JP2001200328A - Gas compressor and method for producing wear resistant aluminum alloy extruded material for gas compressor - Google Patents

Gas compressor and method for producing wear resistant aluminum alloy extruded material for gas compressor

Info

Publication number
JP2001200328A
JP2001200328A JP2000012512A JP2000012512A JP2001200328A JP 2001200328 A JP2001200328 A JP 2001200328A JP 2000012512 A JP2000012512 A JP 2000012512A JP 2000012512 A JP2000012512 A JP 2000012512A JP 2001200328 A JP2001200328 A JP 2001200328A
Authority
JP
Japan
Prior art keywords
alloy
gas compressor
aluminum alloy
sliding member
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000012512A
Other languages
Japanese (ja)
Other versions
JP4332632B2 (en
Inventor
Tetsuya Toyokata
哲也 豊方
Toshimitsu Tsutsui
俊光 筒井
Hitoshi Murata
等 村田
Isao Murase
功 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Showa Aluminum Can Corp
Original Assignee
Seiko Seiki KK
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK, Showa Aluminum Corp filed Critical Seiko Seiki KK
Priority to JP2000012512A priority Critical patent/JP4332632B2/en
Publication of JP2001200328A publication Critical patent/JP2001200328A/en
Application granted granted Critical
Publication of JP4332632B2 publication Critical patent/JP4332632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an inexpensive wear resistant aluminum alloy extruded material for a compressor having high hardness and small permanent elongation and to provide a gas compressor using the same wear resistant aluminum alloy extruded material. SOLUTION: The base metal 31 of a vane 13 is produced by a wear resistant aluminum alloy extruded material. This wear resistant aluminum alloy extruded material contains 8 to 15% Si, 8 to 15% Cu, 0.1 to 2.0% Mg, and the balance aluminum with inevitable impurities. Then, the surface is applied with Ni base plating 33 with a film thickness of about 10 to 30 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気体圧縮機及び圧縮
機用耐摩耗性アルミニウム合金押出材の製造方法に係わ
り、特に硬度が高く、永久伸びが小さく、かつ安価な圧
縮機用耐摩耗性アルミニウム合金押出材の製造方法及び
この耐摩耗性アルミニウム合金押出材を用いた気体圧縮
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas compressor and a method for producing a wear-resistant aluminum alloy extruded material for a compressor, and particularly to a wear-resistant aluminum for a compressor which has high hardness, small permanent elongation and is inexpensive. The present invention relates to a method for manufacturing an alloy extruded material and a gas compressor using the wear-resistant aluminum alloy extruded material.

【0002】[0002]

【従来の技術】気体圧縮機は、室内空調用や冷凍用に用
いられている。気体圧縮機50は図14に示す如く圧縮
機本体1を有し、圧縮機本体1は一対のサイドブロック
2、3間に介挿されたシリンダ4を備えてなり、シリン
ダ4内にはロータ5が回転可能に配設されている。
2. Description of the Related Art Gas compressors are used for indoor air conditioning and refrigeration. The gas compressor 50 has a compressor main body 1 as shown in FIG. 14, and the compressor main body 1 includes a cylinder 4 interposed between a pair of side blocks 2, 3, and a rotor 5 is provided in the cylinder 4. Are rotatably arranged.

【0003】ロータ5には端面間を貫通する回転軸6が
一体に設けられており、回転軸6は両サイドブロック
2、3のそれぞれに設けられた軸受孔7、8に回転可能
に嵌合し、また、その回転軸先端側6aは軸受孔7より
突出し、さらにフロントヘッド9を貫通するように延長
形成されている。回転軸先端側6aの外局面側にはシー
ル室10が設けられており、このシール室10には軸受
孔7と回転軸6との軸受すきまGを介し潤滑油が供給さ
れる。
The rotor 5 is integrally provided with a rotating shaft 6 penetrating between the end faces, and the rotating shaft 6 is rotatably fitted in bearing holes 7 and 8 provided in both side blocks 2 and 3 respectively. Further, the rotation shaft tip side 6a protrudes from the bearing hole 7 and is formed to extend so as to penetrate the front head 9. A seal chamber 10 is provided on the outer surface side of the rotary shaft tip side 6a, and lubricating oil is supplied to the seal chamber 10 through a bearing clearance G between the bearing hole 7 and the rotary shaft 6.

【0004】図15に、図14中のA−A矢視線断面図
を示す。ロータ5の外周面には径方向にベーン溝12が
形成され、ベーン溝12にはベーン13が摺動可能に装
着されている。そして、ベーン13は、ロータ5の回転
時には遠心力とベーン溝底部の油圧とによりシリンダ4
の内壁に付勢される。
FIG. 15 is a sectional view taken along the line AA in FIG. A vane groove 12 is formed on the outer peripheral surface of the rotor 5 in a radial direction, and a vane 13 is slidably mounted in the vane groove 12. When the rotor 5 is rotating, the vane 13 is driven by the centrifugal force and the oil pressure at the bottom of the vane groove.
It is urged to the inner wall.

【0005】シリンダ4内は、一対のサイドブロック
2、3、ロータ5、ベーン13、13・・により複数の
小室に仕切られている。これらの小室は圧縮室14、1
4・・と称され、ロータ5の回転により容積の大小変化
を繰り返す。
The interior of the cylinder 4 is partitioned into a plurality of small chambers by a pair of side blocks 2, 3, a rotor 5, and vanes 13, 13,. These chambers are compression chambers 14, 1
.., And the size of the volume is repeatedly changed by the rotation of the rotor 5.

【0006】このような圧縮機本体1においては、ロー
タ5が回転して圧縮室14、14・・の容積が変化する
と、その容積変化により吸入口35に通じる吸入室15
の低圧冷媒ガスを吸気し圧縮する。サイドブロック3と
ケース52により吐出室19が形成されている。そし
て、圧縮後の高圧冷媒ガスは吐出ポート16、吐出弁1
7、油分離器18等を介して吐出室19に吐出される。
In such a compressor body 1, when the rotor 5 rotates and the volume of the compression chambers 14, 14,.
And compresses the low-pressure refrigerant gas. The discharge chamber 19 is formed by the side block 3 and the case 52. The compressed high-pressure refrigerant gas is supplied to the discharge port 16 and the discharge valve 1.
7. Discharged to the discharge chamber 19 via the oil separator 18 and the like.

【0007】このとき、油分離器18では高圧冷媒ガス
から油分を分離し、分離の油分は吐出室19の底部に溜
り、潤滑油の油溜り20を形成する。油分の分離された
高圧冷媒ガスは、吐出口36より外部の図示しない熱交
換器等に供給される。油溜り20の潤滑油は、オイル通
路21を介してベーン溝底部や軸受すきまG(摺接部)
側に圧送供給される。
At this time, the oil separator 18 separates oil from the high-pressure refrigerant gas, and the separated oil accumulates at the bottom of the discharge chamber 19 to form an oil reservoir 20 for lubricating oil. The high-pressure refrigerant gas from which oil has been separated is supplied from a discharge port 36 to an external heat exchanger or the like (not shown). The lubricating oil in the oil sump 20 passes through the oil passage 21 to the bottom of the vane groove and the bearing clearance G (sliding contact portion).
Side is pressure fed.

【0008】かかる気体圧縮機50において、ロータ5
とベーン13は共にアルミ合金で形成されている。この
ため、摺動上の問題から図16に示すように、ベーン1
3は母材31の表面に膜厚10〜30μm程度のNiベ
ースのメッキ33を施している。Niベースのメッキ3
3は、例えばニッケルとリンの化合物、ニッケルとリン
とコバルトの化合物、ニッケルとボロンの化合物、ニッ
ケルとリンとボロンの化合物等である。
In such a gas compressor 50, the rotor 5
And the vane 13 are both formed of an aluminum alloy. For this reason, as shown in FIG.
Reference numeral 3 denotes a base material 31 on which a Ni-based plating 33 having a thickness of about 10 to 30 μm is applied. Ni-based plating 3
Reference numeral 3 denotes, for example, a compound of nickel and phosphorus, a compound of nickel, phosphorus, and cobalt, a compound of nickel and boron, and a compound of nickel, phosphorus, and boron.

【0009】このメッキ33は硬いため、母材31が柔
らかいと外力が加わった場合の母材31の変形にメッキ
33の変形が追従できず、メッキ33の割れが発生して
しまう。そこで、母材31には比較的高硬度なアルミ合
金が要求され、従来は5〜10重量%(以下、%と略
す)程度の鉄、ニッケル等を含む15〜25%Si程度
の焼結アルミ合金をT6処理して使用していた。
Since the plating 33 is hard, if the base material 31 is soft, the deformation of the plating 33 cannot follow the deformation of the base material 31 when an external force is applied, and the plating 33 cracks. Therefore, a relatively high hardness aluminum alloy is required for the base material 31. Conventionally, sintered aluminum of about 15 to 25% Si containing about 5 to 10% by weight (hereinafter abbreviated as%) of iron, nickel and the like is used. The alloy was used after T6 treatment.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、この様
な焼結アルミ合金はコストが高いため、コストダウンの
ために、より安価な溶製アルミ合金を母材に使用するこ
とが求められていた。
However, since such a sintered aluminum alloy has a high cost, it has been required to use a cheaper molten aluminum alloy as a base material for cost reduction.

【0011】ここに、溶製アルミ合金について様々な耐
久性評価を実施したところ、メッキ後の初期硬度がHR
B(ロックウェルのBスケール)78以上であれば、溶
製アルミ合金でもメッキ33の割れが発生せず、使用で
きることが判った。
Here, when various durability evaluations were performed on the ingot aluminum alloy, the initial hardness after plating was HR.
It was found that when the B (R Rockwell's B scale) was 78 or more, the plating 33 was not cracked even with a smelted aluminum alloy and could be used.

【0012】この点で、T6処理した溶製アルミ合金
は、硬度の点では十分に使用可能であるが、実施運転時
の発生熱に伴う永久伸び(例えば180度、50時間で
50μm伸びる)を生ずる。永久伸びとは、熱により生
じた伸びが、冷却されて元の温度になっても、元の寸法
に戻らない状態をいう。
At this point, the molten aluminum alloy treated with T6 is sufficiently usable in terms of hardness, but has a permanent elongation (for example, 180 °, elongation of 50 μm in 50 hours) due to heat generated during operation. Occurs. Permanent elongation refers to a state in which elongation caused by heat does not return to its original dimensions even when cooled to its original temperature.

【0013】永久伸びを生じた場合、ベーン13とサイ
ドブロック2又は3の間が密着し過ぎ、発熱や破損等の
問題を生ずる。また永久伸びを考慮して、ベーン13と
サイドブロック2又は3の間に隙間を広く設定した場合
には、冷媒ガスがこの隙間より漏れてしまうおそれがあ
った。このため、T6処理した溶製アルミ合金を使用す
ることは困難であった。
When permanent elongation occurs, the space between the vane 13 and the side block 2 or 3 becomes too close to each other, causing problems such as heat generation and breakage. If the gap is set wide between the vane 13 and the side block 2 or 3 in consideration of the permanent elongation, there is a possibility that the refrigerant gas leaks from the gap. For this reason, it was difficult to use the T6 treated ingot aluminum alloy.

【0014】かかる永久伸びを抑えるため、従来の溶製
アルミ合金ではT7処理をしている。しかしながら、こ
のT7処理では、量産でHRB78以上を保証すること
が出来なかった。
In order to suppress such permanent elongation, a conventional ingot aluminum alloy is treated with T7. However, in this T7 treatment, HRB 78 or more could not be guaranteed in mass production.

【0015】本発明はこのような従来の課題に鑑みてな
されたもので、硬度が高く、永久伸びが小さく、かつ安
価な圧縮機用耐摩耗性アルミニウム合金押出材の製造方
法及びこの耐摩耗性アルミニウム合金押出材を用いた気
体圧縮機を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a high hardness, a small permanent elongation, and a method of manufacturing an inexpensive wear-resistant aluminum alloy extruded material for a compressor. An object is to provide a gas compressor using an aluminum alloy extruded material.

【0016】[0016]

【課題を解決するための手段】このため本発明は、冷媒
ガスの吸入、圧縮及び吐出が行われる圧縮室を備える気
体圧縮機において、該圧縮室を形成する摺動用部材又は
該摺動用部材の母材に、8〜15%のSiと、8〜15
%のCuと、0.1〜2.0%のMgとを含み、残部は
アルミニウム及び不可避不純物からなり、合金組織中に
10μm以上100μm以下のSi粒子を60個/mm
以下含み、かつ10μm以下のSi粒子及びその他
の晶出物を合計40%以下の面積率で均一に分布させた
耐摩耗性アルミニウム合金押出材を用いたことを特徴と
する。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a gas compressor having a compression chamber in which refrigerant gas is sucked, compressed and discharged, and a sliding member forming the compression chamber or a sliding member of the sliding member. 8-15% Si and 8-15%
% Cu and 0.1 to 2.0% Mg, the balance being aluminum and unavoidable impurities, and 60 particles / mm of Si particles of 10 μm to 100 μm in the alloy structure.
It is characterized by using an abrasion-resistant aluminum alloy extruded material containing 2 or less and uniformly dispersing Si particles of 10 μm or less and other crystallized substances at a total area ratio of 40% or less.

【0017】気体圧縮機の圧縮室を形成する摺動用部材
又はこの摺動用部材の母材に、耐摩耗性アルミニウム合
金押出材を用いる。摺動用部材は、メッキ等をせずにそ
のまま加工して用いることも可能であるが、摺動用部材
の母材として用い、外周をメッキ等して用いてもよい。
A sliding member forming a compression chamber of the gas compressor or a base material of the sliding member is made of a wear-resistant aluminum alloy extruded material. The sliding member can be processed and used as it is without plating or the like, but may be used as a base material of the sliding member and the outer periphery thereof may be plated and used.

