JPS63193061A - Method for judging abnormality of vibration sound - Google Patents

Method for judging abnormality of vibration sound

Info

Publication number
JPS63193061A
JPS63193061A JP62024562A JP2456287A JPS63193061A JP S63193061 A JPS63193061 A JP S63193061A JP 62024562 A JP62024562 A JP 62024562A JP 2456287 A JP2456287 A JP 2456287A JP S63193061 A JPS63193061 A JP S63193061A
Authority
JP
Japan
Prior art keywords
vibration
sensor
sound
abnormality
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62024562A
Other languages
Japanese (ja)
Inventor
Kunio Enomoto
榎本 邦夫
Masahiro Otaka
大高 正広
Makoto Hayashi
真琴 林
Satoshi Sugano
智 菅野
Hideyo Saito
英世 斉藤
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62024562A priority Critical patent/JPS63193061A/en
Publication of JPS63193061A publication Critical patent/JPS63193061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To easily detect the abnormality of a structure, by striking an object to be inspected by a standard impact device to measure the vibration and sound of the object to be inspected by a vibration sensor and a sound sensor and comparing the same with measured data at a healthy time. CONSTITUTION:A gas-water separator 7 is mounted on the shroud head 6 of a BWR plant and placed in a water pool 4. Further, a vibration sensor 1A and a standard impact device 2A are provided to the shroud head 6. A vibration sensor 1C and a standard impact device 2C are provided to the gas-water separator 7 and a vibration sensor 1B is provided to a stand pipe 8. A sound sensor 3 is provided to the wall surface of a pool 5 and the shroud head 6 is stuck by the standard impact devices 2A, 2C to measure the vibration and sound of the shroud head 6 by the vibration sensors 1A, 1B, 1C and the sound sensor 3. The measuring signals are analyzed by a vibration analyzer 13 and a sound analyzer 11 to be compared with the signals at a soundness time by a comparator 14 to evaluate a flaw. Since the shroud head is struck under a definite condition and the wave forms of the vibration and sound thereof are analyzed, the abnormality of an object to be inspected can be easily judged.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は機器や部品の変形、緩み1割れ及び欠落等の異
常状態を非破壊的に検査する振動音響異常判定法に係り
、特に、BWR炉内構造物の水中検査に好適な振動音響
異常判定法に関する。 〔従来の技術〕 BWR炉内構造物の異常検査に関する発明には格子板の
欠陥をtJTセンサを用いて検査する格子板検査装置が
ある(特開昭61−66162号公報)6しかし、これ
は専用装置であって、他の構造物に適用できず、汎用性
に関する考慮がなかった。 とが期待されている。しかし、カメラが接近できない狭
あい部については適用できない。
[Industrial Application Field] The present invention relates to a vibroacoustic abnormality determination method for nondestructively inspecting abnormal conditions such as deformation, loosening, cracking, and missing parts of equipment and parts, and in particular, to underwater inspection of BWR reactor internals. This invention relates to a vibroacoustic abnormality determination method suitable for. [Prior Art] Inventions related to abnormality inspection of BWR reactor internals include a grid plate inspection device that uses a tJT sensor to detect defects in a grid plate (Japanese Patent Application Laid-Open No. 61-66162).6 However, this Since it is a dedicated device, it cannot be applied to other structures, and there was no consideration given to its versatility. It is expected that However, this method cannot be applied to narrow spaces where the camera cannot approach.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

RWRプラントは所定の運転期間毎に定期検査が行なわ
れ、その際に炉内構造物も水中テレビ等による視覚的方
法によって外観からの割れ、きす等の欠陥検査が行なわ
れる。しかし、シュラウドヘッド上の気水分離器、ステ
イームドライヤは構造が複雑なために水中テレビによる
視覚的方法では限られた表面のみが検査可能であって物
陰はもちろんのこと構造の内部については全く検査不可
能である。 本発明の目的”は、主要な炉内構造物の異常を打診に対
する機器の振動応答及び音響応答から判定する方法を提
供することにある。 〔問題点を解決するための手段〕 機器の内部をも含めた異常の判定は機器の異常時と正常
時の振動、及び、音響を比較し、正常時応答からの差、
すなわち、偏差応答を求めることによって達成される。 この方法は、例えば、医者の胸部打診あるいは聴診9機
関車軸軸の打診等にみられるように古くから行われてき
た。 本発明がこれらと異なるところは、打撃の条件と計測の
条件を一定の状態で測定した計測系で測定し、求めた偏
差応答に客観性を持たせ、更に。 測定結果を評価し1機器の継続使用に対して客観的判定
を可能にしたことである。すなわち、振動及び音響の発
生のために標準打撃器で機器の一定部位を打撃し、機器
の一定部位の振動及び音響の応答、または1機器から一
定距離だけ離れた位置における音響応答を測定し、それ
らを比較器で正常時の応答と比較して偏差応答を求め、
これを信号評価器で評価することによって前述の目的は
達成される。 〔作用〕 上述の標準打撃器は打撃エネルギ、打撃速度を制御でき
るようになっている。従って1機器に異常がない限り、
この標準打撃器の打撃に対して再現性のあるいつも一定
の振動応答と音響応答を示すことになる。逆に、これら
の応答に差があればそれは異常を示すことになる。 この振動及び音響の応答を計測する振動センサ及び音響
センサは機器上の定点、あるいは、機器から離れた定点
に設けられる。これは異常判定上。 この定点計測は重要なポイントになる。 計測信号は比較器によって、それまでの信号と比較され
、差の有無、及び、有りの場合には偏差応答とみなされ
、異常評価が信号評価器で評価。 判定が行なわれる。 信号評価器にはその機器の正常時の振動及び音響の応答
と過去の異常時応答、及び、模擬異常時の応答が記憶さ
れており、それらと信号を照合することによって異常の
有無とその程度を判定する機能が与えられている。 〔実施例〕 第1図に本発明の実施例を示す、BWRプラントのシュ
ラウドヘッド6およびその上に搭載された気水分離器7
は放射線速へい上の理由で水4を順ったプール5の中の
位置決めステージ9の上に置かれる。そして、気水分離
器7はスタンドパイプ8を介してシュラウド6に接続さ
れる。 シュラウドヘッド6には振動センサIA、IA’・・・
及び標準打撃器2Aが設けられ、スタンドパイプ8には
振動センサ1B、IB’・・・が設けられ、気水分離器
7には振動センサIC,IC’・・・及び標準打撃器2
G、2G’・・・が設けられる。これらの振動センサは
振動アンプ12に導かれて入力される。 プール5の壁面の一定位置には音響センサ3゜3′・・
・が設けられ、その信号は音響アンプ10に入力される
。 12で増幅された振動信号は振動解析器13で変位また
は加速度の波形、振幅、振動数、振幅エネルギ、振幅分
布、振動数分布解析が行なわれる。 音響アンプ1oで増幅された音響信号は音響解析器】1
で波形、振幅分布、振動数分布、振幅エネルギ分布解析
が行なわれる。 音響解析器11及び振動解析器13で解析した)信号は
比較器14に入力される。比較器14には音響解析器1
1及び振動解析器13からの解析信号に対してそれぞれ
健全時の信号が記憶されていて、解析信号と比較される
。ここでの比較で偏差応答がなければ機器は全く正常と
なる。正常の場合でも解析結果は信号評価器15に貯え
られる。 信号評価器15には過去の計測信号と解析信号の全てと
模擬故障時の計測信号と解析信号及び類似機器の故障実
例の情報がデータベースとして貯えられている。 比較器14で偏差信号が生じた場合、信号評価@15に
導かれたデータはそこに貯えられただけでなく、信号評
価器15の貯蔵情報と比較され偏差信号発生原因の解析
が行なわれる。信号評価器15での解析では異常部位及
び異常原因の推定と更に精密検査の要否の判定が行なわ
れる。 模擬故障時信号とはシュラウドヘッド6、スタンドパイ
プ8.気水分離1ii7の故障ポテンシャルの高い代表
的部分に割れ1部品欠落等の人工的異常を与えた実物模
型で取得した信号である。 ン第2図は第1図に用いられる標準打撃器及びその制御
装置である。加速度センサ2−1.打撃力センサ2−2
を備えた打撃ハンマ2−3は打撃時の衝突端が磁石のN
極1反衝突端をS極とする永久磁石であり、2−4.2
−4’ t’ 2−4’・・・等の分割磁石を備えた国
情2−5の中に設けられる。 これらの磁石は励磁制御器2−6につながれ、さらに、
打撃制御器2−7につながれる。2−3の後方にはこれ
に初速を与えるバネ2−8が設けられ、バネにはたわめ
られたバネの力を測るたわみ度センサ2−9が設けられ
る。2−9は2−7につながれている。2−10は被検
体に標準打撃器を固着するための伸縮自在の吸着介在物
であり、2−11は2−3が収められている弾道室2−
12の空気を抽気するためのチューブであり、これは油
気ポンプ2−13につながれている。2−10は2−5
に密着して取付けられる。このような標準打撃器を、例
えば、気水分離器7の所定の位置に、第3図のように1
位置決めして軽く7に押し付けた後に2−13を作動さ
せて2−12内の水を抽水すると2を7に吸着すること
ができる。 2−12内の水を全部抜くと吸着力は最高になり。 かつ、2−3が7に衝突するときの摩擦損失は小さくな
るという副次的効果がもたらされる。2−14は2−1
2内の負圧を測る圧力センサであり、これにより2−1
3による抽水作業が制御されろ。 こうして2を7に取りつけた後に2−4.2−4’、2
−4’・・・を順次働かせて2−3を必要な発射速度が
得られるところまで、2−8がたわむように、2−6及
び2−7を制御する。必要なバネ2−8のたわみが得ら
れたところで励磁気を開放すれば2−3は2−8に貯え
られたエネルギに応じて弾き出されて2−7に衝突する
。このとき2−1及び2−2により加速度と衝突力が測
られる。衝突速度と力はこれで求まるが、バネ力とそれ
らを較正しておけばバネ力からも求められる。 この打撃器は取付けにおいて、被検体に特別な装置取付
や加工が不要という特徴がある。 本実施例の原理的な効果を振動数を例にとって示す。簡
単のために、第3図のように、6に一端を固定された片
持梁の固有振動数を考える。単純化してm1/mo=+
273とする(me:8の質量)。 −次振動数に対して、 となる。ここでCはスタンドパイプ8の断面形状。 比重及び縦弾性率に依存する定数1gは9811/ s
flである。 さて、もし、気水分離器7の部品欠落によって質量が−
mlに減ったとすればスタンドパイプ8O でそρときの振動数f1は、 =0.78ft            ・・・(2)
となる。 また、気水分離器7とスタンドパイプ8の接続部に割れ
が入って気水分離器7が欠落したとすれO =0.11 !□           ・・・(3)
となる。即ち、正常時の振動応答に対して部品欠落2割
れ等の異常時応答は明らかに異なり、振動センサによっ
て捕捉できることがわかる。このような異常は音響セン
サによ、つても周波数解析や波形解析によって検出でき
る。また、打撃条件を常に一定にしているから、振動及
び音響の波形エネルギや波形振幅の変化も異常判定の情
報とすることができる。 〔発明の効果〕 本発明によれば打撃条件と測定条件を一定にしているか
ら計測パラメータの変化は全て被検体の異常とみなせ、
判断容易となる。
Periodic inspections are performed on RWR plants every predetermined operating period, and at that time, the internal structure of the reactor is also visually inspected for defects such as cracks and scratches using an underwater television or the like. However, because the structure of the steam dryer and steam separator on the shroud head is complex, only a limited surface can be inspected using the visual method using underwater television, and it is impossible to inspect the inside of the structure, let alone the hidden areas. It is impossible to test. An object of the present invention is to provide a method for determining abnormalities in major reactor internals from the vibration and acoustic responses of the equipment to percussion. [Means for solving the problem] To determine abnormalities, including vibrations and sounds of the equipment when it is abnormal and when it is normal, the difference from the normal response is determined.
That is, this is achieved by determining the deviation response. This method has been practiced for a long time, as seen in, for example, doctors' chest percussion or auscultation of locomotive axles. The present invention differs from these in that it is measured using a measurement system that measures the hitting conditions and measurement conditions under constant conditions, and that the obtained deviation response is objective. By evaluating the measurement results, it has become possible to objectively judge the continued use of a single device. That is, to generate vibration and sound, a certain part of the equipment is struck with a standard impact tool, and the vibration and sound response of the certain part of the equipment or the acoustic response at a position a certain distance away from the equipment is measured, Compare them with the normal response using a comparator to find the deviation response.
By evaluating this with a signal evaluator, the aforementioned objective is achieved. [Operation] The above-mentioned standard impact device is capable of controlling impact energy and impact speed. Therefore, unless there is something wrong with one device,
It exhibits a reproducible and always constant vibration and acoustic response to the impact of this standard percussion device. Conversely, if there is a difference in these responses, it indicates an abnormality. A vibration sensor and an acoustic sensor that measure this vibration and acoustic response are provided at a fixed point on the device or at a fixed point away from the device. This is an abnormality determination. This fixed point measurement is an important point. The measured signal is compared with the previous signal by a comparator, and if there is a difference, it is considered as a deviation response, and an abnormality is evaluated by a signal evaluator. A judgment is made. The signal evaluator stores the normal vibration and acoustic responses of the equipment, past abnormal responses, and simulated abnormal responses, and by comparing the signals with these, it is possible to determine the presence or absence of an abnormality and its degree. A function is provided to determine the [Example] Fig. 1 shows an example of the present invention, a shroud head 6 of a BWR plant and a steam/water separator 7 mounted thereon.
is placed on a positioning stage 9 in a pool 5 containing water 4 for reasons of radial speed. The steam separator 7 is connected to the shroud 6 via a standpipe 8. The shroud head 6 has vibration sensors IA, IA'...
and a standard impact device 2A, the stand pipe 8 is provided with vibration sensors 1B, IB'..., and the air/water separator 7 is provided with vibration sensors IC, IC'... and the standard impact device 2.
G, 2G'... are provided. These vibration sensors are guided and input to the vibration amplifier 12. Acoustic sensors 3゜3' are placed at certain positions on the wall of the pool 5.
* is provided, and its signal is input to the acoustic amplifier 10. The vibration signal amplified in step 12 is subjected to a displacement or acceleration waveform, amplitude, frequency, amplitude energy, amplitude distribution, and frequency distribution analysis in a vibration analyzer 13. The acoustic signal amplified by the acoustic amplifier 1o is sent to the acoustic analyzer】1
The waveform, amplitude distribution, frequency distribution, and amplitude energy distribution are analyzed. The signals analyzed by the acoustic analyzer 11 and the vibration analyzer 13 are input to the comparator 14. The comparator 14 includes an acoustic analyzer 1
For the analysis signals from the vibration analyzer 1 and vibration analyzer 13, healthy signals are stored and compared with the analysis signals. If there is no deviation response in this comparison, the device is completely normal. Even in the normal case, the analysis results are stored in the signal evaluator 15. The signal evaluator 15 stores all past measurement signals and analysis signals, measurement signals and analysis signals during simulated failures, and information on failure examples of similar devices as a database. When a deviation signal is generated in the comparator 14, the data led to the signal evaluation@15 is not only stored therein, but also compared with the stored information of the signal evaluator 15 to analyze the cause of the deviation signal generation. In the analysis by the signal evaluator 15, the abnormal site and cause of the abnormality are estimated, and it is determined whether a detailed inspection is necessary. The simulated failure signal is shroud head 6, stand pipe 8. This is a signal obtained using a real model in which artificial abnormalities such as cracks and one missing part were added to representative parts of the steam/water separator 1ii7 with high failure potential. Figure 2 shows the standard impact device and its control device used in Figure 1. Acceleration sensor 2-1. Impact force sensor 2-2
