JP2001198655A - Immersed nozzle for continuous casting, and continuous casting method - Google Patents

Immersed nozzle for continuous casting, and continuous casting method

Info

Publication number
JP2001198655A
JP2001198655A JP2000009968A JP2000009968A JP2001198655A JP 2001198655 A JP2001198655 A JP 2001198655A JP 2000009968 A JP2000009968 A JP 2000009968A JP 2000009968 A JP2000009968 A JP 2000009968A JP 2001198655 A JP2001198655 A JP 2001198655A
Authority
JP
Japan
Prior art keywords
nozzle
steel
continuous casting
casting
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000009968A
Other languages
Japanese (ja)
Inventor
Takayuki Kunishima
孝之 国島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2000009968A priority Critical patent/JP2001198655A/en
Publication of JP2001198655A publication Critical patent/JP2001198655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersed nozzle for continuous casting having the minimum inside radius which does not causes clogging of the nozzle. SOLUTION: The inside radius r of the nozzle satisfies the inequality 1: r>Ca×Q1/3×t1/3, where Ca is a constant, and calculated from the inequality 1 by measuring Q and t using another nozzle of different inside radius, and different according to the kind of steel, for example, 29.2 for low-carbon steel, medium-carbon steel and high-carbon steel, and 34.7 for super-low carbon steel, stainless steel and alloy steel, Q is the flow rate t/m of the molten steel passing through the nozzle, and t is the time of use of the nozzle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、連続鋳造用浸漬ノ
ズル及び該ノズルを使用した連続鋳造操業方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting immersion nozzle and a continuous casting operation method using the nozzle.

【0002】[0002]

【従来技術】この種の連続鋳造用浸漬ノズルには、溶鋼
中の酸化物系介在物が浸漬ノズル内面に付着、堆積する
ことにより注入量の変動を来たし、このために鋳片の品
質に大きな影響を与えていた。注入量の変動を防止する
試みも種々なされている。このうち、ノズルの内径を大
きくすると、ノズル閉塞に伴う注入量の変動が小さくな
ることが知られているが、ノズル内径を大きくすると、
外径も必然的に大きくなり、浸漬ノズルの場合、ノズル
と鋳型との間隙が小さくなる。そのためノズルと鋳型の
間の溶鋼が過冷却され、人工スラグの流れ込み不良を発
生させて鋳片の表面に疵が発生することがあった。この
ことから、ノズルの内径は閉塞による注入量変動が防止
できる範囲内で、できるだけ小さくすることが望まれる
が、注入量の変動を生じないノズル内径の最小値を求め
る方法が従来知られていなかったため、連続鋳造機を改
造若しくは新設する際には、或いはまた注入流速やノズ
ルの使用時間の拡大を図る場合には、注入量の変動を生
じないノズル内径の最小値を求めるため、その都度実験
を繰返し行っていた。
2. Description of the Related Art In this type of immersion nozzle for continuous casting, the amount of oxides included in molten steel adheres to and accumulates on the inner surface of the immersion nozzle, causing fluctuations in the injection amount. Had an effect. Various attempts have been made to prevent variations in the injection volume. Of these, it is known that the larger the inner diameter of the nozzle, the smaller the change in the injection amount due to nozzle blockage, but the larger the inner diameter of the nozzle,
The outer diameter is inevitably large, and in the case of the immersion nozzle, the gap between the nozzle and the mold is reduced. As a result, the molten steel between the nozzle and the mold was supercooled, and the inflow of the artificial slag was poor, and the surface of the slab was sometimes flawed. For this reason, it is desirable that the inside diameter of the nozzle be as small as possible within a range that can prevent the fluctuation of the injection amount due to the blockage. However, a method for obtaining the minimum value of the nozzle inner diameter that does not cause the fluctuation of the injection amount has been hitherto known. Therefore, when remodeling or installing a continuous casting machine, or when expanding the injection flow rate or the use time of the nozzle, in order to find the minimum value of the nozzle inner diameter that does not cause a change in the injection amount, an experiment was performed each time. Was repeatedly performed.

【0003】ノズル閉塞を防止する技術として、例えば
特開平9−241404号には、アルミナ付着によるノ
ズルの閉塞を防止するために、ノズル内孔部に一段或い
は複数の段差構造を有する連続鋳造用浸漬ノズルにおい
て、溶鋼と接する内孔部の少なくとも一部がカーボン含
有量5重量%以下の耐火材料で構成され、溶鋼通過量に
対する内孔部の段差構造のない部位の最小内径を規定し
た段差付き連続鋳造用浸漬ノズルが紹介されている。
As a technique for preventing nozzle blockage, for example, Japanese Unexamined Patent Publication No. 9-241404 discloses an immersion for continuous casting in which one or more steps are formed in a nozzle inner hole in order to prevent nozzle blockage due to alumina adhesion. In the nozzle, at least a part of the inner hole portion in contact with the molten steel is made of a refractory material having a carbon content of 5% by weight or less, and a stepped continuous hole defining a minimum inner diameter of a portion having no step structure of the inner hole portion with respect to the amount of molten steel passed. An immersion nozzle for casting is introduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の連
続鋳造用浸漬ノズルは、特開平9−241404号に示
されるように、最小内径は規定されているものゝ、その
内径は上述するように試行錯誤的に決められるものであ
って、鋼種や鋳造速度によって変化するノズル内径の付
着物成長を考慮したものではなかった。
However, the conventional continuous immersion nozzle for continuous casting has a minimum inner diameter specified as disclosed in Japanese Patent Application Laid-Open No. 9-241404. The inner diameter is determined by trial and error as described above. However, the method does not consider the growth of deposits on the inner diameter of the nozzle, which varies depending on the type of steel and the casting speed.

【0005】また、浸漬ノズルを使用する連続鋳造操業
にあっては、付着物によるノズル閉塞で異常を起こし
(操業中には異常は確認できないため、操業管理指標の
湯面レベル変動の管理値に対する異常で判断してい
る)、連々鋳を途中で中止せざるを得ないことが発生す
るが、異常の発生時期が掴めず、その場対応の操業とな
るため、経験則から計画連々鋳数を少なくし、生産効率
を低下させており、当該浸漬ノズルに対する可能連々鋳
数の倫理的決め方が待ち望まれていた。
In a continuous casting operation using an immersion nozzle, an abnormality occurs due to nozzle blockage due to deposits. (No abnormality can be confirmed during the operation. It is determined that there is an abnormality), but it is necessary to stop casting continuously. Therefore, the production efficiency has been reduced, and there has been a long-awaited need for an ethical determination of the number of possible castings for the immersion nozzle.

【0006】そこで本発明のうち、請求項1記載の発明
は、連続鋳造対象の異なる鋼種の鋳片に対して必要最小
限の浸漬ノズル内径を倫理的に決め、計画鋳造速度や連
々鋳数をノズル閉塞なしに最大限にすることができる連
続鋳造用浸漬ノズルを提供することを目的としている。
また、請求項2記載の発明は、当該浸漬ノズルを使用す
る連続鋳造操業において、浸漬ノズルが閉塞するまでの
鋳造可能な時間を倫理的に求めることにより、計画連々
鋳数の途中でノズル閉塞トラブルを防ぐことを可能とす
る連続鋳造操業方法を提供することを目的としている。
Therefore, the invention according to claim 1 of the present invention ethically determines the minimum required immersion nozzle inner diameter for slabs of different steel types to be continuously cast, and reduces the planned casting speed and the number of continuous castings. It is an object to provide a continuous casting immersion nozzle which can be maximized without nozzle blockage.
In the continuous casting operation using the immersion nozzle, the invention described in claim 2 ethically obtains the casting available time until the immersion nozzle is closed, so that the nozzle clogging trouble occurs during the planned number of continuous castings. It is an object of the present invention to provide a continuous casting operation method capable of preventing the above.

【0007】[0007]

【課題の解決手段】請求項1記載の発明は、第1の目的
を達成する連続鋳造用浸漬ノズルに関するもので、連続
鋳造機で鋳造対象とする鋳片の鋳造速度及び連々鋳時間
から求められるノズルを通過する溶鋼の流量と、ノズル
の使用時間が、次の数1式を満足するようにしたもので
ある。
The invention according to claim 1 relates to a continuous casting immersion nozzle which achieves the first object, and is obtained from a casting speed and a continuous casting time of a slab to be cast by a continuous casting machine. The flow rate of the molten steel passing through the nozzle and the usage time of the nozzle satisfy the following equation (1).

【0008】[0008]

【数1】Φ>Ca×Q1/3×t1/3 ここでCaは定数で、鋳造対象鋼種が低炭素鋼、中炭素
鋼、高炭素鋼では、29.2で、極低炭素鋼、ステンレ
ス鋼、合金鋼では、34.7である。 またΦ;ノズル内径(mm) Q;ノズルを通過する溶鋼の流量(t/min) t;ノズルの使用時間(hr) 本発明に従えば、鋼種の異なる連続鋳造のための溶鋼に
対して、計画連続鋳造速度と連々鋳数から必要最低限の
浸漬ノズル内径を設計計画することができるようにな
り、浸漬ノズル製造効率を上げると共に、該浸漬ノズル
に鋳造中トラブルを防止できる効果がある。
Φ> Ca × Q 1/3 × t 1/3 where Ca is a constant, and the casting target steel type is 29.2 for low carbon steel, medium carbon steel, and high carbon steel, and extremely low carbon steel. , 34.7 for stainless steel and alloy steel. In addition, Φ: nozzle inner diameter (mm) Q: flow rate of molten steel passing through the nozzle (t / min) t: service time of the nozzle (hr) According to the present invention, for molten steel for continuous casting of different steel types, The required minimum inner diameter of the immersion nozzle can be designed and planned from the planned continuous casting speed and the number of continuous castings, so that the immersion nozzle manufacturing efficiency can be increased and the immersion nozzle can be prevented from having trouble during casting.

【0009】また請求項2記載の発明は、第2の目的を
達成する連続鋳造操業方法に関するもので、所定ノズル
内径の連続鋳造用浸漬ノズルを用いて、連続鋳造を行う
に際し、次の数2式を満足するように浸漬ノズルを使用
又は交換して連々鋳数を決めて鋳造を行うものである。
Further, the invention according to claim 2 relates to a continuous casting operation method for achieving the second object, wherein the following formula 2 is used when performing continuous casting using a continuous casting immersion nozzle having a predetermined nozzle inner diameter. The casting is performed by continuously determining the number of castings by using or replacing the immersion nozzle so as to satisfy the formula.

【0010】[0010]

【数2】t<Φ3/(Ca3×Q) ここでCaは定数で、鋳造対象鋼種が低炭素鋼、中炭素
鋼、高炭素鋼では、29.2で、極低炭素鋼、ステンレ
ス鋼、合金鋼では、34.7である。 またΦ;ノズル内径(mm) Q;ノズルを通過する溶鋼の流量(t/min) t;連々中時間又はノズルの使用時間(hr) 本発明に従えば、該当ノズル内径に対してノズルの使用
時間、すなわち鋳造可能時間が求まり、該時間を平均鋳
造速度で割れば連々鋳数を求めることができるため、鋳
造途中でのトラブルの少ない操業ができると共に、計画
的な生産計画を立てることができるという効果がある。
T <Φ 3 / (Ca 3 × Q) Here, Ca is a constant, and the casting target steel type is 29.2 for low carbon steel, medium carbon steel, and high carbon steel, and extremely low carbon steel and stainless steel. For steel and alloy steel, it is 34.7. In addition, Φ: Nozzle inner diameter (mm) Q: Flow rate of molten steel passing through the nozzle (t / min) t: Continuously medium time or nozzle use time (hr) According to the present invention, use of the nozzle for the corresponding nozzle inner diameter The casting time can be obtained by dividing the casting time by the average casting speed, so that the number of castings can be obtained one after another. This has the effect.

【0011】[0011]

【発明の実施の形態】本発明は、連続鋳造操業における
ノズル閉塞、品質異常等のトラブルに鑑み、論理的なト
ラブル予測を行う過程で、本発明者が案出し、実操業に
充分適用できることを見出したもので、数1式は次の技
術思想からなる。ノズルの付着物による内径変化はノズ
ルを通過する溶鋼の流量と、溶鋼中の酸化物系介在物の
濃度に比例し、ノズル断面積に反比例するとの技術思想
のもとで、単位面積当たりのノズル内径変化率を整理す
ると、次の数3式となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been devised by the present inventors in the process of predicting a logical trouble in consideration of troubles such as nozzle clogging and abnormal quality in a continuous casting operation and can be sufficiently applied to an actual operation. Equation 1 is based on the following technical idea. The change in inner diameter due to deposits on the nozzle is proportional to the flow rate of molten steel passing through the nozzle, the concentration of oxide-based inclusions in the molten steel, and inversely proportional to the nozzle cross-sectional area. When the inner diameter change rate is arranged, the following equation 3 is obtained.

【0012】[0012]

【数3】dΦ/dt=−K×Q×C/(π×Φ2) ここで、Φ;ノズル内径 t;ノズルの使用時間 K;ノズル形状等その他要因を含む定数 Q;ノズルを通過する溶鋼の流量 C;溶鋼中の酸化物系介在物の濃度 である。DΦ / dt = −K × Q × C / (π × Φ 2 ) where Φ; nozzle inner diameter t; nozzle use time K; constant including nozzle shape and other factors Q; Flow rate of molten steel C: concentration of oxide-based inclusions in molten steel.

【0013】次に数3式をdtを左辺に整理し、内径の
変化に対する時間を求めるため、Φについて積分する
と、
## EQU3 ## Next, when dt is rearranged on the left side of Expression 3 and Φ is integrated in order to obtain a time for a change in inner diameter,

【0014】[0014]

【数4】t=−π/(3×K×Q×C)×Φ3 となり、数4式より内径Φは、## EQU4 ## t = -π / (3 × K × Q × C) × Φ 3 is obtained.

【0015】[0015]

【数5】 Φ=−[(3・K・C)/π]1/3×Q1/3×t1/3 となる。上記数5式は、鋳造対象鋼種の溶鋼中の酸化物
系介在物の濃度C、ノズルを通過する溶鋼の流量Q、ノ
ズルの使用時間tによるノズル内径の縮小を論理的に表
しており、連続鋳造用浸漬ノズルの初期ノズル内径及
び、ある内径の浸漬ノズルを用いた際の鋳造可能時間と
溶鋼流量の関係を求めることにより利用できる。
Φ = − [(3 · K · C) / π] 1/3 × Q 1/3 × t 1/3 The above equation (5) logically represents the reduction in the nozzle inner diameter due to the concentration C of the oxide-based inclusions in the molten steel of the steel type to be cast, the flow rate Q of the molten steel passing through the nozzle, and the usage time t of the nozzle. It can be used by obtaining the initial nozzle inner diameter of the immersion nozzle for casting, and the relationship between the casting available time and the flow rate of molten steel when using an immersion nozzle having a certain inner diameter.

【0016】本発明は、前記数5式の−[(3・K・
C)/π]1/3を定数Caに置き換えたもので、定数C
aは、鋼種を代えて、内径が異なるノズルを使用してQ
とtを測定することにより算出することができる。すな
わち、具体的には所定内径のノズルを使用し、所定の溶
鋼流量Qで実鋳造を行い、タンディッシュ湯面の変動が
発生する時期(品質異常発生時期)を測定することによ
り、時間tが決まるためCaを逆算決定できる。
According to the present invention,-[(3 · K ·
C) / π] 1/3 is replaced by a constant Ca.
a is Q using a nozzle with a different inside diameter,
And t can be calculated. That is, using a nozzle having a predetermined inner diameter, actual casting is performed at a predetermined molten steel flow rate Q, and the time when the tundish surface level changes (quality abnormality occurrence time) is measured. Therefore, Ca can be calculated backward.

【0017】従って、請求項1記載の発明の実施に当た
っては、鋳造対象鋼種に応じて、予め決められた最大鋳
造速度及び受注又は製造ロットサイズより、ノズルを通
過する溶鋼の流量Q=鋳型断面積×最大鋳造速度×溶鋼
比重、ノズルの使用時間t=製造ロットサイズ/(溶鋼
の流量×鋳型数)より、数1式右辺を計算し、本発明の
数1式を満足するノズル内径の連続鋳造用浸漬ノズルを
使用するものである。
Therefore, in carrying out the present invention, the flow rate Q of molten steel passing through the nozzle = the cross-sectional area of the mold from the predetermined maximum casting speed and order or production lot size according to the type of steel to be cast. × Maximum casting speed × Specific gravity of molten steel, nozzle use time t = Production lot size / (Molten steel flow rate × Number of molds) Calculate the right side of Equation 1 and continuously cast the nozzle inside diameter that satisfies Equation 1 of the present invention. The use of a immersion nozzle for use.

【0018】なお、ノズル内径は当然のことながら、ノ
ズル閉塞が防止できる範囲内でできるだけ極小値が好ま
しいため、実用上の浸漬ノズルの設計単位である10mm
を勘案して、浸漬ノズルの設計に当たっては、次の数6
式でノズル内径を設計することが好ましい。
It is to be noted that, as a matter of course, the inner diameter of the nozzle is preferably as small as possible within a range in which nozzle blockage can be prevented.
In consideration of the above, when designing the immersion nozzle,
It is preferable to design the nozzle inner diameter by the formula.

【0019】[0019]

【数6】Φ=Ca×Q1/3×t1/3+10 ここで、定数Caは鋳造対象鋼種が低炭素鋼、中炭素
鋼、高炭素鋼では、29.2で、極低炭素鋼、ステンレ
ス鋼、合金鋼では、34.7である。また、請求項2記
載の発明である数2式は、請求項1記載の数1式をtを
左辺に整理したものである。
Φ = Ca × Q 1/3 × t 1/3 +10 Here, the constant Ca is 29.2 for low carbon steel, medium carbon steel, and high carbon steel for casting, and is an extremely low carbon steel. , 34.7 for stainless steel and alloy steel. The expression (2) according to the second aspect of the invention is obtained by rearranging the expression (1) according to the first aspect into t on the left side.

【0020】請求項2の発明の実施の形態は、所定ノズ
ル内径の連続鋳造用浸漬ノズルを使用した連続鋳造を行
うに際し、当該鋳造鋼種の最大鋳造速度又は平均鋳造速
度から、流量(ノズルを通過する溶鋼の流量Q=鋳型断
面積×最大鋳造速度×溶鋼比重)を求め、数2式を満足
するように浸漬ノズルを使用又は交換して連々鋳数を決
めて鋳造を行うものである。
According to an embodiment of the present invention, when performing continuous casting using a continuous casting immersion nozzle having a predetermined nozzle inner diameter, the flow rate (passing through the nozzle) is determined from the maximum casting speed or the average casting speed of the casting steel type. The flow rate Q of the molten steel to be obtained = the cross-sectional area of the mold × the maximum casting speed × the specific gravity of the molten steel) is obtained, and the casting is performed by continuously determining the number of castings by using or replacing the immersion nozzle so as to satisfy the equation (2).

【0021】なお、請求項1及び2に記載している定数
Caは、ノズル形状等によっても異なり、実験式で求め
ることができるため、特に限定するものではなく、また
項種による区分も更に細かく決めてもよい。
The constant Ca described in claims 1 and 2 differs depending on the nozzle shape and the like, and can be obtained by an empirical formula. Therefore, the constant Ca is not particularly limited. You may decide.

【0022】[0022]

【実験例】浸漬ノズルを通して鋳型に注入される溶鋼の
流量Qが1.275t/min 、鋳造時間tが3.75Hr
の連鋳機において、内径55mmの上記数1式を満足する
ノズルと、内径50mmの数1式を満足しないノズルにつ
いて、それぞれ鋳造時の流入量変動(湯面レベル変動)
の経時変化を調べた。結果を図1に示す。
[Experimental example] The flow rate Q of molten steel injected into the mold through the immersion nozzle is 1.275 t / min, and the casting time t is 3.75 Hr.
In the continuous casting machine, the inflow rate fluctuation (fluent level fluctuation) at the time of casting for the nozzle having an inner diameter of 55 mm satisfying the above equation (1) and the nozzle not satisfying the equation (1) having an inner diameter of 50 mm.
Was examined over time. The results are shown in FIG.

【0023】図1に示されるように、数1式を満足しな
い点線で示すノズルは時間経過と共に注入量の変動が大
きくなるのに対し、実線で示す、数1式を満足するノズ
ルは注入量の変動が少なくなった。
As shown in FIG. 1, the nozzle indicated by the dotted line which does not satisfy the equation (1) has a large variation in the injection amount with the passage of time, whereas the nozzle indicated by the solid line which satisfies the equation (1) has the injection amount. Fluctuation has been reduced.

【0024】[0024]

【発明の効果】本発明によると、数1式からノズル閉塞
を生じるノズル内径が求められることから、ノズル閉塞
を生じない最小ノズル内径のノズルを求めることがで
き、また該ノズルを用いることにより鋳造中のトラブル
を防止できること、数2式からノズルの最大鋳造可能な
時間tが求められるため連々鋳数(一つのタンディッシ
ュで取鍋からの湯を何回受けられるか)の極大化による
コスト低減が期待できること、鋳造速度を増加させたと
きの最大連々鋳数が逆算できるので、不良品の低減によ
る歩留り向上が期待できること、各鋼種のノズルを通過
する流量Qとノズル使用時間tの関係が把握できるの
で、生産計画が合理的に組め、操業時間のロスを減らし
て生産性を向上させることができること、等の効果を奏
する。
According to the present invention, since the inner diameter of the nozzle causing the nozzle blockage is obtained from Equation 1, the nozzle having the minimum nozzle inner diameter which does not cause the nozzle blockage can be obtained. Since the maximum casting time t of the nozzle can be obtained from equation (2), the cost can be reduced by maximizing the number of castings (how many times hot water can be received from a ladle with one tundish). It can be expected that the maximum number of continuous castings can be calculated backward when the casting speed is increased, so that the yield can be improved by reducing defective products, and the relationship between the flow rate Q passing through the nozzle of each steel type and the nozzle usage time t is understood. As a result, the production plan can be rationalized, and the loss of operation time can be reduced and the productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】湯面レベルの経時変化を示す図。FIG. 1 is a diagram showing a change with time of a molten metal level.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造機で鋳造対象とする鋳片の鋳造速
度及び連々鋳時間から求めるノズルを通過する溶鋼の流
量Qとノズルの使用時間tが、下記数1式を満足するこ
とを特徴とする連続鋳造用浸漬ノズル。 【数1】Φ>Ca×Q1/3×t1/3 ここでCaは定数で、鋳造対象鋼種が低炭素鋼、中炭素
鋼、高炭素鋼では、29.2で、極低炭素鋼、ステンレ
ス鋼、合金鋼では、34.7である。 またΦ;ノズル内径(mm) Q;ノズルを通過する溶鋼の流量(t/min) t;ノズルの使用時間(hr)
1. A flow rate Q of molten steel passing through a nozzle and a use time t of the nozzle obtained from a casting speed and a continuous casting time of a slab to be cast by a continuous casting machine satisfy the following equation (1). Immersion nozzle for continuous casting. Φ> Ca × Q 1/3 × t 1/3 where Ca is a constant and the casting target steel type is 29.2 for low-carbon steel, medium-carbon steel and high-carbon steel, and extremely low-carbon steel , 34.7 for stainless steel and alloy steel. Also, Φ: Nozzle inner diameter (mm) Q: Flow rate of molten steel passing through the nozzle (t / min) t: Nozzle usage time (hr)
【請求項2】所定ノズル内径の連続鋳造用浸漬ノズルを
用いて、連続鋳造を行うに際し、下記数2式を満足する
ように浸漬ノズルを使用又は交換して連々鋳数を決めて
鋳造を行うことを特徴とする連続鋳造操業方法。 【数2】t<Φ3/(Ca3×Q) ここでCaは定数で、鋳造対象鋼種が低炭素鋼、中炭素
鋼、高炭素鋼では、29.2で、極低炭素鋼、ステンレ
ス鋼、合金鋼では、34.7である。 またΦ;ノズル内径(mm) Q;ノズルを通過する溶鋼の流量(t/min) t;連々中時間又はノズルの使用時間(hr)
2. When performing continuous casting using a continuous casting immersion nozzle having a predetermined nozzle inner diameter, the immersion nozzle is used or replaced so as to satisfy the following equation (2), and the number of castings is continuously determined to perform casting. A continuous casting operation method characterized by the above-mentioned. T <Φ 3 / (Ca 3 × Q) Here, Ca is a constant, and the casting target steel type is 29.2 for low carbon steel, medium carbon steel, and high carbon steel, and extremely low carbon steel and stainless steel. For steel and alloy steel, it is 34.7. Also, Φ: Nozzle inner diameter (mm) Q: Flow rate of molten steel passing through the nozzle (t / min) t: Continuous time or nozzle use time (hr)
JP2000009968A 2000-01-13 2000-01-13 Immersed nozzle for continuous casting, and continuous casting method Pending JP2001198655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009968A JP2001198655A (en) 2000-01-13 2000-01-13 Immersed nozzle for continuous casting, and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009968A JP2001198655A (en) 2000-01-13 2000-01-13 Immersed nozzle for continuous casting, and continuous casting method

Publications (1)

Publication Number Publication Date
JP2001198655A true JP2001198655A (en) 2001-07-24

Family

ID=18538043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009968A Pending JP2001198655A (en) 2000-01-13 2000-01-13 Immersed nozzle for continuous casting, and continuous casting method

Country Status (1)

Country Link
JP (1) JP2001198655A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399760A (en) * 1989-09-11 1991-04-24 Kawasaki Steel Corp Submerged nozzle for continuous casting
JPH04220148A (en) * 1990-12-19 1992-08-11 Nippon Steel Corp Molten steel supplying nozzle
JPH05154626A (en) * 1991-12-02 1993-06-22 Nippon Steel Corp Immersion nozzle for continuous casting
JPH05318057A (en) * 1992-05-13 1993-12-03 Nippon Steel Corp Immersion nozzle for continuous casting
JPH0615422A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Nozzle for casting
JPH07204802A (en) * 1994-01-18 1995-08-08 Nkk Corp Continuous casting method
JPH08300118A (en) * 1995-05-09 1996-11-19 Nippon Steel Corp Method for preventing crogging of immersion nozzle for continuous casting
JPH1157962A (en) * 1997-08-08 1999-03-02 Nippon Steel Corp Method for deciding production instruction sampling order in continuously casting
JPH1177257A (en) * 1997-09-05 1999-03-23 Shinagawa Refract Co Ltd Immersion nozzle for continuos casting
JPH11123509A (en) * 1997-10-21 1999-05-11 Shinagawa Refract Co Ltd Immersion nozzle for continuous casting
JPH11285790A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Tundish nozzle for continuous casting and method for continuously casting steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399760A (en) * 1989-09-11 1991-04-24 Kawasaki Steel Corp Submerged nozzle for continuous casting
JPH04220148A (en) * 1990-12-19 1992-08-11 Nippon Steel Corp Molten steel supplying nozzle
JPH05154626A (en) * 1991-12-02 1993-06-22 Nippon Steel Corp Immersion nozzle for continuous casting
JPH05318057A (en) * 1992-05-13 1993-12-03 Nippon Steel Corp Immersion nozzle for continuous casting
JPH0615422A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Nozzle for casting
JPH07204802A (en) * 1994-01-18 1995-08-08 Nkk Corp Continuous casting method
JPH08300118A (en) * 1995-05-09 1996-11-19 Nippon Steel Corp Method for preventing crogging of immersion nozzle for continuous casting
JPH1157962A (en) * 1997-08-08 1999-03-02 Nippon Steel Corp Method for deciding production instruction sampling order in continuously casting
JPH1177257A (en) * 1997-09-05 1999-03-23 Shinagawa Refract Co Ltd Immersion nozzle for continuos casting
JPH11123509A (en) * 1997-10-21 1999-05-11 Shinagawa Refract Co Ltd Immersion nozzle for continuous casting
JPH11285790A (en) * 1998-04-03 1999-10-19 Nippon Steel Corp Tundish nozzle for continuous casting and method for continuously casting steel

Similar Documents

Publication Publication Date Title
JP2018192530A (en) Casting mold for continuous casting and continuous casting method of steel
JP2008087046A (en) Continuous casting method for medium-carbon steel
RU2677560C2 (en) Mold for continuous casting machine and continuous casting method for steel
EP3488947B1 (en) Continuous steel casting method
JP6787359B2 (en) Continuous steel casting method
JP6365604B2 (en) Steel continuous casting method
JP2727887B2 (en) Horizontal continuous casting method
JP2001198655A (en) Immersed nozzle for continuous casting, and continuous casting method
RU2733525C1 (en) Crystallizer for continuous casting and continuous casting method
KR101412536B1 (en) Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPH11156511A (en) Steel slab continuous casting method
JP2018149602A (en) Method for continuously casting steel
JP2000079445A (en) Mold for continuously casting steel
JP2006205239A (en) Method for continuous casting
JP3099158B2 (en) Continuous casting method of defect-free slab
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JP2024035081A (en) Mold for continuous casting
JPS6152972A (en) Method for predicting breakout in continuous casting
JP5226548B2 (en) Continuous casting method of medium carbon steel with changing casting speed and level
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP2016168610A (en) Steel continuous casting method
KR101400036B1 (en) Separatimg method for slab of high clean steel
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102