【0018】耐摩耗性アルミニウム合金押出材を用いる
ことで、気体圧縮機の寿命を長く、かつ安価とすること
が出来る。また、本発明は、前記摺動用部材又は該摺動
用部材の母材は、硬度がHRB78以上であることを特
徴とする。
By using a wear-resistant aluminum alloy extruded material, the life of the gas compressor can be extended and the cost can be reduced. Further, the invention is characterized in that the sliding member or the base material of the sliding member has a hardness of HRB78 or more.

【0019】硬度がHRB78以上であるため、ベーン
のメッキ割れを防ぐことが出来る。量産時の最低硬度で
HRB78が保証されているので、圧縮室を形成する摺
動用部材に適している。
Since the hardness is HRB78 or more, the plating crack of the vane can be prevented. Since HRB78 is guaranteed at the minimum hardness during mass production, it is suitable for a sliding member forming a compression chamber.

【0020】更に、本発明は、前記摺動用部材又は該摺
動用部材の母材は、熱膨張係数が21.5×10−6
下であることを特徴とする。
Further, the present invention is characterized in that the sliding member or the base material of the sliding member has a coefficient of thermal expansion of 21.5 × 10 −6 or less.

【0021】熱膨張係数が小さいため、運転時の熱に伴
うベーンの伸びを小さく抑えられる。このため、永久伸
びが小さく、安価であり、圧縮室を形成する摺動用部材
に適している。
Since the coefficient of thermal expansion is small, the expansion of the vane due to heat during operation can be suppressed to a small value. For this reason, the permanent elongation is small, inexpensive, and suitable for a sliding member forming a compression chamber.

【0022】更に、本発明は、前記摺動用部材は前記圧
縮室の外壁を形成する円筒状のシリンダに対し、該外壁
の内周面に沿って摺動するベーンであり、該ベーンは、
前記耐摩耗性アルミニウム合金押出材を用いた母材と、
該母材の周囲に膜状に付着されたNiを含むメッキとを
備えて構成した。
Further, according to the present invention, the sliding member is a vane that slides along an inner peripheral surface of the outer wall of a cylindrical cylinder forming an outer wall of the compression chamber.
A base material using the wear-resistant aluminum alloy extruded material,
And a plating containing Ni adhered in a film shape around the base material.

【0023】耐摩耗性アルミニウム合金押出材を、気体
圧縮機の圧縮室を形成するベーンに用いたことにより、
ベーンのメッキ割れを生じ難く、運転時の熱に伴うベー
ンの伸びを小さく抑えられる。そして、ベーンを安価に
製造出来る。
By using the wear-resistant aluminum alloy extruded material for the vane forming the compression chamber of the gas compressor,
Plating cracks of the vane are less likely to occur, and the elongation of the vane due to heat during operation can be kept small. And a vane can be manufactured cheaply.

【0024】更に、本発明は圧縮機用耐摩耗性アルミニ
ウム合金押出材の製造方法であり、8〜15%のSi
と、8〜15%のCuと、0.1〜2.0%のMgとを
含み、残部はアルミニウム及び不可避不純物からなる合
金を、480〜500℃で2〜4時間溶体化処理した
後、焼入れし、190〜210℃で過時効処理すること
により、該合金組織中に10μm以上100μm以下の
Si粒子を60個/mm 以下含み、かつ10μm以下
のSi粒子及びその他の晶出物を合計40%以下の面積
率で均一に分布させた耐摩耗性アルミニウム合金押出材
を製造することを特徴とする。
Further, the present invention provides a wear-resistant aluminum alloy for a compressor.
Is a method for producing an aluminum alloy extruded material, wherein 8 to 15% of Si
And 8 to 15% of Cu and 0.1 to 2.0% of Mg
The balance is made up of aluminum and unavoidable impurities.
The gold was solution treated at 480-500 ° C. for 2-4 hours.
After quenching, over-aging at 190-210 ° C
Thereby, in the alloy structure, 10 μm or more and 100 μm or less
60 Si particles / mm2 Including below and below 10μm
Area of less than 40% of total Si particles and other crystallized substances
Wear-resistant aluminum alloy extruded material with uniform distribution
Is manufactured.

【0025】Siは8〜15%添加する。Si添加によ
って母材中に硬質の初晶Si、共晶Si粒子が分散し、
母材の高度、耐摩耗性を向上させる。また添加量の増加
にともない熱膨張係数が小さくなる(図10)。
Si is added in an amount of 8 to 15%. By adding Si, hard primary crystal Si and eutectic Si particles are dispersed in the base material,
Improves base material altitude and wear resistance. In addition, the coefficient of thermal expansion decreases as the amount of addition increases (FIG. 10).

【0026】ただし、Si含有量が上記下限値以下であ
るとその効果は小さく、上限値以上であると粗大な初晶
Siが生じるため逆に機械的性質が劣化したり、押出加
工性が悪くなったり、切削において工具寿命が短くなる
等の問題が起こる。従って上記組成範囲が望ましく、特
に10.0〜12.0%が好ましい。
However, when the Si content is less than the lower limit, the effect is small, and when the Si content is more than the upper limit, coarse primary crystal Si is generated, so that the mechanical properties are deteriorated and the extrudability is poor. And problems such as shortening of the tool life in cutting occur. Therefore, the above composition range is desirable, and especially 10.0 to 12.0% is preferred.

【0027】また、Cuは8〜15%添加する。Cuは
アルミニウム母相への固溶硬化、あるいは熱処理時にA
l−Cu(−Mg)相を析出することによって母材の硬
度を向上させる。Cuには、熱膨張率を小さくする効果
がある(図10)。
Further, Cu is added in an amount of 8 to 15%. Cu is solid solution hardened in the aluminum matrix, or A
The hardness of the base material is improved by precipitating the l-Cu (-Mg) phase. Cu has the effect of reducing the coefficient of thermal expansion (FIG. 10).

【0028】状態図からCuのAlへの最大固溶量は5
%程度であるが、鋳造時に晶出物として生じることを考
慮すると、固溶・析出効果に有効に働くCu量を十分に
するには8.0%以上の添加が望ましく、また15.0
%を越えると上記の効果が飽和すると同時に粗大晶出物
の増加による機械的性質の劣化が危惧される。さらに好
ましい組成範囲は9.0〜12.0%である。
According to the phase diagram, the maximum solid solution amount of Cu in Al is 5
However, considering that it occurs as a crystallized substance during casting, it is desirable to add 8.0% or more in order to make the amount of Cu effective for the solid solution / precipitation effect sufficient, and 15.0%.
%, The above effect is saturated, and at the same time, mechanical properties are degraded due to an increase in coarse crystals. A more preferred composition range is 9.0 to 12.0%.

【0029】更に、Mgは0.1〜2.0%添加する。
Mgは、Si及びCuとの析出物を形成し母材硬度を向
上させる。添加量が0.1%未満ではその効果は小さ
く、2.0%を越えるとその効果が飽和する。従って組
成範囲を上記のように決定した。
Further, Mg is added in an amount of 0.1 to 2.0%.
Mg forms precipitates with Si and Cu and improves the hardness of the base material. If the addition amount is less than 0.1%, the effect is small, and if it exceeds 2.0%, the effect is saturated. Therefore, the composition range was determined as described above.

【0030】耐摩耗性アルミニウム合金押出材は、溶解
鋳造後、押出加工によって成形する。押出した製品を溶
体化処理、時効処理することにより所定の機械的性質を
得る。
The extruded wear-resistant aluminum alloy is formed by extrusion after melt casting. A predetermined mechanical property is obtained by subjecting the extruded product to a solution treatment and an aging treatment.

【0031】480〜500℃で2〜4時間溶体化処理
した後、焼入れする。溶体化処理は、後の時効処理での
析出物形成のため、Cu、Mg、Siの溶質元素を母相
中に十分に固溶させることを目的として行う。その温度
が480℃未満である場合、溶質元素の固溶量が十分で
はなく、時効後の硬度不足の原因となる。
After a solution treatment at 480 to 500 ° C. for 2 to 4 hours, quenching is performed. The solution treatment is performed for the purpose of sufficiently dissolving the solute elements of Cu, Mg, and Si in the parent phase to form precipitates in the subsequent aging treatment. If the temperature is lower than 480 ° C., the solid solution amount of the solute element is not sufficient, which causes insufficient hardness after aging.

【0032】また、500℃を越えると共晶融解を起こ
し、材料中にふくれなどの欠陥が生じる恐れがある。従
って溶体化処理温度は上記の範囲で行うべきであり、特
に495〜500℃程度が望ましい。また、溶体化時間
は2時間未満だと溶質元素の固溶が十分になされず、一
方4時間以上行ってもその効果は向上しない。
If the temperature exceeds 500 ° C., eutectic melting occurs, and there is a possibility that defects such as blisters may occur in the material. Therefore, the solution treatment temperature should be within the above range, and particularly preferably about 495 to 500 ° C. On the other hand, if the solution time is less than 2 hours, the solid solution of the solute element will not be sufficiently dissolved.

【0033】次に、190〜210℃で過時効処理を行
う。時効温度は200℃付近が望ましい。理由は、本組
成合金において210℃より高温で時効した場合、時効
曲線における最高硬度が低下し、所定の硬度を得ること
ができなくなるためである。また、本合金は高い寸法安
定性を得るために過時効で使用することが好ましいが、
低温で時効すると過時効に達するまでに長時間を要す
る。従って上記の時効温度が望ましい。
Next, an overaging treatment is performed at 190 to 210 ° C. The aging temperature is preferably around 200 ° C. The reason is that, when the present alloy is aged at a temperature higher than 210 ° C., the maximum hardness in the aging curve decreases, and it becomes impossible to obtain a predetermined hardness. Also, it is preferable to use this alloy by overaging to obtain high dimensional stability,
When aging at low temperatures, it takes a long time to reach overaging. Therefore, the above aging temperature is desirable.

【0034】なお、時効時間は、十分な硬度と良好な寸
法安定性を両立できる時間を用途に応じて2〜10時間
の範囲で決定すべきである。以上により、耐摩耗性アル
ミニウム合金押出材は、硬度が高く、永久伸びが小さ
く、かつ安価とすることが出来る。
The aging time should be determined within the range of 2 to 10 hours, depending on the application, in which sufficient hardness and good dimensional stability can be achieved at the same time. As described above, the wear-resistant aluminum alloy extruded material has high hardness, small permanent elongation, and can be made inexpensive.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図16において、ベーン13の母材31は、
耐摩耗性アルミニウム合金押出材で作製されている。こ
の耐摩耗性アルミニウム合金押出材は、8〜15%のS
iと、8〜15%のCuと、0.1〜2.0%のMgと
を含み、残部はアルミニウム及び不可避不純物からなっ
ている。そして、この表面に膜厚10〜30μm程度の
Niベースのメッキ33が施されている。
Embodiments of the present invention will be described below. In FIG. 16, the base material 31 of the vane 13 is
Made of extruded wear-resistant aluminum alloy. This extruded wear-resistant aluminum alloy has an S content of 8 to 15%.
i, 8 to 15% of Cu, and 0.1 to 2.0% of Mg, with the balance being aluminum and unavoidable impurities. Then, a Ni-based plating 33 having a film thickness of about 10 to 30 μm is applied to this surface.

【0036】[0036]

【実施例】図1に、耐摩耗性アルミニウム合金押出材の
試作合金の化学組成を示す。Cu量が8.0%以上の合
金No.10(実施例1)及び合金No.5(実施例
2)、合金No.6(実施例3)、合金No.7(実施
例4)を今回の発明の実施例とし、Cu量がそれより少
ない合金No.0(比較例1)及び合金No.1(比較
例2)を従来品の例として比較を行った。製造条件は、
次の通りである。
FIG. 1 shows the chemical composition of a trial alloy of a wear-resistant aluminum alloy extruded material. Alloy No. whose Cu content is 8.0% or more. 10 (Example 1) and alloy no. 5 (Example 2), alloy no. 6 (Example 3), alloy no. No. 7 (Example 4) is an example of the present invention. 0 (Comparative Example 1) and Alloy No. 1 (Comparative Example 2) was compared as an example of a conventional product. The manufacturing conditions are
It is as follows.

【0037】上記組成の合金を3インチ(試作合金N
o.1,No.5〜No.7)及び8インチ(合金N
o.0,No.10)ビレットに鋳造した後、これを4
90〜500℃×10時間で均質化処理し、押出製品速
度2〜2.5m/min.で厚さ3.5mmの平板形状
に押出した。こうして作製した製品を30mm程度に切
断し、495±2℃×2.5時間の溶体化処理を行った
後、水焼き入れし、直ちに200℃×2〜8時間の時効
処理を行った。
An alloy having the above composition was added to 3 inches (prototype alloy N
o. 1, No. 5-No. 7) and 8 inches (Alloy N)
o. 0, No. 10) After casting into a billet,
The homogenization treatment is performed at 90 to 500 ° C for 10 hours, and the extruded product speed is 2 to 2.5 m / min. And extruded into a 3.5 mm thick flat plate. The product thus produced was cut into about 30 mm, subjected to a solution treatment at 495 ± 2 ° C. × 2.5 hours, quenched with water, and immediately subjected to an aging treatment at 200 ° C. × 2 to 8 hours.

【0038】以下に、ミクロ組織観察、熱膨張率、硬度
(HRB)、200℃熱処理での寸法変化量測定を行っ
た結果を示す。熱膨張率は室温〜300℃、寸法変化は
200℃×2、6、8時間時効品について200℃熱処
理した際の寸法変化量の最大値を示した。
The results of microstructure observation, thermal expansion coefficient, hardness (HRB), and dimensional change measurement at 200 ° C. heat treatment are shown below. The coefficient of thermal expansion was from room temperature to 300 ° C., and the dimensional change was the maximum value of the dimensional change when the heat-treated product was aged at 200 ° C. for 2, 6, and 8 hours.

【0039】まず、ミクロ組織について説明する。本発
明品のミクロ組織を図2〜図5に、また従来品のミクロ
組織を図6〜図7に示す。いずれの合金においても、濃
灰色に見える共晶Siと淡灰色に見えるCu系の晶出物
が存在し、稀に粗大な初晶Siが見られた。
First, the microstructure will be described. 2 to 5 show the microstructure of the product of the present invention, and FIGS. 6 and 7 show the microstructure of the conventional product. In all the alloys, there were eutectic Si that appeared dark gray and Cu-based crystals that appeared pale gray, and rarely coarse primary crystal Si was observed.

【0040】共晶Siの分布は、本発明中の合金No.
10が他に比べて均一で微細に見える。また、合金N
O.10においては初晶Siが極めて少なかった。これ
は凝固時の冷却速度が速いためであると思われる。他の
合金については共晶Siサイズは不均一であり、初晶S
iも90μm以下のものが存在した。
The distribution of eutectic Si is determined by the alloy No. in the present invention.
10 looks uniform and finer than others. Alloy N
O. In No. 10, the primary crystal Si was extremely small. This is probably because the cooling rate during solidification is high. For other alloys, the eutectic Si size is not uniform,
i also had a thickness of 90 μm or less.

【0041】ただし、共晶Siの平均サイズは合金N
O.10を含めた全合金で3.1〜3.5μmであり大
きな差はなかった。また、共晶Siの面積率は合金N
O.10が大きかったが、これによる特性の違いについ
ては不明である。
However, the average size of eutectic Si is alloy N
O. All alloys including No. 10 were 3.1 to 3.5 μm, and there was no significant difference. The area ratio of eutectic Si is determined by alloy N
O. 10 was large, but the difference in characteristics due to this is unknown.

【0042】Cu系の晶出物に関しては、Cu添加量の
多い本発明品においては20%以上となり、従来品の1
6%と比べ多くなっている。ただし、凝固時の冷却速度
が速いと思われる合金NO.10においては、Cu添加
量を増加しているにもかかわらず16.3%と従来品並
であった。なお、晶出物サイズ、面積率の測定は、0.
1mm程度の視野を2〜3視野観察することによっ
て行った。
Regarding the Cu-based crystallized product, the product of the present invention having a large amount of added Cu accounts for 20% or more, which is 1% of the conventional product.
It is more than 6%. However, the alloy NO. In No. 10, although the amount of Cu added was increased, it was 16.3%, which was comparable to that of the conventional product. The crystal size and area ratio were measured at 0.1
The observation was performed by observing a visual field of about 1 mm 2 in two or three visual fields.

【0043】以上の結果から本発明品の組織の特徴は初
晶Siサイズ:90μm以下、共晶Siサイズ:4μm
以下、共晶Si面積率:14〜18%、Cu系晶出物面
積率:16〜21%であった。
From the above results, the characteristics of the structure of the product of the present invention are as follows: primary crystal Si size: 90 μm or less, eutectic Si size: 4 μm
Hereinafter, the eutectic Si area ratio: 14 to 18%, and the Cu-based crystal area ratio: 16 to 21%.

【0044】次に、図8に発明品と従来品の諸性質の比
較を示す。本発明品は従来品に比べ特にCu量を増加し
ている。また、Cu量、Mg量を変化させその影響を調
べた。
Next, FIG. 8 shows a comparison of various properties of the invention product and the conventional product. The product of the present invention has a particularly increased Cu content as compared with the conventional product. In addition, the amount of Cu and the amount of Mg were changed and the influence was examined.

【0045】まず、熱膨張率について説明する。図9に
合金組成と線膨張係数の関係を示す。図9によれば、実
施した組成範囲において、熱膨張係数に対するMg量の
影響は小さく、Cu量の増加にともない小さくなってい
る。
First, the coefficient of thermal expansion will be described. FIG. 9 shows the relationship between the alloy composition and the coefficient of linear expansion. According to FIG. 9, the effect of the amount of Mg on the coefficient of thermal expansion is small in the composition range in which it is performed, and the effect becomes smaller as the amount of Cu increases.

【0046】図10に、Al合金の熱膨張率に及ぼす添
加元素の影響について示したが、これによるとCu添加
は熱膨張率を小さくし、Mg添加は熱膨張率を大きくす
る。これは母相のAlに対してCuの熱膨張率が小さ
く、Mgの熱膨張率が大きいためであり、これらの複合
効果によって製品の熱膨張率が決まるものと思われる。
FIG. 10 shows the effect of the added elements on the coefficient of thermal expansion of the Al alloy. According to this, the addition of Cu decreases the coefficient of thermal expansion and the addition of Mg increases the coefficient of thermal expansion. This is because the coefficient of thermal expansion of Cu is smaller than the coefficient of thermal expansion of Al and the coefficient of thermal expansion of Mg is larger. It is considered that the combined effect of these effects determines the coefficient of thermal expansion of the product.

【0047】ただし、本実施例において、Cuに対して
Mgの添加量が少ないため、熱膨張率がCu量のみに影
響されるように見えると考えられる。従って、Cuを増
加した本発明品は、従来品と比較して熱膨張率を最大で
1.2×10−6小さくすることができた。
However, in this embodiment, since the amount of Mg added to Cu is small, it seems that the coefficient of thermal expansion seems to be influenced only by the amount of Cu. Therefore, the product of the present invention in which Cu was increased was able to reduce the coefficient of thermal expansion by at most 1.2 × 10 −6 as compared with the conventional product.

【0048】次に、硬さ(HRB)について説明する。
硬さについては、Cu、Mg量双方の増加にともない向
上しており、Al−Cu−MgあるいはMgSi析
出物の増加が硬さに寄与しているものと思われる。
Next, the hardness (HRB) will be described.
The hardness is improved with an increase in both the amounts of Cu and Mg, and it is considered that the increase in Al—Cu—Mg or Mg 2 Si precipitates contributes to the hardness.

【0049】図11に、Cu量及びMg量とHRBとの
関係を示したが、Cu添加量が最大12%までの範囲で
Cuによる硬度上昇の効果を確認した。特に、Cu添加
量が7.5%から9.5%で硬さの増加が著しい。ま
た、Mg量の増加によっても硬度が上昇したがその影響
は小さい。
FIG. 11 shows the relationship between the amount of Cu and the amount of Mg and HRB. The effect of increasing the hardness by Cu was confirmed when the amount of Cu added was up to 12%. In particular, the hardness is remarkably increased when the added amount of Cu is 7.5% to 9.5%. The hardness also increased with an increase in the amount of Mg, but the effect was small.

【0050】ミクロ組織観察結果から、Cu晶出物量が
同等である発明品合金NO.10と従来品合金NO.0
及び合金1とを比較すると、同一時効条件では合金N
O.10の硬度がもっとも高かった。これは、従来品に
対するCuの増分が母相中に固溶し、時効硬化に有効に
効いているものと思われる。
According to the microstructure observation results, the invention alloy No. having the same Cu crystallized amount was obtained. 10 and the conventional alloy No. 0
And alloy 1 when compared with alloy N under the same aging condition
O. 10 had the highest hardness. This seems to be due to the fact that the increment of Cu with respect to the conventional product forms a solid solution in the mother phase, and is effective for age hardening.

【0051】これらに比べて、Cu添加の多い合金5、
6、7においては、Cu晶出物量が増加しているため、
Cu添加は9.5%付近で実質的に飽和状態に近づいて
いるものと思われ、Cu添加が9.5%から12%迄の
硬度上昇は小さい。ただし、Cu添加が9.4%から
9.6%で晶出物が増えた後、9.6%から12%で晶
出量が変化しない理由についてはわからない。
In comparison with these, the alloy 5 with a large addition of Cu,
In Nos. 6 and 7, since the amount of Cu crystallized substances increased,
It seems that the Cu addition substantially approaches the saturated state at around 9.5%, and the hardness increase from 9.5% to 12% with Cu addition is small. However, it is not clear why the amount of crystallization does not change from 9.6% to 12% after the amount of crystallization increases from 9.4% to 9.6% of Cu addition.

【0052】また、Mg量が多い合金は、若干硬度の増
加が見られたがその影響ははっきりしない。例えば、合
金NO.10と合金7を比較した場合、合金7は合金N
O.10に対してCu量はやや多いが晶出物量も多く、
Cuが十分に析出硬化に寄与しているとは思えない。こ
れを考慮すると合金7の合金NO.10に対する硬度増
加は大きいといえる。
In the case of the alloy containing a large amount of Mg, the hardness was slightly increased, but the effect is not clear. For example, alloy NO. When alloy 7 is compared with alloy 7, alloy 7 is alloy N
O. The amount of Cu is slightly higher than that of 10, but the amount of crystallized matter is also large,
It does not seem that Cu sufficiently contributes to precipitation hardening. In consideration of this, the alloy No. 7 of the alloy 7 was not used. It can be said that the hardness increase with respect to 10 is large.

【0053】この理由として、Mgの0.65から0.
79パーセントの増分が硬度上昇に影響しているものと
考えられるが、一方、Mgを0.65から1.00%と
した合金NO.0と合金1では合金1の硬度増加は少な
かった。以上により、本実験においては特にCu量を
9.4〜12%とすることにより、従来品よりも約1.
5〜4のHRBの向上を実現できた。
The reason is as follows.
It is considered that the 79% increment influences the increase in hardness, while alloy NO. In alloy No. 0 and alloy 1, the increase in hardness of alloy 1 was small. As described above, in this experiment, in particular, by setting the Cu content to 9.4 to 12%, the Cu content was about 1.
The improvement of HRB of 5 to 4 was realized.

【0054】次に、析出に伴う寸法変化(水久成長)に
ついて説明する。寸法変化量の測定は、時効処理した押
出剤から3mm×5mm×長さ29mmの試験片を作成
し、200℃の熱処理前後にその長さをマイクロメータ
で実測することによって行った。
Next, a description will be given of a dimensional change (Mizuki growth) due to precipitation. The amount of dimensional change was measured by preparing a test piece having a size of 3 mm × 5 mm × 29 mm in length from the aged extrudate and measuring the length with a micrometer before and after heat treatment at 200 ° C.

【0055】図12に、Cu及びMg量と200℃×8
時間時効品の寸法変化の最大値の関係を示した。これに
よると、Mgの添加量の多い組成で寸法変化が小さくな
ることがわかる。この寸法変化は、溶質元素の析出にと
もない起こるものであり、初期の母相の過飽和度が大き
いほど、寸法変化の値は大きくなるものと思われる。
FIG. 12 shows the amounts of Cu and Mg and 200 ° C. × 8.
The relationship of the maximum value of the dimensional change of the time-aged product was shown. According to this, it is understood that the dimensional change is reduced by the composition in which the added amount of Mg is large. This dimensional change is caused by the precipitation of the solute element, and it is considered that the value of the dimensional change increases as the degree of supersaturation of the initial parent phase increases.

【0056】従って、添加元素量が多く、硬度が高い本
発明品は、同一時効条件では従来品と比べ過飽和度が同
等以上であると思われることから、従来品と比べ寸法変
化が大きくなることが予想される。
Therefore, the product of the present invention, which has a large amount of added elements and high hardness, is considered to have a supersaturation degree equal to or higher than that of the conventional product under the same aging conditions, and therefore the dimensional change is larger than that of the conventional product. Is expected.

【0057】ところが、図8に示すとおり、本発明品よ
りも従来品の方が寸法変化が大きい場合があった。この
点に関しては、図13に示すように、Mgの添加がAl
−Cu合金の寸法変化を抑制する効果があるとの報告が
あり、本実験においてもMg添加量の多い合金の寸法変
化が小さかった。
However, as shown in FIG. 8, there was a case where the dimensional change of the conventional product was larger than that of the product of the present invention. In this regard, as shown in FIG.
It has been reported that there is an effect of suppressing the dimensional change of the -Cu alloy, and in this experiment, too, the dimensional change of the alloy containing a large amount of Mg was small.

【0058】この理由についてははっきりとはわからな
いが、寸法変化の値は析出相の種類によって異なること
がわかっている。今回の実験例においてはCu及びMg
量を変えた合金を作製しているため、合金中にAl−C
u−Mg析出物とAlーCu析出物の2種類が存在し、
その比率が各合金で異なっていると考えられる。これら
2種類の析出物のうち、Al−Cu−Mgの析出の方が
母相に与える影響が小さいため、Mgを多くした方が寸
法変化が小さくなることが推定される。
Although the reason for this is not clearly understood, it has been found that the value of the dimensional change differs depending on the type of the precipitated phase. In this experiment, Cu and Mg
Since an alloy with a different amount is made, Al-C
There are two types of u-Mg precipitates and Al-Cu precipitates,
It is believed that the ratio is different for each alloy. Of these two types of precipitates, the precipitation of Al-Cu-Mg has a smaller effect on the parent phase, so it is presumed that the dimensional change becomes smaller with more Mg.

【0059】また、図8によると、前述のように同一時
効条件では、本発明品が従来品に比べ硬度が高かった。
一方、寸法変化はサンプル間でバラツキがあり、発明品
が特に優れているとは言えない。しかし、本発明品が従
来品に比べ硬度が高いことを考慮すると、より過時効に
して寸法変化を小さくしても従来品と同等の硬度を得ら
れたり、あるいは寸法変化の増加を抑制しつつ高い硬度
を得ることができる。
According to FIG. 8, the hardness of the product of the present invention was higher than that of the conventional product under the same aging condition as described above.
On the other hand, the dimensional change varies between samples, and the invention is not particularly superior. However, considering that the product of the present invention has a higher hardness than the conventional product, it is possible to obtain the same hardness as the conventional product even if the dimensional change is made smaller by overaging, or while suppressing the increase in the dimensional change. High hardness can be obtained.

【0060】例えば、合金NO.10と合金1を比較す
ると、同一時効条件では合金1の方が寸法変化が小さい
が、硬度は合金NO.10の方が高い。ただし、合金1
の200℃×6時間と合金NO.10でより過時効の2
00℃×8時間を比較すると、合金NO.10の方が硬
度が高く寸法変化は同等である。このように、本発明に
おいては、時効条件を調整することにより、硬度の維持
と寸法変化の抑制が両立出来る。
For example, alloy NO. Comparing Alloy No. 10 with Alloy 1, under the same aging conditions, Alloy 1 has smaller dimensional change, but the hardness is lower than that of Alloy No. 1. 10 is higher. However, alloy 1
200 ° C. × 6 hours and alloy NO. 10 is more overaged 2
When the temperature of the alloy NO. 10 has higher hardness and the same dimensional change. As described above, in the present invention, by adjusting the aging conditions, both the maintenance of the hardness and the suppression of the dimensional change can be achieved.

【0061】次に、このように作製された耐摩耗性アル
ミニウム合金押出材を、ベーン13の母材31の形にす
るため切削や研磨を施す。また、加工の完了した母材3
1の表面には、膜厚20μm程度のニッケルとリンの化
合物からなるメッキ33を施す。メッキは電解メッキで
も無電解メッキでもよい。シリコン粒子は、共晶化され
ているため、母材31の表面に均一にメッキを塗布する
ことができる。このときの母材31の硬度は、例えばH
RB80である。
Next, the extruded wear-resistant aluminum alloy produced as described above is cut or polished to form the base material 31 of the vane 13. In addition, the base material 3 which has been processed
A plating 33 made of a compound of nickel and phosphorus having a film thickness of about 20 μm is applied to the surface of 1. The plating may be electrolytic plating or electroless plating. Since the silicon particles are eutectic, plating can be uniformly applied to the surface of the base material 31. The hardness of the base material 31 at this time is, for example, H
RB80.

【0062】以上により、気体圧縮機50のベーン13
に安価な耐摩耗性アルミニウム合金押出材を使用できる
ため、大幅なコストダウンを実現できる。
As described above, the vane 13 of the gas compressor 50
Inexpensive abrasion-resistant aluminum alloy extruded material can be used, so that significant cost reduction can be realized.

【0063】[0063]

【発明の効果】以上説明したように本発明によれば、耐
摩耗性アルミニウム合金押出材に所定量のSi、Cu、
Mgを含ませたことで、硬度が高く、永久伸びが小さ
く、かつ安価とすることが出来る。そして、量産時の最
低硬度でHRB78を保証することが可能となる。
As described above, according to the present invention, a predetermined amount of Si, Cu,
By including Mg, the hardness can be increased, the permanent elongation can be reduced, and the cost can be reduced. Then, it is possible to guarantee the HRB 78 with the minimum hardness at the time of mass production.

【0064】また、この耐摩耗性アルミニウム合金押出
材を気体圧縮機の圧縮室を形成する摺動用部材等に用い
たことで、摺動用部材を安価に作成出来る。
Further, by using the wear-resistant aluminum alloy extruded material for a sliding member or the like forming a compression chamber of a gas compressor, the sliding member can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 耐摩耗性アルミニウム合金押出材の試作合金
の化学組成
Fig. 1 Chemical composition of a trial alloy of wear-resistant aluminum alloy extruded material

【図2】 実施例1のミクロ組織(顕微鏡写真)FIG. 2 is a microstructure (micrograph) of Example 1.

【図3】 実施例2のミクロ組織(顕微鏡写真)FIG. 3 is a microstructure (micrograph) of Example 2.

【図4】 実施例3のミクロ組織(顕微鏡写真)FIG. 4 is a microstructure (micrograph) of Example 3.

【図5】 実施例4のミクロ組織(顕微鏡写真)FIG. 5 is a microstructure (micrograph) of Example 4.

【図6】 比較例1のミクロ組織(顕微鏡写真)FIG. 6 is a microstructure (micrograph) of Comparative Example 1.

【図7】 比較例2のミクロ組織(顕微鏡写真)FIG. 7 is a microstructure (micrograph) of Comparative Example 2.

【図8】 発明品と従来品の諸性質の比較を示す図FIG. 8 is a diagram showing a comparison of various properties of the invention product and the conventional product.

【図9】 合金組成と線膨張係数の関係を示す図FIG. 9 is a diagram showing a relationship between an alloy composition and a linear expansion coefficient.

【図10】 Al合金の熱膨張率に及ぼす添加元素の影
FIG. 10: Effect of added elements on thermal expansion coefficient of Al alloy

【図11】 Cu量及びMg量とHRBとの関係FIG. 11 shows a relationship between Cu amount and Mg amount and HRB.

【図12】 Cu及びMg量と200℃×8時間時効品
の寸法変化の最大値の関係
FIG. 12 Relationship between Cu and Mg contents and maximum value of dimensional change of aged product at 200 ° C. for 8 hours.

【図13】 Al−Cu合金の最大寸法変化に及ぼすM
gの影響
FIG. 13 shows the effect of M on the maximum dimensional change of an Al—Cu alloy.
Effect of g

【図14】 気体圧縮機の構成図FIG. 14 is a configuration diagram of a gas compressor.

【図15】 図14中のA−A矢視線断面図FIG. 15 is a sectional view taken along the line AA in FIG. 14;

【図16】 ベーンの断面図FIG. 16 is a sectional view of a vane.

【符号の説明】[Explanation of symbols]

13 ベーン 31 母材 33 メッキ 50 気体圧縮機 13 Vane 31 Base material 33 Plating 50 Gas compressor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630D 651 651Z 691 691B 691C (72)発明者 筒井 俊光 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 (72)発明者 村田 等 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 (72)発明者 村瀬 功 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 Fターム(参考) 4E029 AA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630D 651 651Z 691 691B 691C (72) Inventor Toshimitsu Tsutsui 6 Kaiyamacho, Sakai City 224, Showa Aluminum Co., Ltd. (72) Inventor Murata, etc. 6,224, Kaiyamacho, Sakai City Inside, Showa Aluminum Co., Ltd. (72) Isao Murase 6,224, Kaiyamacho, Sakai City Showa Aluminum Co., Ltd. F-term (reference) 4E029 AA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスの吸入、圧縮及び吐出が行われ
る圧縮室を備える気体圧縮機において、該圧縮室を形成
する摺動用部材又は該摺動用部材の母材に、8〜15%
のSiと、8〜15%のCuと、0.1〜2.0%のM
gとを含み、残部はアルミニウム及び不可避不純物から
なり、合金組織中に10μm以上100μm以下のSi
粒子を60個/mm以下含み、かつ10μm以下の
Si粒子及びその他の晶出物を合計40%以下の面積率
で均一に分布させた耐摩耗性アルミニウム合金押出材を
用いたことを特徴とする気体圧縮機。
1. A gas compressor having a compression chamber in which a refrigerant gas is sucked, compressed and discharged, wherein a sliding member forming the compression chamber or a base material of the sliding member has 8 to 15%
Of Si, 8 to 15% of Cu, and 0.1 to 2.0% of M
g, and the balance consists of aluminum and unavoidable impurities. The alloy structure has a Si content of 10 μm or more and 100 μm or less.
It is characterized by using a wear-resistant aluminum alloy extruded material containing 60 particles / mm 2 or less, and uniformly distributing Si particles and other crystallized substances of 10 μm or less at an area ratio of 40% or less in total. Gas compressor.
【請求項2】 前記摺動用部材又は該摺動用部材の母材
は、硬度がHRB78以上であることを特徴とする請求
項1記載の気体圧縮機。
2. The gas compressor according to claim 1, wherein said sliding member or a base material of said sliding member has a hardness of HRB78 or more.
【請求項3】 前記摺動用部材又は該摺動用部材の母材
は、熱膨張係数が21.5×10−6以下であることを
特徴とする請求項1又は請求項2記載の気体圧縮機。
3. The gas compressor according to claim 1, wherein the sliding member or a base material of the sliding member has a thermal expansion coefficient of 21.5 × 10 −6 or less. .
【請求項4】 前記摺動用部材は前記圧縮室の外壁を形
成する円筒状のシリンダに対し、該外壁の内周面に沿っ
て摺動するベーンであり、該ベーンは、前記耐摩耗性ア
ルミニウム合金押出材を用いた母材と、該母材の周囲に
膜状に付着されたNiを含むメッキとを備えたことを特
徴とする請求項1、2又は3記載の気体圧縮機。
4. The sliding member is a vane that slides along an inner peripheral surface of a cylindrical cylinder forming an outer wall of the compression chamber, and the vane is made of the wear-resistant aluminum. 4. The gas compressor according to claim 1, further comprising: a base material using an alloy extruded material; and a plating containing Ni adhered in a film shape around the base material.
【請求項5】 8〜15%のSiと、8〜15%のCu
と、0.1〜2.0%のMgとを含み、残部はアルミニ
ウム及び不可避不純物からなる合金を、480〜500
℃で2〜4時間溶体化処理した後、焼入れし、190〜
210℃で過時効処理することにより、該合金組織中に
10μm以上100μm以下のSi粒子を60個/mm
以下含み、かつ10μm以下のSi粒子及びその他
の晶出物を合計40%以下の面積率で均一に分布させた
耐摩耗性アルミニウム合金押出材を製造することを特徴
とする圧縮機用耐磨耗性アルミニウム合金押出材の製造
方法。
5. 8-15% Si and 8-15% Cu
And 0.1 to 2.0% of Mg, and the balance being an alloy of aluminum and unavoidable impurities of 480 to 500%.
C. for 2-4 hours, then quenched,
By overaging at 210 ° C., Si particles of 10 μm or more and 100 μm or less in the alloy structure are 60 particles / mm.
Abrasion resistant aluminum alloy extruded material containing at least 2 and containing Si particles and other crystallized substances of 10 μm or less uniformly distributed at a total area ratio of 40% or less. Manufacturing method of extrudable aluminum alloy.
JP2000012512A 2000-01-21 2000-01-21 Gas compressor Expired - Fee Related JP4332632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012512A JP4332632B2 (en) 2000-01-21 2000-01-21 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012512A JP4332632B2 (en) 2000-01-21 2000-01-21 Gas compressor

Publications (2)

Publication Number Publication Date
JP2001200328A true JP2001200328A (en) 2001-07-24
JP4332632B2 JP4332632B2 (en) 2009-09-16

Family

ID=18540219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012512A Expired - Fee Related JP4332632B2 (en) 2000-01-21 2000-01-21 Gas compressor

Country Status (1)

Country Link
JP (1) JP4332632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144184A (en) * 2007-12-12 2009-07-02 Showa Denko Kk Aluminum alloy for continuous casting, and forged article composed of the alloy
US9885347B2 (en) 2013-10-30 2018-02-06 Emerson Climate Technologies, Inc. Components for compressors having electroless coatings on wear surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144184A (en) * 2007-12-12 2009-07-02 Showa Denko Kk Aluminum alloy for continuous casting, and forged article composed of the alloy
US9885347B2 (en) 2013-10-30 2018-02-06 Emerson Climate Technologies, Inc. Components for compressors having electroless coatings on wear surfaces

Also Published As

Publication number Publication date
JP4332632B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2275584B1 (en) Manufacturing method for cast aluminium heat sinks
KR100218984B1 (en) Highly ductile sintered aluminum alloy method for production thereof
EP1778887B1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US6511555B2 (en) Cylinder head and motor block castings
JP4800864B2 (en) compressor
JP6998711B2 (en) Hypereutectic aluminum-silicon casting alloy with unique microstructure
JP2003027171A (en) Wear resistant aluminum alloy long-length body, production method therefor and piston for car air conditioner
JPH06293933A (en) Wear resistant aluminum alloy and its production
CN109022945B (en) Special rare earth aluminum alloy material for upper and lower bearing flanges, partition plate and cylinder body of refrigeration compressor and preparation method thereof
JPS5846539B2 (en) Aluminum alloy for bearings and its manufacturing method
KR20120102865A (en) Swash plate and method for manufacturing thereof
JP2001200328A (en) Gas compressor and method for producing wear resistant aluminum alloy extruded material for gas compressor
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
KR100291560B1 (en) Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
KR100448536B1 (en) free machinability Hyper-eutectic Al-Si alloy
US5630355A (en) Reciprocating type compressor with improved cylinder block
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JP2004277762A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP4253414B2 (en) Aluminum alloy material for engine piston and method of manufacturing aluminum alloy automobile engine piston
WO2022091936A1 (en) Aluminum alloy for sliding components, and sliding component
JP6787752B2 (en) Aluminum alloy member
WO2022091948A1 (en) Aluminum alloy for sliding component, and sliding component
JP7318283B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JPS60211038A (en) Aluminum alloy rotor for rotary compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees