JP2001202998A - Square shape nonaqueous secondary battery - Google Patents

Square shape nonaqueous secondary battery

Info

Publication number
JP2001202998A
JP2001202998A JP2000007535A JP2000007535A JP2001202998A JP 2001202998 A JP2001202998 A JP 2001202998A JP 2000007535 A JP2000007535 A JP 2000007535A JP 2000007535 A JP2000007535 A JP 2000007535A JP 2001202998 A JP2001202998 A JP 2001202998A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrode
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000007535A
Other languages
Japanese (ja)
Other versions
JP4189984B2 (en
Inventor
Minako Iwasaki
美奈子 岩崎
Kazunobu Matsumoto
和伸 松本
Masatsugu Ishizawa
政嗣 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000007535A priority Critical patent/JP4189984B2/en
Publication of JP2001202998A publication Critical patent/JP2001202998A/en
Application granted granted Critical
Publication of JP4189984B2 publication Critical patent/JP4189984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a square shape nonaqueous secondary battery of a large capacity and high safety. SOLUTION: The square shape nonaqueous secondary battery accommodates in a square shape battery can an elliptic or oval electrode of a winding structure having a positive pole, where at least a part of the positive pole collector forms on both sides a film of the coat containing a positive pole active material and a negative pole, where at least a part of the negative pole collector forms on both sides a film of the coat containing a negative pole active material wound through a separator. At least one side of the battery can forms a concave and an electrode opposing to the battery can accommodating the electrode of the winding structure constitutes substantially a single electrode only of a positive pole or a negative pole. A part of the surface of at least the outermost positive pole collector in the electrode of the winding structure is provided with no film of the coat, containing the positive pole active material. This part which forms no film of the coat containing the positive pole active material is to be opposite to a negative pole or the inner surface of the battery can through the separator. In addition, the lead welded to the negative pole collector is not to be opposite directly to the positive pole through the separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、角形非水二次電池
に関し、さらに詳しくは、高容量化を図りながら安全性
を確保するために特定の構造にした角形非水二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic non-aqueous secondary battery, and more particularly to a prismatic non-aqueous secondary battery having a specific structure in order to secure safety while increasing capacity.

【0002】[0002]

【従来の技術】近年の二次電池を主電源とするポータブ
ル電子機器の小型化に伴い、該機器の携帯使用される機
会が増加し、従来よりも広範囲な環境で使用されるよう
になってきた。このポータブル電子機器の主電源となる
二次電池としては、リチウムイオン二次電池に代表され
る非水二次電池が、容量が大きく、かつ高電圧、高エネ
ルギー密度、高出力であることから多用され、その使用
量がますます増える傾向にある。そして、そのような二
次電池としては、現在、正極活物質としてLiCoO2
(コバルト酸リチウム)を用い、負極活物質として炭素
系材料を用いたリチウムイオン二次電池が商品化されて
いるが、この電池では高容量化を図るととともに、安全
性確保のために、従来の金属リチウムを負極とする非水
二次電池とは異なり、上記活物質を結着剤などとともに
有機溶剤中に分散させたペーストとし、このペーストを
用いて正極集電体および負極集電体の両面すべてにそれ
ぞれ活物質を含有する塗膜を形成し、それをそれぞれ正
極、負極として用いている。そして、それらの帯状の電
極をセパレータを介して渦巻状に巻回して作製した円筒
状の電極体を円筒形の電池缶に挿入して電池が構成され
ている。
2. Description of the Related Art In recent years, with the miniaturization of portable electronic devices that use a secondary battery as a main power source, the chances of using the device portablely have increased, and the electronic device has been used in a wider environment than before. Was. Non-aqueous secondary batteries such as lithium-ion secondary batteries are widely used as the main power source for portable electronic devices because of their large capacity, high voltage, high energy density, and high output. And their usage tends to increase. As such a secondary battery, LiCoO 2 is currently used as a positive electrode active material.
Lithium ion secondary batteries using (lithium cobalt oxide) and a carbon-based material as the negative electrode active material have been commercialized. However, in order to increase the capacity of this battery and to ensure safety, Unlike a non-aqueous secondary battery using lithium metal as a negative electrode, a paste in which the above active material is dispersed in an organic solvent together with a binder and the like is used, and the paste is used to form a positive electrode current collector and a negative electrode current collector. A coating film containing an active material was formed on each of both surfaces, and used as a positive electrode and a negative electrode, respectively. Then, a cylindrical electrode body produced by spirally winding these band-shaped electrodes via a separator is inserted into a cylindrical battery can to constitute a battery.

【0003】しかるに、機器に使用する電池に対しては
高容量かつ小型軽量化の要求が年々高まっているが、従
来の円筒形電池では機器への収納効率が悪く、特にコー
ドレス機器で電池の収納容積が狭小化されているため、
上記要求に対して充分に応えることができないという問
題があった。
However, the demand for high capacity and small size and light weight of batteries used in equipment is increasing year by year. However, the storage efficiency of conventional cylindrical batteries is low, and the storage of batteries in cordless equipment is particularly difficult. Because the volume is reduced,
There has been a problem that the above demand cannot be sufficiently satisfied.

【0004】そのため、電池を小型化し、省スペースと
することを目的として、電池缶の形状を角形にした二次
電池が提案されている。この角形の電池缶を用いる場
合、これに挿入する電極体としては、前記の帯状の電極
を巻回して作製した円筒状の電極体とは異なり、多数の
矩形板状の正極板と負極板とをセパレータを介して積層
した積層構造の電極体や、前記の円筒状の電極体と同様
に一対の帯状の正極と負極とをセパレータを介して巻回
した後、これを一定方向から押圧するか、あるいは巻回
時に巻回芯として長軸と短軸を組み合わせたものを使用
し、さらに必要により押圧して作製した楕円状または長
円形状の電極体が考えられる。しなしながら、前者の積
層構造の電極体では、電極端子をそれぞれの電極板に設
け、しかもそれらの端子を接続する必要があることから
生産性が劣るとともに、容量密度が低くなるという問題
があった。そのため、角形電池に対しては後者の一対の
帯状の電極を楕円状または長円形状に巻回して作製した
巻回構造の電極体が多用されている。
[0004] Therefore, a secondary battery having a rectangular battery can has been proposed for the purpose of reducing the size of the battery and saving space. When this rectangular battery can is used, the electrode body to be inserted therein is different from the cylindrical electrode body produced by winding the above-mentioned band-shaped electrode, and has a large number of rectangular plate-like positive and negative electrode plates. Or a pair of band-shaped positive and negative electrodes wound through a separator as in the case of the cylindrical electrode body described above, and then pressing this from a certain direction. Alternatively, an elliptical or elliptical electrode body produced by using a combination of a long axis and a short axis as a winding core at the time of winding and further pressing as necessary. However, in the former electrode structure having a laminated structure, it is necessary to provide an electrode terminal on each electrode plate, and furthermore, it is necessary to connect the terminals, thereby lowering productivity and lowering the capacitance density. Was. For this reason, for a prismatic battery, an electrode body having a wound structure formed by winding the latter pair of band-shaped electrodes in an elliptical or elliptical shape is often used.

【0005】ところが、上記のような巻回構造の電極体
を電池缶に挿入してなるリチウムイオン二次電池は、正
極および負極にリチウムイオンをドープ・脱ドープする
活物質を用いていることから、充放電時に電極活物質含
有塗膜が膨張収縮を繰り返すことになる。そのような膨
張が生じた場合、円筒形の電池缶ではその側面全周に対
して均等に圧力がかかるので、対耐圧強度が優れている
が、角形の電池缶では平面で圧力変形を受けやすいた
め、電池缶の側面が膨張し、電池の膨れなどの変形が生
じやすい。特に容量当りの電池重量を軽くするため、電
池缶の缶厚を薄くした場合、円筒形の電池缶では円筒胴
部が耐圧に対して理想的形状であるため、薄くしても充
分な強度を有するが、角形の電池缶では圧力の掛かりや
すい側面部での膨れが顕著となり、電池缶と封口板との
溶接部に引っ張り応力がかかることによって、溶接部に
応力割れが生じるとともに、膨れによって電池が機器か
ら取り出せなくなるという問題や、さらには巻回構造の
電極体における正極と負極との間隙が増大し、充放電反
応を円滑にすすめるためのリチウムイオンの円滑な移動
が低下するという問題が発生する。この場合、電池缶材
が鉄やステンレス鋼であれば、それらの材料の持つ剛性
によって形状を維持することがある程度は可能である
が、軽量化のためにアルミニウムやマグネシウムなどの
軽金属製の電池缶を使用するようになると同一の肉厚で
はさらに剛性が不足し、充放電サイクルによって電池缶
の前後面に膨らみが生じることになる。
[0005] However, a lithium ion secondary battery in which the above-mentioned wound electrode body is inserted into a battery can uses an active material for doping and undoping lithium ions in a positive electrode and a negative electrode. In addition, the electrode active material-containing coating film repeatedly expands and contracts during charge and discharge. When such expansion occurs, the cylindrical battery can exerts pressure evenly on the entire circumference of the side surface, so that the pressure resistance is excellent, but the rectangular battery can is easily subjected to pressure deformation in a flat surface. Therefore, the side surface of the battery can expands, and deformation such as swelling of the battery is likely to occur. In particular, when the thickness of the battery can is reduced in order to reduce the weight of the battery per capacity, the cylindrical body of the cylindrical battery can has an ideal shape for the pressure resistance. However, in the case of a rectangular battery can, swelling on the side portion where pressure is likely to be applied becomes noticeable, and tensile stress is applied to the weld between the battery can and the sealing plate. And the gap between the positive electrode and the negative electrode in the wound electrode body increases, and the smooth movement of lithium ions to facilitate the charge / discharge reaction occurs. I do. In this case, if the battery can material is iron or stainless steel, it is possible to maintain the shape to some extent by the rigidity of those materials, but to reduce the weight, a battery can made of light metal such as aluminum or magnesium is used. When the battery is used, the rigidity is further insufficient with the same thickness, and the front and rear surfaces of the battery can swell due to the charge / discharge cycle.

【0006】そこで、上記のような角形の電池缶を用い
る場合の問題を解決するため、電池缶と電極体の最外周
部との間に素子加圧板を配設することが提案されている
が、充分な成果をあげるに至っていない。そのため、電
池缶自体で電極体の膨張を抑制するとともに、一旦電極
体が膨張した場合には電池缶の膨れを吸収する構造とす
るため、電池缶の長側面部にあらかじめ凹部を設けるこ
とが提案されている(特開昭62−126566号公
報、特開平5−28973号公報、特開平9−1990
89号公報など)。上記構造の電池缶とすることによ
り、電極体が充放電反応により膨張した場合でも、その
凹部により電極体を内面方向に押圧して電極間の間隙の
増大を抑制できるとともに、電池缶に膨れが生じた場合
でも、電池缶の凹部によってそれを吸収し、短側面部の
幅以上に膨らむのを防止することができる。
In order to solve the above-mentioned problem in the case of using a rectangular battery can, it has been proposed to dispose an element pressing plate between the battery can and the outermost peripheral portion of the electrode body. Have not achieved sufficient results. Therefore, it is proposed to provide a recess in the long side surface of the battery can in order to suppress the expansion of the electrode body by the battery can itself and to absorb the expansion of the battery can once the electrode body expands. (Japanese Patent Application Laid-Open Nos. 62-126566, 5-28973, and 9-1990).
No. 89). By using the battery can having the above structure, even when the electrode body expands due to the charge / discharge reaction, the concave portion presses the electrode body in the inner surface direction, thereby suppressing an increase in the gap between the electrodes and expanding the battery can. Even if it occurs, it can be absorbed by the concave portion of the battery can and can be prevented from expanding beyond the width of the short side portion.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような角形非水二次電池も、今後さらに高容量化を図っ
ていた場合やユーザーから要求される仕様によっては、
電池の発電要素自体の構造についてさらに工夫をしてい
かないと、安全性面で充分に対応することができなくな
るおそれのあることがわかってきた。つまり、故意に異
常使用を想定した圧壊試験などの苛酷な条件下での安全
性確認試験では安全性に欠ける傾向のあることが判明し
た。
However, the rectangular non-aqueous secondary battery as described above also needs to be designed to have a higher capacity in the future or depending on the specifications required by the user.
It has been found that if the structure of the power generating element itself of the battery is not further devised, it may not be possible to sufficiently cope with safety. In other words, it has been found that there is a tendency for safety to be lacking in a safety confirmation test under severe conditions, such as a crush test, on the assumption of abnormal use intentionally.

【0008】上記の圧壊試験は、電池が故意に何らかの
事故で押し潰された場合を想定したものであるが、この
圧壊試験に前記の電池缶の側面部に凹部を設けた角形非
水二次電池をかけた場合、電池缶の膨れを防止するため
に設けた凹部が電池缶の内面側では凸部となって電極体
を押圧していることから、電池缶内壁面が電極体と接触
しやすく、また負極集電体に溶接したリード体がセパレ
ータを介して正極と対向していると短絡しやすいことが
判明した。これは、電池を圧壊することにより、前記電
池缶に設けた凹部が電池缶内面側で電極体を押圧して負
極のリード体がセパレータを突き破ることによるものと
考えられる。
The above crush test is based on the assumption that the battery is intentionally crushed by some kind of accident. In this crush test, a rectangular non-aqueous secondary battery having a concave portion formed on the side of the battery can is used. When a battery is mounted, the concave portion provided to prevent the battery can from bulging becomes a convex portion on the inner surface side of the battery can and presses the electrode body, so that the inner wall surface of the battery can comes into contact with the electrode body. It has been found that short circuit is easily caused when the lead body welded to the negative electrode current collector faces the positive electrode via the separator. This is considered to be due to the fact that when the battery is crushed, the recess provided in the battery can presses the electrode body on the inner surface side of the battery can and the lead body of the negative electrode breaks through the separator.

【0009】特に充放電時の電極体の膨張を吸収するた
め電池缶の凹部を大きくした場合、角形の電池缶では長
側面部の面積が大きくなるため電極体におけるリード体
の位置が上記凹部と対向する位置になりやすく、しかも
電池缶内壁面と電極体との隙間が狭くなるため、リード
体に掛かる圧力が大きくなりやすい。また、リード体と
対向していない正極部分でも、圧壊の衝撃により正極が
裂けてしまう可能性もある。また電池缶は電極端子を兼
ねているため、圧壊試験により電池缶に異極の電極が接
触した場合、短絡電流が流れることになり、特に抵抗の
高い活物質含有塗膜があると発熱量が増加する。さら
に、上記発熱により電極体を包むセパレータが溶融した
場合、上記電極(電池缶と異極の電極)の他の箇所も電
池缶と接触して、二次的な内部短絡を生ずるおそれがあ
る。さらに、集電体に活物質含有塗膜を設けた電極を用
いる非水二次電池では、生産工程における金属片などの
異物の混入や、巻回構造の電極体を電池缶に挿入する際
に活物質の脱落が生じることが多い。
In particular, when the concave portion of the battery can is enlarged in order to absorb the expansion of the electrode body during charging and discharging, the area of the long side portion of the rectangular battery can becomes large. Since it is easy to be located at the opposite position and the gap between the inner wall surface of the battery can and the electrode body is narrowed, the pressure applied to the lead body tends to be large. Further, even at the positive electrode portion not facing the lead body, the positive electrode may be torn by the impact of crushing. In addition, since the battery can also serves as the electrode terminal, a short-circuit current will flow if a different electrode comes into contact with the battery can in the crush test. To increase. Furthermore, when the separator surrounding the electrode body is melted by the heat generation, other parts of the electrode (electrode having a different polarity from the battery can) may also come into contact with the battery can and cause a secondary internal short circuit. Furthermore, in a non-aqueous secondary battery using an electrode provided with an active material-containing coating on the current collector, when a foreign object such as a metal piece is mixed in a production process or when a wound electrode body is inserted into a battery can. Often, active material falls off.

【0010】特に、上記角形の電池缶に楕円状または長
円形状の電極体を挿入した場合、電池缶の凹部が電池缶
内面側では凸部となっているため、電極体の最外周部の
電極の活物質含有塗膜がこの凸部と接触して、活物質含
有塗膜の破損が生じやすいことが明らかとなった。ま
た、前記のような異物の混入があった場合、通常、正極
と負極との間はセパレータで隔離されているので、それ
らの異物によって短絡が生じることは少ないが、異物が
大きい場合には圧壊試験時においてそれらの異物が電池
缶内に存在するといわゆる微小短絡(ソフトショート)
が発生し、これが引き金となって内部短絡にまで至る可
能性がある。
In particular, when an elliptical or elliptical electrode body is inserted into the above-described square battery can, the concave portion of the battery can is a convex portion on the inner surface side of the battery can. It was clarified that the active material-containing coating film of the electrode was in contact with the projections and the active material-containing coating film was easily damaged. In addition, when foreign matter is mixed as described above, since the positive electrode and the negative electrode are usually separated by a separator, a short circuit is rarely caused by the foreign matter. When these foreign substances are present in the battery can during the test, a so-called micro short circuit (soft short circuit)
This can trigger an internal short circuit.

【0011】また、電池をとりまく環境として、最近は
高容量化に向けて電池のエネルギー密度をますます高く
する必要があることから、上記のような苛酷な条件下で
の安全性確認試験である圧壊試験においても高い安全性
を有するようにしておくことが必要であり、そのために
は電池の内部構造を発火しにくい構造に変更しておくこ
とが必要である。
[0011] Further, as the environment surrounding the battery, it has recently been necessary to further increase the energy density of the battery in order to achieve a higher capacity. Therefore, the safety confirmation test under the severe conditions as described above is performed. It is necessary to have high safety even in a crush test, and for that purpose, it is necessary to change the internal structure of the battery to a structure that is difficult to ignite.

【0012】本発明は、上記のような事情により、角形
非水二次電池における今後の高容量化に備え、苛酷な条
件下での安全性確認試験である圧壊試験においても充分
に安全性が確認できるように電池の構造を改良し、高容
量で、かつ安全性が高い角形非水二次電池を提供するこ
とを目的とする。
Under the circumstances described above, the present invention provides sufficient safety even in a crush test, which is a safety confirmation test under severe conditions, in preparation for a future increase in capacity of a prismatic nonaqueous secondary battery. It is an object of the present invention to improve the structure of a battery so that it can be confirmed, and to provide a square non-aqueous secondary battery with high capacity and high safety.

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、非水二次電池の構造
について鋭意検討を重ねた結果、正極集電体の少なくと
も一部には両面に正極活物質含有塗膜を形成してなる正
極と、負極集電体の少なくとも一部には両面に負極活物
質含有塗膜を形成してなる負極とをセパレータを介して
巻回した楕円状または長円形状の巻回構造の電極体を角
形の電池缶に収容してなる角形非水二次電池において、
上記電池缶の少なくとも1つの側面に凹部を形成し、上
記巻回構造の電極体の電池缶と対向する電極を実質的に
正極または負極のいずれかの単一電極のみで構成し、上
記巻回構造の電極体における正極の少なくとも最外周部
の正極集電体の外周面側に正極活物質含有塗膜を形成し
ていない部分を設け、上記正極集電体の正極活物質含有
塗膜を形成していない部分をセパレータを介して負極ま
たは電池缶の内面と対向させ、かつ負極集電体に溶接し
たリード体がセパレータを介して正極と直接対向しない
構造にすることにより、高容量化を達成しながら、圧壊
試験などの苛酷な安全性確認試験においても優れた安全
性を示すことができる安全性の高い角形非水二次電池が
得られることを見出したものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and as a result of intensive studies on the structure of a non-aqueous secondary battery, it has been found that at least a part of a positive electrode current collector is provided. Wound a positive electrode having a positive electrode active material-containing coating film formed on both surfaces thereof, and a negative electrode having at least a portion of the negative electrode current collector having a negative electrode active material-containing coating film formed on both surfaces thereof via a separator. In a prismatic non-aqueous secondary battery containing an elliptical or elliptical wound structure electrode body in a prismatic battery can,
A concave portion is formed on at least one side surface of the battery can, and the electrode of the spirally wound electrode body facing the battery can is substantially composed of only a single electrode of either a positive electrode or a negative electrode. A portion where the positive electrode active material-containing coating is not formed is provided on at least the outermost peripheral portion of the positive electrode current collector at the outermost periphery of the positive electrode in the electrode body having the structure, and the positive electrode active material-containing coating of the positive electrode current collector is formed. Achieved high capacity by making the part that does not face the negative electrode or the inner surface of the battery can through the separator, and the lead body welded to the negative electrode current collector does not directly face the positive electrode through the separator On the other hand, it has been found that a highly safe rectangular non-aqueous secondary battery which can exhibit excellent safety even in a severe safety confirmation test such as a crush test is obtained.

【0014】以下、本発明を完成するに至った経過およ
び上記構成にすることによって高容量化を達成しながら
高い安全性を確保できる理由を詳細に説明する。
The following describes in detail the process of completing the present invention and the reason why high security can be ensured while achieving high capacity by adopting the above configuration.

【0015】リチウムイオン二次電池などの非水二次電
池における巻回構造の電極体の最も一般的なのは、容積
当たりの容量を増加して高容量の電池にするためにアル
ミニウム箔などからなる正極集電体の少なくとも一部に
は両面に正極活物質含有塗膜を形成した1枚の帯状の正
極と銅箔などからなる負極集電体の少なくとも一部には
両面に負極活物質含有塗膜を形成した1枚の帯状の負極
と2枚のセパレータとを、セパレータ、負極、セパレー
タ、正極の順に積み重ね、負極が正極より外周側になる
ように渦巻状に巻回したものであり、角形の電池缶に上
記電極体を挿入するためには、円筒状の巻回構造の電極
体とした後、一定方向から押圧するか、あるいは巻回時
に巻回芯として長軸と短軸を組み合わせたものを使用
し、さらに必要により押圧して楕円状または長円形状と
した電極体としている。
The most common type of wound electrode body in a non-aqueous secondary battery such as a lithium ion secondary battery is a positive electrode made of aluminum foil or the like in order to increase the capacity per volume to obtain a high capacity battery. At least a portion of the current collector has a positive electrode active material-containing coating film formed on both surfaces. At least a portion of the negative electrode current collector formed of a strip-shaped positive electrode and a copper foil has a negative electrode active material-containing coating film formed on both surfaces. Is formed by stacking one strip-shaped negative electrode and two separators in the order of a separator, a negative electrode, a separator, and a positive electrode, and spirally winding the negative electrode on the outer peripheral side of the positive electrode, In order to insert the above-mentioned electrode body into the battery can, the electrode body is formed into a cylindrical wound structure and then pressed from a certain direction, or a combination of a long axis and a short axis as a winding core during winding. Use, and if necessary Pressing to have an elliptical shape or an oval shape was an electrode assembly.

【0016】そこで、本発明者らは、上記のような形状
の巻回構造の電極体を側面部に凹部を設けた角形の電池
缶に挿入して組み合わせた角形非水二次電池について、
圧壊試験を行ったところ、エネルギー密度を上げていく
とその短絡の危険性が高くなっていくことが判明した。
すなわち、これらの電池の負極には通常炭素材料などの
リチウムを脱挿入できる化合物が使用されているが、負
極が過充電されてリチウムが多少でも電着した場合、約
100℃付近から電解液と電着リチウムやリチウムが挿
入された炭素材料との間で発熱反応が生じることが判明
した。また、正極でもリチウムが脱離することによっ
て、電解液との反応開始温度が低くなり、100℃付近
から発熱することがある。
Therefore, the present inventors have proposed a rectangular non-aqueous secondary battery in which a wound electrode structure having the above-mentioned shape is inserted into a rectangular battery can having a concave portion on a side surface and assembled.
A crush test showed that increasing the energy density increased the risk of a short circuit.
In other words, compounds such as carbon materials that can insert and remove lithium are usually used for the negative electrodes of these batteries. However, when the negative electrode is overcharged and lithium is electrodeposited to some extent, the electrolyte is mixed with the electrolyte from about 100 ° C. It has been found that an exothermic reaction occurs between electrodeposited lithium and a carbon material into which lithium has been inserted. Further, even when lithium is desorbed from the positive electrode, the reaction start temperature with the electrolytic solution is lowered, and heat may be generated at around 100 ° C.

【0017】つまり、巻回構造の電極体の単位体積当た
りの放電可能な容量が多いほど過充電時に発熱した場合
に単位体積当たりの発熱量が多くなり、電池温度が正極
の熱暴走温度にまで上昇する可能性が高くなる。そのた
め、単位体積当たりの放電容量の大きい電池ほど発熱を
うまくコントロールして電池の温度が正極の熱暴走温度
にまで上昇しないようにしておく必要がある。また、巻
回構造の電極体の体積が大きい場合も放熱されにくい。
In other words, the greater the dischargeable capacity per unit volume of the wound electrode body, the greater the amount of heat generated per unit volume when heat is generated during overcharge, and the battery temperature reaches the thermal runaway temperature of the positive electrode. It is more likely to rise. For this reason, it is necessary to control the heat generation better for a battery having a larger discharge capacity per unit volume so that the battery temperature does not rise to the thermal runaway temperature of the positive electrode. Also, when the volume of the wound electrode body is large, heat is hardly dissipated.

【0018】また、前記のように、負極に炭素材料のよ
うなリチウムを脱挿入できる化合物を用いることによっ
て、電解液と負極との高温での反応性は金属リチウムを
負極に用いていた場合よりも低くなっているが、電極に
設けられているリード体が電極上で凸部となるため、凹
部を設けた電池缶では、充放電反応時の電極体の膨張に
より、上記凹部に基づく電池缶内面側の凸部が電極体を
内面方向に押圧するため、上記リード体による凸部に大
きな集中応力や、電極体にねじれ応力が発生しやすくな
る。そして、電解液を注入し、封口して電池を組み立て
て充電を行うと、活物質の膨潤、特に負極活物質の膨潤
によって電極体が膨らむため、楕円状または長円形状の
巻回構造からなる電極体では、上記の集中応力やねじれ
応力がさらに増大し、電極体が歪むようになる。そのよ
うな場合に、凹部を設けた電池缶では、負極集電体に溶
接されたリード体がセパレータに強く押し付けられ、し
かもリード体には負極活物質含有塗膜よりも硬い金属材
料が用いられているため、圧壊時において、巻回構造の
電極体がつぶれる際にセパレータを突き破りやすくな
り、それによって内部短絡が発生しやすい。
Further, as described above, by using a compound capable of deintercalating lithium, such as a carbon material, in the negative electrode, the reactivity between the electrolytic solution and the negative electrode at a high temperature is higher than when metallic lithium is used for the negative electrode. However, since the lead body provided on the electrode becomes a convex part on the electrode, the battery can provided with the concave part has a battery can based on the concave part due to the expansion of the electrode body at the time of charge / discharge reaction. Since the protrusion on the inner surface side presses the electrode body in the inner surface direction, a large concentrated stress on the protrusion by the lead body and a torsion stress on the electrode body are likely to occur. Then, when the electrolyte is injected, sealed, and the battery is assembled and charged, the electrode body swells due to swelling of the active material, particularly the swelling of the negative electrode active material, and thus has an elliptical or elliptical winding structure. In the electrode body, the above-mentioned concentrated stress and torsional stress further increase, and the electrode body becomes distorted. In such a case, in the battery can provided with the concave portion, the lead body welded to the negative electrode current collector is strongly pressed against the separator, and the lead body is made of a metal material harder than the negative electrode active material-containing coating film. Therefore, at the time of crushing, when the electrode body having the wound structure is crushed, it easily breaks through the separator, thereby easily causing an internal short circuit.

【0019】さらに、電池缶に凹部が設けられている場
合、その凹部が電池缶の内面側では凸部となっているた
め、巻回構造の電極体の最外周部に正極および負極のい
ずれもが存在する構造では、電極体の最外周部と電池缶
内壁面との隙間が小さくなっており、この巻回構造の電
極体にその外周側で対向する電池缶は一方の電極に対し
て異極として作用することから、電極体と電池缶内壁と
の間のセパレータが溶融した場合、電池缶と異極の電極
との接触が容易になり、短絡が発生するとともに、短絡
による発熱で電極体を包むセパレータが溶融した場合、
上記電極(電池缶と異極の電極)の他の箇所も電池缶と
接触することになるため、二次的な内部短絡が発生する
おそれがある。
Further, when a concave portion is provided in the battery can, since the concave portion is a convex portion on the inner surface side of the battery can, both the positive electrode and the negative electrode are provided on the outermost peripheral portion of the wound electrode body. In such a structure, the gap between the outermost peripheral portion of the electrode body and the inner wall surface of the battery can is small, and the battery can facing this wound structure on the outer peripheral side is different from one electrode. Since it acts as a pole, if the separator between the electrode body and the inner wall of the battery can melts, contact between the battery can and the electrode of the opposite polarity becomes easy, and a short circuit occurs, and the heat generated by the short circuit generates the electrode body. If the wrapping separator melts,
Since other portions of the above-mentioned electrode (electrode having a different polarity from the battery can) also come into contact with the battery can, a secondary internal short circuit may occur.

【0020】また、電極体を電池缶に挿入する際に、電
池缶の内部側の凸部と接触することにより、最外周に設
けられた活物質含有塗膜の脱落も生じやすくなる。さら
に、巻回構造の電極体と電池缶との間に異物が混入した
場合、それによって電極が導通状態になるため微小短絡
が生じやすく、圧壊試験時にこの微小短絡を誘発する要
因になりやすい。
Further, when the electrode assembly is inserted into the battery can, the active material-containing coating film provided on the outermost periphery is likely to fall off by coming into contact with the convex portion on the inner side of the battery can. Further, when foreign matter enters between the wound electrode body and the battery can, the electrode is brought into a conductive state, and a minute short circuit is likely to occur, which is likely to cause this minute short circuit in a crush test.

【0021】また、一般に負極のリード体や負極活物質
含有塗膜は抵抗が高いため、圧壊試験においてリード体
がセパレータを突き破り内部短絡による大電流が流れた
ときに、負極のリード体と対向している正極活物質含有
塗膜がジュール熱により、電池内部の発熱を助長し、し
かも放熱を妨げるため、正極は比較的早い段階で熱暴走
温度に達しやすい。また、圧壊面がリード体と対向して
いない部分でも圧壊の衝撃で電極が裂け、二次的内部短
絡が発生しやすい。
In general, since the lead of the negative electrode and the coating film containing the negative electrode active material have high resistance, when the lead breaks through the separator in the crush test and a large current flows due to an internal short circuit, the lead faces the negative electrode. The positive electrode active material-containing coating promotes heat generation inside the battery due to Joule heat and hinders heat radiation, so that the positive electrode easily reaches a thermal runaway temperature at a relatively early stage. Further, even in a portion where the crushed surface does not face the lead body, the electrode is torn by the impact of the crushing, and a secondary internal short circuit is likely to occur.

【0022】本発明は、上記のような事情を考慮して、
巻回構造の電極体の電池缶と対向する電極を実質的に正
極または負極のいずれかの単一電極のみで構成するとと
もに、負極のリード体がセパレータを介して正極と直接
対向しないようにすることによって、後記の発明の実施
の形態の項において図面を参照しつつ詳しく説明するよ
うに、内部短絡が生じやすい最外周部においても短絡の
発生する確率が低減するとともに、活物質の脱落により
混入した異物による局部的な発熱を防止し、しかも本発
明の電池を圧壊試験にかけて強制的に圧壊してもリード
体による内部短絡が生じにくく、安全性の高い電池を得
ることができる。また、巻回構造の電極体における正極
の少なくとも最外周部の正極集電体の外周面側に正極活
物質含有塗膜を形成せずに正極集電体のみの部分を設
け、その正極集電体の正極活物質含有塗膜を形成してい
ない部分がセパレータを介して負極または電池缶の内面
と対向するようにしたことによって、電池缶への熱伝導
率を高め、放熱をしやすくし、安全性を高めている。
The present invention takes the above circumstances into consideration,
The electrode facing the battery can of the wound electrode body is substantially composed of only a single electrode of the positive electrode or the negative electrode, and the lead body of the negative electrode is not directly opposed to the positive electrode via the separator. As a result, as will be described in detail with reference to the drawings in the following embodiments of the present invention, the probability of occurrence of a short circuit is reduced even at the outermost peripheral portion where an internal short circuit is likely to occur, and the active material is mixed due to falling off. Even if the battery of the present invention is prevented from being locally heated by the foreign matter, and even if the battery of the present invention is forcibly crushed in a crush test, an internal short circuit due to the lead body hardly occurs, and a highly safe battery can be obtained. In addition, a portion of the positive electrode current collector alone is provided without forming a positive electrode active material-containing coating film on the outer peripheral surface side of at least the outermost peripheral portion of the positive electrode current collector in the wound electrode body. By making the portion of the body not forming the positive electrode active material-containing coating face the inner surface of the negative electrode or the battery can through the separator, the thermal conductivity to the battery can is increased, and heat is easily radiated, Improves safety.

【0023】本発明においては、上記のように巻回構造
の電極体の電池缶と対向する電極を実質的に正極または
負極のいずれかの単一電極のみで構成するが、上記の実
質的に単一電極とは、真正に単一電極のみの場合はもち
ろん含まれるが、巻回構造の電極体の仕上がり精度は巻
回機などの精度の影響を受けて多少のずれを生じること
があり、巻回構造の電極体の電池缶と対向する電極の中
に一方の電極のみならず、他方の電極も一部混在する場
合が生じるので、そのように他方の電極が一部混在する
場合であってもそれが内部短絡の発生を低減するのに影
響を与えない範囲内であれば実質的に単一電極の範疇に
含まれるという意味である。また、上記における電極と
は活物質含有塗膜が形成されていない電極集電体のみで
あってもよい。
In the present invention, the electrode facing the battery can of the spirally wound electrode body as described above is substantially composed of only a single electrode of either the positive electrode or the negative electrode. A single electrode includes, of course, the case of a genuine single electrode, but the finished accuracy of the wound electrode body may be slightly shifted due to the accuracy of the winding machine, etc. In some cases, not only one electrode but also the other electrode is partially mixed in the electrode facing the battery can of the wound electrode body, so that the other electrode is partially mixed. Even if it is within a range that does not affect the occurrence of internal short-circuits, it means that it is substantially included in the category of a single electrode. Further, the electrode in the above may be only an electrode current collector on which an active material-containing coating film is not formed.

【0024】また、本発明において、巻回構造の電極体
の形状を示す楕円状または長円形状とは正円形ではない
という意味であって、ほぼ楕円状からほぼ長円形状まで
のいずれであってもよく、例えば、扁平状で一部に曲面
部を有するものであってもよい。
In the present invention, the elliptical shape or the elliptical shape indicating the shape of the wound electrode body means that the shape is not a perfect circle, and may be any one of an almost elliptical shape and a substantially elliptical shape. For example, it may be flat and partially have a curved surface portion.

【0025】[0025]

【発明の実施の形態】以下、本発明をより具体的に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically.

【0026】本発明の具体的形態によれば、図1に示す
ように角形の電池缶5の少なくとも1つの側面に凹部5
aが形成されており、電極体が充放電により膨張した場
合でも、電池缶5の耐圧性を向上させるとともに、電極
体が膨張した場合でも、電極体缶5の凹部5aでその膨
張を吸収し、電池缶5の膨れをその短側面部の幅以上に
膨らむのを防止できるようになっている。そして、この
電池缶に挿入する電極体としては、電池缶形状に合わせ
て、楕円状または長円形状の巻回構造の電極体が用いら
れ、その最外周部は正極で構成されるが、最外周部の正
極は図3に示すように、正極集電体1aのみで構成さ
れ、そのいずれの面にも正極活物質含有塗膜が形成され
ていない。そして、負極2の最外周部では負極集電体2
aの外周面側には負極活物質含有塗膜を形成せず、内周
面側のみ負極活物質含有塗膜2bを形成している(な
お、図3には図示していないが、負極の最外周部から見
て内周側2周目以降の負極には負極集電体の両面に負極
活物質含有塗膜が形成されている)。巻回構造の電極体
の最外周部の電池缶と対向する電極は実質的に正極のみ
で構成されており、正極1は最外周部と該最外周部から
2周目が示されているが、前記のように、正極1の最外
周部は正極集電体1aのみで、そのいずれの面にも正極
活物質含有塗膜が形成されておらず、その最外周部から
2周目では正極集電体1aの両面に正極活物質含有塗膜
1bが形成されている。そして、セパレータ3は正極1
と負極2との間のみならず、巻回構造の電極体の最外周
部に位置する正極集電体1aと電池缶5(この具体的形
態の場合は、電池缶5は正極缶である)の内面との間に
も介在している。
According to a specific embodiment of the present invention, as shown in FIG.
a is formed to improve the pressure resistance of the battery can 5 even when the electrode body expands due to charge and discharge, and to absorb the expansion in the concave portion 5a of the electrode body can 5 even when the electrode body expands. The swelling of the battery can 5 can be prevented from expanding beyond the width of the short side surface portion. As the electrode body to be inserted into the battery can, an electrode body having an elliptical or elliptical winding structure according to the shape of the battery can is used, and the outermost peripheral portion is constituted by a positive electrode. As shown in FIG. 3, the positive electrode at the outer peripheral portion is composed of only the positive electrode current collector 1a, and no positive electrode active material-containing coating film is formed on any surface thereof. In the outermost peripheral portion of the negative electrode 2, the negative electrode current collector 2
The negative electrode active material-containing coating film 2b was formed only on the inner peripheral surface side without forming the negative electrode active material-containing coating film on the outer peripheral surface side of a (not shown in FIG. Negative electrode active material-containing coating films are formed on both surfaces of the negative electrode current collector on the negative electrode in the second and subsequent rounds on the inner circumferential side as viewed from the outermost peripheral portion). The electrode facing the battery can at the outermost periphery of the wound electrode body is substantially composed of only the positive electrode, and the positive electrode 1 is shown at the outermost periphery and the second circumference from the outermost periphery. As described above, the outermost peripheral portion of the positive electrode 1 is only the positive electrode current collector 1a, and the positive electrode active material-containing coating film is not formed on any surface thereof. A positive electrode active material-containing coating film 1b is formed on both surfaces of the current collector 1a. And the separator 3 is the positive electrode 1
The positive electrode current collector 1a and the battery can 5 located at the outermost periphery of the wound electrode body as well as between the negative electrode 2 and the negative electrode 2 (in this specific embodiment, the battery can 5 is a positive electrode can). Also interposed between the inner surfaces of the two.

【0027】なお、この図3をはじめ、巻回構造の電極
体を示す図はいずれも巻回構造の電極体を模式的に示し
たものであって、各部材の寸法比は必ずしも正確ではな
い。これは実際には厚みの薄い部材にも一定の厚みを持
たせて図示しているからである。また、そのような関係
もあって、実際には隙間がないところを隙間があるかの
ように図示したり、その逆であったり、さらには実際に
は小さな隙間しかあいていないところを大きな隙間があ
いているかのように図示している部分がある。
In addition, FIG. 3 and other figures showing the wound electrode body schematically show the wound electrode body, and the dimensional ratio of each member is not always accurate. . This is because a thin member is actually shown with a certain thickness. In addition, there is such a relationship, and a place where there is actually no gap is illustrated as if there is a gap, or vice versa, and a place where there is only a small gap is actually a large gap. Some parts are illustrated as if they were open.

【0028】この具体的形態の巻回構造の電極体では、
図3に示すように、巻回構造の電極体の電池缶5と対向
する電極は実質的に正極のみで構成されており、正極1
の正極集電体1aの最外周部の外周面側には正極活物質
含有塗膜を形成せず、無地部、つまり正極集電体1aの
露出部分になっていて、その正極集電体1aの露出部分
がセパレータ3を介して電池缶5の内面と対向してい
る。そして、負極2の最外周部の負極集電体2aの外周
面側には負極活物質含有塗膜が形成されておらず、その
負極集電体2aの露出部分(つまり、負極集電体2aの
負極活物質含有塗膜が形成されていない部分)がセパレ
ータ3を介して正極1の正極集電体1aの露出部分(つ
まり、正極集電体1aの正極活物質含有塗膜が形成され
ていない部分)と対向し、負極2の最外周部の負極集電
体2aの外周面側にはリード体8が溶接されていて、負
極集電体1aの露出部分に溶接したリード体8と対向す
る正極集電体1aの内周面側には絶縁テープ9が接着さ
れ、上記のリード体8がセパレータ3を介して絶縁テー
プ9と対向している。
In this specific embodiment of the wound electrode body,
As shown in FIG. 3, the electrode facing the battery can 5 of the wound electrode body is substantially composed of only the positive electrode.
No positive electrode active material-containing coating film is formed on the outer peripheral surface of the outermost peripheral portion of the positive electrode current collector 1a, and the uncoated portion, that is, the exposed portion of the positive electrode current collector 1a, Is exposed to the inner surface of the battery can 5 via the separator 3. The negative electrode active material-containing coating film is not formed on the outer peripheral surface side of the negative electrode current collector 2a at the outermost peripheral portion of the negative electrode 2, and the exposed portion of the negative electrode current collector 2a (that is, the negative electrode current collector 2a Of the positive electrode current collector 1a of the positive electrode 1 via the separator 3 (that is, the portion where the negative electrode active material-containing coating film is not formed) (that is, the positive electrode active material-containing coating film of the positive electrode current collector 1a is formed). A lead body 8 is welded to the outer peripheral surface side of the negative electrode current collector 2a at the outermost periphery of the negative electrode 2, and faces the lead body 8 welded to the exposed part of the negative electrode current collector 1a. An insulating tape 9 is adhered to the inner peripheral surface side of the positive electrode current collector 1a, and the above-mentioned lead body 8 faces the insulating tape 9 with the separator 3 interposed therebetween.

【0029】従って、この巻回構造の電極体を有する電
池では、側面部に凹部を設けた電池缶5に楕円状または
長円形状の電極体を挿入したものであっても、圧壊試験
において電池缶5が電極体を押圧した場合でも電極体の
電池缶5と対向する電極が正極1のみで構成されている
ので、電池缶5と負極2との接触による内部短絡を生ず
ることがなく、また、正極端子を兼ねる電池缶5の内面
側で突出している凸部と負極2は正極1を介して対向す
ることになり、圧壊試験により巻回構造の電極体と電池
缶5との間に介在するセパレータ3が溶融、破壊した場
合でも負極2と電池缶5との接触による内部短絡を生ず
ることがない。
Therefore, in the battery having the wound electrode body, even if the elliptical or elliptical electrode body is inserted into the battery can 5 having the concave portion on the side surface, the battery is not crushed in the crush test. Even when the can 5 presses the electrode body, since the electrode of the electrode body facing the battery can 5 is constituted only by the positive electrode 1, no internal short circuit occurs due to the contact between the battery can 5 and the negative electrode 2, and The negative electrode 2 and the convex portion protruding on the inner surface side of the battery can 5 also serving as a positive electrode terminal face each other via the positive electrode 1, and are interposed between the wound electrode body and the battery can 5 by a crush test. Even when the separator 3 melts and breaks, no internal short circuit occurs due to the contact between the negative electrode 2 and the battery can 5.

【0030】また、最外周部の負極集電体2aの外周面
側にはリード体8が溶接されていて、このリード体8が
セパレータ3を介して前記の絶縁テープ9と対向し、正
極1と直接対向していないため、充放電時の電極体の膨
張時に電極体が電池缶内面側の凸部によって押圧されて
も、内部短絡の発生を防止することができる。また、巻
回構造の電極体の最外周部では活物質含有塗膜を形成し
ていないので、上記楕円状または長円形状の巻回構造の
電極体を角形の電池缶5に挿入する場合、その電池缶内
部の凸部に最外周部の電極の活物質含有塗膜が接触して
活物質含有塗膜の崩れが発生することがなく、また電極
体の最外周部が正極1のみで構成されているため、巻回
構造の電極体と電池缶5との間に混入した異物などによ
る微小短絡が生じにくく、圧壊試験時において内部短絡
にまで進行する確率を低減することができる。さらに、
圧壊試験によりリード体8に大電流が流れ、リード体8
が発熱してセパレータ3が溶融した場合でも、リード体
8が正極1と直接対向していないので、内部短絡の発生
を防止することができる。
Further, a lead body 8 is welded to the outer peripheral surface side of the outermost peripheral portion of the negative electrode current collector 2a, and this lead body 8 faces the insulating tape 9 with the separator 3 interposed therebetween. Therefore, even if the electrode body is pressed by the protrusion on the inner surface side of the battery can at the time of expansion of the electrode body during charging / discharging, occurrence of an internal short circuit can be prevented. Further, since no active material-containing coating film is formed on the outermost periphery of the wound electrode body, when the above-mentioned elliptical or elliptical wound electrode body is inserted into the rectangular battery can 5, The active material-containing coating film of the outermost electrode does not come into contact with the convex portion inside the battery can, so that the active material-containing coating film does not collapse. Therefore, a minute short circuit due to foreign matter mixed between the wound electrode body and the battery can 5 is unlikely to occur, and the probability of progressing to an internal short circuit during a crush test can be reduced. further,
A large current flows through the lead body 8 by the crush test, and the lead body 8
Even when the separator 3 melts due to heat generation, since the lead body 8 does not directly face the positive electrode 1, it is possible to prevent an internal short circuit from occurring.

【0031】特に、上記巻回構造の電極体の形状が楕円
状または長円形状では、充放電時にリード体8の凸部に
よってねじれ応力や歪み応力がかかりやすく、それによ
ってリード体8と接するセパレータ3にかかる応力が増
加するため、リード体8が発熱した際にセパレータ3が
さらに溶融しやすくなるが、本発明によれば、そのよう
な場合にも安全性が確保できるので、その効果を顕著に
発現させることができる。なお、上記最外周部は、真正
に各電極の最外周1周に該当する場合が好ましいが、圧
壊試験により内部短絡が発生する確率を低減できる程度
であれば、1周未満に該当する場合があってもよい。
In particular, when the shape of the wound electrode body is elliptical or elliptical, torsion stress or strain stress is likely to be applied by the projections of the lead body 8 during charging and discharging, and thereby the separator contacting the lead body 8 is formed. Since the stress applied to the lead 3 increases, the separator 3 is more easily melted when the lead body 8 generates heat. However, according to the present invention, the safety can be ensured even in such a case, and the effect is remarkable. Can be expressed. It is preferable that the outermost periphery corresponds to one outermost circumference of each electrode. However, the outermost part may be less than one circumference as long as the probability of an internal short circuit occurring by a crush test can be reduced. There may be.

【0032】また、上記具体的携帯の巻回構造の電極体
においては、負極集電体2aに溶接したリード体8の厚
みを対向する部分の正極絶縁テープ9の厚みとセパレー
タ3の厚みとの合計厚み(絶縁テープ9の厚み+セパレ
ータ3の厚み)よりも薄くすることが好ましい。
Further, in the above-mentioned specific portable wound electrode structure, the thickness of the positive electrode insulating tape 9 and the thickness of the separator 3 at the portion where the thickness of the lead body 8 welded to the negative electrode current collector 2a is opposite. It is preferable that the thickness is smaller than the total thickness (the thickness of the insulating tape 9 + the thickness of the separator 3).

【0033】すなわち、圧壊試験において、負極2のリ
ード体8が内周側に押圧された場合に、負極1のリード
体8の厚みを正極1の厚みとセパレータ3の厚みとの合
計厚よりも薄くすることにより、圧壊が進んでリード体
8が外周面のセパレータ3を突き破り、さらに外周面の
絶縁テープ9を突き破り、さらにその外周側の正極1と
接触する内部短絡を防止することができる。
That is, in the crush test, when the lead body 8 of the negative electrode 2 is pressed inward, the thickness of the lead body 8 of the negative electrode 1 is set to be larger than the total thickness of the positive electrode 1 and the separator 3. By making the thinner, the crushing proceeds and the lead body 8 breaks through the separator 3 on the outer peripheral surface, further breaks through the insulating tape 9 on the outer peripheral surface, and further prevents an internal short circuit that contacts the positive electrode 1 on the outer peripheral side.

【0034】なお、上記説明からも明らかなように、こ
こでいう負極2の厚みとは、負極2のリード体8が対向
している正極1を突き破ることによる内部短絡を防止す
る観点から、負極2のリード体8と対向する正極1の厚
みを意味している。
As is clear from the above description, the thickness of the negative electrode 2 as used herein refers to the thickness of the negative electrode 2 from the viewpoint of preventing an internal short circuit caused by the lead body 8 of the negative electrode 2 breaking through the positive electrode 1 facing the negative electrode 2. 2 means the thickness of the positive electrode 1 facing the lead 8.

【0035】さらに、本発明においては、上記巻回構造
の電極体にする場合、正極1の最外周部における放熱が
スムーズに行い得るように、図3に示すように、正極1
の最外周部において正極集電体1aの両面に正極活物質
含有塗膜が形成されていない構造にし、かつ負極2の最
外周部の負極集電体2aの外周面側に負極活物質含有塗
膜が形成されていない構造にすることが好ましい。すな
わち、圧壊試験時の衝撃により最外周部の正極が破れて
も最外周部の正極集電体と負極の最外周部の負極集電体
の外周面側とで最初に接触するため、比較的抵抗の小さ
い集電体同士での短絡により大電流は流れるものの、熱
伝導率の高さにより、放熱が速やかに行われるので、電
池の発火確率を低減させることができる。
Further, in the present invention, when the electrode body having the wound structure is used, as shown in FIG.
In the outermost peripheral portion of the negative electrode current collector 1a, the negative electrode active material-containing coating film is not formed on both surfaces of the negative electrode current collector 1a. It is preferable to have a structure in which no film is formed. In other words, even if the outermost peripheral positive electrode is broken by the impact during the crush test, the outermost peripheral positive electrode current collector and the outermost peripheral negative electrode current collector near the outermost peripheral part of the negative electrode current collector first contact each other. Although a large current flows due to a short circuit between current collectors having small resistances, heat dissipation is performed quickly due to the high thermal conductivity, so that the firing probability of the battery can be reduced.

【0036】なお、図3に示すように、負極2の最外周
部においては、負極集電体2aの外周面側には負極活物
質含有塗膜を形成せず、負極集電体2aの内周面側にの
み負極活物質含有塗膜2bを形成することにより、充放
電されない負極活物質含有塗膜や正極活物質含有塗膜に
よる厚みを減少させ、電池缶内の空間を効率よく利用す
ることができ、さらなる高容量化を図ることができる。
そして、このような高容量電池でも本発明を適用するこ
とにより、安全性を大幅に向上させることができる。
As shown in FIG. 3, at the outermost peripheral portion of the negative electrode 2, no negative electrode active material-containing coating film is formed on the outer peripheral surface side of the negative electrode current collector 2a. By forming the negative electrode active material-containing coating film 2b only on the peripheral surface side, the thickness of the negative electrode active material-containing coating film and the positive electrode active material-containing coating film that are not charged and discharged is reduced, and the space in the battery can is efficiently used. And the capacity can be further increased.
By applying the present invention to such a high-capacity battery, the safety can be greatly improved.

【0037】つぎに、本発明の電池構成について説明す
る。
Next, the battery configuration of the present invention will be described.

【0038】本発明の非水二次電池において、電解質と
しては、有機溶媒系の液状電解質、ゲル状電解質、固体
電解質のいずれでもよいが、本発明は液状電解質(以
下、「電解液」という)を用いる場合に対して特に効果
が大きい。電解液の溶媒として、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネー
ト、プロピオン酸メチルなどの鎖状のCOO−結合を有
する鎖状エステルや、プロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、ガンマ−ブチ
ロラクトン、エチレングリコールサルファイトなどの環
状エステル、また、1,2−ジメトキシエタン、1,3
−ジオキソラン、テトラヒドロフラン、2−メチル−テ
トラヒドロフラン、ジエチルエーテルなどのエーテルの
ほか、アミン系またはイミド系有機溶媒や、含イオウ系
または含フッ素系または含リン酸系または含シリコン系
有機溶媒なども用いることができる。
In the non-aqueous secondary battery of the present invention, the electrolyte may be any of an organic solvent-based liquid electrolyte, a gel electrolyte, and a solid electrolyte, but the present invention provides a liquid electrolyte (hereinafter referred to as an “electrolyte”). This is particularly effective for the case of using. As a solvent for the electrolytic solution, a chain ester having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate; propylene carbonate, ethylene carbonate, butylene carbonate, gamma-butyrolactone, ethylene glycol sal Cyclic esters such as phyto, and 1,2-dimethoxyethane, 1,3
-In addition to ethers such as dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran and diethyl ether, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing or phosphoric-containing or silicon-containing organic solvents, and the like are also used. Can be.

【0039】本発明において、上記電解液における溶媒
の主溶媒として鎖状エステルを用いると、電解液の粘度
を下げ、イオン伝導度を高めることから好ましい。主溶
媒というのは、これらの鎖状エステルを含んだ全電解液
溶媒中で鎖状エステルが50体積%を超えることを意味
する。鎖状エステルが65体積%を超えると、従来技術
では4.4V充電後の圧壊試験での電池の安全性が低下
する傾向にあるが、本発明によれば、そのように鎖状エ
ステルが65体積%を超える場合でも安全性を確保で
き、本発明の効果が顕著に発現する。
In the present invention, it is preferable to use a chain ester as the main solvent of the solvent in the electrolytic solution, since the viscosity of the electrolytic solution is reduced and the ionic conductivity is increased. The main solvent means that the chain ester exceeds 50% by volume in the total electrolyte solvent containing these chain esters. If the chain ester exceeds 65% by volume, the safety of the battery in the crush test after 4.4 V charging tends to decrease in the prior art. However, according to the present invention, the chain ester has such a 65% by volume. Even in the case where the content exceeds% by volume, safety can be ensured, and the effects of the present invention are remarkably exhibited.

【0040】そして、鎖状エステルが70体積%を超え
ると、従来技術では電池の安全性がより低下しやすくな
るので、本発明の効果がより一層顕著に発現するように
なり、鎖状エステルが75体積%を超えると、従来技術
では電池の安全性がさらに低下しやすくなるので、本発
明の効果がさらに一層顕著に発現するようになる。ま
た、鎖状エステルがメチル基を有する場合も従来技術で
は電池の安全性が低下しやすかったが、本発明によれ
ば、そのような鎖状エステルがメチル基を有する場合で
も安全性を確保でき、本発明の効果がより一層顕著に発
現する。
When the amount of the chain ester exceeds 70% by volume, the safety of the battery is more likely to be reduced in the prior art, so that the effect of the present invention is more remarkably exhibited. If the content exceeds 75% by volume, the safety of the battery is more likely to be reduced in the conventional technique, so that the effects of the present invention are more remarkably exhibited. Also, in the case where the chain ester has a methyl group, the safety of the battery is liable to be reduced in the conventional technique. Thus, the effects of the present invention are more remarkably exhibited.

【0041】また、上記鎖状エステルに下記の誘電率が
高いエステル(誘電率30以上)を混合して用いると、
鎖状エステルだけで用いる場合よりも、サイクル特性や
電池の負荷特性が向上するので、電池としてはより好ま
しいものとなる。このような誘電率の高いエステルとし
ては、例えば、プロピレンカーボネート、エチレンカー
ボネート、ブチレンカーボネート、ガンマ−ブチロラク
トン、エチレングリコールサルファイトなどが挙げられ
る。特に環状構造のものが好ましく、とりわけ環状のカ
ーボネートが好ましく、エチレンカーボネートが最も好
ましい。
When the following ester having a high dielectric constant (dielectric constant of 30 or more) is mixed with the above-mentioned chain ester and used,
Since the cycle characteristics and the load characteristics of the battery are improved as compared with the case where only the chain ester is used, the battery is more preferable. Examples of such an ester having a high dielectric constant include propylene carbonate, ethylene carbonate, butylene carbonate, gamma-butyrolactone, and ethylene glycol sulfite. In particular, those having a cyclic structure are preferred, cyclic carbonates are particularly preferred, and ethylene carbonate is most preferred.

【0042】上記高誘電率エステルは電解液の全溶媒中
の40体積%未満が好ましく、より好ましくは30体積
%以下、さらに好ましくは25体積%以下である。そし
て、これらの誘電率の高いエステルによる安全性の向上
は、上記エステルが電解液の全溶媒中で10体積%以上
になると達成されやすくなり、20体積%に達するとさ
らに安全性が向上するようになる。
The high dielectric constant ester is preferably less than 40% by volume, more preferably 30% by volume or less, further preferably 25% by volume or less of the total solvent of the electrolytic solution. The improvement of the safety by these esters having a high dielectric constant is easily achieved when the amount of the ester is 10% by volume or more in the total solvent of the electrolytic solution, and the safety is further improved when the amount of the ester reaches 20% by volume. become.

【0043】電解液の溶質としては、例えば、LiCl
4 、LiPF6 、LiBF4 、LiAsF6 、LiS
bF6 、LiCF3 SO3 、LiC4 9 SO3 、Li
CF 3 CO2 、Li2 2 4 (SO3 2 、LiN
(CF3 SO2 2 、LiC(CF3 SO2 3 、Li
n 2n+1SO3 (n≧2)、LiN(RfOSO2
2 〔ここでRfはフルオロアルキル基〕などが単独でま
たは2種以上混合して用いられるが、特にLiPF6
LiC4 9 SO3 などが充放電特性が良好なことから
好ましい。電解液中における溶質の濃度は、特に限定さ
れるものではないが、0.3〜1.7mol/l、特に
0.4〜1.5mol/l程度が好ましい。
As a solute of the electrolytic solution, for example, LiCl
OFour, LiPF6, LiBFFour, LiAsF6, LiS
bF6, LiCFThreeSOThree, LiCFourF9SOThree, Li
CF ThreeCOTwo, LiTwoCTwoFFour(SOThree)Two, LiN
(CFThreeSOTwo)Two, LiC (CFThreeSOTwo)Three, Li
CnF2n + 1SOThree(N ≧ 2), LiN (RfOSOTwo)
Two[Where Rf is a fluoroalkyl group]
Or a mixture of two or more kinds.6And
LiCFourF9SOThreeEtc. have good charge / discharge characteristics
preferable. The concentration of solutes in the electrolyte is particularly limited
Although it is not a thing, 0.3 to 1.7 mol / l, especially
About 0.4 to 1.5 mol / l is preferable.

【0044】本発明において、正極活物質としては、特
に限定されることはないが、例えば、LiCoO2 など
のリチウムコバルト酸化物、LiMn2 4 などのリチ
ウムマンガン酸化物、LiNiO2 などのリチウムニッ
ケル酸化物などのリチウム複合酸化物、二酸化マンガ
ン、五酸化バナジウム、クロム酸化物などの金属酸化物
またはこれらを基本構造とする複合酸化物(例えば、異
種金属添加品)、あるいは二硫化チタン、二硫化モリブ
デンなどの金属硫化物などが用いられる。特にLiNi
2 、LiCoO2 、LiMn2 4 などの充電時の開
路電圧がLi基準で4V以上を示すリチウム複合酸化物
を正極活物質として用いる場合には、高エネルギー密度
が得られるので好ましい。特に充電したLiCoO2
LiNiO 2 は電解液との反応開始温度がLiMn2
4 などより低く、負極の発熱によって正極が熱暴走温度
に達しやすいが、本発明によれば、正極活物質としてL
iCoO2 やLiNiO2 を用いる場合にも安全性を確
保することができるので、本発明は、正極活物質として
LiCoO2 やLiNiO2 を用いる場合に、その効果
が顕著に発現する。
In the present invention, as the positive electrode active material,
Although not limited to, for example, LiCoOTwoSuch
Lithium cobalt oxide, LiMnTwoOFourSuch as Richi
Manganese oxide, LiNiOTwoLithium ni
Lithium composite oxides such as Kel oxide, manganese dioxide
Oxides such as vanadium pentoxide and chromium oxide
Or a composite oxide having these as a basic structure (for example,
Seed metal additive), or titanium disulfide, molybdenum disulfide
Metal sulfides such as den are used. Especially LiNi
OTwo, LiCoOTwo, LiMnTwoOFourOpen when charging
Lithium composite oxide with a circuit voltage of 4 V or more based on Li
When using as a positive electrode active material, high energy density
Is preferred. Especially charged LiCoOTwoAnd
LiNiO TwoMeans that the reaction initiation temperature with the electrolyte is LiMnTwoO
FourLower than the temperature of the negative electrode
However, according to the present invention, as the positive electrode active material, L
iCoOTwoAnd LiNiOTwoSafety when using
Therefore, the present invention can be used as a positive electrode active material.
LiCoOTwoAnd LiNiOTwoWhen using, the effect
Is remarkably expressed.

【0045】そして、正極は、例えば、上記の正極活物
質に例えば鱗片状黒鉛やカーボンブラックなどの導電助
剤や、例えばポリフッ化ビニリデンやポリテトラフルオ
ロエチレンなどの結着剤などを適宜添加し、溶剤でペー
スト状にし(結着剤はあらかじめ溶剤に溶解させておい
てから正極活物質などと混合してもよい)、その正極活
物質含有ペーストをアルミニウム箔などの金属箔からな
る正極集電体に塗布し、乾燥して正極活物質含有塗膜を
形成することによって作製される。ただし、本発明にお
いては、前記のように巻回構造の電極体において正極の
少なくとも最外周部の正極集電体の外周面側となる部分
には正極活物質含有塗膜を形成せず正極集電体のみの部
分を残しておく。
For the positive electrode, for example, a conductive additive such as flake graphite or carbon black, or a binder such as polyvinylidene fluoride or polytetrafluoroethylene is appropriately added to the positive electrode active material described above, for example. A paste is formed with a solvent (the binder may be dissolved in the solvent in advance and then mixed with the positive electrode active material, etc.), and the positive electrode active material-containing paste is made of a metal foil such as an aluminum foil. And dried to form a positive electrode active material-containing coating film. In the present invention, however, the positive electrode active material-containing coating film is not formed on at least the outermost peripheral portion of the positive electrode current collector at the outermost periphery of the positive electrode in the wound electrode body as described above. Leave only the electrical parts.

【0046】本発明において、上記正極集電体の厚さと
しては、5〜60μm、特に8〜40μmが好ましく、
また、正極活物質含有塗膜の厚さとしては、片面当たり
30〜300μm、特に50〜150μmが好ましい。
In the present invention, the thickness of the positive electrode current collector is preferably 5 to 60 μm, particularly preferably 8 to 40 μm.
The thickness of the positive electrode active material-containing coating film is preferably 30 to 300 μm, more preferably 50 to 150 μm per side.

【0047】負極に用いる材料としては、リチウムイオ
ンをドープ、脱ドープできるものであればよく、本発明
においては、そのようなリチウムイオンをドープ、脱ド
ープできる物質を負極活物質という。そして、この負極
活物質としては、特に限定されることはないが、例え
ば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素
類、有機高分子化合物の焼成体、メソカーボンマイクロ
ビーズ、炭素繊維、活性炭などの炭素材料、Si、S
n、Inなどの合金またはLiに近い低電圧で充放電で
きるSi、Sn、Inなどの酸化物などを用いることが
できる。
The material used for the negative electrode may be any material capable of doping and undoping lithium ions. In the present invention, such a material capable of doping and undoping lithium ions is referred to as a negative electrode active material. The negative electrode active material is not particularly limited. Examples thereof include graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, and carbon fibers. , Activated carbon and other carbon materials, Si, S
An alloy such as n or In or an oxide such as Si, Sn, or In which can be charged and discharged at a low voltage close to Li can be used.

【0048】負極活物質として炭素材料を用いる場合、
該炭素材料としては下記の特性を持つものが好ましい。
すなわち、その(002)面の面間距離(d002 )に関
しては、0.35nm以下が好ましく、より好ましくは
0.345nm以下、さらに好ましくは0.34nm以
下である。また、c軸方向の結晶子の大きさ(Lc)に
関しては、3.0nm以上が好ましく、より好ましくは
8.0nm以上、さらに好ましくは25.0nm以上で
ある。そして、上記炭素材料の平均粒径は8〜20μ
m、特に10〜15μmが好ましく、純度は99.9重
量%以上が好ましい。
When a carbon material is used as the negative electrode active material,
The carbon material preferably has the following characteristics.
That is, the inter-plane distance (d 002 ) of the (002) plane is preferably 0.35 nm or less, more preferably 0.345 nm or less, and still more preferably 0.34 nm or less. Further, the size (Lc) of the crystallite in the c-axis direction is preferably 3.0 nm or more, more preferably 8.0 nm or more, and further preferably 25.0 nm or more. The average particle size of the carbon material is 8 to 20 μm.
m, particularly preferably 10 to 15 μm, and the purity is preferably 99.9% by weight or more.

【0049】負極は、例えば、上記負極活物質に例えば
ポリフッ化ビニリデンやポリテトラフルオロエチレンな
どの結着剤を適宜添加し、さらに要すれば導電助剤を適
宜添加して、溶剤でペースト状にし(結着剤はあらかじ
め溶剤に溶解させておいてから負極活物質などと混合し
てもよい)、その負極活物質含有ペーストを銅箔などか
らなる負極集電体に塗布し、乾燥して負極活物質含有塗
膜を形成することによって作製される。ただし、本発明
においては、後記の実施例に示すように巻回構造の電極
体において少なくとも負極の最外周部の負極集電体の外
周面側となる部分には負極活物質含有塗膜を形成せず、
負極集電体のみの部分を残しておくことが好ましい。
For the negative electrode, for example, a binder such as polyvinylidene fluoride or polytetrafluoroethylene is appropriately added to the above-mentioned negative electrode active material, and if necessary, a conductive auxiliary is appropriately added. (The binder may be previously dissolved in a solvent and then mixed with the negative electrode active material, etc.), and the negative electrode active material-containing paste is applied to a negative electrode current collector made of copper foil or the like, dried, and dried. It is produced by forming an active material-containing coating film. However, in the present invention, a negative electrode active material-containing coating film is formed on at least the outermost peripheral portion of the negative electrode current collector at the outermost peripheral portion of the negative electrode in the wound electrode body as shown in Examples described later. Without
It is preferable to leave only the negative electrode current collector.

【0050】本発明において、上記負極集電体の厚さと
しては、5〜60μm、特に8〜40μmが好ましく、
また上記負極活物質含有塗膜の厚さとしては、片面当た
り30〜300μm、特に50〜150μmが好まし
い。
In the present invention, the thickness of the negative electrode current collector is preferably 5 to 60 μm, particularly preferably 8 to 40 μm.
Further, the thickness of the negative electrode active material-containing coating film is preferably 30 to 300 μm, more preferably 50 to 150 μm per one side.

【0051】上記正極集電体や負極集電体としては、例
えば、アルミニウム、銅、ニッケル、ステンレス鋼など
の金属の箔、エキスパンドメタル、網などが用いられる
が、正極集電体としては特にアルミニウム箔が好まし
く、負極集電体としては特に銅箔が好ましい。
As the positive electrode current collector and the negative electrode current collector, for example, metal foils such as aluminum, copper, nickel, and stainless steel, expanded metals, and nets are used. A foil is preferred, and a copper foil is particularly preferred as the negative electrode current collector.

【0052】上記正極や負極の作製にあたって、上記正
極活物質含有ペーストや負極活物質含有ペーストを集電
体に塗布する際の塗布方法としては、例えば、押出しコ
ーター、リバースローラー、ドクターブレードなどをは
じめ、各種の塗布方法を採用することができる。
In producing the positive electrode and the negative electrode, the application method of applying the positive electrode active material-containing paste and the negative electrode active material-containing paste to a current collector includes, for example, an extrusion coater, a reverse roller, a doctor blade, and the like. In addition, various coating methods can be adopted.

【0053】また、高容量化を図るという観点からは、
巻回構造の電極の単位体積当たりの充放電可能な容量が
大きいことが好ましく、満充電での充放電可能な容量が
巻回構造の電極の単位体積当たり130mAh/cm3
以上が好ましく、140mAh/cm3 以上がより好ま
しく、150mAh/cm3 がさらに好ましい。このよ
うな高容量の電池では、異常発熱などを起こしやすい
が、本発明では上記のような高容量の電池に対しても安
全性を確保することができるので、本発明は上記のよう
な高容量の電池に適用する場合にその効果を顕著に発現
する。ここでいう巻回構造の電極体の体積とは、正極、
負極およびセパレータを巻回したものの電池内における
嵩体積であり、渦巻状に巻回する際に使用した巻き軸を
取り除いた時に残った孔などは体積として含まない。要
は正極、負極およびセパレータが占める嵩体積を合計し
たものである。
From the viewpoint of increasing the capacity,
Preferably, the chargeable / dischargeable capacity per unit volume of the wound electrode is large, and the chargeable / dischargeable capacity at full charge is 130 mAh / cm 3 per unit volume of the wound electrode.
Or more, preferably 140 mAh / cm 3 or more, and more preferably 150 mAh / cm 3 . Such a high-capacity battery is liable to cause abnormal heat generation, but the present invention can secure safety even for the high-capacity battery as described above. The effect is remarkably exhibited when applied to a battery having a large capacity. Here, the volume of the wound electrode body is a positive electrode,
This is the bulk volume in the battery of the battery in which the negative electrode and the separator are wound, and does not include the volume left after removing the winding shaft used for spirally winding. In short, it is the sum of the bulk volumes occupied by the positive electrode, the negative electrode, and the separator.

【0054】本発明において、負極のリード体は、前記
のようにして作製された負極に、抵抗溶接、超音波溶接
などにより負極集電体の露出部分に溶接されるが、この
負極のリード体の断面積としては、大電流が流れた場合
の抵抗を低減し発熱量を低減するために、0.1mm2
以上で1.0mm2 以下が好ましく、0.3mm2 以上
で0.7mm2 以下がより好ましい。負極のリード体の
材質としては、ニッケルが一般に用いられるが、銅、チ
タン、ステンレス鋼なども用いることができる。
In the present invention, the lead of the negative electrode is welded to the negative electrode manufactured as described above on the exposed portion of the negative electrode current collector by resistance welding, ultrasonic welding, or the like. Is 0.1 mm 2 in order to reduce resistance and reduce heat generation when a large current flows.
The above is preferably 1.0 mm 2 or less, more preferably 0.3 mm 2 or more and 0.7 mm 2 or less. Nickel is generally used as the material of the negative electrode lead body, but copper, titanium, stainless steel, or the like can also be used.

【0055】また、本発明において、正極集電体に接着
する絶縁テープとしては、例えば、イミド系、ポリテト
ラフルオロエチレン系、ポリフェニレンサルファイト系
などの絶縁テープを用いることが好ましい。上記正極絶
縁テープの厚みとしては、50μm以上で120μm以
下が好ましく、60μm以上で100μm以下がより好
ましい。そして、絶縁テープの幅としては対向するリー
ド体(負極のリード体)の幅にもよるが、通常、5mm
以上で15mm以下が好ましく、7mm以上で12mm
以下がより好ましい。
In the present invention, as the insulating tape to be adhered to the positive electrode current collector, it is preferable to use, for example, an imide-based, polytetrafluoroethylene-based, polyphenylene sulfide-based insulating tape, or the like. The thickness of the positive electrode insulating tape is preferably from 50 μm to 120 μm, and more preferably from 60 μm to 100 μm. The width of the insulating tape depends on the width of the opposing lead body (the negative electrode lead body).
Above is preferably 15 mm or less, 7 mm or more is 12 mm
The following is more preferred.

【0056】本発明において、セパレータとしては、強
度が充分でしかも電解液を多く保持できるものが好まし
く、そのような観点から、厚さが10〜50μmで、開
孔率が30〜70%のポリプロピレン製、ポリエチレン
製またはエチレンとプロピレンのコポリマー製の微孔性
フィルムや不織布などが好ましい。
In the present invention, it is preferable that the separator has sufficient strength and can hold a large amount of electrolyte, and from such a viewpoint, polypropylene having a thickness of 10 to 50 μm and a porosity of 30 to 70% is preferable. , A microporous film or nonwoven fabric made of polyethylene or a copolymer of ethylene and propylene is preferred.

【0057】本発明の非水二次電池は、例えば、上記の
ようにして作製された正極と負極との間にセパレータを
介在させて重ね合わせ、それを、楕円状、長円形状など
の角形の電池缶に挿入可能な構造に巻回して作製した巻
回構造の電極体を電池缶内に挿入し、封口する工程を経
て作製される。この時、電極体の底部に、絶縁体を配設
しておくことが好ましい。電極体の底部に絶縁体を配設
しておくことにより、電池缶底部からの圧壊に対して安
全性を確保することができる。
In the non-aqueous secondary battery of the present invention, for example, a positive electrode and a negative electrode produced as described above are overlapped with a separator interposed therebetween, and the resultant is combined into a rectangular shape such as an elliptical shape or an oval shape. An electrode body having a wound structure manufactured by winding the electrode body into a structure insertable into the battery can is inserted into the battery can and sealed. At this time, it is preferable to provide an insulator at the bottom of the electrode body. By disposing an insulator at the bottom of the electrode body, safety against crushing from the bottom of the battery can can be ensured.

【0058】上記電池缶には、電極体の膨張による電池
の膨れを防止するために、側面部に凹部を設けている
が、その電池缶の材質としては特に限定されることがな
く各種のものを使用できるが、アルミニウム、マグネシ
ウムなどの比重が小さい材質を使用するとともに、その
肉厚を規格内で許容できる最小値に設定することによっ
て、電池全体としてできるかぎりの軽量化を図ることが
好ましい。このような軽量化を行っても、本発明は電池
缶の側面部に凹部を設けているので、充放電サイクルに
よって電極体が膨張したときに、電池缶側面部の膨張を
上記凹部で吸収することによって防止することができ
る。上記凹部の設け方としては、どのような方法によっ
てもよいが、例えば、長方形状の凹部を設ける場合に
は、金属板を少なくとも1組以上の雄雌からなる金型を
用いて何段階かにわけて絞り加工し、さらに絞り加工前
あるいは後に別な金型によって型押しすることによって
凹部を形成する方法などを採用することができる。ま
た、曲面状の凹部を設ける場合には、絞り加工した電池
缶に、側面部に曲面上のプレス面を有するプレス型をプ
レスすることによって凹部を形成する方法などを採用す
ることができる。
The battery can is provided with a concave portion on a side surface in order to prevent the battery from swelling due to the expansion of the electrode body. The material of the battery can is not particularly limited, and various materials can be used. However, it is preferable to reduce the weight of the battery as much as possible by using a material having a low specific gravity, such as aluminum or magnesium, and setting its thickness to a minimum allowable value within the standard. Even with such weight reduction, the present invention provides a concave portion on the side surface of the battery can, so that when the electrode body expands due to a charge / discharge cycle, the expansion of the battery can side is absorbed by the concave portion. This can be prevented. The method of providing the concave portion may be any method. For example, in the case of providing a rectangular concave portion, the metal plate is formed in several steps using a mold comprising at least one set of male and female. In particular, it is possible to adopt a method of forming a concave portion by performing drawing, and further pressing before or after the drawing with another die. When a curved concave portion is provided, a method of forming a concave portion by pressing a press die having a curved press surface on a side surface portion of a drawn battery can can be employed.

【0059】また、上記電池には、通常、電池内部に発
生したガスをある一定圧力まで上昇した段階で電池外部
に排出して、電池の高圧下での破裂を防止するための防
爆機構が取り入れられる。
Further, the above-mentioned battery usually incorporates an explosion-proof mechanism for discharging gas generated inside the battery to the outside of the battery when the pressure has risen to a certain pressure, thereby preventing the battery from bursting under high pressure. Can be

【0060】さらに、非水二次電池では、充電電圧が
4.25V以上、特に4.35Vまで充電される場合に
は異常発熱などの危険性が増す傾向があるが、本発明に
よればそのような場合にも安全性が確保できるので、本
発明をそのような場合に適用するとその効果が顕著に発
現する。その詳細は実施例で説明する。
Further, in the case of a non-aqueous secondary battery, when the charging voltage is charged to 4.25 V or more, particularly to 4.35 V, the risk of abnormal heat generation and the like tends to increase. Even in such a case, safety can be ensured. Therefore, when the present invention is applied to such a case, the effect is remarkably exhibited. The details will be described in Examples.

【0061】[0061]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものでもない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0062】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比2:1で混合した混合溶媒に、LiPF6 を1.
2mol/l溶解させて、組成が1.2mol/lLi
PF6 /EC:MEC(1:2体積比)で示される電解
液を調製した。
Example 1 LiPF 6 was added to a mixed solvent of methyl ethyl carbonate and ethylene carbonate at a volume ratio of 2: 1.
Dissolve 2 mol / l and make composition 1.2 mol / l Li
An electrolyte represented by PF 6 / EC: MEC (1: 2 volume ratio) was prepared.

【0063】上記電解液におけるECはエチレンカーボ
ネートの略称であり、MECはメチルエチルカーボネー
トの略称である。従って、上記電解液を示す1.2mo
l/lLiPF6 /EC:MEC(1:2体積比)は、
メチルエチルカーボネートとエチレンカーボネートとの
体積比1:2の混合溶媒にLiPF6 を1.2mol/
l溶解させたものであることを示している。
In the above electrolyte, EC is an abbreviation for ethylene carbonate, and MEC is an abbreviation for methyl ethyl carbonate. Therefore, the above-mentioned electrolyte solution of 1.2 mo
1 / l LiPF 6 / EC: MEC (1: 2 volume ratio)
LiPF 6 was added to a mixed solvent of methyl ethyl carbonate and ethylene carbonate at a volume ratio of 1: 2 by 1.2 mol / mol.
1 indicates that it was dissolved.

【0064】これとは別に、正極活物質としてのLiC
oO2 に導電助剤として鱗片状黒鉛を重量比92:4.
5の割合で加えて混合し、この混合物と、ポリフッ化ビ
ニリデンをN−メチル−2−ピロリドンにあらかじめ溶
解させておいた溶液とを混合してペーストを調製した。
この正極活物質含有ペーストを70メッシュの網を通過
させて大きなものを取り除いた後、厚さ15μmのアル
ミニウム箔からなる正極集電体の両面に均一に塗布し、
乾燥して正極活物質含有塗膜を形成した。ただし、これ
より作られる正極を負極やセパレータなどと共に巻回構
造の電極体にした時に、正極の最外周部の正極集電体の
外周面側となる部分には上記正極活物質含有ペーストの
塗布を行わず、無地部(つまり、正極活物質含有塗膜が
形成されていない正極集電体の露出部分)の長さが68
mm(約1周分)になるようにし、その最外周部の内周
面側に負極集電体に設けたリード体と対向するように、
幅10mmで厚み80μmのポリフェニレンサルファイ
ドテープを絶縁テープとして接着した。この帯状体を乾
燥後、厚み179μmに加圧成形し、切断した後、幅3
mmで厚み100μmのアルミニウム製のリード体の一
端を上記正極集電体の無地部(つまり、正極集電体の露
出部分)に溶接してリード体を取り付け、帯状の正極を
作製した。
Separately from this, LiC as a positive electrode active material
Scaly graphite is added to oO 2 as a conductive additive in a weight ratio of 92: 4.
The resulting mixture was mixed with a solution in which polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone to prepare a paste.
After passing the positive electrode active material-containing paste through a 70-mesh net to remove large pieces, the paste was uniformly applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm,
It dried and the positive electrode active material containing coating film was formed. However, when the positive electrode made from this is formed into a wound electrode body together with a negative electrode, a separator, etc., the above-mentioned positive electrode active material-containing paste is applied to the outermost peripheral portion of the positive electrode on the outer peripheral surface side of the positive electrode current collector. And the length of the uncoated portion (that is, the exposed portion of the positive electrode current collector on which the positive electrode active material-containing coating film is not formed) is 68
mm (approximately one round), and facing the lead body provided on the negative electrode current collector on the inner peripheral surface side of the outermost peripheral portion,
A polyphenylene sulfide tape having a width of 10 mm and a thickness of 80 μm was adhered as an insulating tape. After drying this band-shaped body, it was pressure-molded to a thickness of 179 μm, cut, and then cut to a width of 3 μm.
One end of an aluminum lead body having a thickness of 100 μm and a thickness of 100 mm was welded to the uncoated portion of the positive electrode current collector (that is, the exposed portion of the positive electrode current collector), and the lead body was attached to produce a belt-shaped positive electrode.

【0065】つぎに、負極活物質としての黒鉛系炭素材
料〔ただし、002面の面間距離(d002 )=0.33
7nm、c軸方向の結晶子の大きさ(Lc)=95.0
nm、平均粒径10μm、純度99.9%以上という特
性を持つ炭素材料〕を、ポリフッ化ビニリデンをN−メ
チル−2−ピロリドンにあらかじめ溶解させておいた溶
液と混合してペーストを調製した。この負極活物質含有
ペーストを厚さ10μmの帯状の銅箔からなる負極集電
体の両面に均一に塗布し、乾燥して負極活物質含有塗膜
を形成した。ただし、これより作られる負極を前記正極
やセパレータなどと共に巻回構造の電極体にした時に、
負極の最外周部となる部分の負極集電体には上記負極活
物質含有ペーストの塗布を行わず、無地部(つまり、負
極活物質含有塗膜が形成されていない負極集電体の露出
部分)の長さが65mmになるようにした。この帯状体
を乾燥後、厚み142μmに加圧成形し、切断した後、
無地部(つまり、負極集電体の露出部分)の最先端から
8mmのところに、幅3mmで厚み0.1mm(断面積
0.3mm2 )のニッケル製のリード体の一端を溶接し
て、帯状の負極を作製した。
Next, a graphite-based carbon material as the negative electrode active material [provided that the distance between the 002 surfaces (d 002 ) = 0.33]
7 nm, crystallite size (Lc) in c-axis direction = 95.0
A carbon material having characteristics of nm, an average particle diameter of 10 μm, and a purity of 99.9% or more] was mixed with a solution in which polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone to prepare a paste. This negative electrode active material-containing paste was uniformly applied to both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm, and dried to form a negative electrode active material-containing coating film. However, when the negative electrode produced therefrom is formed into a wound electrode body together with the positive electrode and the separator,
The negative electrode active material-containing paste was not applied to the portion of the negative electrode current collector that was the outermost peripheral portion of the negative electrode, and the uncoated portion (that is, the exposed portion of the negative electrode current collector where the negative electrode active material-containing coating film was not formed) was applied. ) Was 65 mm in length. After drying this band-shaped body, it was pressure-molded to a thickness of 142 μm, cut and then
One end of a nickel lead body having a width of 3 mm and a thickness of 0.1 mm (cross-sectional area of 0.3 mm 2 ) was welded to a position 8 mm from the leading end of the uncoated portion (that is, the exposed portion of the negative electrode current collector), A strip-shaped negative electrode was produced.

【0066】上記正極および負極を乾燥処理後、ドライ
雰囲気中で上記正極を厚さ25μmの微孔性ポリエチレ
ンフィルムからなるセパレータを介して上記負極に重
ね、長軸と短軸を有する巻回芯に巻き付けて巻回して長
円形状の巻回構造の電極体にした。その後、電極体の底
部に絶縁体としてポリイミドテープを接着し、この巻回
構造の電極体を後述のように長側面部の両面に凹部を有
する電池缶内に挿入し、その開口部を封口して角形非水
二次電池を作製した。この電池の概略斜視図を図1に示
し、平面図を図2の(a)に示し、部分縦断面図を図2
の(b)に示す。また、上記巻回構造の電極体の最外周
部およびその近傍の要部を図3に示す。
After drying the positive electrode and the negative electrode, the positive electrode is superposed on the negative electrode via a separator made of a microporous polyethylene film having a thickness of 25 μm in a dry atmosphere to form a winding core having a long axis and a short axis. The electrode body was wound and wound to form an elliptical wound structure. Thereafter, a polyimide tape is adhered to the bottom of the electrode body as an insulator, and the wound electrode body is inserted into a battery can having concave portions on both long side surfaces as described later, and the opening is sealed. Thus, a prismatic non-aqueous secondary battery was manufactured. FIG. 1 shows a schematic perspective view of this battery, FIG. 2A shows a plan view thereof, and FIG.
(B) of FIG. FIG. 3 shows the outermost peripheral portion of the wound electrode body and essential parts in the vicinity thereof.

【0067】まず、図3に基づき巻回構造の電極体から
先に説明すると、この図3においては、正極1は最外周
部と該最外周部から2周目が示されていて、巻回構造の
電極体の電池缶5と対向する電極は実質的に正極1のみ
で構成され、その最外周部は正極集電体1aの露出部分
を有し、そのいずれの面にも正極活物質含有塗膜が形成
されておらず、その最外周部から2周目では正極集電体
1aの両面に正極活物質含有塗膜1bが形成されてい
る。そして、負極2は最外周部が示されており、この最
外周部では銅箔からなる負極集電体2aの外周面側には
負極活物質含有塗膜を形成されておらず、内周面側のみ
負極活物質含有塗膜2bがを形成されている。この負極
2のリード体8は最外周部の負極集電体2aの外周面側
に取り付けられており、上記リード体8は、セパレータ
3および正極1を介して電池缶5の凹部5aと対向して
いる。そして、セパレータ3は正極1と負極2との間の
みならず、巻回構造の電極体の最外周部に位置する正極
集電体1aと電池缶5の内面との間にも介在している。
この図3では、巻回構造の電極体およびその近傍の要部
を示すもので、電池缶5についても全体を示さず一部し
か示していないので、図3に示している部分がどの部分
に該当するか判別できないが、この図3に示す部分は電
池缶5の凹部5aである。
First, the electrode structure having a wound structure will be described first with reference to FIG. 3. In FIG. 3, the positive electrode 1 is shown in the outermost periphery and the second periphery from the outermost periphery. The electrode of the electrode body having the structure facing the battery can 5 is substantially composed of only the positive electrode 1, and the outermost portion has an exposed portion of the positive electrode current collector 1 a, and any surface thereof contains the positive electrode active material. No coating film is formed, and the positive electrode active material-containing coating film 1b is formed on both surfaces of the positive electrode current collector 1a in the second round from the outermost peripheral portion. The outermost peripheral portion of the negative electrode 2 is shown. At the outermost peripheral portion, the negative electrode active material-containing coating film is not formed on the outer peripheral surface side of the negative electrode current collector 2a made of copper foil. The negative electrode active material-containing coating film 2b is formed only on the side. The lead body 8 of the negative electrode 2 is attached to the outer peripheral surface side of the outermost peripheral part of the negative electrode current collector 2a, and the lead body 8 faces the concave portion 5a of the battery can 5 via the separator 3 and the positive electrode 1. ing. The separator 3 is interposed not only between the positive electrode 1 and the negative electrode 2 but also between the positive electrode current collector 1 a located at the outermost periphery of the wound electrode body and the inner surface of the battery can 5. .
FIG. 3 shows an electrode body having a wound structure and essential parts in the vicinity thereof. The battery can 5 is not shown in its entirety but only partially, so the part shown in FIG. Although it is not possible to determine whether or not this is the case, the portion shown in FIG. 3 is the concave portion 5 a of the battery can 5.

【0068】この実施例1の電池の巻回構造の電極体で
は、図3に示すように、負極1の最外周部の負極集電体
2aの外周面側には負極活物質含有塗膜が形成されてお
らず、内周面側のみ負極活物質含有塗膜2bが形成され
ている。そして、その負極集電体2aの露出部分がセパ
レータ3を介して正極1の正極集電体1aの露出部分と
対向し、かつ負極1の負極集電体1aに溶接したリード
体8がセパレータ3を介して最外周部の正極1の正極集
電体1aに設けた絶縁テープ9と対向し、正極2とは直
接対向しないようになっている。
In the electrode body of the wound structure of the battery of Example 1, as shown in FIG. 3, a negative electrode active material-containing coating film was formed on the outer peripheral surface side of the negative electrode current collector 2a at the outermost periphery of the negative electrode 1. Not being formed, the negative electrode active material-containing coating film 2b is formed only on the inner peripheral surface side. The exposed portion of the negative electrode current collector 2a faces the exposed portion of the positive electrode current collector 1a of the positive electrode 1 via the separator 3, and the lead member 8 welded to the negative electrode current collector 1a of the negative electrode 1 The insulating tape 9 is opposed to the insulating tape 9 provided on the positive electrode current collector 1 a of the positive electrode 1 at the outermost peripheral portion, and is not directly opposed to the positive electrode 2.

【0069】従って、上記構造の電極体を側面部に凹部
5aを設けた角形の電池缶5を用いた角形非水二次電池
に適用した場合、電池缶5の長側面部にあらかじめ凹部
5aが形成されているので、充放電時の電極体の膨張を
抑制でき、一旦膨張した場合にも電池缶の膨れによる変
形を凹部5aで吸収することができるとともに、電池缶
の膨れを防止するために設けた凹部が電極体を内面方向
に押圧し、圧壊試験により電池缶が電極体に押し付けら
れても、電極体の最外周部の正極1は正極端子を兼ねる
電池缶5と接触するだけであるため、内部短絡が発生す
ることがなく、また負極集電体2aに溶接されたリード
体8が圧壊によってセパレータ3と上記凹部5aに基づ
く電池缶5内面の凸部側に強く押し付けられたり、短絡
によりセパレータ3が溶融、破壊した場合でもリード体
8は絶縁テープ9と接触するだけであるため、内部短絡
の発生を防ぐことができる。さらに、リード体8と対向
していない正極1の部分でも圧壊の衝撃により正極1が
裂け二次的な内部短絡が発生したとしても、巻回構造の
電極体における正極1の最外周部は内周面側に正極活物
質含有塗膜を形成せずに正極集電体1aのみの部分が設
けられており、その正極集電体1aの正極活物質含有塗
膜を形成していない部分がセパレータ3を介して低抵抗
の負極集電体2aと対向し、正極1の最外周部の外周面
側ではセパレータ3を介して正極端子となる電池缶5と
対向していて、高抵抗の活物質含有塗膜とは対向してい
ないので、熱伝導率が高く、それによって、放熱が速や
かに行われるので安全性をより高めることができる。ま
た、巻回構造の電極体の最外周部の正極は正極集電体だ
けで正極活物質含有塗膜を形成していないので、上記電
極体を挿入する際には、電池缶5の内部の凸部との接触
による活物質含有塗膜の脱落が生じない。また、巻回構
造の電極体と電池缶5との間に異物が混入した場合、そ
れによって電極が通電状態になるため微小短絡が生じや
すく、圧壊試験時にこの微小短絡を誘発する要因になり
やすいが、この際も本発明における巻回構造の電極体は
上記記載の構造により圧壊試験時において内部短絡まで
進行する確率を低減することができ、局部的な発熱を避
けることができる。
Therefore, when the electrode body having the above structure is applied to a rectangular non-aqueous secondary battery using a rectangular battery can 5 having a concave portion 5a on the side surface, the concave portion 5a is previously formed on the long side surface of the battery can 5. Since it is formed, the expansion of the electrode body at the time of charge and discharge can be suppressed, and once expanded, the deformation due to the expansion of the battery can can be absorbed by the concave portion 5a, and the expansion of the battery can is prevented. Even if the provided recess presses the electrode body in the inner surface direction and the battery can is pressed against the electrode body by the crush test, the outermost positive electrode 1 of the electrode body only comes into contact with the battery can 5 also serving as a positive electrode terminal. Therefore, the internal short circuit does not occur, and the lead body 8 welded to the negative electrode current collector 2a is strongly pressed against the separator 3 and the convex portion of the inner surface of the battery can 5 based on the concave portion 5a due to crushing, or the short circuit occurs. By separator Because but melt, lead body 8 even when the fracture is only in contact with the insulating tape 9, it is possible to prevent the occurrence of internal short circuit. Furthermore, even if the positive electrode 1 is torn at the portion of the positive electrode 1 that is not opposed to the lead body 8 due to the crushing impact and a secondary internal short circuit occurs, the outermost periphery of the positive electrode 1 in the wound electrode body is A portion of only the positive electrode current collector 1a is provided on the peripheral surface without forming the positive electrode active material-containing coating film, and a portion of the positive electrode current collector 1a where the positive electrode active material-containing coating film is not formed is a separator. 3 and a battery can 5 serving as a positive electrode terminal via the separator 3 on the outer peripheral surface of the outermost peripheral portion of the positive electrode 1, and a high-resistance active material. Since it does not face the containing coating film, the thermal conductivity is high, and the heat is quickly released, so that the safety can be further improved. In addition, since the positive electrode at the outermost periphery of the wound electrode body does not form a positive electrode active material-containing coating only with the positive electrode current collector, when the electrode body is inserted, the inside of the battery can 5 is removed. The active material-containing coating film does not fall off due to contact with the projections. In addition, when foreign matter enters between the wound electrode body and the battery can 5, the electrode is energized, thereby easily causing a micro short circuit, which is likely to be a factor inducing this micro short circuit during a crush test. However, also in this case, the wound structure of the electrode body of the present invention can reduce the probability of progressing to an internal short circuit at the time of a crush test due to the above-described structure, and can avoid local heat generation.

【0070】さらに、この巻回構造の電極体における負
極2のリード体8の厚みは0.1mm(100μm)
で、正極1の厚みは179μmで、絶縁テープ9の厚み
が80μmでセパレータ3の厚みが25μmであること
から、リード体8の厚みの方が絶縁テープ9の厚みとセ
パレータ3の厚みとの合計厚みよりも薄いので、この電
池をたとえ圧壊試験にかけて強制的に圧壊しても、内部
短絡は生じない。
Further, the thickness of the lead body 8 of the negative electrode 2 in this wound electrode body is 0.1 mm (100 μm).
Since the thickness of the positive electrode 1 is 179 μm, the thickness of the insulating tape 9 is 80 μm, and the thickness of the separator 3 is 25 μm, the thickness of the lead body 8 is the sum of the thickness of the insulating tape 9 and the thickness of the separator 3. Since it is thinner, even if this battery is forcibly crushed in a crush test, no internal short circuit occurs.

【0071】つぎに、この長円形状の巻回構造の電極体
を用いた角形非水二次電池について説明する。まず、そ
の作製方法の概略を図1〜2を参照しつつ説明すると、
上記角形非水二次電池は次に示すようにして作製され
る。すなわち、上記巻回構造の電極体を厚み6mm、幅
30mm、高さ60mmの有底角形状で、深さ0.15
mm、幅10mm、高さ20mmの凹部5aを長側面部
の両面に設けたアルミニウム製の電池缶5内に挿入し、
負極2のリード体8の自由端を角形の電池缶5の封口板
10の端子リード板14に溶接し、正極1のリード体7
の自由端を封口板10に溶接する。さらに電解液を凹面
を設けた電池缶5内に注入し、電解液がセパレータ3な
どに充分に浸透した後、封口し、予備充電、エイジング
を行い、角形非水二次電池を作製した。
Next, a description will be given of a prismatic non-aqueous secondary battery using the electrode body having the elliptical winding structure. First, an outline of the manufacturing method will be described with reference to FIGS.
The rectangular non-aqueous secondary battery is manufactured as follows. That is, the electrode body having the wound structure is a bottomed square shape having a thickness of 6 mm, a width of 30 mm, and a height of 60 mm and a depth of 0.15 mm.
mm, a width of 10 mm, and a height of 20 mm, into a battery can 5 made of aluminum provided on both sides of a long side face portion,
The free end of the lead member 8 of the negative electrode 2 is welded to the terminal lead plate 14 of the sealing plate 10 of the rectangular battery can 5, and the lead member 7 of the positive electrode 1 is welded.
Is welded to the sealing plate 10. Further, the electrolytic solution was injected into the battery can 5 provided with the concave surface, and after the electrolytic solution sufficiently permeated into the separator 3 and the like, sealing was performed, preliminary charging and aging were performed, and a prismatic non-aqueous secondary battery was manufactured.

【0072】この角形非水二次電池の概略斜視図を図1
に示し、平面図を図2の(a)に示し、部分縦断面図を
図2の(b)に示しているが、正極1と負極2とはセパ
レータを介して長円形状に巻回され、長円形状の巻回構
造の電極体4として、角形の電池缶5に前記電解液とと
もに収容されている。ただし、図2では、煩雑化を避け
るため、正極1や負極2の作製にあたって使用した集電
体は図示していない。また、長円形状の巻回構造の電極
体4もその外周側部分は断面で示しているが、内周側部
分の断面は示しておらず、電解液も図示していない。
FIG. 1 is a schematic perspective view of this prismatic nonaqueous secondary battery.
2A is a plan view, and FIG. 2B is a partial longitudinal cross-sectional view. The positive electrode 1 and the negative electrode 2 are wound into an oval shape with a separator interposed therebetween. As an electrode body 4 having an elliptical wound structure, the battery body 5 is housed in a rectangular battery can 5 together with the electrolytic solution. However, FIG. 2 does not show a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 in order to avoid complication. Also, the outer periphery of the electrode body 4 having an elliptical winding structure is shown by a cross section, but the cross section of the inner periphery is not shown, and the electrolytic solution is not shown.

【0073】電池缶5はアルミニウム合金製で電池の外
装ケースとなるものであり、この電池缶5は正極端子を
兼ねている。そして、前記正極1、負極2およびセパレ
ータ3からなる長円形状の巻回構造の電極体4からは正
極1および負極2のそれぞれ一端に接続された正極のリ
ード体7と負極のリード体8が引き出されている。ま
た、電池缶5の開口部を封口するアルミニウム合金製の
封口板10にはポリプロピレン製の絶縁パッキング11
を介してステンレス鋼製の端子12が取り付けられ、こ
の端子12には絶縁体13を介してステンレス鋼製のリ
ード板14が取り付けられている。
The battery can 5 is made of an aluminum alloy and serves as an outer case of the battery. The battery can 5 also serves as a positive electrode terminal. Then, from the electrode body 4 having an oval winding structure composed of the positive electrode 1, the negative electrode 2, and the separator 3, a positive electrode lead 7 and a negative electrode lead 8 connected to one ends of the positive electrode 1 and the negative electrode 2, respectively. Have been withdrawn. An aluminum alloy sealing plate 10 for sealing the opening of the battery can 5 has an insulating packing 11 made of polypropylene.
A terminal 12 made of stainless steel is attached to the terminal 12, and a lead plate 14 made of stainless steel is attached to the terminal 12 via an insulator 13.

【0074】そして、この封口板10は上記電池缶5の
開口部に挿入され、両者の接合部を溶接することによっ
て、電池缶5の開口部が封口され、電池内部が密閉され
ている。
The sealing plate 10 is inserted into the opening of the battery can 5, and the joint of the two is welded, whereby the opening of the battery can 5 is sealed and the inside of the battery is sealed.

【0075】この実施例1の電池では、正極1のリード
体7を封口板10に直接溶接することによって、電池缶
5と封口板10とが正極端子として機能し、負極2のリ
ード体8をリード板14に溶接し、そのリード板14を
介して負極2のリード体8と端子12とを導通させるこ
とによって端子12が負極端子として機能するようにな
っている。
In the battery of the first embodiment, the lead 7 of the positive electrode 1 is directly welded to the sealing plate 10 so that the battery can 5 and the sealing plate 10 function as a positive electrode terminal, and the lead 8 of the negative electrode 2 is The terminal 12 functions as a negative electrode terminal by welding to the lead plate 14 and electrically connecting the lead body 8 of the negative electrode 2 and the terminal 12 through the lead plate 14.

【0076】比較例1 実施例1の巻回構造の電極体における正極の最外周部の
正極集電体の両面に正極活物質含有塗膜を形成し、無地
部(つまり、正極活物質含有塗膜が形成されていない正
極集電体の露出部分)の長さが10mmになるように
し、正極の絶縁テープは取り付けず、一方、負極側は巻
回構造の電極体における負極の最外周部の負極集電体の
無地部(つまり、負極活物質含有塗膜が形成されていな
い負極集電体の露出部分)を20mmとして、負極活物
質含有塗膜から5mm離れた部分の外周面側に幅4m
m、厚み0.3mm(断面積1.2mm2 )のリード体
を溶接して取り付けたものを用い、電極巻回時の最外周
部の位置関係を図4に模式的に示すようにした以外は、
実施例1と同様に巻回構造の電極体を作製し、かつ角形
非水二次電池を作製した。
Comparative Example 1 A positive electrode active material-containing coating film was formed on both surfaces of the positive electrode current collector at the outermost periphery of the positive electrode in the wound electrode body of Example 1, and the uncoated portion (that is, the positive electrode active material-containing coating film) was formed. The length of the exposed portion of the positive electrode current collector where the film is not formed is 10 mm, and the positive electrode insulating tape is not attached. On the other hand, the negative electrode side is the outermost portion of the negative electrode in the wound electrode body. The uncoated portion of the negative electrode current collector (that is, the exposed portion of the negative electrode current collector on which the negative electrode active material-containing coating film is not formed) is set to 20 mm, and the width on the outer peripheral surface side of the portion 5 mm away from the negative electrode active material-containing coating film is set. 4m
m, a lead body having a thickness of 0.3 mm (cross-sectional area of 1.2 mm 2 ) was welded and attached, except that the positional relationship of the outermost periphery at the time of winding the electrode was schematically shown in FIG. Is
An electrode body having a wound structure was produced in the same manner as in Example 1, and a prismatic nonaqueous secondary battery was produced.

【0077】ここで、この比較例1の電池の巻回構造の
電極体の最外周部およびその近傍を図4に基づいて説明
しておくと、この比較例1の電池における巻回構造の電
極体の最外周部の電極は正極1であるが、この正極1は
正極集電体1aの両面に正極活物質含有塗膜1bを形成
していて、その無地部(つまり、正極活物質含有塗膜が
形成されていない正極集電体1aの露出部分)の長さが
10mmで、絶縁テーープは取り付けていない。一方、
負極側は巻回構造の電極体における負極2の最外周部の
負極集電体2aの無地部(つまり、負極活物質含有塗膜
が形成されていない負極集電体2aの露出部分)を20
mmとし、負極活物質含有塗膜2bから5mm離れた部
分の外周面側に幅4mm、厚み0.3mm(断面積1.
2mm2)のリード体8を溶接して取り付けている。
Here, the outermost peripheral portion and its vicinity of the wound electrode structure of the battery of Comparative Example 1 will be described with reference to FIG. The outermost peripheral electrode of the body is the positive electrode 1. The positive electrode 1 has a positive electrode active material-containing coating film 1b formed on both surfaces of a positive electrode current collector 1a, and the uncoated portion thereof (that is, the positive electrode active material-containing coating film). The length of the exposed portion of the positive electrode current collector 1a where no film is formed) is 10 mm, and no insulating tape is attached. on the other hand,
On the negative electrode side, the uncoated portion of the negative electrode current collector 2a at the outermost periphery of the negative electrode 2 in the wound electrode body (that is, the exposed portion of the negative electrode current collector 2a on which the negative electrode active material-containing coating film is not formed) is 20.
mm, and a width of 4 mm and a thickness of 0.3 mm (cross-sectional area 1. mm) on the outer peripheral surface side of a portion 5 mm away from the negative electrode active material-containing coating film 2b.
A lead body 8 of 2 mm 2 ) is attached by welding.

【0078】上記実施例1および比較例1の電池を80
0mAの電流で2.75Vまで放電した後、800mA
で充電し、4.25Vに達した後は、4.25Vの定電
圧に保つ条件で2時間30分の充電を行った。その後、
電池を圧壊試験に供した。
The batteries of Example 1 and Comparative Example 1 were
After discharging to 2.75 V with a current of 0 mA, 800 mA
After reaching 4.25 V, the battery was charged for 2 hours and 30 minutes under the condition of maintaining a constant voltage of 4.25 V. afterwards,
The battery was subjected to a crush test.

【0079】圧壊試験は、4.25Vまで充電した電池
をそのまま圧壊速度15mm/s、1トンの力で押し潰
して20個の電池のうち何個の電池に内部短絡による異
常発熱が発生するかを調べた。その結果を表1に示す。
表1中において結果を示す数値の分母は試験に供した電
池個数であり、分子は圧壊試験で内部短絡による異常発
熱が発生した電池個数である。なお、異常発熱とは電池
表面温度が150℃以上になった場合をいう。
In the crush test, a battery charged to 4.25 V is crushed as it is with a crushing speed of 15 mm / s and a force of 1 ton, and how many of the 20 batteries generate abnormal heat due to an internal short circuit. Was examined. Table 1 shows the results.
In Table 1, the denominator of the numerical value indicating the result is the number of batteries subjected to the test, and the numerator is the number of batteries that generated abnormal heat due to an internal short circuit in the crush test. Note that abnormal heat generation refers to a case where the battery surface temperature becomes 150 ° C. or higher.

【0080】[0080]

【表1】 [Table 1]

【0081】表1に示すように、実施例1の電池は、比
較例1の電池に比べて、圧壊試験での内部短絡による異
常発熱の発生が少なかった。これに対して、比較例1の
電池に内部短絡による異常発熱が多く発生したのは、比
較例1の電池では、正極1の最外周部において正極活物
質含有塗膜1bが負極活物質含有塗膜2bと対向し、負
極2のリード体8が正極集電体1aに直接対向している
とともに、最外周部が単一電極でないことによるもので
あると考えられる。
As shown in Table 1, the battery of Example 1 generated less abnormal heat due to an internal short circuit in the crush test than the battery of Comparative Example 1. In contrast, the battery of Comparative Example 1 generated a large amount of abnormal heat due to an internal short circuit. In the battery of Comparative Example 1, the coating film 1b containing the positive electrode active material was coated at the outermost periphery of the positive electrode 1 with the coating film containing the negative electrode active material. This is considered to be due to the fact that the lead body 8 of the negative electrode 2 directly faces the positive electrode current collector 1a and the outermost peripheral portion is not a single electrode.

【0082】[0082]

【発明の効果】以上説明したように、本発明では、高容
量で、かつ、安全性の高い角形非水二次電池を提供する
ことができた。
As described above, according to the present invention, a square non-aqueous secondary battery having high capacity and high safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の角形非水二次電池を概略的
に示す斜視図である。
FIG. 1 is a perspective view schematically showing a prismatic nonaqueous secondary battery according to Embodiment 1 of the present invention.

【図2】実施例1の角形非水二次電池の構造を概略的に
示すもので、(a)はその平面図、(b)はその部分縦
断面図である。
FIGS. 2A and 2B schematically show the structure of a prismatic nonaqueous secondary battery of Example 1, wherein FIG. 2A is a plan view and FIG. 2B is a partial longitudinal sectional view.

【図3】実施例1の角形非水二次電池の長円形状の巻回
構造の電極体の最外周部およびその近傍の要部を拡大し
て示す横断面図である。
FIG. 3 is an enlarged cross-sectional view showing an outermost peripheral portion of an electrode body having an elliptical wound structure of a rectangular non-aqueous secondary battery and a main part in the vicinity thereof in Example 1.

【図4】比較例1の角形非水二次電池の巻回構造の電極
体の最外周部およびその近傍の要部を拡大して示す横断
面図である。
FIG. 4 is a cross-sectional view showing, on an enlarged scale, an outermost peripheral portion of an electrode body having a wound structure of a prismatic nonaqueous secondary battery of Comparative Example 1 and a main part in the vicinity thereof.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極活物質含有塗膜 2 負極 2a 負極集電体 2b 負極活物質含有塗膜 3 セパレータ 4 巻回構造の電極体 5 電池缶 5a 凹部 6 絶縁体 7 正極側のリード体 8 負極側のリード体 9 絶縁テープ 10 封口板 11 絶縁パッキング 12 端子 13 絶縁体 14 リード板 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collector 1b Coating film containing positive electrode active material 2 Negative electrode 2a Negative current collector 2b Coating film containing negative electrode active material 3 Separator 4 Wound structure electrode body 5 Battery can 5a Concave 6 Insulator 7 Lead on positive electrode side Body 8 Lead body on the negative electrode side 9 Insulating tape 10 Sealing plate 11 Insulating packing 12 Terminal 13 Insulator 14 Lead plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石澤 政嗣 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H011 AA03 AA13 BB03 CC06 5H014 AA04 BB03 CC04 EE05 5H022 AA09 AA18 CC12 CC19 KK03 5H029 AK03 AL02 AL07 AM03 AM07 BJ02 CJ07 DJ05 DJ07  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Masaji Ishizawa 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. (Reference) 5H011 AA03 AA13 BB03 CC06 5H014 AA04 BB03 CC04 EE05 5H022 AA09 AA18 CC12 CC19 KK03 5H029 AK03 AL02 AL07 AM03 AM07 BJ02 CJ07 DJ05 DJ07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の少なくとも一部には両面に
正極活物質含有塗膜を形成してなる正極と、負極集電体
の少なくとも一部には両面に負極活物質含有塗膜を形成
してなる負極とを、セパレータを介して巻回した楕円状
または長円形状の巻回構造の電極体を角形の電池缶に収
容してなる角形非水二次電池であって、上記電池缶の少
なくとも1つの側面に凹部が形成されており、上記巻回
構造の電極体の電池缶と対向する電極が実質的に正極ま
たは負極のいずれかの単一電極のみで構成され、上記巻
回構造の電極体における正極の少なくとも最外周部の正
極集電体の外周面側には正極活物質含有塗膜を形成して
いない部分が設けられ、上記正極集電体の正極活物質含
有塗膜を形成していない部分がセパレータを介して負極
または電池缶の内面と対向し、かつ負極集電体に溶接し
たリード体がセパレータを介して正極と直接対向しない
ことを特徴とする角形非水二次電池。
1. A positive electrode comprising a positive electrode active material-containing coating film formed on both surfaces of at least a part of a positive electrode current collector, and a negative electrode active material-containing coating film on both surfaces of at least a part of a negative electrode current collector. A rectangular non-aqueous secondary battery in which a negative electrode formed and an electrode body having an elliptical or elliptical winding structure wound around a separator are housed in a square battery can. A concave portion is formed on at least one side surface of the can, and the electrode facing the battery can of the electrode structure having the wound structure is substantially composed of only a single electrode of a positive electrode or a negative electrode. At least the outermost surface of the positive electrode current collector at the outermost periphery of the positive electrode in the electrode body having a structure is provided with a portion where the positive electrode active material-containing coating is not formed, and the positive electrode active material-containing coating of the positive electrode current collector is provided. The part that does not form is the inner surface of the negative electrode or battery can through the separator A non-aqueous secondary battery characterized in that a lead body facing the positive electrode and welded to the negative electrode current collector does not directly face the positive electrode via the separator.
【請求項2】 負極集電体に溶接したリード体がセパレ
ータを介して正極集電体に接着した絶縁テープと対向す
ることを特徴とする請求項1記載の角形非水二次電池。
2. The rectangular non-aqueous secondary battery according to claim 1, wherein a lead body welded to the negative electrode current collector faces an insulating tape adhered to the positive electrode current collector via a separator.
JP2000007535A 2000-01-17 2000-01-17 Square non-aqueous secondary battery Expired - Fee Related JP4189984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007535A JP4189984B2 (en) 2000-01-17 2000-01-17 Square non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007535A JP4189984B2 (en) 2000-01-17 2000-01-17 Square non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001202998A true JP2001202998A (en) 2001-07-27
JP4189984B2 JP4189984B2 (en) 2008-12-03

Family

ID=18535913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007535A Expired - Fee Related JP4189984B2 (en) 2000-01-17 2000-01-17 Square non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4189984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340178A (en) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd Secondary battery
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
CN102479935A (en) * 2010-11-25 2012-05-30 索尼公司 Nonaqueous electrolyte battery
JP2014107069A (en) * 2012-11-26 2014-06-09 Mitsubishi Motors Corp Vehicular secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340178A (en) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd Secondary battery
JP4539416B2 (en) * 2004-05-25 2010-09-08 三星エスディアイ株式会社 Secondary battery
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
CN102479935A (en) * 2010-11-25 2012-05-30 索尼公司 Nonaqueous electrolyte battery
JP2012113995A (en) * 2010-11-25 2012-06-14 Sony Corp Nonaqueous electrolyte battery
JP2014107069A (en) * 2012-11-26 2014-06-09 Mitsubishi Motors Corp Vehicular secondary battery

Also Published As

Publication number Publication date
JP4189984B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4052537B2 (en) Non-aqueous secondary battery
JP2000077061A (en) Lithium ion battery
JP3786349B2 (en) Non-aqueous secondary battery
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
JP4097443B2 (en) Lithium secondary battery
JP3143951B2 (en) Non-aqueous electrolyte secondary battery
JP4798729B2 (en) Lithium ion secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP4055190B2 (en) Non-aqueous secondary battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP3447285B2 (en) Non-aqueous secondary battery
JP4189984B2 (en) Square non-aqueous secondary battery
JP4238099B2 (en) Nonaqueous electrolyte secondary battery
JP4420484B2 (en) Sealed battery
JP2000277063A (en) Sealed battery
JP4272657B2 (en) Non-aqueous secondary battery
JP2004127599A (en) Nonaqueous electrolyte secondary battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery
JP4526044B2 (en) Lithium ion secondary battery
JP2004103435A (en) Lithium secondary battery
JP7209196B2 (en) Cylindrical secondary battery
JP4115006B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees