JP2001201491A - Device and method for measuring solid particle in fluid in pipe - Google Patents

Device and method for measuring solid particle in fluid in pipe

Info

Publication number
JP2001201491A
JP2001201491A JP2000008432A JP2000008432A JP2001201491A JP 2001201491 A JP2001201491 A JP 2001201491A JP 2000008432 A JP2000008432 A JP 2000008432A JP 2000008432 A JP2000008432 A JP 2000008432A JP 2001201491 A JP2001201491 A JP 2001201491A
Authority
JP
Japan
Prior art keywords
pipe
solid particles
collision plate
fluid
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000008432A
Other languages
Japanese (ja)
Inventor
Hideo Iida
英男 飯田
Masahiko Kuroki
雅彦 黒木
Haruichi Hamada
晴一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2000008432A priority Critical patent/JP2001201491A/en
Publication of JP2001201491A publication Critical patent/JP2001201491A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply perform measurements and objective determination, without opening a pipe or replacing a collision plate to shorten measuring time, improve efficiency, and reduce cost. SOLUTION: This device for measuring solid particles in a fluid in a pipe 1 is provided with the collision plate 3 with a predetermined area as a collision surface for solid particles, a collision plate mounting seat 2 to fix the collision plate 3 in a channel in the pipe 1, a detecting means 4 for detecting elastic waves generated by the collision of the solid particles against the collision plate 3 fixed to the mounting seat 2, and a measuring means 5 to measure the solid particles in a fluid in the pipe 1 on the basis of the elastic waves detected b the detecting means 4. The time and the intensity and number of the elastic waves detected by the contact of the detecting means 4 with the tip part of the collision plate 3 via a transmitting medium are recorded, and the mass, sizes, number, and density of the solid particles in the fluid in the pipe 1 and their temporal changes are compared with predetermined values and determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配管内流体中の固
体粒子の測定を行う配管内流体中の固体粒子測定装置及
び測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring solid particles in a fluid in a pipe for measuring solid particles in the fluid in the pipe.

【0002】[0002]

【従来の技術】火力発電用ボイラでは、溶接作業により
発生する付着物や過熱器、再熱器、主配管内部に付着し
ているミルスケールを蒸気流によって剥離除去し、ター
ビンに清浄な蒸気を供給する目的で、タービン通気前に
スチームブローを行う。このスチームブローは、蒸気流
によって取り除かれる異物(ミルスケール)の大きさお
よび数が十分小さくなるまで繰り返し行う。スチームブ
ローの終了判定は、ブロー配管中に黄銅製のような比較
的に柔らかい金属のテストピースを挿入し、そのテスト
ピースの表面の異物衝突による打痕の大きさおよび単位
面積当たりの数により行われる。例えば打痕の大きさが
目視にて0.3mm以下、打痕の数が目視にて5個/1
00mm×100mm以下、テストピースの表面状態が
配管の汚れによる変色がないこと、などを基準としてこ
れらの基準を満足することを条件にブロー終了判定を行
う。
2. Description of the Related Art In a boiler for thermal power generation, deposits generated by welding work and mill scale adhering to a superheater, a reheater and a main pipe are separated and removed by a steam flow, and clean steam is supplied to a turbine. For supply purposes, steam blow is performed before turbine ventilation. This steam blowing is repeated until the size and the number of foreign matters (mill scale) removed by the steam flow become sufficiently small. The end of steam blow is determined by inserting a relatively soft metal test piece such as brass into the blowpipe and determining the size of the dent due to the impact of foreign matter on the surface of the test piece and the number per unit area. Will be For example, the size of the dent is visually 0.3 mm or less, and the number of the dent is 5/1 visually.
The blow end determination is made on the condition that the test piece satisfies these criteria on the basis of, for example, 00 mm × 100 mm or less, and the surface state of the test piece does not change color due to contamination of the pipe.

【0003】[0003]

【発明が解決しようとする課題】上記のように配管フラ
ッシング時の流体中の固体粒子を測定する従来からの技
術として、配管内に挿入した衝突板に黄銅製のテストピ
ースや亜鉛板などの比較的柔らかい金属を使用して、衝
突による打痕の数、大きさを目視して確認する方法があ
るが、打痕を目視して確認することから種々の問題を有
している。
As a conventional technique for measuring solid particles in a fluid at the time of flushing a pipe as described above, as a conventional technique, a brass test piece or a zinc plate is used for a collision plate inserted in the pipe. Although there is a method of visually confirming the number and size of dents caused by collision using a soft metal, there are various problems since the dents are visually confirmed.

【0004】まず、スチームブローの終了判定を行うた
めには、一時的に蒸気流を止めて配管を開放し、挿入さ
れたテストピースを取り出して打痕の大きさ及び単位面
積当たりの数を目視で確認し判定しなければならない。
したがって、打痕の大きさを測り、数えて確認、判定を
行うのにかなりの手間と時間を要する。
First, in order to determine the end of steam blow, the steam flow is temporarily stopped to open the pipe, the inserted test piece is taken out, and the size of the dent and the number per unit area are visually observed. Must be checked and judged.
Therefore, it takes a considerable amount of time and effort to measure the size of the dents, count them, and check and determine them.

【0005】さらに、判定の結果、スチームブローを再
度行うためには、再び新しいテストピースを配管内に挿
入し、配管復旧後に蒸気流を供給しなければならない。
そのため、配管フラッシングにかかる時間や労力が非常
に大であり、しかも、スチームブローの場合、高温であ
り冷却が必要であることから、判定を繰り返し行う場合
のインターバルが長くなり、終了までに数日を要し、効
率が悪い。
Further, as a result of the determination, in order to perform steam blowing again, a new test piece must be inserted into the pipe again, and a steam flow must be supplied after the pipe is restored.
Therefore, the time and labor required for piping flushing are extremely large, and in the case of steam blow, the temperature is high and cooling is required. Costly and inefficient.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、配管の開放、衝突板の取替えを行
うことなく、簡便に測定、客観的な判定を行うことがで
き、測定時間の短縮、効率向上、コストの低減を図るも
のである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and can easily perform measurement and objective judgment without opening a pipe and replacing a collision plate. It is intended to shorten the measurement time, improve the efficiency, and reduce the cost.

【0007】そのために本発明は、配管内流体中の固体
粒子の測定を行う装置であって、前記配管内の流路に衝
突板を固定する衝突板取付け座と、該取付け座に固定さ
れた前記衝突板に前記固体粒子が衝突することにより発
生する弾性波を検出する検出手段とを備え、さらには、
前記固体粒子の衝突面として一定の面積を有する衝突板
と、前記検出手段により検出された弾性波に基づき前記
配管内流体中の固体粒子の測定を行う測定手段とを備え
たことを特徴とするものである。
For this purpose, the present invention relates to an apparatus for measuring solid particles in a fluid in a pipe, comprising a collision plate mounting seat for fixing a collision plate to a flow path in the pipe, and an impact plate fixed to the mounting seat. Detecting means for detecting an elastic wave generated when the solid particles collide with the collision plate, and further,
A collision plate having a fixed area as a collision surface of the solid particles, and a measurement unit for measuring the solid particles in the fluid in the pipe based on the elastic wave detected by the detection unit. Things.

【0008】さらに、前記衝突板取付け座は、前記配管
内の流路の中心部を貫通し一方から一定長さ突き抜ける
ようにして棒状の前記衝突板を固定し、前記検出手段
は、前記配管内から突き抜けて前記衝突板取付け座で固
定された前記衝突板の先端部に接触媒質を介して接触さ
せ、前記検出手段は、圧電変換素子からなる探触子であ
り、前記測定手段は、前記検出手段により検出された弾
性波の大きさを記録し、前記配管内流体中の固体粒子の
質量及び大きさを求め、前記測定手段は、前記検出手段
により検出された弾性波の個数、時間を記録し、前記配
管内流体中の固体粒子の数密度、その時間変化を求め、
予め設定された値との比較判定を行うことを特徴とする
ものである。
[0008] Further, the impact plate mounting seat penetrates the center of the flow path in the pipe and fixes the rod-shaped impact plate so as to penetrate a predetermined length from one side. A contact end of the collision plate fixed at the collision plate mounting seat through a contact medium, the detection unit is a probe made of a piezoelectric transducer, and the measurement unit The magnitude of the elastic wave detected by the means is recorded, the mass and size of the solid particles in the fluid in the pipe are obtained, and the measuring means records the number and time of the elastic waves detected by the detecting means. Then, the number density of solid particles in the fluid in the pipe, the change over time thereof,
It is characterized in that a comparison is made with a preset value.

【0009】また、配管内流体中の固体粒子の測定を行
う方法としては、前記配管内の流路の中央部に前記固体
粒子の衝突面として一定の面積を有する衝突板を挿入し
て、該衝突板に前記固体粒子が衝突して発生する弾性波
を検出することを特徴とし、前記衝突板は、前記配管内
の流路の中心部を貫通し一方から一定長さ突き抜けるよ
うにして取付け座に固定し、該突き抜けた前記衝突板の
先端部に接触媒質を介して検出手段により前記弾性波を
検出し、或いは前記配管内の流路の中心部を貫通し一方
から配管内温度から前記検出手段の適用が可能となる温
度まで該衝突板表面温度を低下又は上昇せしめるのに十
分な長さを配管外に突き抜けるように取付け座に固定
し、該突き抜けた前記衝突板の先端部に接触媒質を介し
て前記検出手段により前記弾性波を検出することを特徴
とするものである。
Further, as a method of measuring solid particles in a fluid in a pipe, a collision plate having a certain area as a collision surface of the solid particles is inserted into a center of a flow path in the pipe, Detecting the elastic wave generated by the collision of the solid particles with the collision plate, wherein the collision plate penetrates the center of the flow path in the pipe and penetrates a fixed length from one of the mounting seats; And the elastic wave is detected by a detecting means via a couplant at the tip of the penetrating collision plate, or the detection is made from the temperature in the pipe from one side through the center of the flow path in the pipe. The collision plate is fixed to a mounting seat so as to penetrate out of the pipe by a length sufficient to lower or increase the surface temperature of the collision plate to a temperature at which the means can be applied. Through the detecting means It is characterized in detecting the acoustic wave.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係る配管内流体
中の固体粒子測定装置の実施の形態を示す図、図2は配
管外の測定系の構成例を示す図であり、1は配管、2は
取付け座、3は衝突板、3−1は衝突板配管外端部、4
はセンサ、5は測定器を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a device for measuring solid particles in a fluid in a pipe according to the present invention, FIG. 2 is a diagram showing a configuration example of a measurement system outside the pipe, 1 is a pipe, 2 is a mounting seat, 3 is a collision plate, 3-1 is the outer end of the collision plate piping,
Denotes a sensor and 5 denotes a measuring device.

【0011】図1において、配管1は、被測定配管その
もの又はその管路に挿入連結され、配管内流体中の固体
粒子を測定するものである。衝突板3は、固体粒子の衝
突面として一定の面積を有し、配管1の内部流路の中心
部を貫通し一方から一定長さ突き抜けるようにして取付
け座2に取り付け固定したものであり、取付け座2から
突き出した衝突板配管外端部3−1を有する。したがっ
て、衝突板3は、例えば配管内流体中の固体粒子が衝突
する上流側が偏平になった金属製の角棒、丸棒、平板、
メッシュ等でよい。センサ4は、配管1の中央部に取り
付け固定した衝突板3に異物が衝突したときの弾性波
(AE:Acoustic Emission)を検出するAEセンサ、
例えば圧電変換素子からなる探触子であり、衝突板配管
外端部3−1に機械油などの接触媒質を介して接触させ
て、弾性波による金属表面の変位を電圧信号として取り
出す。測定器5は、センサ4で検出した弾性波に基づき
前記配管内流体中の固体粒子の測定を行うものであり、
センサ4から取り出された信号に基づき、弾性波の大き
さ、弾性波の個数、時間などを記録し、衝突した固体粒
子の質量や大きさ、固体粒子の数密度、その時間変化な
どを求め、さらに必要に応じて予め設定された値との比
較判定を行うものである。
In FIG. 1, a pipe 1 is inserted and connected to a pipe to be measured itself or its pipe, and measures solid particles in a fluid in the pipe. The collision plate 3 has a fixed area as a solid particle collision surface, and is fixed to the mounting seat 2 so as to penetrate a center portion of the internal flow path of the pipe 1 and penetrate a fixed length from one side, It has a collision plate piping outer end 3-1 protruding from the mounting seat 2. Therefore, the collision plate 3 is, for example, a metal square bar, round bar, flat plate, or the like, in which the upstream side where solid particles in the fluid in the pipe collide is flattened.
A mesh or the like may be used. The sensor 4 is an AE sensor that detects an elastic wave (AE: Acoustic Emission) when a foreign object collides with the collision plate 3 attached and fixed to the center of the pipe 1.
For example, the probe is a probe made of a piezoelectric transducer, and is brought into contact with the outer end portion 3-1 of the collision plate pipe via a couplant such as mechanical oil to extract a displacement of a metal surface due to an elastic wave as a voltage signal. The measuring device 5 measures the solid particles in the fluid in the pipe based on the elastic wave detected by the sensor 4.
Based on the signal taken from the sensor 4, the magnitude of the elastic wave, the number of elastic waves, the time, etc. are recorded, and the mass and size of the colliding solid particles, the number density of the solid particles, the time change thereof, and the like are obtained. Further, a comparison with a preset value is made as necessary.

【0012】上記構成の配管内流体中の固体粒子測定装
置では、衝突板3に異物が衝突すると、その金属内に弾
性波が発生し、金属内を配管外へ出してある衝突板配管
外端部3−1からセンサ4へ伝播し、センサ4で電圧信
号として測定される。測定器5では、この測定された電
圧信号の波形や周波数、事象数などを測定情報として時
間と共に記録する。そして、この記録データを解析する
ことにより、例えば単位時間当たりの事象数と配管断面
の内面積、衝突板3の配管内断面積から、流体中の固体
粒子の数密度の計算を行い、また、単位時間当たりの事
象数の時間変化から、固体粒子の数密度の時間変化を計
算する。
In the apparatus for measuring solid particles in a fluid in a pipe having the above-described structure, when a foreign object collides with the collision plate 3, an elastic wave is generated in the metal, and the outer end of the collision plate pipe which extends outside the pipe through the metal. The signal propagates from the unit 3-1 to the sensor 4 and is measured by the sensor 4 as a voltage signal. The measuring device 5 records the waveform, frequency, number of events, and the like of the measured voltage signal as measurement information with time. By analyzing the recorded data, for example, the number density of solid particles in the fluid is calculated from the number of events per unit time, the inner area of the pipe cross section, and the cross sectional area of the pipe of the collision plate 3. The time change of the number density of the solid particles is calculated from the time change of the number of events per unit time.

【0013】さらに、信号の大きさに着目すると、弾性
波の振幅の大きさを記録することにより、弾性波エネル
ギーを計算し、衝突板の金属内における弾性波の減衰率
や衝突時の粒子の運動エネルギーと弾性波エネルギーと
の比例定数などを実験により予め測定しておくことによ
り、固体粒子の運動エネルギーを計算することができ
る。また、固体粒子の移動速度が配管内の流体速度と等
しいとき、固体粒子の材質(密度)と流体速度を特定す
ることで、信号の大きさから、固体粒子の質量、大きさ
を計算することができる。また、測定対象となる固体粒
子の種類が予め特定されれば、その固体粒子の密度から
体積及び粒子径を求めることもできる。
Further focusing on the magnitude of the signal, by recording the magnitude of the amplitude of the elastic wave, the elastic wave energy is calculated, and the attenuation rate of the elastic wave in the metal of the collision plate and the particle of the particle at the time of collision are calculated. The kinetic energy of the solid particles can be calculated by measuring the proportionality constant between the kinetic energy and the elastic wave energy in advance by experiments. Also, when the moving speed of the solid particles is equal to the fluid speed in the pipe, the material (density) and the fluid speed of the solid particles are specified to calculate the mass and size of the solid particles from the magnitude of the signal. Can be. Further, if the type of the solid particles to be measured is specified in advance, the volume and the particle diameter can be obtained from the density of the solid particles.

【0014】粒子の運動エネルギーEは、AE信号の振
幅の2乗に比例するので、予め粒子の運動エネルギーと
AE信号振幅との関係及び粒子の運動エネルギーと打痕
の大きさの関係を事前に測定しておくことにより、従来
の方法でフラッシング終了の基準としていた打痕の大き
さに相当するAE信号振幅をフラッシング終了の判定基
準として用いることができる。
Since the kinetic energy E of a particle is proportional to the square of the amplitude of the AE signal, the relationship between the kinetic energy of the particle and the amplitude of the AE signal and the relationship between the kinetic energy of the particle and the size of the dent are determined in advance. By performing the measurement, the AE signal amplitude corresponding to the size of the dent, which has been used as a criterion for the end of flushing in the conventional method, can be used as a criterion for determining the end of flushing.

【0015】図3は衝突板の温度分布を説明するための
図である。本発明により測定を行う対象となる配管内の
流体温度が検出手段である圧電変換素子からなる探触子
の使用温度範囲から外れている場合には、配管外に突き
抜けている衝突板の探触子を接触させる位置での表面温
度を探触子の使用温度範囲内にすることが必要となる。
このような場合の方策として、衝突板の配管外の長さL
を大きくして大気への自然熱伝達による熱の放射又は吸
収を行うことにより、探触子の使用温度範囲内にするこ
とができる。衝突板として、丸鋼棒を用い、配管外の長
さLをパラメータとして丸鋼棒内の熱伝導と表面から大
気への熱伝達の釣合いの式及び境界条件から、配管内温
度300℃のときの丸鋼棒の温度分布を求め、温度降下
に必要な長さLを求めて示したのが図3である。配管内
温度を300℃とし探触子の使用温度範囲の上限を20
0℃とした場合、図3に示す例によれば、配管外の長さ
Lが20cmの場合には先端の温度が230℃程度まで
低下するが、配管外の長さLを50cmまで伸ばすと、
先端の温度を110℃まで低下させることができ、安全
にこの探触子を使用することができる。
FIG. 3 is a diagram for explaining the temperature distribution of the collision plate. When the fluid temperature in the pipe to be measured according to the present invention is out of the operating temperature range of the probe composed of the piezoelectric transducer as the detecting means, the probe of the collision plate penetrating out of the pipe is detected. It is necessary that the surface temperature at the position where the probe comes into contact is within the operating temperature range of the probe.
As a measure in such a case, the length L of the impact plate outside the pipe is used.
Is increased and the heat is radiated or absorbed by natural heat transfer to the atmosphere, whereby the temperature can be kept within the operating temperature range of the probe. When the round bar is used as the impact plate, and the length L outside the pipe is used as a parameter, the equation for the balance between heat conduction in the round bar and heat transfer from the surface to the atmosphere and the boundary conditions indicate that the pipe temperature is 300 ° C. FIG. 3 shows the temperature distribution of the round steel bar of Example 1 and the length L required for the temperature drop. Set the temperature inside the pipe to 300 ° C and set the upper limit of the operating temperature range of the probe to 20.
In the case of 0 ° C., according to the example shown in FIG. 3, when the length L outside the pipe is 20 cm, the temperature at the tip is reduced to about 230 ° C., but when the length L outside the pipe is increased to 50 cm. ,
The temperature of the tip can be reduced to 110 ° C., and the probe can be used safely.

【0016】図4は各ブローにおけるAE信号の振幅分
布の例を示す図、図5は各ブローにおけるAE信号の時
間分布の例を示す図である。
FIG. 4 is a diagram showing an example of the amplitude distribution of the AE signal in each blow, and FIG. 5 is a diagram showing an example of the time distribution of the AE signal in each blow.

【0017】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、ブローの終了判定を行うものとして
説明したが、ブローの効果的な時間や回数などの解析を
行うものとしても利用可能であり、配管内流体中の固体
粒子の測定に基づく種々の解析、判定に適用可能である
ことはいうまでもない。
The present invention is not limited to the above embodiment, but can be variously modified. For example, in the above-described embodiment, it is described that the end of the blow is determined.However, the present invention can also be used to analyze the effective time and number of blows, and is used for measuring solid particles in the fluid in the pipe. It goes without saying that the present invention can be applied to various analyzes and judgments based on the above.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、配管内の流路に衝突板を固定する衝突板取付
け座と、該取付け座に固定された衝突板に固体粒子が衝
突することにより発生する弾性波を検出する検出手段と
を備え、さらには、固体粒子の衝突面として一定の面積
を有する衝突板と、検出手段により検出された弾性波に
基づき配管内流体中の固体粒子の測定を行う測定手段と
を備えるので、配管内に挿入した衝突板に固体粒子が衝
突する際に発生する弾性波を測定し、配管フラッシング
時に、配管を開放することなく、オンラインで配管内流
体中の固体粒子の数、大きさをモニタリングすることが
できる。従って、従来のような配管を開放してテストピ
ースを取り替える必要がないことから、測定、検査の工
程、時間の短縮、効率向上、コストの低減を図ることが
でき、省力化が可能となる。
As is apparent from the above description, according to the present invention, the collision plate mounting seat for fixing the collision plate to the flow passage in the pipe, and the solid particles are fixed to the collision plate fixed to the mounting seat. Detecting means for detecting an elastic wave generated by the collision, and furthermore, a collision plate having a certain area as a collision surface of the solid particles, and a fluid in the pipe fluid based on the elastic wave detected by the detecting means. Since it has a measuring means for measuring solid particles, it measures the elastic waves generated when the solid particles collide with the collision plate inserted in the pipe, and during pipe flushing, does not open the pipe, The number and size of solid particles in the internal fluid can be monitored. Therefore, since it is not necessary to open the pipe and replace the test piece as in the related art, it is possible to shorten the measurement and inspection processes, shorten the time, improve the efficiency, and reduce the cost, thereby enabling labor saving.

【0019】さらに、衝突板取付け座は、配管内の流路
の中心部を貫通し一方から一定長さ突き抜けるようにし
て棒状の衝突板を固定し、検出手段は、配管内から突き
抜けて衝突板取付け座で固定された衝突板の先端部に接
触媒質を介して接触させ、検出手段は、圧電変換素子か
らなる探触子であり、測定手段は、検出手段により検出
された弾性波の大きさを記録し、配管内流体中の固体粒
子の質量及び大きさを求め、測定手段は、検出手段によ
り検出された弾性波の個数、時間を記録し、配管内流体
中の固体粒子の数密度、その時間変化を求め、予め設定
された値との比較判定を行うので、流体が高温蒸気であ
っても圧電変換素子の使用温度範囲内で検出を行うこと
ができ、簡便に測定、客観的な判定を行うことができ
る。
Further, the collision plate mounting seat penetrates the center of the flow path in the pipe and fixes a rod-shaped collision plate so as to penetrate a certain length from one side. The tip of the collision plate fixed by the mounting seat is brought into contact with the tip via a couplant, the detecting means is a probe comprising a piezoelectric transducer, and the measuring means is the magnitude of the elastic wave detected by the detecting means. Is recorded, the mass and size of the solid particles in the fluid in the pipe are determined, and the measuring means records the number and time of the elastic waves detected by the detecting means, and the number density of the solid particles in the fluid in the pipe, Since the time change is obtained and a comparison with a preset value is performed, the detection can be performed within the operating temperature range of the piezoelectric transducer even when the fluid is high-temperature steam. A determination can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る配管内流体中の固体粒子測定装
置の実施の形態を示す図である。
FIG. 1 is a view showing an embodiment of an apparatus for measuring solid particles in a fluid in a pipe according to the present invention.

【図2】 配管外の測定系の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a measurement system outside a pipe.

【図3】 衝突板の温度分布を説明するための図であ
る。
FIG. 3 is a diagram for explaining a temperature distribution of a collision plate.

【図4】 各ブローにおけるAE信号の振幅分布の例を
示す図である。
FIG. 4 is a diagram illustrating an example of an amplitude distribution of an AE signal in each blow.

【図5】 各ブローにおけるAE信号の時間分布の例を
示す図である。
FIG. 5 is a diagram illustrating an example of a time distribution of an AE signal in each blow.

【符号の説明】[Explanation of symbols]

1…配管、2…取付け座、3…衝突板、3−1…衝突板
配管外端部、4…センサ、5…測定器
DESCRIPTION OF SYMBOLS 1 ... Piping, 2 ... Mounting seat, 3 ... Collision plate, 3-1 ... Collision plate piping outer end, 4 ... Sensor, 5 ... Measuring instrument

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G06M 11/00 G06M 11/00 F (72)発明者 浜田 晴一 東京都千代田区内幸町1−1−3 東京電 力株式会社内 Fターム(参考) 2F030 CA04 CC07 2G047 AA01 BA05 BC00 BC03 2G064 AA04 AB16 AB23 AB27 BA21 BA28 BD18 CC28 CC46 CC54──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G06M 11/00 G06M 11 / 00F (72) Inventor Seichi Hamada 1-1-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo F-term in Electric Power Co., Ltd. (reference) 2F030 CA04 CC07 2G047 AA01 BA05 BC00 BC03 2G064 AA04 AB16 AB23 AB27 BA21 BA28 BD18 CC28 CC46 CC54

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 配管内流体中の固体粒子の測定を行う装
置であって、前記配管内の流路に衝突板を固定する衝突
板取付け座と、該取付け座に固定された前記衝突板に前
記固体粒子が衝突することにより発生する弾性波を検出
する検出手段とを備えたことを特徴とする配管内流体中
の固体粒子測定装置。
An apparatus for measuring solid particles in a fluid in a pipe, comprising: a collision plate mounting seat for fixing a collision plate to a flow path in the pipe; and a collision plate fixed to the mounting seat. A measuring unit for detecting an elastic wave generated by the collision of the solid particles;
【請求項2】 配管内流体中の固体粒子の測定を行う装
置であって、前記固体粒子の衝突面として一定の面積を
有する衝突板と、前記配管内の流路に前記衝突板を固定
する衝突板取付け座と、該取付け座に固定された前記衝
突板に前記固体粒子が衝突することにより発生する弾性
波を検出する検出手段とを備えたことを特徴とする配管
内流体中の固体粒子測定装置。
2. An apparatus for measuring solid particles in a fluid in a pipe, wherein the collision plate has a fixed area as a collision surface of the solid particles, and the collision plate is fixed to a flow path in the pipe. A solid particle in a fluid in a pipe, comprising: a collision plate mounting seat; and detection means for detecting an elastic wave generated when the solid particle collides with the collision plate fixed to the mounting seat. measuring device.
【請求項3】 配管内流体中の固体粒子の測定を行う装
置であって、前記固体粒子の衝突面として一定の面積を
有する衝突板と、前記配管内の流路に前記衝突板を固定
する衝突板取付け座と、該取付け座に固定された前記衝
突板に前記固体粒子が衝突することにより発生する弾性
波を検出する検出手段と、前記検出手段により検出され
た弾性波に基づき前記配管内流体中の固体粒子の測定を
行う測定手段とを備えたことを特徴とする配管内流体中
の固体粒子測定装置。
3. An apparatus for measuring solid particles in a fluid in a pipe, wherein the collision plate has a fixed area as a collision surface of the solid particles, and the collision plate is fixed to a flow path in the pipe. A collision plate mounting seat, detection means for detecting an elastic wave generated by the solid particles colliding with the collision plate fixed to the mounting seat, and the pipe inside the pipe based on the elastic wave detected by the detection means. A measuring device for measuring solid particles in a fluid, comprising: a measuring device for measuring solid particles in a fluid in a pipe.
【請求項4】 前記衝突板取付け座は、前記配管内の流
路の中心部を貫通し一方から一定長さ突き抜けるように
して棒状の前記衝突板を固定することを特徴とする請求
項1乃至3のいずれかに記載の配管内流体中の固体粒子
測定装置。
4. The rod-shaped collision plate is fixed so that the collision plate mounting seat penetrates a central portion of a flow path in the pipe and penetrates a predetermined length from one side. 3. The apparatus for measuring solid particles in a fluid in a pipe according to any one of 3.
【請求項5】 前記検出手段は、前記配管内から突き抜
けて前記衝突板取付け座で固定された前記衝突板の先端
部に接触媒質を介して接触させることを特徴とする請求
項4記載の配管内流体中の固体粒子測定装置。
5. The piping according to claim 4, wherein said detection means makes contact with a front end of said collision plate fixed at said collision plate mounting seat through a couplant so as to penetrate from inside said piping. Device for measuring solid particles in internal fluid.
【請求項6】 前記検出手段は、圧電変換素子からなる
探触子であることを特徴とする請求項1乃至3のいずれ
かに記載の配管内流体中の固体粒子測定装置。
6. The apparatus for measuring solid particles in a fluid in a pipe according to claim 1, wherein said detecting means is a probe comprising a piezoelectric transducer.
【請求項7】 前記測定手段は、前記検出手段により検
出された弾性波の大きさを記録し、前記配管内流体中の
固体粒子の質量及び大きさを求めることを特徴とする請
求項3記載の配管内流体中の固体粒子測定装置。
7. The apparatus according to claim 3, wherein said measuring means records the magnitude of the elastic wave detected by said detecting means, and obtains the mass and size of the solid particles in the fluid in the pipe. For measuring solid particles in fluid in pipes.
【請求項8】 前記測定手段は、前記検出手段により検
出された弾性波の個数を記録し、前記配管内流体中の固
体粒子の数密度を求めることを特徴とする請求項3記載
の配管内流体中の固体粒子測定装置。
8. The piping according to claim 3, wherein the measuring unit records the number of elastic waves detected by the detecting unit and obtains a number density of solid particles in the fluid in the piping. Device for measuring solid particles in fluids.
【請求項9】 前記測定手段は、前記検出手段により検
出された弾性波の個数及び時間を記録し、前記配管内流
体中の固体粒子の数密度及びその時間変化を求めること
を特徴とする請求項3記載の配管内流体中の固体粒子測
定装置。
9. The method according to claim 1, wherein the measuring unit records the number and time of the elastic waves detected by the detecting unit, and obtains the number density of solid particles in the fluid in the pipe and its time change. Item 3. The apparatus for measuring solid particles in a fluid in a pipe according to Item 3.
【請求項10】 前記測定手段は、前記質量、大きさ又
は数密度について予め設定された値との比較判定を行う
ことを特徴とする請求項7乃至9のいずれかに記載の配
管内流体中の固体粒子測定装置。
10. The in-pipe fluid according to claim 7, wherein said measuring means performs a comparison judgment with a preset value for said mass, size or number density. Solid particle measuring device.
【請求項11】 配管内流体中の固体粒子の測定を行う
方法であって、前記配管内の流路の中央部に前記固体粒
子の衝突面として一定の面積を有する衝突板を挿入し
て、該衝突板に前記固体粒子が衝突して発生する弾性波
を検出することを特徴とする配管内流体中の固体粒子測
定方法。
11. A method for measuring solid particles in a fluid in a pipe, comprising: inserting a collision plate having a fixed area as a collision surface of the solid particles in a center of a flow path in the pipe; A method for measuring solid particles in a fluid in a pipe, comprising detecting an elastic wave generated when the solid particles collide with the collision plate.
【請求項12】 前記衝突板は、前記配管内の流路の中
心部を貫通し一方から一定長さ突き抜けるようにして取
付け座に固定し、該突き抜けた前記衝突板の先端部に接
触媒質を介して前記検出手段により前記弾性波を検出す
ることを特徴とする請求項11記載の配管内流体中の固
体粒子測定方法。
12. The collision plate penetrates a center portion of a flow path in the pipe and is fixed to a mounting seat so as to penetrate a certain length from one side, and a couplant is attached to a tip end of the collision plate penetrated. 12. The method for measuring solid particles in a fluid in a pipe according to claim 11, wherein the elastic wave is detected by the detecting means via a filter.
【請求項13】 前記衝突板は、前記配管内の流路の中
心部を貫通し一方から配管内温度から前記検出手段の適
用が可能となる温度まで該衝突板表面温度を低下又は上
昇せしめるのに十分な長さを配管外に突き抜けるように
取付け座に固定し、該突き抜けた前記衝突板の先端部に
接触媒質を介して前記検出手段により前記弾性波を検出
することを特徴とする請求項11記載の配管内流体中の
固体粒子測定方法。
13. The collision plate penetrates a central portion of a flow path in the pipe, and lowers or raises the collision plate surface temperature from a temperature in the pipe to a temperature at which the detection means can be applied. A length enough to penetrate outside the pipe, and the elastic wave is detected by the detecting means via a couplant at a tip end of the penetrated collision plate. 12. The method for measuring solid particles in a fluid in a pipe according to item 11.
JP2000008432A 2000-01-18 2000-01-18 Device and method for measuring solid particle in fluid in pipe Pending JP2001201491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008432A JP2001201491A (en) 2000-01-18 2000-01-18 Device and method for measuring solid particle in fluid in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008432A JP2001201491A (en) 2000-01-18 2000-01-18 Device and method for measuring solid particle in fluid in pipe

Publications (1)

Publication Number Publication Date
JP2001201491A true JP2001201491A (en) 2001-07-27

Family

ID=18536702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008432A Pending JP2001201491A (en) 2000-01-18 2000-01-18 Device and method for measuring solid particle in fluid in pipe

Country Status (1)

Country Link
JP (1) JP2001201491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059997B1 (en) * 2019-10-23 2019-12-27 유해열 Fertilization apparatus having fertilizer mixing function
CN115683959A (en) * 2022-11-03 2023-02-03 北京信息科技大学 Biomass power generation fuel particle size identification system and method based on collision sound characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059997B1 (en) * 2019-10-23 2019-12-27 유해열 Fertilization apparatus having fertilizer mixing function
CN115683959A (en) * 2022-11-03 2023-02-03 北京信息科技大学 Biomass power generation fuel particle size identification system and method based on collision sound characteristics
CN115683959B (en) * 2022-11-03 2023-07-14 北京信息科技大学 System and method for identifying particle size of biomass particles based on collision sound characteristics

Similar Documents

Publication Publication Date Title
Papaelias et al. Inspection and structural health monitoring techniques for concentrated solar power plants
KR100883446B1 (en) Defect diagnostics system and method using acoustic emission
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
Vakhguelt et al. Combination non-destructive test (NDT) method for early damage detection and condition assessment of boiler tubes
US20130111999A1 (en) Method and device for non-destructive material testing by means of ultrasound
Sun et al. Acoustic emission sound source localization for crack in the pipeline
JP3639958B2 (en) Quantitative nondestructive evaluation method of cracks
JP2001201491A (en) Device and method for measuring solid particle in fluid in pipe
Bergander EMAT thickness measurement for tubes in coal-fired boilers
Urayama et al. Implementation of electromagnetic acoustic resonance in pipe inspection
WO1989004960A1 (en) Non-destructive evaluation of ropes by using transverse vibrational wave method
JP2011145146A (en) Roller outside crack diagnostic device and diagnostic method
JPS63193061A (en) Method for judging abnormality of vibration sound
JP3803314B2 (en) Creep void non-destructive detection method
Vivekanand et al. Nde techniques for reliable inspection of carbon steel tubes
JP2008215933A (en) State evaluation method of measuring object
JP2002031632A (en) Method for diagnosing creep damage of piping
Vakhguelt et al. Nondestructive Evaluation of Creep and Overheating Damage in Low-Carbon Steel Boiler Tubes
Rodgers et al. Acoustic emission monitoring for inspection of seam-welded hot reheat piping in fossil power plants
Bertoncini et al. Guided Waves as an Online Monitoring Technology for Long Term Operation in NPPs: New Experimental Results on a Steam Discharge Pipe
Abd Halim et al. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis
Amir et al. Using acoustic pulse reflectometry for quality control of heat exchanger cleaning
Zakiah et al. Detection and analysis of defect in steel tube using Vibration Impact Acoustic Emission (VIAE) method
KR101636412B1 (en) Determination method of crack length of an object
H Ahmed et al. An Innovative vibration sensor for flow accelerated corrosion measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060412