JP2001192724A - Dephosphorization method for molten iron - Google Patents

Dephosphorization method for molten iron

Info

Publication number
JP2001192724A
JP2001192724A JP2000002708A JP2000002708A JP2001192724A JP 2001192724 A JP2001192724 A JP 2001192724A JP 2000002708 A JP2000002708 A JP 2000002708A JP 2000002708 A JP2000002708 A JP 2000002708A JP 2001192724 A JP2001192724 A JP 2001192724A
Authority
JP
Japan
Prior art keywords
hot metal
cao
dephosphorizing
mass
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000002708A
Other languages
Japanese (ja)
Other versions
JP3733819B2 (en
Inventor
Masaki Miyata
政樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000002708A priority Critical patent/JP3733819B2/en
Publication of JP2001192724A publication Critical patent/JP2001192724A/en
Application granted granted Critical
Publication of JP3733819B2 publication Critical patent/JP3733819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dephosphorization method for molten iron which can lower the P} concentration in the molten iron under conditions under which a molting accelerating agent, such as fluorite, is not used and can improve the yield of manganese. SOLUTION: (1) In the method for dephosphorizing the molten iron housed in a furnace of a top and bottom blown converter type, a dephosphorizing agent containing CaO and manganese oxide are blown with oxygen as a carrier gas. (2) The manganese oxide compounding rate (T.Mn) of the dephosphorizing agent is 3 to 30% in a CaO-based mass rate % (T.Mn/CaO×100). (3) Further, the Al2O3 compounding rate of the dephosphorizing agent is 5 to 50% in a CaO-based mass rate % (Al2O3/CaO×100). (4) The top blowing oxygen flow rate is 0.5 to 2.0 m3 (standard state)/min per ton of molten iron mass and the bottom blowing stirring gas flow rate is 0.5 to 0.60 m3 (standard state)/min per ton of molten iron mass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン歩留まり
を向上できる溶銑の脱りん方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot metal dephosphorization method capable of improving the manganese yield.

【0002】[0002]

【従来の技術】近年、鋼材に対する品質要求が高度化
し、低りん鋼に対する需要が増大している。これに対応
するため、溶銑脱りん法が開発された。
2. Description of the Related Art In recent years, quality requirements for steel materials have become more sophisticated, and demand for low phosphorus steel has been increasing. In response, a hot metal dephosphorization method was developed.

【0003】CaO含有脱りん剤による脱りん反応は下
記式のごとく進行する。 3 (CaO) +5 (FeO) +2[P]=(3CaO・
25 )+5 [Fe] なお、 ( ):スラグ中、 [ ]:溶銑中をそれぞれ示す。
[0003] The dephosphorization reaction with the CaO-containing dephosphorizer proceeds according to the following formula. 3 (CaO) +5 (FeO) +2 [P] = (3CaO ·
P 2 O 5 ) +5 [Fe] (): In slag, []: In hot metal.

【0004】この溶銑脱りん処理を効果的に行うために
は、(CaO)が溶解してスラグ内に十分に存在し、脱
りん処理に必要な(FeO)レベルが維持されることが
必要となる。
[0004] In order to effectively perform the hot metal dephosphorization treatment, it is necessary that (CaO) is dissolved and sufficiently present in the slag, and that the (FeO) level required for the dephosphorization treatment is maintained. Become.

【0005】しかし、CaOの融点は、2570℃と高
く、CaOの溶融促進のために何らかの溶融促進剤の添
加を必要とする。
However, the melting point of CaO is as high as 2570 ° C., and it is necessary to add some kind of melting accelerator in order to promote the melting of CaO.

【0006】そこで、従来より塊状の生石灰(CaO)
を用いる場合は、例えば、蛍石等のハロゲン系化合物を
溶融促進剤として併用してきた。
Therefore, conventionally, massive lime (CaO)
When using, for example, a halogen-based compound such as fluorite has been used in combination as a melting promoter.

【0007】一方、ハロゲン系化合物を含むスラグは、
耐火物溶損量を増加させるという問題がある。また、近
年、鉄鋼スラグの有効利用技術が環境問題の視点から望
まれているが、蛍石等のハロゲン系化合物の混入は、用
途が限定され好ましくない。
On the other hand, slag containing a halogen compound is
There is a problem of increasing the amount of refractory erosion. In recent years, a technique for effectively utilizing steel slag has been desired from the viewpoint of environmental issues. However, the incorporation of halogen-based compounds such as fluorite is not preferable because of limited applications.

【0008】例えば特開平8−311523号公報に
は、この問題を解決すべく蛍石等の溶融促進剤を使用し
ないで、粉状のCaOを上吹き酸素と共に、溶銑に吹き
付ける溶銑脱りん方法が開示されている。
For example, Japanese Unexamined Patent Publication No. Hei 8-31523 discloses a method of dephosphorizing hot metal in which powdery CaO is blown onto hot metal together with oxygen that has been blown upward without using a melting accelerator such as fluorite to solve this problem. It has been disclosed.