The impact hammer 2-3 equipped with
It is a permanent magnet with the pole 1 anti-collision end as the S pole, and 2-4.2
-4't'2-4' . These magnets are connected to an excitation controller 2-6, and further
It is connected to the impact controller 2-7. A spring 2-8 that gives an initial velocity to the spring 2-3 is provided behind the spring 2-3, and a deflection sensor 2-9 that measures the force of the deflected spring is provided on the spring. 2-9 is connected to 2-7. 2-10 is a retractable adsorption inclusion for fixing a standard impact device to the subject, and 2-11 is a ballistic chamber 2-1 in which 2-3 is housed.
12 is a tube for extracting air, and this tube is connected to an oil pump 2-13. 2-10 is 2-5
It can be installed in close contact with the For example, place such a standard impact device at a predetermined position of the steam/water separator 7 as shown in FIG.
After positioning and lightly pressing against 7, 2-13 is activated to extract water from 2-12, and 2 can be adsorbed onto 7. When all the water in 2-12 is removed, the suction power is at its maximum. In addition, a secondary effect is brought about that the friction loss when 2-3 collides with 7 is reduced. 2-14 is 2-1
This is a pressure sensor that measures the negative pressure inside 2-1.
The water extraction work by 3 shall be controlled. After attaching 2 to 7 in this way, 2-4.2-4', 2
2-6 and 2-7 are controlled so that 2-8 is deflected until the required firing speed of 2-3 is obtained by sequentially operating -4'.... When the excitation is released when the necessary deflection of the spring 2-8 is obtained, the spring 2-3 is ejected according to the energy stored in the spring 2-8 and collides with the spring 2-7. At this time, acceleration and collision force are measured by 2-1 and 2-2. The collision speed and force can be found from this, but if you calibrate them with the spring force, you can also find it from the spring force. This impact device is characterized in that it does not require any special equipment or processing to be installed on the subject. The principle effect of this embodiment will be explained using vibration frequency as an example. For simplicity, consider the natural frequency of a cantilever beam fixed at one end at 6 as shown in FIG. Simplify m1/mo=+
273 (me: mass of 8). For the -th frequency, . Here, C is the cross-sectional shape of the stand pipe 8. The constant 1g that depends on specific gravity and longitudinal elastic modulus is 9811/s
It is fl. Now, if the mass of the steam-water separator 7 is -
ml, the frequency f1 when the standpipe is 8O and ρ is =0.78ft...(2)
becomes. Furthermore, if the connection between the steam and water separator 7 and the stand pipe 8 is cracked and the steam and water separator 7 is missing, O = 0.11! □ ...(3)
becomes. That is, it can be seen that the vibration response during normal times is clearly different from the response during abnormal times, such as when a part is missing or broken in two, and can be detected by the vibration sensor. Such abnormalities can be detected by acoustic sensors, often by frequency analysis or waveform analysis. Furthermore, since the impact conditions are always constant, changes in vibration and acoustic waveform energy and waveform amplitude can also be used as information for abnormality determination. [Effects of the Invention] According to the present invention, since the impact conditions and measurement conditions are kept constant, any change in measurement parameters can be regarded as an abnormality in the subject.
It becomes easier to judge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のセンサ装置の系統図、第2
図は標準打撃器の制御系統図、第3図は本発明の効果を
示す説明図である。 1・・・振動センサ、2・・・標準打撃器、3・・・音
響センサ、9・・・位置決めステージ、11・・・音響
解析器、13・・・振動解析器、14・・・比較器、1
5・・・信号評価器。
FIG. 1 is a system diagram of a sensor device according to an embodiment of the present invention, and FIG.
The figure is a control system diagram of a standard impact device, and FIG. 3 is an explanatory diagram showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Vibration sensor, 2... Standard impact device, 3... Acoustic sensor, 9... Positioning stage, 11... Acoustic analyzer, 13... Vibration analyzer, 14... Comparison vessel, 1
5...Signal evaluator.

Claims (1)

【特許請求の範囲】[Claims] 1、振動センサ及び音響センサを用いて被検体の異常を
検査する振動音響異常判定方法において、前記被検体の
特定部位に着脱可能な前記振動センサを接触して設け、
さらに、前記被検体との相対位置が一定で、かつ、前記
被検体から離れた特定位置に前記音響センサを設け、前
記被検体の特定位置に打撃効果制御機能を備えた標準打
撃器で一定の打撃条件で特定時間間隔をおいて間欠的に
打撃した際に生じる前記被検体の振動及び音響を前記振
動センサ及び前記音響センサで計測し、時間間隔毎に計
測したその振動情報及び音響情報を比較することによつ
て前記被検体の異常を判定することを特徴とする振動音
響異常判定方法。
1. In a vibroacoustic abnormality determination method for testing an abnormality in a subject using a vibration sensor and an acoustic sensor, the vibration sensor is provided in contact with a specific part of the subject, and is detachable;
Furthermore, the acoustic sensor is provided at a specific position with a constant relative position to the subject and is away from the subject, and a standard impact instrument equipped with a striking effect control function is provided at a specific position of the subject. Vibration and sound of the object generated when the object is intermittently struck at specific time intervals under a striking condition are measured by the vibration sensor and the acoustic sensor, and the vibration information and acoustic information measured at each time interval are compared. A vibroacoustic abnormality determination method, characterized in that the abnormality of the subject is determined by:
JP62024562A 1987-02-06 1987-02-06 Method for judging abnormality of vibration sound Pending JPS63193061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024562A JPS63193061A (en) 1987-02-06 1987-02-06 Method for judging abnormality of vibration sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024562A JPS63193061A (en) 1987-02-06 1987-02-06 Method for judging abnormality of vibration sound

Publications (1)

Publication Number Publication Date
JPS63193061A true JPS63193061A (en) 1988-08-10

Family

ID=12141596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024562A Pending JPS63193061A (en) 1987-02-06 1987-02-06 Method for judging abnormality of vibration sound

Country Status (1)

Country Link
JP (1) JPS63193061A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258727A (en) * 1990-09-19 1992-09-14 Rem Technol Inc Crack detecting method for stationary central shaft system
JPH04305140A (en) * 1990-09-19 1992-10-28 Rem Technol Inc Method for detecting crack in shaft system in operation
JP2007054608A (en) * 2005-07-27 2007-03-08 Yokohama Rubber Co Ltd:The Golf club head
JP2008046120A (en) * 2006-08-14 2008-02-28 General Electric Co <Ge> Predicting method for stress on steam system of boiling-water reactor
CN116950883A (en) * 2023-09-21 2023-10-27 江苏双轮泵业机械制造有限公司 Shock resistance detection device for pressure pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258727A (en) * 1990-09-19 1992-09-14 Rem Technol Inc Crack detecting method for stationary central shaft system
JPH04305140A (en) * 1990-09-19 1992-10-28 Rem Technol Inc Method for detecting crack in shaft system in operation
JP2007054608A (en) * 2005-07-27 2007-03-08 Yokohama Rubber Co Ltd:The Golf club head
JP2008046120A (en) * 2006-08-14 2008-02-28 General Electric Co <Ge> Predicting method for stress on steam system of boiling-water reactor
US8437445B2 (en) 2006-08-14 2013-05-07 General Electric Company Method for predicting stresses on a steam system of a boiling water reactor
CN116950883A (en) * 2023-09-21 2023-10-27 江苏双轮泵业机械制造有限公司 Shock resistance detection device for pressure pump

Similar Documents

Publication Publication Date Title
US8596135B2 (en) System and method for monitoring health of structural joints
US6880403B1 (en) Structure inspection device
CN110998253B (en) Apparatus and method for performing impact excitation techniques
Sun et al. Acoustic emission sound source localization for crack in the pipeline
US20130111999A1 (en) Method and device for non-destructive material testing by means of ultrasound
JP2020003240A (en) Inspection apparatus and inspection method for inspection object
Fekrmandi et al. Inspection of the integrity of a multi-bolt robotic arm using a scanning laser vibrometer and implementing the surface response to excitation method (SuRE)
JP2020056688A (en) Structure non-destructive test device and non-destructive test method thereof
CN109298076B (en) Lamb wave-based active valve internal leakage damage detection system and method
CN101413925B (en) Specific device of bolt bore ultrasonic inspection nondestructive detection and detection method thereof
KR100444269B1 (en) A non-destructive tap test system and its test method
US4231259A (en) Method and apparatus for non-destructive evaluation utilizing the internal friction damping (IFD) technique
JPS63193061A (en) Method for judging abnormality of vibration sound
JP4311680B2 (en) Structure inspection device
JPH0511895B2 (en)
KR20200089131A (en) Detecting attachment for concrete structures using pole
JP4410037B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
Dostál et al. Visualisation of corrosion acoustic signals using quality tools
JPH0392758A (en) Product inspection
JP2009041978A (en) Integrity diagnostic method by tap tone analysis
CN201293771Y (en) Ultrasonic inspection lossless detection special equipment for bolt inner bore
EP0429446A1 (en) Non-destructive evaluation of ropes by using transverse vibrational wave method
CN110988138B (en) Weld assembly quality detection device and method
JP2002131294A (en) Nondestructive compression test method and device for concrete
JP6173636B1 (en) Ultrasonic inspection method and ultrasonic inspection apparatus