請求項1ないし請求項4のいずれかに記載のインプラント傾斜材料。   In addition to BMP (Bone Morphogenic Protein), TGF-β (Transforming Growth Factor-b), EP4 (Prostanoid Receptor), b-FGF (basic Fibroblast Growth Factor), PRP The implant gradient material according to any one of claims 1 to 4, which is impregnated with at least one kind of (platelet-rich plasma) and / or osteoblasts derived from a living body. 関節骨軟骨障害の治療、再生・再建又は靱帯の骨関節付着部の再建もしくは補強に用いられる請求項1ないし請求項5のいずれかに記載のインプラント材料。   The implant material according to any one of claims 1 to 5, which is used for treatment of osteoarticular cartilage disorder, regeneration / reconstruction, or reconstruction or reinforcement of a bone joint joint portion of a ligament. 関節頭と関節軟骨が接している膝、股、足、肩、肘、脊椎(頚椎、腰椎)などの関節部に補綴材(Prosthesis)、足場(Scaffold)および生物学的骨形成因子の除放のための担持体(Carrier)として適応される請求項1ないし請求項5のいずれかに記載のインプラント傾斜材料。   Prosthesis, scaffolding, and biological bone morphogenetic factors are removed from joints such as knees, hips, feet, shoulders, elbows, spines (cervical vertebrae, lumbar vertebrae) where joint head and articular cartilage are in contact The implant gradient material according to claim 1, which is adapted as a carrier for a carrier.
JP2006066291A 2006-03-10 2006-03-10 Material for implant inclination Pending JP2007236802A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006066291A JP2007236802A (en) 2006-03-10 2006-03-10 Material for implant inclination
CA002643586A CA2643586A1 (en) 2006-03-10 2007-03-08 Implant composite material
EP07738054A EP2005975A4 (en) 2006-03-10 2007-03-08 Composite implant material
CNA2007800086265A CN101400381A (en) 2006-03-10 2007-03-08 Composite implant material
AU2007225892A AU2007225892A1 (en) 2006-03-10 2007-03-08 Composite implant material
US12/282,205 US20090157194A1 (en) 2006-03-10 2007-03-08 Implant composite material
PCT/JP2007/054564 WO2007105600A1 (en) 2006-03-10 2007-03-08 Composite implant material
KR1020087022123A KR20080108447A (en) 2006-03-10 2007-03-08 Composite implant material
TW096108172A TW200803803A (en) 2006-03-10 2007-03-09 Composite implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066291A JP2007236802A (en) 2006-03-10 2006-03-10 Material for implant inclination

Publications (1)

Publication Number Publication Date
JP2007236802A true JP2007236802A (en) 2007-09-20

Family

ID=38582922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066291A Pending JP2007236802A (en) 2006-03-10 2006-03-10 Material for implant inclination

Country Status (2)

Country Link
JP (1) JP2007236802A (en)
CN (1) CN101400381A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095522A (en) * 2007-10-18 2009-05-07 National Institute For Materials Science Porous scaffold material
JP2009119206A (en) * 2007-11-11 2009-06-04 Univ Nagoya Multi-layer porous scaffold and its manufacture process
JP2010167040A (en) * 2009-01-21 2010-08-05 Ngk Spark Plug Co Ltd Medicine slowly releasing body
JP2012501810A (en) * 2008-09-12 2012-01-26 アーティキュリンクス, インコーポレイテッド Tether-based orthopedic device delivery method
WO2012036286A1 (en) * 2010-09-16 2012-03-22 国立大学法人大阪大学 Artificial bone, artificial bone manufacturing device, and artificial bone manufacturing method
JP2013531515A (en) * 2010-05-24 2013-08-08 エピサーフ メディカル エービー Cartilage treatment implant
JP2019034071A (en) * 2017-08-21 2019-03-07 日本特殊陶業株式会社 Vertebral body spacer
JP2022068212A (en) * 2016-03-24 2022-05-09 ロケート・バイオ・リミテッド Scaffold material, methods, and uses

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516116B1 (en) 2014-08-05 2016-05-15 Dietmar Dr Sonnleitner Method for producing a multilayer film
CN105534619A (en) * 2016-01-28 2016-05-04 江苏奥康尼医疗科技发展有限公司 Cartilage repair and compensation prosthesis
CN108451673A (en) * 2017-02-20 2018-08-28 中国科学院沈阳自动化研究所 A kind of Invasive lumbar fusion device material-structure
JP7402393B2 (en) * 2017-09-03 2023-12-21 エボニック オペレーションズ ゲーエムベーハー Biocompatible polymer powders for additive manufacturing
CN108969152A (en) * 2018-09-06 2018-12-11 北京安颂科技有限公司 A kind of acetabular component and artificial hip joint
CN109528356B (en) * 2019-01-21 2021-01-26 北京爱康宜诚医疗器材有限公司 Composite insert
CN111281610B (en) * 2019-12-30 2023-08-18 雅博尼西医疗科技(苏州)有限公司 Porous structure and connection structure of substrate
WO2021183778A1 (en) * 2020-03-12 2021-09-16 Smith & Nephew, Inc. Tissue repair implant and compositions and method of implantation
CN114642771A (en) * 2020-12-21 2022-06-21 立心(深圳)医疗器械有限公司 Artificial ligament with traction unit and preparation method thereof
CN112957539B (en) * 2021-02-01 2022-05-13 北京大学第三医院(北京大学第三临床医学院) Zinc-manganese-magnesium alloy interface screw for reconstruction and fixation of anterior cruciate ligament

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271856A (en) * 1989-04-14 1990-11-06 Mitsubishi Materials Corp Ceramics artificial bone and production thereof
JP2000157626A (en) * 1998-11-27 2000-06-13 Takiron Co Ltd Concentration gradient material
JP2001206787A (en) * 2000-01-19 2001-07-31 Natl Inst For Research In Inorganic Materials Mext Calcium phosphate porous sintered compact and method of producing the same
WO2003045460A1 (en) * 2001-11-27 2003-06-05 Takiron Co., Ltd. Implant material and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271856A (en) * 1989-04-14 1990-11-06 Mitsubishi Materials Corp Ceramics artificial bone and production thereof
JP2000157626A (en) * 1998-11-27 2000-06-13 Takiron Co Ltd Concentration gradient material
JP2001206787A (en) * 2000-01-19 2001-07-31 Natl Inst For Research In Inorganic Materials Mext Calcium phosphate porous sintered compact and method of producing the same
WO2003045460A1 (en) * 2001-11-27 2003-06-05 Takiron Co., Ltd. Implant material and process for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095522A (en) * 2007-10-18 2009-05-07 National Institute For Materials Science Porous scaffold material
JP2009119206A (en) * 2007-11-11 2009-06-04 Univ Nagoya Multi-layer porous scaffold and its manufacture process
JP2012501810A (en) * 2008-09-12 2012-01-26 アーティキュリンクス, インコーポレイテッド Tether-based orthopedic device delivery method
JP2010167040A (en) * 2009-01-21 2010-08-05 Ngk Spark Plug Co Ltd Medicine slowly releasing body
JP2013531515A (en) * 2010-05-24 2013-08-08 エピサーフ メディカル エービー Cartilage treatment implant
WO2012036286A1 (en) * 2010-09-16 2012-03-22 国立大学法人大阪大学 Artificial bone, artificial bone manufacturing device, and artificial bone manufacturing method
JP2022068212A (en) * 2016-03-24 2022-05-09 ロケート・バイオ・リミテッド Scaffold material, methods, and uses
JP2019034071A (en) * 2017-08-21 2019-03-07 日本特殊陶業株式会社 Vertebral body spacer
JP7002885B2 (en) 2017-08-21 2022-01-20 日本特殊陶業株式会社 Vertebral spacer

Also Published As

Publication number Publication date
CN101400381A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP2007236802A (en) Material for implant inclination
US20220062004A1 (en) Porous composite biomaterials and related methods
US11179243B2 (en) Implantable devices
JP2007236803A (en) Implant composite material
KR100903761B1 (en) Implant material and process for producing the same
CA2503904C (en) Devices for treating defects in the tissue of a living being
EP2802363B1 (en) Composite device that combines porous metal and bone stimuli
WO2007105600A1 (en) Composite implant material
Zhang et al. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites
EP2675490B1 (en) Non-resorbable polymer - ceramic composite implant materials
JP2011515162A (en) Methods, devices and compositions for adhering hydrated polymer implants to bone
JP2006517842A (en) Apparatus and method for in situ forming intervertebral fusion
Gao et al. Morphological and biomechanical difference in healing in segmental tibial defects implanted with Biocoral® or tricalcium phosphate cylinders
JP4170744B2 (en) Biomaterial for artificial cartilage
JP2008029745A (en) Bone joint material and bone joint material set for enhancement of bone adhesion
JP2008029746A (en) Interference screw for fixing tendon or ligament, and fixation set for tendon or ligament
Taylor et al. Recent advances in bone graft technologies
Tanner Hard tissue applications of biocomposites
US20070173949A1 (en) Bonding system for orthopedic implants
JP5145375B2 (en) Filler for bonding between implant and living tissue
Barua et al. Fiber nanobiocompositions for cranioplasty and other orthopedic applications
JP4280968B2 (en) Implant complex
JP4988996B2 (en) Filler for bonding between implant and living tissue
JP4327432B2 (en) Implant material
Joji et al. Biomaterials and Structural Fat Grafting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120530