【0009】この方法は、上吹き酸素と底吹きガス攪拌
とを制御することにより、スラグ中の(FeO)濃度を
適正化でき、しかも、粉状のCaOを使用することによ
り、反応界面の面積を増加でき、蛍石等の溶融促進剤を
使用しなくても、スラグを溶融できるとしている。
According to this method, the (FeO) concentration in the slag can be optimized by controlling the top-blown oxygen and the bottom-blown gas stirring, and the area of the reaction interface can be controlled by using powdered CaO. Slag can be melted without using a melting accelerator such as fluorite.

【0010】[0010]

【発明が解決しようとする課題】しかし、この方法で
は、溶銑中の [Mn] が酸化しやすくなり、その結果転
炉吹錬後の溶鋼中[Mn]濃度を所定濃度以上に維持する
ために、高価なフェロマンガンや金属Mnを過剰に添加
することが必要となり、マンガン添加量の低減技術が求
められていた。
However, in this method, [Mn] in the hot metal is easily oxidized. As a result, the [Mn] concentration in the molten steel after the converter blowing is maintained at a predetermined level or more. In addition, it is necessary to excessively add expensive ferromanganese or metal Mn, and a technique for reducing the amount of added manganese has been required.

【0011】高価なマンガン添加量の低減技術として
は、例えば、文献(CAMP−ISIJ, 2 (198
9),P.1093)に溶銑脱りん中に安価なマンガン鉱
石を溶銑へ上置き添加して、マンガン鉱石を溶銑中の
[C]で還元することにより、溶銑中の[Mn]濃度を
所定濃度以上に維持する方法が提案されている。
As a technique for reducing the amount of expensive manganese to be added, for example, a literature (CAMP-ISIJ, 2 (198)
9), p. In step 1093), inexpensive manganese ore is placed on the hot metal during hot metal dephosphorization, and the manganese ore is reduced by [C] in the hot metal to maintain the [Mn] concentration in the hot metal at or above a predetermined concentration. A method has been proposed.

【0012】この方法の骨子は、上吹き酸素によって溶
銑中の [Mn] が酸化される量以上に、マンガン鉱石を
金属Mnに還元させることにある。
The essence of this method is to reduce manganese ore to metal Mn in an amount equal to or greater than the amount of [Mn] in the hot metal oxidized by the top-blown oxygen.

【0013】しかし、この方法は、溶銑の上に添加した
マンガン鉱石の還元を促進するために、マンガン鉱石の
溶融促進剤である蛍石を使用しているため、処理容器耐
火物の溶損量が多くなるという問題点があった。
However, this method uses fluorite, which is a melting promoter for manganese ore, in order to promote the reduction of manganese ore added on the hot metal. There was a problem that it increased.

【0014】本発明の目的は、蛍石等のハロゲン系の溶
融促進剤を使用しない条件下で溶銑中の [P] 濃度を低
減することが可能であり、しかもマンガン歩留まりを向
上できる溶銑の脱りん方法を提供することにある。
An object of the present invention is to reduce the [P] concentration in hot metal under conditions in which a halogen-based melting promoter such as fluorite is not used, and to remove hot metal capable of improving the manganese yield. It is to provide a phosphorus method.

【0015】[0015]

【課題を解決するための手段】本発明者らは、種々検討
を重ねた結果、下記の知見を得た。
Means for Solving the Problems The present inventors have made various studies and obtained the following findings.

【0016】(A)マンガン酸化物、例えば、二酸化マ
ンガン(以下、単にMnO2 ともいう)は本来滓化し難
いが、粉にして上吹き酸素と共に高温の溶銑表面火点付
近に吹き付けると、添加したMnO2 は溶融し易くな
る。
(A) Manganese oxides, for example, manganese dioxide (hereinafter also simply referred to as MnO 2 ) are inherently difficult to form slag. MnO 2 is easily melted.

【0017】(B)また、火点付近には溶銑中の[M
n]が上吹き酸素によって酸化されて生成したマンガン
酸化物も存在する。そしてこれらのマンガン酸化物は火
点から離れてトップスラグ(溶銑表面上に浮遊している
スラグ)中に取り込まれる。
(B) In the vicinity of the flash point, [M
[n] is also oxidized by the top-blown oxygen to produce manganese oxide. Then, these manganese oxides are taken away into the top slag (slag floating on the hot metal surface) away from the fire point.

【0018】この様に、滓化したマンガン酸化物が多量
にトップスラグ中に存在するため、トップスラグ−溶銑
界面では、マンガン酸化物の溶銑中の[C]による還元
反応が促進される。
As described above, since a large amount of slagged manganese oxide is present in the top slag, the reduction reaction of manganese oxide by [C] in the hot metal is promoted at the top slag-hot metal interface.

【0019】その結果、マンガン歩留まりが向上すると
着想し、この着想を確認するためCaO含有脱りん剤中
のマンガン酸化物(ここではMnO2 を用いた)の配合
量を変更した脱りん試験を行った。
As a result, it was conceived that the manganese yield was improved. To confirm this idea, a dephosphorization test was conducted in which the amount of manganese oxide (here, MnO 2 was used) in the CaO-containing dephosphorizer was changed. Was.

【0020】図1は、マンガン酸化物の配合量(ここで
は、マンガン酸化物中のマンガン純分を(T.Mn)と
して、(T.Mn)のCaO基準質量比%:(T.Mn
/CaO×100)で表す)と処理後の溶銑中の[M
n]濃度との関係を示すグラフである。
FIG. 1 shows the blending amount of manganese oxide (here, the pure manganese content in manganese oxide is (T.Mn), and the mass ratio of (T.Mn) based on CaO: (T.Mn)
/ CaO × 100)) and [M
[n] is a graph showing the relationship with the concentration.

【0021】同図に示すように、溶銑中の[Mn]濃度
は、マンガン酸化物の配合量が3%から増加し、30%
を超えるとMnO2 添加により[Mn]濃度の増加量が
むしろ低下することがわかった。
[0021] As shown in the figure, the [Mn] concentration in the hot metal increases from 3% in the amount of manganese oxide to 30%.
It was found that, when MnO 2 was added, the amount of increase in the [Mn] concentration was rather reduced.

【0022】30%を超えると、溶銑中の[Mn]の含
有量が低下する理由は、主にマンガン酸化物とCaOと
の混合物の融点が高くなり、マンガン酸化物の還元効率
が低下したものと推定できる。
When the content exceeds 30%, the content of [Mn] in the hot metal decreases mainly because the melting point of the mixture of manganese oxide and CaO increases and the reduction efficiency of manganese oxide decreases. Can be estimated.

【0023】以上からCaO含有脱りん剤のCaOに対
するマンガン酸化物の配合量は3〜30%であることが
好ましい。
From the above, it is preferable that the compounding amount of the manganese oxide with respect to CaO of the CaO-containing dephosphorizing agent is 3 to 30%.

【0024】(C)CaO含有脱りん剤にさらにAl2
3 を添加すると、脱りん剤の融点を低下できることに
着目して、マンガン酸化物の配合量を19%(MnO2
を溶銑質量1トンあたり3kg添加)の一定条件下で、
Al23 の配合量を変更したAl23 添加試験を行
った。
(C) CaO-containing dephosphorizing agent is further added with Al 2
Paying attention to the fact that the addition of O 3 can lower the melting point of the dephosphorizing agent, the compounding amount of manganese oxide is reduced to 19% (MnO 2
3 kg per ton of hot metal mass)
An Al 2 O 3 addition test in which the amount of Al 2 O 3 was changed was performed.

【0025】図2は、Al23 の配合量(CaO基準
質量比%:Al23 /CaO×100)と処理後の溶
銑中の[P]濃度との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of Al 2 O 3 (% by mass based on CaO: Al 2 O 3 / CaO × 100) and the [P] concentration in the hot metal after the treatment.

【0026】同図に示すように、CaOに対するAl2
3 の配合量が5%を超えると、溶銑中の[P]の濃度
は目標の0.025質量%(以下、単に%で質量%を表
す)以下となり、50%を超えると目標の0.025%
以下に達しないことがわかった。
As shown in the figure, Al for CaO 2
When the compounding amount of O 3 exceeds 5%, the concentration of [P] in the hot metal falls below the target 0.025% by mass (hereinafter, simply referred to as% by mass), and when it exceeds 50%, the target 0%. .025%
It turned out to be less than.

【0027】以上からCaOに対するAl23 の配合
量は5〜50%であることが好ましい。
From the above, it is preferable that the compounding amount of Al 2 O 3 with respect to CaO is 5 to 50%.

【0028】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。
The present invention has been made based on the above findings, and the gist is as follows.

【0029】(1)上底吹き転炉形式の炉に収容された
溶銑を脱りんする方法において、酸素をキャリアーガス
としてCaOおよびマンガン酸化物を含有する脱りん剤
を吹き付けることを特徴とする溶銑の脱りん方法。
(1) A method for dephosphorizing hot metal housed in a furnace of the top-bottom blowing converter type, characterized by blowing a dephosphorizing agent containing CaO and manganese oxide using oxygen as a carrier gas. Dephosphorization method.

【0030】(2)脱りん剤のマンガン酸化物配合量が
CaO基準質量比%(T.Mn/CaO×100)で3
〜30%であることを特徴とする上記(1)に記載の溶
銑の脱りん方法。
(2) The content of manganese oxide in the dephosphorizing agent is 3 in terms of CaO reference mass ratio% (T.Mn/CaO×100).
The method for dephosphorizing hot metal according to the above (1), wherein the content is up to 30%.

【0031】(3)脱りん剤のAl23 配合量がCa
O基準質量比%(Al23 /CaO×100)で5〜
50%であることを特徴とする上記(1)または(2)
に記載の溶銑の脱りん方法。
(3) When the content of Al 2 O 3 as a dephosphorizing agent is Ca
O based mass ratio% (Al 2 O 3 / CaO × 100)
(1) or (2) above, characterized by being 50%.
3. The method for dephosphorizing hot metal according to item 1.

【0032】(4)上吹き酸素流量が溶銑質量1トン当
たり0.5〜2.0m3 (標準状態)/minであり、底吹
き攪拌ガス流量が溶銑質量1トン当たり0.05〜0.
60m3 (標準状態)/minであることを特徴とする上記
(1)〜(3)のいずれかに記載の溶銑の脱りん方法。
(4) The top blown oxygen flow rate is 0.5 to 2.0 m 3 (standard condition) / min per ton of hot metal mass, and the bottom blown stirring gas flow rate is 0.05 to 0.
The method for dephosphorizing hot metal according to any one of the above (1) to (3), wherein the rate is 60 m 3 (standard state) / min.

【0033】[0033]

【発明の実施の形態】上底吹き転炉形式の炉で脱りん剤
を使用して脱りん処理を行うに際し、脱りん剤中に含有
させるCaO量は、処理後の溶銑中の[P]濃度および
[Si] 濃度によって異なるが、例えば、処理前の溶銑
中の[P]濃度:約0.10%、 [Si] 濃度:約0.
3%の場合に、溶銑中の[P]濃度を約0.025%ま
で低下するのに必要なCaO量は溶銑質量1トン当たり
7〜15kg程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In performing a dephosphorization treatment using a dephosphorizing agent in a furnace of the top and bottom blown converter type, the amount of CaO contained in the dephosphorizing agent is determined by the amount of [P] in the hot metal after the treatment. Concentration and
Depending on the [Si] concentration, for example, the [P] concentration in the hot metal before the treatment is about 0.10%, and the [Si] concentration is about 0.1%.
In the case of 3%, the amount of CaO required to reduce the [P] concentration in the hot metal to about 0.025% is about 7 to 15 kg per ton of hot metal mass.

【0034】上吹酸素と共に添加される脱りん剤を構成
する主原料のCaOと配合材のマンガン酸化物およびA
23 の粒度は15〜150μmが好ましい。
The main material CaO constituting the dephosphorizing agent added together with the top blowing oxygen, the manganese oxide as the compounding material and A
The particle size of l 2 O 3 is 15~150μm is preferred.

【0035】粒度が15μm未満では、破砕コストが増
大したり、粉が配管壁へ多量に付着したりするおそれが
あり、150μmを超えると火点での滓化が不十分とな
るおそれがある。
If the particle size is less than 15 μm, the crushing cost may increase, or a large amount of powder may adhere to the pipe wall. If the particle size exceeds 150 μm, slag formation at the flash point may be insufficient.

【0036】CaO源としては、生石灰をはじめとして
CaOを含有する石灰石等が使用できる。
As the CaO source, limestone containing CaO as well as quicklime can be used.

【0037】マンガン酸化物は、MnO2 を含有するM
n鉱石等が使用でき、Al23 はボーキサイトをはじ
めとしてAl23 を含有する連続鋳造滓、造塊滓等が
使用できる。表1にMn鉱石、ボーキサイトの代表的な
組成を示す。
The manganese oxide is composed of MnO 2 -containing MnO 2.
n ore and the like can be used, Al 2 O 3 continuous casting slag containing Al 2 O 3 as including bauxite, ingot making slag and the like can be used. Table 1 shows typical compositions of Mn ore and bauxite.

【0038】[0038]

【表1】 [Table 1]

【0039】上吹き酸素流量としては溶銑質量1トン当
たり0.5〜2.0m3 (標準状態)/minとするのが望
ましい。0.5m3 (標準状態)/min未満では、酸素供
給不足のため脱りん速度が低下するおそれがあり、所定
の処理時間内に目標の溶銑中の[P]濃度まで低減できな
い可能性がある。また、2.0m3 (標準状態)/minを
超えると、上吹き酸素の溶銑への衝突エネルギーが大き
くなりすぎて、吹錬中のスピッティング量が増大するお
それがあり好ましくない。
It is desirable that the flow rate of the top blown oxygen be 0.5 to 2.0 m 3 (standard state) / min per ton of hot metal mass. If it is less than 0.5 m 3 (standard state) / min, the dephosphorization rate may decrease due to insufficient oxygen supply, and it may not be possible to reduce the target [P] concentration in the hot metal within a predetermined treatment time. . On the other hand, if it exceeds 2.0 m 3 (standard state) / min, the collision energy of the top-blown oxygen to the hot metal becomes too large, and the spitting amount during the blowing may be undesirably increased.

【0040】炉底から吹き込む攪拌用ガスは、例えば、
Ar、N2 、CO2 、CO、O2 、炭化水素等の一種な
いし2種以上を用いることができる。
The stirring gas blown from the furnace bottom is, for example,
One or more of Ar, N 2 , CO 2 , CO, O 2 , and hydrocarbons can be used.

【0041】また、攪拌ガス流量は、溶銑質量1トン当
たり、0.05〜0.6m3 (標準状態)/minが好まし
い。0.05m3 (標準状態)/min未満では、反応速度
が高くならないおそれがあり、所定の処理時間内に目標
の溶銑中の[P]濃度まで低減できない可能性がある。ま
た、0.6m3 (標準状態)/minを超えると、スラグ中
の(FeO)が溶銑中の[C]により素早く還元され、
脱りん率が低下するおそれがあるからである。
The flow rate of the stirring gas is preferably 0.05 to 0.6 m 3 (standard state) / min per ton of hot metal mass. If it is less than 0.05 m 3 (standard state) / min, the reaction rate may not increase, and it may not be possible to reduce the target [P] concentration in the hot metal within a predetermined treatment time. Further, when the rate exceeds 0.6 m 3 (standard state) / min, (FeO) in slag is rapidly reduced by [C] in hot metal,
This is because the dephosphorization rate may decrease.

【0042】このように、本発明により、酸素ガスをキ
ャリアーガスとしてCaOと共にマンガン酸化物粉を溶
銑に吹き付けることによりマンガン歩留まりを改善す
る、更にはCaO粉、マンガン酸化物粉およびAl2
3 粉を同時に溶銑に吹き付けることによりマンガン歩留
まりを改善すると同時に脱りん率も向上させることがで
きた。
As described above, according to the present invention, the manganese oxide powder is sprayed onto the hot metal together with CaO using oxygen gas as a carrier gas to improve the manganese yield, and further, the CaO powder, manganese oxide powder and Al 2 O
The manganese yield and the dephosphorization rate could be improved by simultaneously spraying the three powders on the hot metal.

【0043】本発明においてこのような効果が得られた
機構については、以下のように推測される。
The mechanism by which such an effect is obtained in the present invention is presumed as follows.

【0044】マンガン酸化物は本来滓化し難いが、粉に
して上吹き酸素と共に高温の火点付近に吹き付ければ、
火点の高温により滓化し易くなる。また、火点付近には
溶銑中の[Mn]が上吹き酸素によって酸化されて生成
したマンガン酸化物も存在する。そしてこれらのマンガ
ン酸化物は火点から離れてトップスラグ(溶銑表面上に
浮遊しているスラグ)中に取り込まれる。
Manganese oxides are hardly turned into slag by nature, but if they are blown into powder and sprayed with high-blown oxygen near a high-temperature fire point,
It becomes easy to slag due to the high temperature of the fire point. There is also a manganese oxide generated by oxidizing [Mn] in the hot metal by the top-blown oxygen in the vicinity of the fire point. Then, these manganese oxides are taken away into the top slag (slag floating on the hot metal surface) away from the fire point.

【0045】この様に、滓化したマンガン酸化物が多量
にトップスラグ中に存在するため、トップスラグ−溶銑
界面では、マンガン酸化物の溶銑中[C]による還元反
応が促進される。その結果、マンガン歩留まりが向上し
た可能性がある。
As described above, since the slagged manganese oxide is present in a large amount in the top slag, the reduction reaction of the manganese oxide by the [C] in the hot metal is promoted at the top slag-hot metal interface. As a result, the manganese yield may have improved.

【0046】また、CaO粉、マンガン酸化物粉にAl
23 粉を加えて上吹きすることにより、CaO粉の滓
化効率が向上して、マンガン歩留まりを改善すると共
に、脱P率も向上した可能性がある。
Further, Al is added to CaO powder and manganese oxide powder.
By adding the 2 O 3 powder and blowing it upward, it is possible that the slagging efficiency of the CaO powder was improved, the manganese yield was improved, and the P removal ratio was also improved.

【0047】[0047]

【実施例】脱りん処理後の溶銑中[P]濃度の目標をA
23 無添加の場合0.025%以下とし、溶銑中の
[Mn] 濃度の目標を0.15%以上とした。
[Example] The target of [P] concentration in hot metal after dephosphorization was A
In the case of no l 2 O 3 addition, the content should be 0.025% or less.
The target of [Mn] concentration was set to 0.15% or more.

【0048】(比較例1)溶銑処理前の溶銑成分が
[C]:約4.5%、[Si]:0.25%、[P]:
0.10%、[Mn]:0.30%、脱りん処理前温度
1230℃の、予備脱珪処理した溶銑質量2トンを、上
底吹き転炉に注銑し、炉底羽口からAr:溶銑質量1ト
ン当たり0.35m3 (標準状態)/minで吹き込みなが
ら、溶銑質量1トン当たり鉄鉱石10kgを上置き添加し
た。その後、3孔ストレートランスを用い、溶銑質量1
トン当たり1.0m3 (標準状態)/minの酸素と共に、
100メッシュアンダー(粒径150μm以下)のCa
O:溶銑質量1トン当たり8.1kgの脱りん剤を8分間
溶銑に吹き付けた。
(Comparative Example 1) The hot metal components before the hot metal treatment were [C]: about 4.5%, [Si]: 0.25%, [P]:
0.10%, [Mn]: 0.30%, 2 tons of pre-siliconized hot metal having a temperature of 1230 ° C. before dephosphorization were poured into an upper-bottom blow converter, and Ar was injected from the bottom tuyere. : 10 kg of iron ore per ton of hot metal was added while blowing at 0.35 m 3 (standard state) / min per ton of hot metal. Then, using a 3-hole straight lance, the hot metal mass 1
With 1.0 m 3 (standard condition) / min of oxygen per ton,
Ca of 100 mesh under (particle size 150μm or less)
O: 8.1 kg of dephosphorizing agent per ton of hot metal mass was sprayed on the hot metal for 8 minutes.

【0049】処理後の溶銑温度は1345℃で、、溶銑
中の [P] 濃度は0.025%と目標値を達成したが、
溶銑中の [Mn] 濃度は0.07%と低く、[Mn]酸
化量が多かった。
The hot metal temperature after the treatment was 1345 ° C., and the [P] concentration in the hot metal reached the target value of 0.025%.
The [Mn] concentration in the hot metal was as low as 0.07%, and the [Mn] oxidation amount was large.

【0050】(比較例2)溶銑処理前の溶銑成分が
[C]:約4.5%、[Si]:0.25%、[P]:
0.10%、[Mn]:0.30%、脱りん処理前温度
1230℃の、予備脱珪処理した溶銑質量2トンを、上
底吹き転炉に注銑し、炉底羽口からAr:溶銑質量1ト
ン当たり0.35m3 (標準状態)/minで吹き込みなが
ら、細粒(粒径:5〜15mm)のMnO2 :溶銑質量1
トン当たり3kg、鉄鉱石10kgを上置き添加した。
Comparative Example 2 Hot metal components before hot metal treatment were [C]: about 4.5%, [Si]: 0.25%, [P]:
0.10%, [Mn]: 0.30%, 2 tons of pre-siliconized hot metal having a temperature of 1230 ° C. before dephosphorization were poured into an upper-bottom blow converter, and Ar was injected from the bottom tuyere. : MnO 2 of fine grains (particle diameter: 5 to 15 mm) while blowing at 0.35 m 3 (standard condition) / min per ton of hot metal mass: hot metal mass 1
3 kg per ton and 10 kg of iron ore were added overhead.

【0051】その後、3孔ストレートランスを用い、溶
銑質量1トン当たり1.0m3 (標準状態)/minの酸素
と共に、100メッシュアンダー(粒径150μm以
下)のCaO:溶銑質量1トン当たり8.1kgの脱りん
剤を8分間溶銑に吹き付けた。
Thereafter, using a three-hole straight lance, CaO under 100 mesh (particle size: 150 μm or less) with 1.0 m 3 (standard condition) / min of oxygen per ton of hot metal mass: 8. 1 kg of dephosphorizer was sprayed on the hot metal for 8 minutes.

【0052】処理後の溶銑温度は1345℃で、溶銑中
の[P]濃度は0.025%と目標値を達成したが、溶銑
中の[Mn]濃度は0.10%と低く、[Mn]酸化量が
多かった。
The hot metal temperature after the treatment was 1345 ° C., and the [P] concentration in the hot metal achieved the target value of 0.025%, but the [Mn] concentration in the hot metal was as low as 0.10%, and the [Mn] was low. The amount of oxidation was large.

【0053】(比較例3)溶銑処理前の溶銑成分が
[C]:約4.5%、[Si]:0.24%、[P]:
0.10%、[Mn]:0.31%、脱りん処理前温度
1235℃の、予備脱珪処理した溶銑質量2トンを、上
底吹き転炉に注銑し、炉底羽口からAr:溶銑質量1ト
ン当たり0.35m3 (標準状態)/minで吹き込みなが
ら、溶銑質量1トン当たり鉄鉱石:10kgを上置き添加
した。
(Comparative Example 3) Hot metal components before hot metal treatment were [C]: about 4.5%, [Si]: 0.24%, [P]:
0.10%, [Mn]: 0.31%, 2 tons of pre-siliconized hot metal having a temperature before dephosphorization of 1235 ° C were poured into an upper-bottom blow converter, and Ar was passed through the bottom tuyere. : 10 kg of iron ore per ton of hot metal was added while blowing at 0.35 m 3 (standard condition) / min per ton of hot metal.

【0054】その後、3孔ストレートランスを用い、溶
銑質量1トン当たり1.0m3 (標準状態)/minの酸素
と共に、100メッシュアンダー(粒径150μm以
下)のCaO:溶銑質量1トン当たり10kg、Al2
3 :1.5kg(CaOの15%)を混合した脱りん剤を、
8分間溶銑に吹き付けた。
Then, using a three-hole straight lance, CaO of 100 mesh under (particle diameter of 150 μm or less): 10 kg / ton of hot metal, with 1.0 m 3 (standard state) / min of oxygen per ton of hot metal mass Al 2 O
3 : Dephosphorizing agent mixed with 1.5 kg (15% of CaO)
The hot metal was sprayed for 8 minutes.

【0055】処理後の溶銑温度は1344℃で、溶銑中
の [P] 濃度は0.015%と目標値を十分に達成した
が、溶銑中の [Mn] 濃度は0.07%と低く、[M
n]酸化量が多かった。
The hot metal temperature after the treatment was 1344 ° C., and the [P] concentration in the hot metal sufficiently reached the target value of 0.015%, but the [Mn] concentration in the hot metal was as low as 0.07%. [M
n] The oxidation amount was large.

【0056】(本発明例1)溶銑処理前の溶銑成分が
[C]:約4.5%、[Si]:0.24%、[P]:
0.10%、[Mn]:0.29%、脱りん処理前温度
1231℃の、予備脱珪処理した溶銑質量2トンを、上
底吹き転炉に注銑し、炉底羽口からAr:溶銑質量1ト
ン当たり0.35m3 (標準状態)/minで吹き込みなが
ら、溶銑質量1トン当たり鉄鉱石を10kgを上置き添加
した。その後、3孔ストレートランスを用い、溶銑質量
1トン当たり1.0m3 (標準状態)/minの酸素と共
に、100メッシュアンダー(粒径150μm以下)の
CaO:溶銑質量1トン当たり8.1kg、MnO2 :3
kg (CaOの30%) を混合した脱りん剤を、8分間溶
銑に吹き付けた。
(Example 1 of the present invention) The hot metal component before hot metal treatment was [C]: about 4.5%, [Si]: 0.24%, [P]:
0.10%, [Mn]: 0.29%, 2 tons of pre-siliconized hot metal having a temperature before dephosphorization of 1231 ° C. were poured into an upper-bottom blow converter, and Ar was injected from the furnace bottom tuyere. : 10 kg of iron ore per 1 ton of hot metal was added while blowing at 0.35 m 3 (standard condition) / min per 1 ton of hot metal. Then, using a three-hole straight lance, CaO of 100 mesh under (particle size of 150 μm or less): Oxygen of 1.0 m 3 (standard state) / min per ton of hot metal mass: 8.1 kg per 1 ton of hot metal mass, MnO 2 : 3
kg (30% of CaO) was sprayed on the hot metal for 8 minutes.

【0057】処理後の溶銑温度は1344℃で、溶銑中
の [P] 濃度は0.025%と目標値を達成した。更
に、溶銑中の [Mn] 濃度は0.19%となり、[M
n]酸化を大幅に抑制できマンガン歩留まりを向上でき
た。
The hot metal temperature after the treatment was 1344 ° C., and the [P] concentration in the hot metal reached the target value of 0.025%. Furthermore, the [Mn] concentration in the hot metal was 0.19%, and [M
[n] Oxidation was significantly suppressed, and the manganese yield was improved.

【0058】(本発明例2)溶銑処理前の溶銑成分が
[C]:約4.5%、[Si]:0.24%、[P]:
0.10%、[Mn]:0.30%、脱りん処理前温度
1225℃の、予備脱珪処理した溶銑質量2トンを、上
底吹き転炉に注銑し、炉底羽口からAr:溶銑質量1ト
ン当たり0.35m3 (標準状態)/minで吹き込みなが
ら、溶銑質量1トン当たり鉄鉱石を10kgを上置き添加
した。その後、3孔ストレートランスを用い、溶銑質量
1トン当たり1.0m3 (標準状態)/minの酸素と共
に、100メッシュアンダー(粒径150μm以下)の
CaO:溶銑質量1トン当たり10kg、MnO2 :3kg
(CaOの30%)、Al23 :1.5kg (CaOの1
5%) を混合した脱りん剤を,9分間溶銑に吹き付け
た。
(Example 2 of the present invention) The hot metal components before hot metal processing were [C]: about 4.5%, [Si]: 0.24%, [P]:
0.10%, [Mn]: 0.30%, 2 tons of pre-siliconized hot metal having a temperature before dephosphorization of 1225 ° C. were poured into an upper-bottom blow converter, and Ar was passed through the bottom tuyere. : 10 kg of iron ore per 1 ton of hot metal was added while blowing at 0.35 m 3 (standard condition) / min per 1 ton of hot metal. Then, 3 using the hole straight lance, hot metal mass ton 1.0 m 3 with a (standard state) / min oxygen, 100 mesh-under (particle diameter 150μm or less) CaO: molten iron mass per ton 10 kg, MnO 2: 3 kg
(30% of CaO), Al 2 O 3 : 1.5 kg (1 of CaO)
5%) was sprayed on the hot metal for 9 minutes.

【0059】処理後の溶銑温度は1347℃で、溶銑中
の[P]濃度は0.013%と目標値を十分に達成した。
更に、溶銑中の [Mn] 濃度は0.20%となり、[M
n]酸化を大幅に抑制できマンガン歩留まりを向上でき
た。
The hot metal temperature after the treatment was 1347 ° C., and the [P] concentration in the hot metal was 0.013%, sufficiently achieving the target value.
Further, the [Mn] concentration in the hot metal was 0.20%, and [M
[n] Oxidation was significantly suppressed, and the manganese yield was improved.

【0060】[0060]

【発明の効果】本発明法によれば、脱りん炉の耐火物溶
損量の増加を招くホタル石等のハロゲン系の溶融促進剤
を用いること無く、溶銑中の [P] 濃度を低減すること
が可能であり、しかもマンガン歩留まりを向上できる。
According to the method of the present invention, the [P] concentration in the hot metal can be reduced without using a halogen-based melting accelerator such as fluorite which causes an increase in the amount of refractory erosion in the dephosphorization furnace. And the manganese yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マンガン酸化物の配合量(CaO基準質量比
%:(T.Mn/CaO×100)と処理後の溶銑中の
[Mn]濃度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of manganese oxide (% by mass based on CaO: (T.Mn/CaO×100)) and the [Mn] concentration in hot metal after treatment.

【図2】Al23 の配合量(CaO基準質量比%:A
23 /CaO×100)と処理後の溶銑中の[P]
濃度との関係を示すグラフである。
FIG. 2 Amount of Al 2 O 3 (% by mass based on CaO: A
l 2 O 3 / CaO × 100) and [P] in the hot metal after treatment
It is a graph which shows the relationship with a density.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き転炉形式の炉に収容された溶銑
を脱りんする方法において、酸素をキャリアーガスとし
てCaOおよびマンガン酸化物を含有する脱りん剤を吹
き付けることを特徴とする溶銑の脱りん方法。
1. A method for dephosphorizing hot metal stored in a furnace of the top-bottom blowing converter type, comprising blowing a dephosphorizing agent containing CaO and manganese oxide using oxygen as a carrier gas. Dephosphorization method.
【請求項2】 脱りん剤のマンガン酸化物配合量がCa
O基準質量比%(T.Mn/CaO×100)で3〜3
0%であることを特徴とする請求項1に記載の溶銑の脱
りん方法。
2. The method according to claim 1, wherein the manganese oxide content of the dephosphorizing agent is Ca.
3 to 3 in terms of O-based mass ratio% (T.Mn/CaO×100)
The method for dephosphorizing hot metal according to claim 1, wherein the content is 0%.
【請求項3】 脱りん剤のAl23 配合量がCaO基
準質量比%(Al23 /CaO×100)で5〜50
%であることを特徴とする請求項1または2に記載の溶
銑の脱りん方法。
3. The amount of Al 2 O 3 of the dephosphorizing agent is from 5 to 50 in terms of CaO reference mass ratio% (Al 2 O 3 / CaO × 100).
%. The method for dephosphorizing hot metal according to claim 1, wherein
【請求項4】 上吹き酸素流量が溶銑質量1トン当たり
0.5〜2.0m3(標準状態)/minであり、底吹き攪
拌ガス流量が溶銑質量1トン当たり0.05〜0.60
3 (標準状態)/minであることを特徴とする請求項1
〜3のいずれかに記載の溶銑の脱りん方法。
4. The flow rate of the top blown oxygen is 0.5 to 2.0 m 3 (standard condition) / min per ton of hot metal mass, and the flow rate of the bottom blown stirring gas is 0.05 to 0.60 m / ton of hot metal mass.
2. The value of m 3 (standard state) / min.
4. The method for dephosphorizing hot metal according to any one of items 1 to 3.
JP2000002708A 2000-01-11 2000-01-11 How to remove hot metal Expired - Fee Related JP3733819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002708A JP3733819B2 (en) 2000-01-11 2000-01-11 How to remove hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002708A JP3733819B2 (en) 2000-01-11 2000-01-11 How to remove hot metal

Publications (2)

Publication Number Publication Date
JP2001192724A true JP2001192724A (en) 2001-07-17
JP3733819B2 JP3733819B2 (en) 2006-01-11

Family

ID=18531779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002708A Expired - Fee Related JP3733819B2 (en) 2000-01-11 2000-01-11 How to remove hot metal

Country Status (1)

Country Link
JP (1) JP3733819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095139A (en) * 2006-10-11 2008-04-24 Sumitomo Metal Ind Ltd Method for improving dischargeability of slag after dephosphorization treatment, and method for dephosphorizing molten pig iron using the same
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095139A (en) * 2006-10-11 2008-04-24 Sumitomo Metal Ind Ltd Method for improving dischargeability of slag after dephosphorization treatment, and method for dephosphorizing molten pig iron using the same
JP2009249723A (en) * 2008-04-10 2009-10-29 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron

Also Published As

Publication number Publication date
JP3733819B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
WO2002022891A1 (en) Refining agent and refining method
JP3503176B2 (en) Hot metal dephosphorizer for injection
JP3687433B2 (en) How to remove hot metal
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP6984731B2 (en) How to remove phosphorus from hot metal
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP5553167B2 (en) How to remove hot metal
JP2008266666A (en) Method for dephosphorizing molten pig iron
JP2013227664A (en) Molten iron preliminary treatment method
JP3525766B2 (en) Hot metal dephosphorization method
CN114457204A (en) Method for dephosphorizing molten iron
JP5182322B2 (en) Hot phosphorus dephosphorization method
JP3733819B2 (en) How to remove hot metal
JP3888264B2 (en) Method for producing low phosphorus hot metal
WO2003029497A1 (en) Method for dephsophorization of molten irona
JP2006188769A (en) Production method of low phosphorus molten iron
JP3297801B2 (en) Hot metal removal method
JP3912176B2 (en) Method for producing low phosphorus hot metal
JP6642739B2 (en) Hot metal dephosphorization method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP2000345226A (en) Method for dephosphorizing molten iron
JP3769875B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP2004190114A (en) Method for dephosphorizing molten pig iron
JP2003105419A (en) Method for pretreating molten iron

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees