JP2001192537A - Epoxy resin composition for semiconductor sealing and semiconductor device using same - Google Patents

Epoxy resin composition for semiconductor sealing and semiconductor device using same

Info

Publication number
JP2001192537A
JP2001192537A JP2000004957A JP2000004957A JP2001192537A JP 2001192537 A JP2001192537 A JP 2001192537A JP 2000004957 A JP2000004957 A JP 2000004957A JP 2000004957 A JP2000004957 A JP 2000004957A JP 2001192537 A JP2001192537 A JP 2001192537A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
component
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004957A
Other languages
Japanese (ja)
Other versions
JP3668403B2 (en
Inventor
Kazumasa Igarashi
一雅 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000004957A priority Critical patent/JP3668403B2/en
Publication of JP2001192537A publication Critical patent/JP2001192537A/en
Application granted granted Critical
Publication of JP3668403B2 publication Critical patent/JP3668403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for semiconductor sealing excellent in electrical insulating properties and also provide a semiconductor device having an electromagnetic-wave shielding function. SOLUTION: This epoxy resin composition contains (A) an epoxy resin, (B) a phenol resin, (C) a cure accelerator, and (D) a component comprising at least either (d1) conductive particles having the surfaces treated with an insulating inorganic material or (d2) magnetic particles having the surfaces treated with an insulating inorganic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充分な電気的絶縁
性と電磁波遮蔽機能とを備えた半導体封止用エポキシ樹
脂組成物およびそれを用いて得られる半導体装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having a sufficient electrical insulation and an electromagnetic wave shielding function, and a semiconductor device obtained by using the same.

【0002】[0002]

【従来の技術】従来より、半導体素子をトランスファー
成形により樹脂モールドしてなる樹脂封止型の半導体装
置は、信頼性、量産性および低価格等の点において優れ
ていることからセラミック封止型半導体装置とともに広
く用いられている。
2. Description of the Related Art Conventionally, a resin-encapsulated semiconductor device in which a semiconductor element is resin-molded by transfer molding is excellent in reliability, mass productivity, low cost, and the like. Widely used with equipment.

【0003】一般に、電気機器では電磁環境両立性(E
MC:Electromagnetic Compatibility )の問題が顕在
化しており、不要電磁波の放出と耐性の両面からの対策
がなされている。特に、近年、情報通信機器は小型高機
能化が進み、高性能化のために半導体素子の動作周波数
が一段と上昇する傾向にある。特にデジタル信号の高速
化では消費電力の低減のために信号の振幅値が低下して
おり、微弱な高周波ノイズでも誤動作する危険性が高ま
っている。しかし、従来の対策の一つである半導体パッ
ケージを金属キャップで覆ったりすることは、余分な実
装空間を必要とする等の理由により電子部品の密度実装
が充分上がらず他の解決方法が検討されている。現在で
は、このような背景によって高密度実装に適した電磁波
遮蔽技術が求められており、エポキシ樹脂組成物自体が
電磁波遮蔽機能を有すれば電子部品の高密度実装化が図
られることとなり、上記のような点を中心にさらなる検
討がなされている。しかしながら、従来のシリカ粉末を
主体とする無機質充填剤を混合分散したエポキシ樹脂組
成物からなる硬化体では電磁波遮蔽機能を全く有してい
なかった。
In general, electromagnetic compatibility (E
The problem of MC (Electromagnetic Compatibility) has become apparent, and countermeasures have been taken from both emission and resistance to unnecessary electromagnetic waves. In particular, in recent years, information communication devices have become smaller and more sophisticated, and the operating frequency of semiconductor devices has tended to further increase for higher performance. In particular, when the speed of a digital signal is increased, the amplitude value of the signal is reduced in order to reduce the power consumption. However, covering the semiconductor package with a metal cap, which is one of the conventional measures, requires extra mounting space, and the density mounting of electronic components is not sufficiently increased, and other solutions have been studied. ing. At present, electromagnetic wave shielding technology suitable for high-density mounting is required due to this background.If the epoxy resin composition itself has an electromagnetic wave shielding function, high-density mounting of electronic components will be achieved, Further studies have been made focusing on such points. However, a conventional cured product made of an epoxy resin composition in which an inorganic filler mainly composed of silica powder is mixed and dispersed has no electromagnetic wave shielding function at all.

【0004】[0004]

【発明が解決しようとする課題】そして、上記のような
観点から、例えば、半導体素子の封止樹脂自体に電磁波
遮蔽機能を持たせる技術として、特開平5−12947
6号公報に記載のように、電磁波遮蔽のための電波吸収
材を配合した封止材料により半導体パッケージの外側を
封止した封止層と従来の絶縁性封止樹脂でその内側部分
を樹脂封止した2層構造の樹脂封止型半導体装置が提案
されている。しかしながら、このような2層構造の樹脂
封止型半導体装置を得るには、成形金型を2個使用しな
ければならない等の点から生産性や経済性に問題があ
る。また、上記同公報には、リードフレームのピン間や
プリント基板の配線間のリーク防止策として、封止材料
の融点以上の樹脂やゴム等で表面コーティングした電波
吸収体粒子を配合した封止材料を用いて樹脂封止する、
すなわち、一層構造で電磁波遮蔽機能を持たせることも
併せて提案している。しかしながら、上記樹脂やゴム等
の有機材料によるコーティングはその硬度が低いために
封止材料の溶融混練工程における高い機械的シェアー
(剪断力)のもとでは、上記有機材料が剥がれてしまい
充分な電気的絶縁性を維持することはできないという問
題があった。
In view of the above, for example, Japanese Patent Application Laid-Open No. 5-12947 discloses a technique for providing a sealing resin for a semiconductor element with an electromagnetic wave shielding function.
As described in Japanese Patent Application Publication No. 6, JP-A-2006-15064, a sealing layer sealing the outside of a semiconductor package with a sealing material containing a radio wave absorbing material for shielding electromagnetic waves and a conventional insulating sealing resin are used to seal the inside of the package with a resin. There has been proposed a resin-sealed semiconductor device having a two-layer structure that is stopped. However, in order to obtain such a two-layer resin-sealed semiconductor device, there are problems in productivity and economy from the point that two molding dies must be used. In addition, the above publication discloses a sealing material containing radio wave absorber particles whose surface is coated with a resin or rubber or the like having a melting point or higher than the melting point of the sealing material, as a measure for preventing leakage between pins of a lead frame and wiring between printed circuit boards. Resin sealing using
That is, it has also been proposed to provide an electromagnetic wave shielding function with a single layer structure. However, the coating with an organic material such as the resin or rubber has a low hardness, so that under a high mechanical shear (shearing force) in the melting and kneading process of the sealing material, the organic material is peeled off and sufficient electric power is generated. However, there is a problem that the electrical insulation cannot be maintained.

【0005】本発明は、このような事情に鑑みなされた
ものであって、電気的絶縁性に優れた半導体封止用エポ
キシ樹脂組成物およびそれを用いた、電磁波遮蔽機能を
有する半導体装置の提供をその目的とする。
The present invention has been made in view of such circumstances, and provides an epoxy resin composition for semiconductor encapsulation having excellent electrical insulation properties and a semiconductor device having an electromagnetic wave shielding function using the same. For that purpose.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、下記の(A)〜(D)成分を含有する半
導体封止用エポキシ樹脂組成物を第1の要旨とする。 (A)エポキシ樹脂。 (B)フェノール樹脂。 (C)硬化促進剤。 (D)下記の(d1)および(d2)の少なくとも一
方。 (d1)表面が絶縁性無機材料で処理された導電性粒
子。 (d2)表面が絶縁性無機材料で処理された磁性粒子。
In order to achieve the above-mentioned object, the present invention provides, as a first gist, an epoxy resin composition for semiconductor encapsulation containing the following components (A) to (D). (A) Epoxy resin. (B) a phenolic resin. (C) a curing accelerator. (D) At least one of the following (d1) and (d2). (D1) Conductive particles whose surface has been treated with an insulating inorganic material. (D2) Magnetic particles whose surface has been treated with an insulating inorganic material.

【0007】また、本発明は、上記半導体封止用エポキ
シ樹脂組成物を用いて半導体素子を封止してなる半導体
装置を第2の要旨とする。
[0007] A second aspect of the present invention is a semiconductor device in which a semiconductor element is sealed by using the epoxy resin composition for semiconductor sealing.

【0008】すなわち、本発明者は、電磁波遮蔽機能に
優れた樹脂封止型の半導体装置を得るために、その樹脂
封止に用いられるエポキシ樹脂組成物を中心に一連の研
究を重ねた。その結果、導電性粒子や磁性粒子の表面を
絶縁性無機材料で処理してなる構造の粒子を用いると、
例えば、先に述べたような2層構造の樹脂封止型半導体
装置のような特殊なパッケージ構造をとることなく電磁
波遮蔽機能と電気的絶縁性の双方に優れた封止材料とな
るエポキシ樹脂組成物が得られることを見出し本発明に
到達した。
That is, the present inventor has conducted a series of studies focusing on an epoxy resin composition used for resin encapsulation in order to obtain a resin-encapsulated semiconductor device having an excellent electromagnetic wave shielding function. As a result, when using particles having a structure obtained by treating the surfaces of conductive particles and magnetic particles with an insulating inorganic material,
For example, an epoxy resin composition which is a sealing material excellent in both an electromagnetic wave shielding function and an electrical insulating property without taking a special package structure such as the above-described two-layer resin-sealed semiconductor device. It was found that a product was obtained, and the present invention was reached.

【0009】[0009]

【発明の実施の形態】つぎに、本発明の実施の形態につ
いて詳しく説明する。
Next, an embodiment of the present invention will be described in detail.

【0010】本発明の半導体封止用エポキシ樹脂組成物
は、エポキシ樹脂(A成分)と、フェノール樹脂(B成
分)と、硬化促進剤(C成分)と、特殊な複合無機粒子
(D成分)とを用いて得られるものであり、通常、粉末
状あるいはこれを打錠したタブレット状になっている。
または、このエポキシ樹脂組成物を溶融混練した後、略
円柱状の顆粒体に成形した顆粒状になっている。
The epoxy resin composition for semiconductor encapsulation of the present invention comprises an epoxy resin (component A), a phenol resin (component B), a curing accelerator (component C), and special composite inorganic particles (component D). And is usually in the form of a powder or a tablet obtained by compressing the powder.
Alternatively, the epoxy resin composition is melt-kneaded and then formed into a substantially columnar granule.

【0011】上記エポキシ樹脂(A成分)としては、常
温(25℃)で固形を示すものであれば特に限定するも
のではなく従来公知のもの、例えば、ビフェニル型エポ
キシ樹脂、フェノールノボラック型エポキシ樹脂、クレ
ゾールノボラック型エポキシ樹脂等があげられる。
The epoxy resin (component A) is not particularly limited as long as it shows a solid at room temperature (25 ° C.), and is a conventionally known one such as a biphenyl type epoxy resin, a phenol novolak type epoxy resin, Cresol novolak type epoxy resin and the like can be mentioned.

【0012】上記A成分とともに用いられるフェノール
樹脂(B成分)は、上記エポキシ樹脂(A成分)の硬化
剤としての作用を奏するものであり、常温(25℃)で
固形を示すものであれば特に限定するものではなく従来
公知のもの、例えば、フェノールノボラック、クレゾー
ルノボラック、ビスフェノールA型ノボラック、ナフト
ールノボラックおよびフェノールアラルキル樹脂等があ
げられる。
The phenolic resin (component (B)) used together with the component (A) serves as a curing agent for the epoxy resin (component (A)). It is not limited and includes conventionally known ones such as phenol novolak, cresol novolak, bisphenol A type novolak, naphthol novolak, and phenol aralkyl resin.

【0013】上記エポキシ樹脂(A成分)とフェノール
樹脂(B成分)との配合割合は、エポキシ樹脂中のエポ
キシ基1当量に対してフェノール樹脂中の水酸基当量を
0.5〜1.6の範囲に設定することが好ましい。より
好ましくは0.8〜1.2の範囲に設定することであ
る。
The mixing ratio of the epoxy resin (component A) and the phenol resin (component B) is such that the hydroxyl equivalent in the phenol resin is 0.5 to 1.6 with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferable to set More preferably, it is set in the range of 0.8 to 1.2.

【0014】上記A成分およびB成分とともに用いられ
る硬化促進剤(C成分)としては、特に限定するもので
はなく従来公知のもの、例えば、1,8−ジアザ−ビシ
クロ(5,4,0)ウンデセン−7、トリエチレンジア
ミン等の3級アミン類、2−メチルイミダゾール等のイ
ミダゾール類、トリフェニルホスフィン、テトラフェニ
ルホスホニウムテトラフェニルボレート等のリン系硬化
促進剤等があげられる。
The curing accelerator (component (C)) used together with the above-mentioned components (A) and (B) is not particularly limited and may be a conventionally known one such as 1,8-diaza-bicyclo (5,4,0) undecene. -7, tertiary amines such as triethylenediamine, imidazoles such as 2-methylimidazole, and phosphorus-based curing accelerators such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate.

【0015】上記硬化促進剤(C成分)の含有量は、通
常、上記フェノール樹脂(B成分)100重量部(以下
「部」と略す)に対して0.5〜10部の範囲に設定さ
れる。
The content of the above-mentioned curing accelerator (component C) is usually set in the range of 0.5 to 10 parts with respect to 100 parts by weight (hereinafter abbreviated as "parts") of the phenol resin (component B). You.

【0016】上記A〜C成分とともに用いられる特殊な
複合無機粒子(D成分)は、表面が絶縁性無機材料で処
理された導電性粒子(d1)および表面が絶縁性無機材
料で処理された磁性粒子(d2)の少なくとも一方から
なるものである。
The special composite inorganic particles (component D) used together with the components A to C are a conductive particle (d1) whose surface is treated with an insulating inorganic material and a magnetic particle whose surface is treated with an insulating inorganic material. It is composed of at least one of the particles (d2).

【0017】上記絶縁性無機材料による処理対象となる
導電性粒子,磁性粒子としては、銅、鉄、ニッケル、
金、銀、アルミニウム、亜鉛、ステンレス、ヘマタイト
(Fe 2 3 )、マグネタイト(Fe3 4 )、さらに
一般式:n(MO)・Fe2 3 〔式中、Mは2価の金
属原子であり、nは正数である。また、MOの繰り返し
時においてMは同種であってもよく異種であってもよ
い。〕で表される各種フェライト、ケイ素鋼粉、パーマ
ロイ、Co基アモルファス合金等どのような各種金属粉
やその合金粉、磁性粉が用いられる。上記一般式中のM
で表される2価の金属原子としては、例えば、Mn、C
o、Ni、Cu、Zn、Ba、Mg等があげられる。こ
れら粒子は単独でもしくは2種以上併せて用いられる。
An object to be treated with the above-mentioned insulating inorganic material
Conductive and magnetic particles include copper, iron, nickel,
Gold, silver, aluminum, zinc, stainless steel, hematite
(Fe TwoOThree), Magnetite (FeThreeOFour),further
General formula: n (MO) · FeTwoO Three[Where M is divalent gold
And n is a positive number. Also, repeat of MO
Sometimes M may be the same or different
No. Ferrite, silicon steel powder, and permanent
Any metal powder such as Roy, Co-based amorphous alloy
And its alloy powder and magnetic powder. M in the above general formula
Examples of the divalent metal atom represented by
o, Ni, Cu, Zn, Ba, Mg and the like. This
These particles are used alone or in combination of two or more.

【0018】上記導電性粒子,磁性粒子としては、最大
粒子径が200μm以下で、平均粒子径が0.5〜50
μmの範囲のものを用いることが好ましく、特に好まし
くは平均粒子径が2〜30μmの範囲である。上記最大
粒子径および平均粒子径は、例えば、レーザー回析散乱
式粒度分布測定装置を用いて測定することができる。
The conductive particles and the magnetic particles have a maximum particle diameter of 200 μm or less and an average particle diameter of 0.5 to 50.
It is preferable to use one having a size in the range of μm, and particularly preferably in the range of 2 to 30 μm. The maximum particle size and the average particle size can be measured, for example, using a laser diffraction / scattering type particle size distribution analyzer.

【0019】上記導電性粒子,磁性粒子の表面の処理に
用いられる絶縁性無機材料としては、電気絶縁性を有す
るもの、例えば、シリカ微粉末やアルミナ微粉末等があ
げられる。特にシリカ微粉末が好ましく用いられ、なか
でも球状シリカ微粉末、摩砕処理シリカ微粉末、破砕状
シリカ微粉末等が好ましい。そして、粒子径が微細であ
るという観点から、一次粒子の平均粒子径が1〜100
0nmのシリカ微粉末が好適に用いられ、特に一次粒子
の平均粒子径が10〜500nmのシリカ微粉末が好適
である。
Examples of the insulating inorganic material used for treating the surface of the conductive particles and the magnetic particles include those having electric insulation, for example, silica fine powder and alumina fine powder. Particularly, silica fine powder is preferably used, and among them, spherical silica fine powder, milled silica fine powder, crushed silica fine powder and the like are preferable. And from a viewpoint that a particle diameter is fine, the average particle diameter of a primary particle is 1-100.
A fine silica powder of 0 nm is suitably used, and a fine silica powder having an average primary particle diameter of 10 to 500 nm is particularly preferable.

【0020】上記表面が絶縁性無機材料で処理された導
電性粒子(d1),表面が絶縁性無機材料で処理された
磁性粒子(d2)である特殊な複合無機粒子(D成分)
は、例えば、つぎのようにして製造される。すなわち、
まず導電性粒子および磁性粒子の少なくとも一方と絶縁
性無機材料を高速回転するローター、ステーターおよび
循環回路を有する表面処理装置に投入し、圧縮,摩擦,
剪断等の機械的衝撃力を利用した機械的作用を繰り返し
て受ける処理法による複合化粒子表面処理法等の従来公
知の複合化方法を用いて上記特殊な複合無機粒子(D成
分)が製造される。このような処理により、上記導電性
粒子,磁性粒子の表面に絶縁性無機材料がまぶされて、
いわば絶縁性無機材料によって被覆された状態となる。
Special composite inorganic particles (D component) having conductive particles (d1) whose surface is treated with an insulating inorganic material and magnetic particles (d2) whose surface is treated with an insulating inorganic material
Is manufactured, for example, as follows. That is,
First, at least one of the conductive particles and the magnetic particles and the insulating inorganic material are put into a surface treatment device having a rotor, a stator, and a circulation circuit that rotates at a high speed.
The above-mentioned special composite inorganic particles (D component) are manufactured using a conventionally known composite method such as a composite particle surface treatment method by a treatment method that repeatedly receives a mechanical action utilizing a mechanical impact force such as shearing. You. By such a treatment, the surface of the conductive particles and the magnetic particles is covered with an insulating inorganic material,
In other words, it is covered with the insulating inorganic material.

【0021】上記特殊な複合無機粒子(D成分)の含有
量は、エポキシ樹脂組成物全体中の10〜90重量%の
範囲に設定することが好ましい。より好ましくは20〜
85重量%であり、特に好ましくは40〜80重量%で
ある。すなわち、特殊な複合無機粒子(D成分)の含有
量が10重量%を下回り少な過ぎると、エポキシ樹脂組
成物硬化体(封止樹脂)自身の電磁波遮蔽効果が不充分
で所望の効果を得ることが困難となり、90重量%を超
え多過ぎると、低圧トランスファー成形時の溶融粘度が
高くなり過ぎて流動性等が低下する傾向がみられるから
である。
The content of the special composite inorganic particles (component (D)) is preferably set in the range of 10 to 90% by weight in the whole epoxy resin composition. More preferably 20 to
It is 85% by weight, particularly preferably 40 to 80% by weight. That is, when the content of the special composite inorganic particles (D component) is less than 10% by weight and is too small, the electromagnetic wave shielding effect of the cured epoxy resin composition (sealing resin) itself is insufficient and the desired effect is obtained. This is because if the content exceeds 90% by weight, the melt viscosity at the time of low-pressure transfer molding tends to be too high, and the fluidity tends to decrease.

【0022】また、本発明の半導体封止用エポキシ樹脂
組成物には、通常、上記A〜D成分とともに無機質充填
剤を用いてもよい。この無機質充填剤としては、特に限
定するものではなく従来公知の各種無機質充填剤があげ
られ、例えば、溶融シリカ粉末や結晶性シリカ粉末等の
シリカ粉末、炭酸カルシウム粉末、チタン白、アルミナ
粉末、窒化ケイ素粉末等があげられる。これらは単独で
もしくは2種以上併せて用いられる。なかでも、得られ
るエポキシ樹脂組成物硬化体の線膨張係数を低減できる
という点から、上記シリカ粉末を用いることが好まし
く、さらには上記シリカ粉末のなかでも球状シリカ粉
末、摩砕処理シリカ粉末、破砕状シリカ粉末が好ましく
用いられ、特に球状溶融シリカ粉末を用いることが好ま
しい。そして、上記無機質充填剤としては、最大粒子径
が100μm以下のものを用いることが好ましく、通
常、下限値は0.1μm程度である。さらに、上記最大
粒子径とともに、平均粒子径が1〜20μmの範囲のも
のを用いることが好ましい。なお、上記最大粒子径およ
び平均粒子径は、先の特殊な複合無機粒子(D成分)の
場合と同様、例えば、レーザー回析散乱式粒度分布測定
装置を用いて測定することができる。
In the epoxy resin composition for encapsulating a semiconductor of the present invention, usually, an inorganic filler may be used together with the above components A to D. Examples of the inorganic filler include, but are not particularly limited to, conventionally known various inorganic fillers, for example, silica powder such as fused silica powder and crystalline silica powder, calcium carbonate powder, titanium white, alumina powder, and nitrided powder. And silicon powder. These may be used alone or in combination of two or more. Above all, it is preferable to use the above silica powder from the viewpoint that the coefficient of linear expansion of the obtained cured epoxy resin composition can be reduced. Further, among the above silica powders, spherical silica powder, milled silica powder, crushed silica powder, Silica powder is preferably used, and spherical fused silica powder is particularly preferably used. The inorganic filler preferably has a maximum particle diameter of 100 μm or less, and usually has a lower limit of about 0.1 μm. Further, it is preferable to use those having an average particle diameter in the range of 1 to 20 μm together with the maximum particle diameter. The maximum particle size and the average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer as in the case of the special composite inorganic particles (D component).

【0023】上記無機質充填剤の含有量は、エポキシ樹
脂組成物全体中の50重量%以下に設定することが好ま
しい。より好ましくは30重量%以下である。すなわ
ち、無機質充填剤の含有量が50重量%を超えて多くな
ると、エポキシ樹脂組成物の溶融粘度が高くなることか
ら、充填性が悪化する傾向がみられるからである。
The content of the inorganic filler is preferably set at 50% by weight or less based on the whole epoxy resin composition. It is more preferably at most 30% by weight. That is, when the content of the inorganic filler is more than 50% by weight, the melt viscosity of the epoxy resin composition is increased, so that the filling property tends to be deteriorated.

【0024】本発明の半導体封止用エポキシ樹脂組成物
には、上記A〜D成分および無機質充填剤以外に必要に
応じて他の添加剤を適宜配合してもよい。
The epoxy resin composition for semiconductor encapsulation of the present invention may optionally contain other additives in addition to the above components A to D and the inorganic filler.

【0025】上記添加剤としては、低応力化剤、顔料、
離型剤、カップリング剤および難燃剤等があげられる。
The additives include a stress reducing agent, a pigment,
Release agents, coupling agents, flame retardants and the like.

【0026】上記低応力化剤としては、側鎖エチレング
リコールタイプジメチルシロキサン等のシリコーン化合
物、アクリロニトリル−ブタジエンゴム等があげられ
る。
Examples of the stress reducing agent include silicone compounds such as side chain ethylene glycol type dimethylsiloxane, acrylonitrile-butadiene rubber and the like.

【0027】上記顔料としては、カーボンブラック、酸
化チタン等があげれらる。また、上記離型剤としては、
ポリエチレンワックス、カルナバワックス、脂肪酸塩等
があげられる。
Examples of the pigment include carbon black and titanium oxide. Further, as the release agent,
Examples include polyethylene wax, carnauba wax, and fatty acid salts.

【0028】上記カップリング剤としては、γ−グリシ
ドキシプロピルトリメトキシシラン、β−(3,4−エ
ポキシシクロヘキシル)エチルトリメトキシシラン等の
シランカップリング剤等があげられる。
Examples of the above coupling agent include silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.

【0029】また、上記難燃剤としては、ブロム化エポ
キシ樹脂等があげられ、これに三酸化アンチモン等の難
燃助剤が用いられる。
Examples of the flame retardant include a brominated epoxy resin and the like, and a flame retardant aid such as antimony trioxide is used.

【0030】さらに、上記難燃剤以外に、下記の一般式
(1)で表される多面体形状の複合化金属水酸化物を用
いることができる。この複合化金属水酸化物は、結晶形
状が多面体形状を有するものであり、従来の六角板形状
を有するもの、あるいは、鱗片状等のように、いわゆる
厚みの薄い平板形状の結晶形状を有するものではなく、
縦、横とともに厚み方向(c軸方向)への結晶成長が大
きい、例えば、板状結晶のものが厚み方向(c軸方向)
に結晶成長してより立体的かつ球状に近似させた粒状の
結晶形状、例えば、略12面体、略8面体、略4面体等
の形状を有する複合化金属水酸化物をいう。
Further, in addition to the above flame retardant, a polyhedral complex metal hydroxide represented by the following general formula (1) can be used. The composite metal hydroxide has a polyhedral crystal shape, and has a conventional hexagonal plate shape, or a so-called thin plate-like crystal shape such as a scale-like shape. not,
The crystal growth in the thickness direction (c-axis direction) is large both vertically and horizontally. For example, a plate-shaped crystal has a large thickness direction (c-axis direction).
A composite metal hydroxide having a granular crystal shape that is more three-dimensionally and spherically formed by crystal growth, such as, for example, a substantially dodecahedral, a substantially octahedral, or a substantially tetrahedral shape.

【0031】[0031]

【化1】 Embedded image

【0032】上記一般式(1)で表される複合化金属水
酸化物に関して、式(1)中の金属元素を示すMとして
は、Al,Mg,Ca,Ni,Co,Sn,Zn,C
u,Fe,Ti,B等があげられる。
With respect to the composite metal hydroxide represented by the general formula (1), M representing the metal element in the formula (1) is represented by Al, Mg, Ca, Ni, Co, Sn, Zn, C
u, Fe, Ti, B and the like.

【0033】また、上記一般式(1)で表される複合化
金属水酸化物中のもう一つの金属元素を示すQとして
は、例えば、Fe,Co,Ni,Pd,Cu,Zn等が
あげられ、単独でもしくは2種以上併せて選択される。
The Q representing another metal element in the composite metal hydroxide represented by the general formula (1) is, for example, Fe, Co, Ni, Pd, Cu, Zn or the like. Selected alone or in combination of two or more.

【0034】このような結晶形状が多面体形状を有する
複合化金属水酸化物は、例えば、複合化金属水酸化物の
製造工程における各種条件等を制御することにより、
縦,横とともに厚み方向(c軸方向)への結晶成長が大
きい、所望の多面体形状、例えば、略12面体、略8面
体、略4面体等の形状を有する複合化金属水酸化物を得
ることができ、通常、これらの混合物からなる。
The composite metal hydroxide having such a polyhedral crystal shape can be obtained, for example, by controlling various conditions in the production process of the composite metal hydroxide.
Obtaining a composite metal hydroxide having a desired polyhedral shape, such as a substantially dodecahedral, a substantially octahedral, or a substantially tetrahedral shape, in which crystal growth in the thickness direction (c-axis direction) is large both vertically and horizontally. And usually consists of these mixtures.

【0035】上記多面体形状を有する複合化金属水酸化
物の具体的な代表例としては、酸化マグネシウム・酸化
ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和
物、酸化マグネシウム・酸化銅の水和物等があげられ
る。
Specific representative examples of the composite metal hydroxide having the polyhedral shape include hydrates of magnesium oxide / nickel oxide, hydrates of magnesium oxide / zinc oxide, and hydrates of magnesium oxide / copper oxide. Japanese products.

【0036】また、上記多面体形状を有する複合化金属
水酸化物のアスペクト比は、通常1〜8、好ましくは1
〜7、特に好ましくは1〜4である。ここでいうアスペ
クト比とは、複合化金属水酸化物の長径と短径との比で
表したものである。すなわち、アスペクト比が8を超え
ると、この複合化金属水酸化物を含有するエポキシ樹脂
組成物が溶融したときの粘度低下に対する効果が乏しく
なる。
The composite metal hydroxide having the polyhedral shape has an aspect ratio of usually 1 to 8, preferably 1 to 8.
To 7, particularly preferably 1 to 4. The term “aspect ratio” as used herein refers to the ratio of the major axis to the minor axis of the composite metal hydroxide. That is, when the aspect ratio exceeds 8, the effect of lowering the viscosity when the epoxy resin composition containing the composite metal hydroxide is melted becomes poor.

【0037】本発明の半導体封止用エポキシ樹脂組成物
は、例えば、つぎのようにして製造することができる。
すなわち、エポキシ樹脂(A成分)、フェノール樹脂
(B成分)、硬化促進剤(C成分)および特殊な複合無
機粒子(D成分)、さらに必要に応じて無機質充填剤、
低応力化剤、顔料、離型剤、カップリング剤および難燃
剤等の他の添加剤を所定量配合し、熱ロールやエクスト
ルーダー、ニーダー等を用い充分に溶融分散により混合
した後、冷却して粉砕し、場合によりタブレット状に圧
縮成形するという一連の工程により目的とする半導体封
止用エポキシ樹脂組成物を製造することができる。
The epoxy resin composition for semiconductor encapsulation of the present invention can be produced, for example, as follows.
That is, an epoxy resin (A component), a phenol resin (B component), a curing accelerator (C component) and a special composite inorganic particle (D component), and if necessary, an inorganic filler,
A predetermined amount of other additives such as a low-stress agent, a pigment, a release agent, a coupling agent, and a flame retardant is blended, and the mixture is sufficiently melt-dispersed using a hot roll, an extruder, a kneader, etc., and then cooled. The desired epoxy resin composition for semiconductor encapsulation can be produced by a series of steps of pulverizing and optionally compressing and molding into a tablet shape.

【0038】このようにして得られる半導体封止用エポ
キシ樹脂組成物を用いての半導体素子の封止方法として
は、特に限定するものではなく、通常の低圧トランスフ
ァー成形等の公知の成形方法があげられる。
The method for encapsulating a semiconductor device using the epoxy resin composition for semiconductor encapsulation thus obtained is not particularly limited, and a known molding method such as ordinary low-pressure transfer molding can be used. Can be

【0039】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0040】[0040]

【実施例1】平均粒子径3μmのMn−Zn系ソフトフ
ェライト(式:Mn0.55Zn0.40Fe2.054 ・Fe2
3 )と一次粒子径が約12nmの球状シリカ微粉末を
準備した。そして、上記Mn−Zn系ソフトフェライト
100部に対して上記球状シリカ微粉末が10部となる
よう用い、高速回転するローター、ステーターおよび循
環回路を有する表面処理装置へ投入し、回転速度480
0rpmで3分間運転した後、この装置から排出して本
発明で用いる、Mn−Zn系ソフトフェライト表面を上
記球状シリカ微粉末で絶縁被覆してなる複合無機粒子を
作製した。
Example 1 Mn--Zn soft ferrite having an average particle diameter of 3 μm (formula: Mn 0.55 Zn 0.40 Fe 2.05 O 4 .Fe 2
O 3 ) and a spherical silica fine powder having a primary particle diameter of about 12 nm were prepared. Then, the spherical silica fine powder was used in an amount of 10 parts with respect to 100 parts of the Mn-Zn soft ferrite, and charged into a surface treatment apparatus having a high-speed rotating rotor, a stator and a circulation circuit, and a rotation speed of 480.
After operating at 0 rpm for 3 minutes, the inorganic fine particles were discharged from the apparatus and used in the present invention, and the surface of the Mn—Zn-based soft ferrite was coated with the above-mentioned spherical silica fine powder so as to form composite inorganic particles.

【0041】つぎに、上記複合無機粒子419部と、o
−クレゾールノボラック型エポキシ樹脂(エポキシ当量
195、軟化点75℃)100部と、フェノールノボラ
ック樹脂硬化剤(水酸基当量106、軟化点82℃)6
0部と、トリフェニルホスフィン1部と、臭素化フェノ
ールノボラック型エポキシ樹脂(エポキシ当量280)
20部と、三酸化アンチモン15部と、カーボンブラッ
ク2部と、シランカップリング剤(γ−グリシドキシプ
ロピルトリメトキシシラン)1部と、ポリエチレンワッ
クス2部を同時に配合し、95〜100℃に加熱した熱
ロールで3分間溶融混練して、冷却した後10メッシュ
パスの粉末状エポキシ樹脂組成物を得た。
Next, 419 parts of the composite inorganic particles and o
-100 parts of cresol novolak type epoxy resin (epoxy equivalent 195, softening point 75 ° C) and phenol novolak resin curing agent (hydroxyl equivalent 106, softening point 82 ° C) 6
0 parts, 1 part of triphenylphosphine, and a brominated phenol novolak type epoxy resin (epoxy equivalent: 280)
20 parts, 15 parts of antimony trioxide, 2 parts of carbon black, 1 part of a silane coupling agent (γ-glycidoxypropyltrimethoxysilane) and 2 parts of polyethylene wax are simultaneously compounded, and the mixture is heated to 95 to 100 ° C. The mixture was melted and kneaded with a heated heat roll for 3 minutes, and after cooling, a 10-mesh pass powdered epoxy resin composition was obtained.

【0042】[0042]

【実施例2】Mn−Zn系ソフトフェライトに代えて平
均粒子径20μmの鱗片状ニッケル粉末を用いた。それ
以外は実施例1と同様にして目的とする10メッシュパ
スの粉末状エポキシ樹脂組成物を得た。
Example 2 A flaky nickel powder having an average particle diameter of 20 μm was used in place of the Mn—Zn soft ferrite. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0043】[0043]

【実施例3】複合無機粒子の配合量を62部に代え、同
時に平均粒径35μmの溶融シリカ粉末を357部用い
た。それ以外は実施例1と同様にして目的とする10メ
ッシュパスの粉末状エポキシ樹脂組成物を得た。
Example 3 The amount of the composite inorganic particles was changed to 62 parts, and at the same time, 357 parts of a fused silica powder having an average particle diameter of 35 μm were used. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0044】[0044]

【実施例4】複合無機粒子の配合量を1809部に代え
た。それ以外は実施例1と同様にして目的とする10メ
ッシュパスの粉末状エポキシ樹脂組成物を得た。
Example 4 The amount of the composite inorganic particles was changed to 1809 parts. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0045】[0045]

【実施例5】一次粒子径が約12nmの球状シリカ微粉
末に代えて一次粒子径が約500nmの球状シリカ微粉
末を用いた。それ以外は実施例1と同様にして目的とす
る10メッシュパスの粉末状エポキシ樹脂組成物を得
た。
Example 5 A spherical silica fine powder having a primary particle diameter of about 500 nm was used instead of a spherical silica fine powder having a primary particle diameter of about 12 nm. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0046】[0046]

【実施例6】一次粒子径が約12nmの球状シリカ微粉
末に代えて一次粒子径が約5nmの球状シリカ微粉末を
用いた。それ以外は実施例2と同様にして目的とする1
0メッシュパスの粉末状エポキシ樹脂組成物を得た。
Example 6 A spherical silica fine powder having a primary particle diameter of about 5 nm was used instead of a spherical silica fine powder having a primary particle diameter of about 12 nm. Except for this, the target 1 is the same as in the second embodiment.
A 0 mesh pass powdered epoxy resin composition was obtained.

【0047】[0047]

【比較例1】Mn−Zn系ソフトフェライトに代えて平
均粒子径35μmの球状溶融シリカ粉末を用いた。それ
以外は実施例1と同様にして目的とする10メッシュパ
スの粉末状エポキシ樹脂組成物を得た。
Comparative Example 1 A spherical fused silica powder having an average particle diameter of 35 μm was used in place of the Mn—Zn soft ferrite. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0048】[0048]

【比較例2】平均粒子径20μmの鱗片状ニッケル粉末
をそのまま表面処理することなく用いた。それ以外は実
施例1と同様にして目的とする10メッシュパスの粉末
状エポキシ樹脂組成物を得た。
Comparative Example 2 A flaky nickel powder having an average particle diameter of 20 μm was used without any surface treatment. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0049】[0049]

【比較例3】Mn−Zn系ソフトフェライトをそのまま
表面処理することなく用いた。それ以外は実施例1と同
様にして目的とする10メッシュパスの粉末状エポキシ
樹脂組成物を得た。
Comparative Example 3 Mn-Zn soft ferrite was used without surface treatment. Otherwise in the same manner as in Example 1, the desired 10-mesh pass powdery epoxy resin composition was obtained.

【0050】〔電磁波遮蔽特性〕上記のようにして得ら
れた各粉末状エポキシ樹脂組成物を用いて、直径38m
mのタブレット状に打錠成形し、その後成形圧力6.8
6MPa、金型温度175℃、成形時間2分間の条件で
成形した後、後硬化を175℃で5時間実施することに
より、厚さ2mmの80mm×80mmの板状成形物を
作製した。得られた板状成形物を送信用アンテナと受信
用アンテナとの間の試料ホルダーに固定して、測定周波
数1000MHzまでの範囲で、スペクトルアナライザ
ーで電磁波遮蔽性を測定した(一般にTR−17031
法と呼ばれている)。そして、500MHzでのシール
ド性(電磁波遮蔽特性)を電界成分と磁界成分とでそれ
ぞれ評価した。その結果を下記の表1〜3に示す。
[Electromagnetic Wave Shielding Properties] Using the powdered epoxy resin compositions obtained as described above, a diameter of 38 m was used.
m into a tablet shape, and then a molding pressure of 6.8
After molding under the conditions of 6 MPa, a mold temperature of 175 ° C., and a molding time of 2 minutes, post-curing was performed at 175 ° C. for 5 hours to produce a 2 mm-thick 80 mm × 80 mm plate-like molded product. The obtained plate-like molded product was fixed to a sample holder between a transmitting antenna and a receiving antenna, and the electromagnetic wave shielding property was measured by a spectrum analyzer in a range of a measurement frequency up to 1000 MHz (generally, TR-17031).
Called the law). Then, the shielding property (electromagnetic wave shielding property) at 500 MHz was evaluated using an electric field component and a magnetic field component. The results are shown in Tables 1 to 3 below.

【0051】〔体積抵抗率〕各粉末状エポキシ樹脂組成
物を用いて上記電磁波遮蔽特性の測定と同様にして、厚
さ3mm×直径50mmの円盤状硬化体を作製した。そ
して、銀ペーストを用いて主電極の直径30mm、ガー
ド電極の直径32mm、対抗電極の直径45mmの銀電
極を作製した後、直流500Vを印加して体積抵抗率を
測定した(JIS K 6911に準じる)。その結果
を下記の表1〜3に示す。
[Volume resistivity] A disk-shaped cured product having a thickness of 3 mm and a diameter of 50 mm was prepared using each of the powdered epoxy resin compositions in the same manner as in the measurement of the electromagnetic wave shielding characteristics described above. Then, a silver electrode having a diameter of the main electrode of 30 mm, a diameter of the guard electrode of 32 mm, and a diameter of the counter electrode of 45 mm was prepared using silver paste, and then DC 500 V was applied to measure the volume resistivity (according to JIS K 6911). ). The results are shown in Tables 1 to 3 below.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】上記表1〜表3の結果から、複合無機粒子
を含有した実施例品は電磁波遮蔽特性の値は比較例品の
ものと比べた場合その改善効果は明らかである。さら
に、実施例品の体積抵抗率も高く充分な電気的絶縁性を
有していることがわかる。これに対して比較例1品は体
積抵抗率は高かったが、電磁波遮蔽特性に劣っており、
また比較例2および3品は高い電磁波遮蔽特性を示した
が、体積抵抗率が低く電気的絶縁性に著しく劣っている
ことがわかる。
From the results shown in Tables 1 to 3, it is clear that the example product containing the composite inorganic particles has an improved electromagnetic wave shielding property when compared with the comparative product. Further, it can be seen that the volume resistivity of the example product is high and has sufficient electric insulation. In contrast, the product of Comparative Example 1 had a high volume resistivity, but was inferior in the electromagnetic wave shielding property.
In addition, Comparative Examples 2 and 3 exhibited high electromagnetic wave shielding properties, but showed low volume resistivity and extremely poor electrical insulation.

【0056】[0056]

【発明の効果】以上のように、本発明は、表面が絶縁性
無機材料で処理された導電性粒子(d1)および表面が
絶縁性無機材料で処理された磁性粒子(d2)の少なく
とも一方(D成分)を含有する半導体封止用エポキシ樹
脂組成物である。このため、例えば、先に述べたような
2層構造の樹脂封止型半導体装置のような特殊なパッケ
ージ構造をとることなく電磁波遮蔽特性と電気的絶縁性
の双方に優れた封止材料となる。したがって、このよう
なエポキシ樹脂組成物によって樹脂封止された半導体装
置は、電磁環境両立性(EMC:Electromagnetic Comp
atibility )に優れたものである。
As described above, according to the present invention, at least one of the conductive particles (d1) whose surface is treated with an insulating inorganic material and the magnetic particles (d2) whose surface is treated with an insulating inorganic material is used. (D component). For this reason, for example, a sealing material excellent in both electromagnetic wave shielding characteristics and electrical insulating properties can be obtained without taking a special package structure such as a resin-sealed semiconductor device having a two-layer structure as described above. . Therefore, a semiconductor device resin-sealed with such an epoxy resin composition has an electromagnetic compatibility (EMC: Electromagnetic Compatibility).
atibility).

フロントページの続き Fターム(参考) 4J002 CC03X CC04X CC05X CC06X CD04W CD06W DA077 DA087 DA097 DA107 DC007 DE067 DE077 DE097 DE107 DE117 EN036 EU116 EU206 EW016 EW176 FB077 FD010 FD020 FD090 FD130 FD140 GQ01 GQ05 HA09 4J036 AA01 AD01 AF01 DC05 DC41 DC46 DD07 FA02 FB07 JA07 4M109 AA01 BA01 CA21 EB18 EC07 EC20 Continued on the front page F-term (reference) 4J002 CC03X CC04X CC05X CC06X CD04W CD06W DA077 DA087 DA097 DA107 DC007 DE067 DE077 DE097 DE107 DE117 EN036 EU116 EU206 EW016 EW176 FB077 FD010 FD020 FD090 FD130 FD140 GQ01 DC01 A01 JA07 4M109 AA01 BA01 CA21 EB18 EC07 EC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の(A)〜(D)成分を含有するこ
とを特徴とする半導体封止用エポキシ樹脂組成物。 (A)エポキシ樹脂。 (B)フェノール樹脂。 (C)硬化促進剤。 (D)下記の(d1)および(d2)の少なくとも一
方。 (d1)表面が絶縁性無機材料で処理された導電性粒
子。 (d2)表面が絶縁性無機材料で処理された磁性粒子。
1. An epoxy resin composition for encapsulating a semiconductor, comprising the following components (A) to (D): (A) Epoxy resin. (B) a phenolic resin. (C) a curing accelerator. (D) At least one of the following (d1) and (d2). (D1) Conductive particles whose surface has been treated with an insulating inorganic material. (D2) Magnetic particles whose surface has been treated with an insulating inorganic material.
【請求項2】 請求項1記載の半導体封止用エポキシ樹
脂組成物を用いて半導体素子を封止してなる半導体装
置。
2. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP2000004957A 2000-01-13 2000-01-13 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same Expired - Fee Related JP3668403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004957A JP3668403B2 (en) 2000-01-13 2000-01-13 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004957A JP3668403B2 (en) 2000-01-13 2000-01-13 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2001192537A true JP2001192537A (en) 2001-07-17
JP3668403B2 JP3668403B2 (en) 2005-07-06

Family

ID=18533675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004957A Expired - Fee Related JP3668403B2 (en) 2000-01-13 2000-01-13 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3668403B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128880A (en) * 2001-10-26 2003-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic device
JP2006160560A (en) * 2004-12-07 2006-06-22 Nitto Denko Corp Spherical sintered ferrite particle and resin composition for semiconductor sealing using the same, and semiconductor unit obtained by using the resin composition
JP2007134465A (en) * 2005-11-09 2007-05-31 Toda Kogyo Corp Spherical composite particle powder for radio wave absorbing material and manufacturing method thereof, resin composition for sealign semiconductor including composite particle powder
JP2011162609A (en) * 2010-02-05 2011-08-25 Toshiba Corp Resin structure, boron adsorbent, method for manufacturing resin structure, and method for manufacturing boron adsorbent
JP2012522884A (en) * 2010-08-20 2012-09-27 東▲ひょん▼電子株式会社 Composition for composite sheet containing core-shell type filler particles, composite sheet containing the same, and method for producing composite sheet
TWI383477B (en) * 2006-06-06 2013-01-21 Nitto Denko Corp Spherical sintered ferrite particles, resin composition for semiconductor encapsulation comprising them and semiconductor devices produced by using the same
CN103554841A (en) * 2013-11-08 2014-02-05 沈阳工业大学 Resin composite material applicable to fast prototyping technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181129B (en) * 2011-03-31 2012-09-26 广州友益电子科技有限公司 Epoxy resin composition for semiconductor encapsulation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128880A (en) * 2001-10-26 2003-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic device
JP2006160560A (en) * 2004-12-07 2006-06-22 Nitto Denko Corp Spherical sintered ferrite particle and resin composition for semiconductor sealing using the same, and semiconductor unit obtained by using the resin composition
JP4651004B2 (en) * 2004-12-07 2011-03-16 戸田工業株式会社 Spherical sintered ferrite particles, resin composition for semiconductor encapsulation using the same, and semiconductor device obtained using the same
JP2007134465A (en) * 2005-11-09 2007-05-31 Toda Kogyo Corp Spherical composite particle powder for radio wave absorbing material and manufacturing method thereof, resin composition for sealign semiconductor including composite particle powder
TWI383477B (en) * 2006-06-06 2013-01-21 Nitto Denko Corp Spherical sintered ferrite particles, resin composition for semiconductor encapsulation comprising them and semiconductor devices produced by using the same
JP2011162609A (en) * 2010-02-05 2011-08-25 Toshiba Corp Resin structure, boron adsorbent, method for manufacturing resin structure, and method for manufacturing boron adsorbent
JP2012522884A (en) * 2010-08-20 2012-09-27 東▲ひょん▼電子株式会社 Composition for composite sheet containing core-shell type filler particles, composite sheet containing the same, and method for producing composite sheet
CN103554841A (en) * 2013-11-08 2014-02-05 沈阳工业大学 Resin composite material applicable to fast prototyping technology

Also Published As

Publication number Publication date
JP3668403B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP3645197B2 (en) Semiconductor device and epoxy resin composition for semiconductor encapsulation used therefor
JP3916889B2 (en) Semiconductor sealing resin composition and semiconductor device using the same
JP3865601B2 (en) Electromagnetic wave suppression sheet
EP2036860B1 (en) Spherical sintered ferrite particle, semiconductor sealing resin composition making use of the same and semiconductor device obtained therewith
JP2019210447A (en) Sealing resin composition, and electronic apparatus including the same and method for producing sealing resin composition
US6383660B2 (en) Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP2003218249A (en) Semiconductor hollow package
JP2015036410A (en) High-dielectric constant epoxy resin composition and semiconductor device
JP2001192537A (en) Epoxy resin composition for semiconductor sealing and semiconductor device using same
JP2003261745A (en) Epoxy resin composition and semiconductor device
JP2020152844A (en) Sealing resin composition and electronic device
JP5483727B2 (en) Epoxy resin composition for encapsulating chip inductor and electronic circuit
JP4831282B2 (en) Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder
JP4651004B2 (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation using the same, and semiconductor device obtained using the same
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP2001354754A (en) Epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2002234988A (en) Epoxy resin composition and electromagnetic wave shielding/absorbing material using the same
JP5124930B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006160560A6 (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation using the same, and semiconductor device obtained using the same
JP2021187868A (en) Thermosetting resin composition and electronic device
TWI383477B (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation comprising them and semiconductor devices produced by using the same
JP2003128880A (en) Epoxy resin composition and electronic device
JP2001072743A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using same
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JP2002324877A (en) Semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees