JP4831282B2 - Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder - Google Patents

Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder Download PDF

Info

Publication number
JP4831282B2
JP4831282B2 JP2003379787A JP2003379787A JP4831282B2 JP 4831282 B2 JP4831282 B2 JP 4831282B2 JP 2003379787 A JP2003379787 A JP 2003379787A JP 2003379787 A JP2003379787 A JP 2003379787A JP 4831282 B2 JP4831282 B2 JP 4831282B2
Authority
JP
Japan
Prior art keywords
magnetic powder
ferrite magnetic
ferrite
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003379787A
Other languages
Japanese (ja)
Other versions
JP2005139050A (en
Inventor
一美 山本
雅治 阿部
洋司 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2003379787A priority Critical patent/JP4831282B2/en
Publication of JP2005139050A publication Critical patent/JP2005139050A/en
Application granted granted Critical
Publication of JP4831282B2 publication Critical patent/JP4831282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は電磁波遮蔽機能および高い電気絶縁性を備えたフェライト磁性粉体及び該フェライト磁性粉体を含む信頼性の高い半導体封止用樹脂組成物に関するものである。 The present invention relates to a ferrite magnetic powder having an electromagnetic wave shielding function and high electrical insulation, and a highly reliable resin composition for encapsulating a semiconductor containing the ferrite magnetic powder.

一般に、半導体装置の製造工程において、基板へのボンディングが終了した半導体素子は、外部との接触を避けるため、熱硬化性樹脂等のモールド樹脂を用いて封止される。上記モールド樹脂としては、例えば、シリカ粉末を主体とする無機質充填剤をエポキシ樹脂に混合分散したもの等が用いられる。このモールド樹脂を用いた封止方法としては、例えば、基板にボンディングされた半導体素子を金型に入れ、これにモールド樹脂を硬化して成形するトランスファー成形法等が実用化されている。 Generally, in a semiconductor device manufacturing process, a semiconductor element that has been bonded to a substrate is sealed using a mold resin such as a thermosetting resin in order to avoid contact with the outside. As the mold resin, for example, an inorganic filler mainly composed of silica powder mixed and dispersed in an epoxy resin is used. As a sealing method using this mold resin, for example, a transfer molding method in which a semiconductor element bonded to a substrate is placed in a mold and the mold resin is cured and molded therein has been put to practical use.

従来、半導体素子をモールド樹脂によって封止した樹脂封止型半導体装置は、信頼性、量産性およびコスト等の面において優れており、セラミックを構成材料とするセラミック封止型半導体装置と共に普及している。 Conventionally, a resin-encapsulated semiconductor device in which a semiconductor element is encapsulated with a mold resin is excellent in terms of reliability, mass productivity, cost, etc., and has been widely used together with a ceramic-encapsulated semiconductor device made of ceramic. Yes.

ところで、電気機器においては、電磁環境両立性(EMC:Electro−Magnetic Compatibility)の問題が注目されている。例えば、近年の情報通信機器は小型・高機能化が進み、このような機器に用いる半導体素子をより高性能化するためにおいては、消費電力を低減するため、信号の振幅を小さくしている。その結果、たとえ微弱な高周波ノイズでも半導体素子が誤動作を引き起こす可能性が高まっている。そのため、不要な電磁波を放出させない、あるいは周囲で発生した電磁波に耐性を有する電子デバイスの開発が進められている。 By the way, in electrical equipment, the problem of electromagnetic environment compatibility (EMC: Electro-Magnetic Compatibility) has been attracting attention. For example, in recent years, information communication equipment has been reduced in size and functionality, and in order to improve the performance of semiconductor elements used in such equipment, the signal amplitude is reduced in order to reduce power consumption. As a result, there is an increased possibility that the semiconductor element will cause a malfunction even with a weak high frequency noise. Therefore, development of an electronic device that does not emit unnecessary electromagnetic waves or has resistance to electromagnetic waves generated in the surroundings is underway.

このような問題の一つとして、半導体素子を金属キャップで覆うことによりこの半導体素子から発生する電磁波、あるいは周囲が発生した電磁波を半導体素子以外に放電する方法が提案されている。しかし、この方法の場合、金属キャップを配置する余分な実装空間を必要とするため、電子デバイスの実装密度を上げることができず、小型化への対応が困難である。 As one of such problems, a method of discharging an electromagnetic wave generated from the semiconductor element or an electromagnetic wave generated around the semiconductor element by covering the semiconductor element with a metal cap has been proposed. However, this method requires an extra mounting space in which the metal cap is disposed, so that the mounting density of the electronic device cannot be increased, and it is difficult to cope with downsizing.

そこで、現在では、このような背景から高密度実装に適した電磁波遮蔽技術が求められており、モールド樹脂自体に電磁波遮蔽機能を持たせる方法が提案されている。 Therefore, at present, an electromagnetic wave shielding technique suitable for high-density mounting is demanded from such a background, and a method for providing an electromagnetic wave shielding function to the mold resin itself has been proposed.

一般に、半導体封止用樹脂組成物の硬化体は、電磁波が吸収されると、このエネルギーを熱に変換する。このエネルギーの変換効率には、硬化体の誘電率を複素表示した複素誘電率の虚部ε″および透磁率を複素表示した複素透磁率の虚部μ″(磁気損失)の各値が関係する。これらの値が大きいほどエネルギー変換効率は高くなり、したがって、電磁波遮蔽効果は高くなる。 Generally, the cured body of the semiconductor sealing resin composition converts this energy into heat when electromagnetic waves are absorbed. This energy conversion efficiency is related to the values of the complex permittivity imaginary part ε ″, which is a complex representation of the dielectric constant of the cured body, and the complex permeability imaginary part μ ″ (magnetic loss), which is a complex representation of the permeability. . The larger these values, the higher the energy conversion efficiency, and the higher the electromagnetic shielding effect.

そして、フェライト系ボンド材料の中では、Mn−Zn系フェライトやNi−Zn系フェライトは充填量やフェライト粒子径を調整することにより、例えばMn−Zn系フェライトでは50MHzから3GHzの周波数で高い磁気損失μ″を示し、この周波数帯域でシート状の電磁抑制体シートとして使用されていることが多い。このように、近傍界での電磁波遮蔽機能を高めるためには、磁気損失によるエネルギー変換効果を高める必要があり、半導体封止用樹脂組成物においてはフェライト等の磁性粉を高充填することが重要である。しかも、非磁性粉であるシリカ粉末を主体とする充填剤のみをエポキシ樹脂に混合分散した従来の樹脂組成物をモールド樹脂として用いた場合、その硬化体は磁気損失を有していないため電磁波遮蔽機能を全く示さない。 Among ferrite-based bond materials, Mn-Zn-based ferrite and Ni-Zn-based ferrite have high magnetic loss at a frequency of 50 MHz to 3 GHz, for example, by adjusting the filling amount and ferrite particle diameter. μ ″, which is often used as a sheet-like electromagnetic suppressor sheet in this frequency band. Thus, in order to enhance the electromagnetic wave shielding function in the near field, the energy conversion effect by magnetic loss is enhanced. In the resin composition for semiconductor encapsulation, it is important to highly fill magnetic powder such as ferrite etc. Moreover, only the filler mainly composed of silica powder which is non-magnetic powder is mixed and dispersed in epoxy resin. When the conventional resin composition is used as a mold resin, its cured body has no magnetic loss, so it has an electromagnetic wave shielding function. It does not show at all.

ところで、前記半導体封止用樹脂組成物であるモールド樹脂においては、トランスファー成形の要件から成形温度まで低い粘度を有する必要があり、高い流動性が求められている。 By the way, in the mold resin which is the resin composition for semiconductor encapsulation, it is necessary to have a low viscosity from the requirement for transfer molding to the molding temperature, and high fluidity is required.

特許文献1では、Ni−ZnフェライトやMn−Znフェライト等の磁性体を採用し、好ましくは磨砕により粒子の角を取り除くことが提案されている。特許文献2では球状フェライトを提案している。特許文献3ではシリカ粒子とフェライト粒子との併用が提案されている。特許文献4では、信頼性の観点から樹脂組成物の熱膨張率その他を特定している。 Patent Document 1 proposes to employ a magnetic material such as Ni—Zn ferrite or Mn—Zn ferrite, and preferably remove the corners of the particles by grinding. Patent Document 2 proposes a spherical ferrite. Patent Document 3 proposes the combined use of silica particles and ferrite particles. In patent document 4, the thermal expansion coefficient etc. of the resin composition are specified from a viewpoint of reliability.

特開2003−128880JP 2003-128880 A 特開2002−355544JP 2002-355544 A 特開2002−363382JP 2002-363382 A 特開平11−40708JP 11-40708

上記特許文献はいずれも、Ni−Znスピネルフェライト系、Mn−Znスピネルフェライト系などのフェライトであって、シリカと比較してその電気抵抗が低く、特にICなどの半導体を直接封止する樹脂組成物に多量に添加する電磁波吸収体としては、その信頼性に問題があった。更に、フェライトに含まれる可溶性イオンが半導体封止の信頼性に悪影響を及ぼすことがわかった。 All of the above patent documents are ferrites such as Ni-Zn spinel ferrite type and Mn-Zn spinel ferrite type, and have a lower electrical resistance than silica, and particularly a resin composition that directly seals a semiconductor such as an IC. As an electromagnetic wave absorber to be added in a large amount to a product, there is a problem in reliability. Furthermore, it has been found that soluble ions contained in ferrite adversely affect the reliability of semiconductor encapsulation.

特許文献4には、35〜95wt%のフェライト粉末を含むモールド樹脂でモールドされた半導体装置が開示されているが、モールド樹脂の成形性や絶縁破壊性、あるいはバイアス負荷時の短絡試験結果は開示されていない。本発明者等の検討結果によれば、フェライトの高い充填率のモールド樹脂の成形性と、そのバイアス(電圧)負荷時の信頼性に問題があった。特許文献1〜3では、半導体封止用としての信頼性にはおおいに問題があった。 Patent Document 4 discloses a semiconductor device molded with a mold resin containing 35 to 95 wt% ferrite powder. However, the mold resin moldability and dielectric breakdown property, or the short-circuit test result under a bias load are disclosed. It has not been. According to the examination results of the present inventors, there is a problem in the moldability of the mold resin having a high filling rate of ferrite and the reliability when the bias (voltage) is loaded. In Patent Documents 1 to 3, there is a great problem in reliability for semiconductor sealing.

本発明はこのようなことに鑑み成されたもので、有効な電磁波吸収機能を有し、且つ信頼性が良好な半導体封止材用フェライト磁性粉体及びその樹脂組成物を提供する。 The present invention has been made in view of the above, and provides a ferrite magnetic powder for a semiconductor encapsulant having an effective electromagnetic wave absorbing function and good reliability, and a resin composition thereof.

上記の課題を解決するために、本発明は、先ず電磁波吸収機能を有する充填物を準備する。120℃における体積固有抵抗が5×10Ωm以上及び25℃における体積固有抵抗が3×10Ωm以上であることを特徴とするフェライト磁性粉体を第一の要旨とする。 In order to solve the above problems, the present invention first prepares a filler having an electromagnetic wave absorbing function. A ferrite magnetic powder having a volume specific resistance at 120 ° C. of 5 × 10 7 Ωm or more and a volume specific resistance at 25 ° C. of 3 × 10 9 Ωm or more is a first gist.

形状が球状であることを特徴とすることを第二の要旨とする。 The second gist is that the shape is spherical.

平均粒子径が5μm以上、50μm以下であることを第三の要旨とする。 The third gist is that the average particle size is 5 μm or more and 50 μm or less.

可溶性イオンが5ppm以下であることを第四の要旨とする。 The fourth gist is that the soluble ions are 5 ppm or less.

フェライト磁性粉体の結晶構造がガーネット型であることを第五の要旨とする。 The fifth gist is that the crystal structure of the ferrite magnetic powder is a garnet type.

ガーネット型フェライト磁性粉体の組成が酸化物換算で5.5〜42.5mol%のY、0〜35.5mol%のGd、57.5〜67.5mol%のFe、 0〜1.5mol%のIn及び0〜1.0mol%のBiからなることを第六の要旨とする。 5.5~42.5Mol% of Y 2 O 3 composition of garnet-type ferrite magnetic powder in terms of oxide, 0~35.5mol% of Gd 2 O 3, 57.5~67.5mol% of Fe 2 It is a sixth gist to be composed of O 3 , 0 to 1.5 mol% In 2 O 3 and 0 to 1.0 mol% Bi 2 O 3 .

ガーネット型フェライト磁性粉体の組成が酸化物換算で50〜60mol%のCaO、26〜36mol%のFe、8〜18mol%のV、0〜1.0mol%のIn及び0〜5mol%のBiからなることを第七の要旨とする。 The composition of the garnet-type ferrite magnetic powder is 50-60 mol% CaO, 26-36 mol% Fe 2 O 3 , 8-18 mol% V 2 O 5 , 0-1.0 mol% In 2 O in terms of oxide. The seventh gist is composed of 3 and 0 to 5 mol% of Bi 2 O 3 .

フェライト磁性粉体を体積基準で、少なくとも30体積%以上含む樹脂組成物を第八の要旨とする。 The eighth gist is a resin composition containing at least 30% by volume of ferrite magnetic powder on a volume basis.

上記樹脂組成物が、シリカ粒子を含むことを第九の要旨とする。 The ninth gist is that the resin composition contains silica particles.

すなわち、本発明者らは電磁波吸収機能に優れると共に良好な信頼性を備えた封止材料となる樹脂組成物を得るために、その封止材料の配合材料を中心に検討を重ねた。そして従来から電磁波吸収機能を付与する際に用いられているフェライトに着目し、信頼性と電磁波吸収性とを兼ね備えたフェライト材料を得るために一連の研究を重ねた。その結果、120℃における体積固有抵抗が5×10Ωm以上、好ましくは1×10Ωm以上であること、及び25℃における体積固有抵抗が3×10Ωm以上、好ましくは5×1010Ωm以上であることを特徴とするフェライト磁性粉体であって、更に該フェライト磁性粉体を球状にすることにより高充填が実現され、その可溶性イオンを5ppm以下にすることで、信頼性と電磁波吸収性とを兼ね備えたフェライト材料となり、その平均粒径が5〜50μmの粒子群を少なくとも30vol%以上配合すると、このフェライトの有する優れた電磁波吸収機能が有効に発現されると共に、且つ近年の封止材に必要不可欠とされる信頼性の確保とともに、充填成分の高充填化を保ちながら、溶融時の低粘度化や硬化後の高強度化が可能となり、良好な成形性が得られることを見出し、本発明に到った。 That is, the present inventors have repeatedly studied focusing on the compounding material of the sealing material in order to obtain a resin composition that is a sealing material that has an excellent electromagnetic wave absorbing function and good reliability. Focusing on the ferrite that has been used for providing the electromagnetic wave absorbing function, a series of studies have been repeated in order to obtain a ferrite material having both reliability and electromagnetic wave absorbing property. As a result, the volume resistivity at 120 ° C. is 5 × 10 7 Ωm or more, preferably 1 × 10 8 Ωm or more, and the volume resistivity at 25 ° C. is 3 × 10 9 Ωm or more, preferably 5 × 10 10. Ferrite magnetic powder characterized in that it is Ωm or more, and further high filling is realized by making the ferrite magnetic powder spherical, and by reducing the soluble ions to 5 ppm or less, reliability and electromagnetic waves are achieved. When a ferrite material having an absorptivity is combined and a group of particles having an average particle diameter of 5 to 50 μm is blended at least 30 vol% or more, the excellent electromagnetic wave absorbing function of the ferrite is effectively expressed, and in recent years, In addition to ensuring the reliability that is indispensable for the stopper, it is possible to reduce the viscosity at the time of melting and to increase the strength after curing while maintaining a high filling component. It found that next, good moldability is obtained, and accomplished the present invention.

上記フェライト磁性粉体は、イットリウムと鉄とを主成分とするガーネット型フェライトであって、ガドリニウムを含有しても良い。 The ferrite magnetic powder is a garnet-type ferrite containing yttrium and iron as main components, and may contain gadolinium.

また、フェライト磁性粉体として、高価な元素の使用を減少させたカルシウムとバナジウムと鉄を主成分とするガーネット型フェライトの調製が可能で、半導体封止用樹脂組成物に好適であることが判った。 In addition, as a ferrite magnetic powder, it is possible to prepare a garnet type ferrite mainly composed of calcium, vanadium, and iron with reduced use of expensive elements, and it is found that it is suitable for a resin composition for semiconductor encapsulation. It was.

フェライト磁性粉体としては、体積固有抵抗が前述のように高いものを得ることが必須であり、例えば、高密度シリカで被覆したスピネル型フェライト磁性粉体等を用いることも可能である。 As the ferrite magnetic powder, it is essential to obtain one having a high volume resistivity as described above. For example, spinel ferrite magnetic powder coated with high-density silica can be used.

つぎに、本発明の実施の形態について詳しく説明する。 Next, embodiments of the present invention will be described in detail.

本発明に係るフェライト磁性粉体としては、120℃における体積固有抵抗が5×10Ωm以上、好ましくは1×10Ωm以上及び25℃における体積固有抵抗が3×10Ωm以上、好ましくは5×1010Ωm以上、であることを特徴とするフェライト磁性粉体である。半導体の動作温度領域である室温から120℃ぐらいの範囲において信頼性を確保するためには、半導体封止材用フェライト磁性粉末として前記のように高抵抗であることが必要である。 The ferrite magnetic powder according to the present invention has a volume resistivity at 120 ° C. of 5 × 10 7 Ωm or more, preferably 1 × 10 8 Ωm or more and a volume resistivity at 25 ° C. of 3 × 10 9 Ωm or more, preferably The ferrite magnetic powder is characterized by having 5 × 10 10 Ωm or more. In order to ensure reliability in the range of room temperature to about 120 ° C., which is the operating temperature region of the semiconductor, it is necessary that the ferrite magnetic powder for semiconductor encapsulant has high resistance as described above.

フェライト磁性粉体の形状が球状であれば、同一充填量の不定形フェライト磁性粉体を用いた場合と比較して、その樹脂組成物の流動性が高いので、高充填が可能となり好都合である。フェライト磁性粉体以外のフィラーすなわちシリカ粒子の球状化と併せ、樹脂組成物のトランスファー成形時の流動性が向上し且つバリを減少させることができる。 If the shape of the ferrite magnetic powder is spherical, the fluidity of the resin composition is high compared to the case of using the same amount of amorphous ferrite magnetic powder, which is advantageous because high filling is possible. . In combination with the spheroidization of fillers other than ferrite magnetic powder, that is, silica particles, the fluidity at the time of transfer molding of the resin composition can be improved and burrs can be reduced.

上記フェライト磁性粉体は、原材料の段階で水洗し、及び/又は、球状に焼結させた後、十分水洗することにより、可溶性イオンを5ppm以下に、好ましくは1ppm以下に低減することができる。可溶性イオンの低減は、半導体封止時の信頼性を更に向上させることができる。これまで、水洗によって可溶性イオンを低減したフェライト磁性粉体はなかった。 The ferrite magnetic powder can be reduced to 5 ppm or less, preferably 1 ppm or less by washing with water at the raw material stage and / or sintering into a spherical shape and then washing with sufficient water. Reduction of soluble ions can further improve the reliability at the time of semiconductor encapsulation. Until now, there was no ferrite magnetic powder in which soluble ions were reduced by washing with water.

本発明に係るフェライト磁性粉末は、水銀圧入法による細孔容積が0.2L/kg以下であることが好ましい。又は、BET法比表面積が0.02〜0.1m/gであることが好ましい。上記細孔容積及び/又は比表面積を有する球状フェライト粒子は、焼結が進み粒子の表面性が滑らかになっているので、封止する際の樹脂の流動性が向上する。更に水洗によって可溶性イオンを5ppm以下に洗い流すことが容易となる。 The ferrite magnetic powder according to the present invention preferably has a pore volume of 0.2 L / kg or less by mercury porosimetry. Or it is preferable that a BET method specific surface area is 0.02-0.1 m < 2 > / g. Since the spherical ferrite particles having the above pore volume and / or specific surface area are sintered and the surface properties of the particles are smooth, the fluidity of the resin during sealing is improved. Furthermore, it becomes easy to wash away soluble ions to 5 ppm or less by washing with water.

本発明に係るフェライト磁性粉体の平均粒径は、5〜50μm、好ましくは7〜34μmであって、63μmを超える粒子が実質上無いことが特に好ましい。 The average particle size of the ferrite magnetic powder according to the present invention is 5 to 50 μm, preferably 7 to 34 μm, and it is particularly preferable that there is substantially no particle exceeding 63 μm.

本発明に係るガーネット型フェライト磁性粉体は組成が酸化物換算で5.5〜42.5mol%のY、0〜35.5mol%のGd、57.5〜67.5mol%のFe、0〜1.5mol%のIn及び0〜1.0mol%のBiからなることが好ましい。 Garnet ferrite magnetic powder according to the present invention 5.5~42.5Mol% of Y 2 O 3 composition in terms of oxide, 0~35.5mol% of Gd 2 O 3, 57.5~67.5mol % Fe 2 O 3 , 0 to 1.5 mol% In 2 O 3 and 0 to 1.0 mol% Bi 2 O 3 are preferable.

本発明に係るガーネット型フェライト磁性粉体は組成が酸化物換算で50〜60mol%のCaO、26〜36mol%のFe、8〜18mol%のV、0〜1.0mol%のIn及び0〜5mol%のBiからなることが好ましい。 CaO of 50~60Mol% garnet ferrite magnetic powder according to the present invention composition in terms of oxide, 26~36mol% of Fe 2 O 3, 8~18mol% of V 2 O 5, 0~1.0mol% In 2 O 3 and 0 to 5 mol% Bi 2 O 3 are preferable.

本発明のフェライト磁性粉体は、以下の様にして製造することができる。酸化鉄粉末等の原料を均一に混合し、仮焼成した後、さらに粉砕して得られた粉体に水等を加えてスラリー化し、噴霧造粒・乾燥を経て、ガーネット型フェライトを含む球状造粒粉末を得る。これをさらに高温で本焼成することにより、球状に焼結したガーネット型フェライト磁性粉末が得られる。 The ferrite magnetic powder of the present invention can be produced as follows. After mixing raw materials such as iron oxide powder uniformly and calcining, the powder obtained by further pulverization is slurried by adding water and the like, and after spray granulation and drying, spherical structure containing garnet-type ferrite A granular powder is obtained. This is further fired at a higher temperature to obtain a garnet-type ferrite magnetic powder sintered in a spherical shape.

以下、詳細に述べる。所定の組成になる様にFe、Y等を秤量して、湿式アトライターで10分〜3時間微粉砕・混合した後、ろ過、乾燥する。得られた混合原料粉末を大気中、700〜1300℃の温度で10分〜10時間 仮焼成する。得られた仮焼成物を乾式振動ミルで10分〜10時間粉砕することにより、ガーネット型フェライトを含む粒子が得られる。Inなどは、上記原料の混合時、及び/又は仮焼成物の粉砕時に添加することができる。 Details will be described below. Fe 2 O 3 , Y 2 O 3 and the like are weighed so as to have a predetermined composition, pulverized and mixed with a wet attritor for 10 minutes to 3 hours, and then filtered and dried. The obtained mixed raw material powder is temporarily fired in the air at a temperature of 700 to 1300 ° C. for 10 minutes to 10 hours. The obtained calcined product is pulverized with a dry vibration mill for 10 minutes to 10 hours to obtain particles containing garnet-type ferrite. In 2 O 3 or the like can be added at the time of mixing the raw materials and / or at the time of pulverizing the pre-baked product.

上記ガーネット型フェライトを含む粒子をスラリー濃度50〜90重量%、好ましくは50〜80重量%で噴霧造粒・乾燥を行う。50重量%未満では細孔容積が大きくなる傾向があり、また90重量%を超えると、スラリー粘度が高くなるため、球形の形状の確保が困難となり、また粒度分布の調整が困難となる。 The particles containing the garnet-type ferrite are spray granulated and dried at a slurry concentration of 50 to 90% by weight, preferably 50 to 80% by weight. If the amount is less than 50% by weight, the pore volume tends to increase. If the amount exceeds 90% by weight, the slurry viscosity becomes high, so that it is difficult to ensure a spherical shape and it is difficult to adjust the particle size distribution.

得られた球状の造粒粒子を大気中、1100℃〜1500℃の温度で、10分〜10時間本焼成を行う。1100℃未満ではフェライト化が不十分であり、1500℃を超えると、粒子同士の焼結が進むために粒子形状を球状に維持できなくなり好ましくない。 The obtained spherical granulated particles are baked in the atmosphere at a temperature of 1100 ° C. to 1500 ° C. for 10 minutes to 10 hours. When the temperature is lower than 1100 ° C., ferritization is insufficient, and when the temperature exceeds 1500 ° C., sintering of the particles proceeds, and the particle shape cannot be maintained in a spherical shape.

得られた球状焼成粒子粉体を、例えばロールクラッシャーによる解砕後、振動篩による分級操作をすることによって、所定の粒度を持つフェライト磁性粉体を得ることができる。 Ferrite magnetic powder having a predetermined particle size can be obtained by pulverizing the obtained spherical fired particle powder with, for example, a roll crusher and then classifying with a vibrating sieve.

次に本発明に係る半導体封止用樹脂組成物について述べる。 Next, the resin composition for semiconductor encapsulation according to the present invention will be described.

本発明に係る半導体封止用樹脂組成物は本発明に係るフェライト磁性粉体を配合することを最大の特徴とし、次に例えば、エポキシ樹脂と、フェノール樹脂系硬化剤と、さらに硬化促進剤およびシリカ粉末を配合して得られる樹脂組成物である。 The semiconductor sealing resin composition according to the present invention is characterized in that the ferrite magnetic powder according to the present invention is blended, and then, for example, an epoxy resin, a phenol resin-based curing agent, a curing accelerator, and It is a resin composition obtained by blending silica powder.

本発明に係るエポキシ樹脂としては、常温(25℃)で固形を示すものであれば特に限定するものではなく従来公知のもの、例えば、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。 The epoxy resin according to the present invention is not particularly limited as long as it is solid at room temperature (25 ° C.), and is conventionally known, for example, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy. Examples thereof include resins. These may be used alone or in combination of two or more.

本発明に係るフェノール樹脂硬化剤は、上記エポキシ樹脂の硬化剤としての作用を奏するものであり、常温(25℃)で固形を示すものであれば特に限定するものではなく従来公知のもの、例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールA型ノボラック、ナフトールノボラック、フェノールアラルキル樹脂等があげられる。これらは単独もしくは2種以上併せて用いられる。 The phenol resin curing agent according to the present invention has an effect as a curing agent for the above-mentioned epoxy resin, and is not particularly limited as long as it exhibits a solid at room temperature (25 ° C.). Phenol novolak, cresol novolak, bisphenol A type novolak, naphthol novolak, phenol aralkyl resin and the like. These may be used alone or in combination of two or more.

本発明に係るエポキシ樹脂とフェノール樹脂硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対してフェノール樹脂中の水酸基当量を0.5〜1.6の範囲に設定することが好ましい。より好ましくは0.8〜1.2の範囲に設定することである。 The blending ratio of the epoxy resin and the phenol resin curing agent according to the present invention is preferably set such that the hydroxyl group equivalent in the phenol resin is in the range of 0.5 to 1.6 with respect to 1 equivalent of the epoxy group in the epoxy resin. . More preferably, it is set in the range of 0.8 to 1.2.

本発明に係る硬化促進剤としては、特に限定するものではなく従来公知のもの、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン等の3級アミン類、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等のリン系硬化促進剤等があげられる。これらは単独でもしくは2種以上併せて用いられる。 The curing accelerator according to the present invention is not particularly limited and is conventionally known, for example, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, 2- Examples thereof include imidazoles such as methylimidazole, and phosphorus-based curing accelerators such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate. These may be used alone or in combination of two or more.

本発明に係る硬化促進剤の含有量は、通常、上記フェノール樹脂系硬化剤100重量部(以下「部」と略す)に対して0.5〜10部の間に設定される。 The content of the curing accelerator according to the present invention is usually set between 0.5 and 10 parts with respect to 100 parts by weight (hereinafter referred to as “parts”) of the phenol resin-based curing agent.

本発明においては、成形バリを減ずるためにシリカ粉末を用いることができるが、上記シリカ粉末としては、球状溶融シリカ粉末、摩砕処理シリカ粉末、破砕状シリカ粉末等が用いられる。特に、球状溶融シリカ粉末を用いることにより、半導体封止用樹脂組成物の溶融粘度を低減する効果が高くなり好ましい。そして、平均粒子径が1〜40μmで、最大粒子径が200μm以下、好ましくは100μm以下、より好ましくは63μm以下のものが好適に用いられる。 In the present invention, silica powder can be used to reduce molding burrs. As the silica powder, spherical fused silica powder, ground silica powder, crushed silica powder, and the like are used. In particular, it is preferable to use spherical fused silica powder because the effect of reducing the melt viscosity of the resin composition for semiconductor encapsulation is increased. And those having an average particle diameter of 1 to 40 μm and a maximum particle diameter of 200 μm or less, preferably 100 μm or less, more preferably 63 μm or less are suitably used.

本発明に係るフェライト磁性粉体の配合割合は、特に限定されないが、電磁波遮蔽効果を高めるためには、樹脂組成物硬化体の複素透磁率の虚数部μ″(磁気損失)が大きいことが必要で、そのためには上記フェライト磁性粉体の配合割合は、樹脂組成物全体の30vol%以上、好ましくは35vol%以上である。上限は一般に80vol%程度である。一般に上限は樹脂の流動性が確保される範囲である。上限を超えると流動性が低下し、加工が困難となる。 The blending ratio of the ferrite magnetic powder according to the present invention is not particularly limited, but in order to enhance the electromagnetic wave shielding effect, it is necessary that the imaginary part μ ″ (magnetic loss) of the complex permeability of the cured resin composition is large. Therefore, the blending ratio of the ferrite magnetic powder is 30 vol% or more, preferably 35 vol% or more of the entire resin composition, and the upper limit is generally about 80 vol%. If the upper limit is exceeded, the fluidity is lowered and the processing becomes difficult.

本発明に係るフェライト磁性粉体は、単独で用いられても良いが、従来から半導体封止用として用いられているシリカ粒子を併用することができる。フェライト磁性粉体とシリカ粒子との割合は特に限定されないが、電磁波吸収効果を高めるためには、フェライト磁性粉体が多い程好ましいので、好ましくは、全充填粒子中のフェライト磁性粉体を50vol%以上とし、シリカ粒子を50vol%以下とする。フェライト磁性粉体とシリカ粒子の合計体積は、全樹脂組成物中で、30vol%以上80vol%以下とする。 The ferrite magnetic powder according to the present invention may be used alone, but silica particles conventionally used for semiconductor encapsulation can be used in combination. The ratio between the ferrite magnetic powder and the silica particles is not particularly limited. However, in order to increase the electromagnetic wave absorption effect, the more ferrite magnetic powder is preferable, the 50% by volume of the ferrite magnetic powder in all the filled particles is preferable. The silica particles are 50 vol% or less. The total volume of the ferrite magnetic powder and the silica particles is 30 vol% or more and 80 vol% or less in the entire resin composition.

本発明に係る半導体封止用樹脂組成物は、例えば次の様にして製造することができる。すなわち、エポキシ樹脂、フェノール樹脂系硬化剤、硬化促進剤、フェライト磁性粉体、更に必要に応じてシリカ粉末等の無機質充填材、低応力化材、顔料、離型剤、カップリング剤及び難燃剤等の添加剤を所定量配合する。次いで、熱ロールやエクストルーダー、ニーダー等を用いて、例えば95℃〜100℃の温度下で十分に溶融混練分散する。そしてこの混合物を冷却粉砕し、10メッシュの篩を通過させることにより、半導体封止用樹脂組成物を製造することができる。必要に応じてタブレット状に圧縮成形することが可能である。 The resin composition for encapsulating a semiconductor according to the present invention can be produced, for example, as follows. In other words, epoxy resin, phenol resin-based curing agent, curing accelerator, ferrite magnetic powder, and further, if necessary, inorganic filler such as silica powder, stress reducing material, pigment, mold release agent, coupling agent and flame retardant Etc. Add a predetermined amount of additives such as. Next, using a hot roll, an extruder, a kneader or the like, the mixture is sufficiently melt-kneaded and dispersed, for example, at a temperature of 95 ° C to 100 ° C. And this resin mixture for semiconductor sealing can be manufactured by cooling and pulverizing this mixture and allowing it to pass through a 10-mesh sieve. If necessary, it can be compressed into a tablet.

本発明に係る半導体封止用樹脂組成物の磁気損失μ″は0.8以上であるので、半導体装置が有する半導体素子を例えばトランスファー成形法によって封止することにより、半導体素子を外部との物理的接触から保護するだけでなく、該半導体素子が発生する電磁波を吸収すると共に、外部からの電磁波を吸収・遮蔽する用途に用いることができる。磁気損失μ″が0.8未満では十分な電磁波吸収効果が期待できない。 Since the magnetic loss μ ″ of the resin composition for encapsulating a semiconductor according to the present invention is 0.8 or more, the semiconductor element is physically separated from the outside by encapsulating the semiconductor element of the semiconductor device by, for example, a transfer molding method. In addition to protecting against electromagnetic contact, the electromagnetic wave generated by the semiconductor element can be absorbed, and the electromagnetic wave from the outside can be absorbed and shielded. When the magnetic loss μ ″ is less than 0.8, sufficient electromagnetic wave can be used. Absorption effect cannot be expected.

本発明に係る半導体封止用樹脂組成物はトランスファー成形法に用いるため、175℃における溶融粘度は100〜550dPa・sであり、より好ましくは130〜450dPa・sである。175℃における溶融粘度が550dPa・sより大きいと流動性が不足するためにトランスファー成形できなくなり、100dPa・sよりも小さいと樹脂バリが長くなるので、量産に適さない。     Since the resin composition for semiconductor encapsulation according to the present invention is used for transfer molding, the melt viscosity at 175 ° C. is 100 to 550 dPa · s, more preferably 130 to 450 dPa · s. If the melt viscosity at 175 ° C. is larger than 550 dPa · s, the fluidity is insufficient and transfer molding becomes impossible, and if it is lower than 100 dPa · s, the resin burr becomes longer, so it is not suitable for mass production.

まず、実施例、比較例における測定方法を以下にまとめる。 First, measurement methods in Examples and Comparative Examples are summarized below.

〔粒度分布の測定〕
粒度分布の測定には、レーザー回折式粒度分布測定装置(SYMPATIC社製、RODOS)を用いた。
(Measurement of particle size distribution)
For the measurement of the particle size distribution, a laser diffraction particle size distribution measurement device (SYMPATIC, RODOS) was used.

〔粒子形態の観察〕
走査型電子顕微鏡(日立製作所製、S−800)を用いて、粒子形態を観察した。
[Observation of particle morphology]
The particle morphology was observed using a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.).

〔結晶相の同定〕
結晶構造の同定には、X線回折装置RINT2500(理学電機(株)製)を用いた。
(Identification of crystal phase)
An X-ray diffractometer RINT2500 (manufactured by Rigaku Corporation) was used for identifying the crystal structure.

〔BET法比表面積と細孔容積の測定〕
窒素吸着法によりBET法比表面積を、水銀圧入式オートポア922(島津製作所製)によって細孔容積をそれぞれ測定した。
[Measurement of BET specific surface area and pore volume]
The specific surface area of the BET method was measured by a nitrogen adsorption method, and the pore volume was measured by a mercury intrusion autopore 922 (manufactured by Shimadzu Corporation).

〔可溶性イオンの測定〕
テフロン製圧力容器を用い、試験検体5gに純水5gを加え、密閉後121℃で20時間抽出して、冷却後抽出液をイオンクロマトグラフ(日本ダイオネクス社製、DX−500およびDX−AQ)を用いて各イオン種の濃度を測定し溶出量に換算した。
[Measurement of soluble ions]
Using a pressure vessel made of Teflon, 5 g of pure water was added to 5 g of the test sample, and after sealing, extracted at 121 ° C. for 20 hours. After cooling, the extracted liquid was ion chromatograph (DX-500 and DX-AQ, manufactured by Nippon Dionex). Was used to measure the concentration of each ionic species and converted to an elution amount.

〔体積固有抵抗の測定〕
体積固有抵抗の測定は以下の方法で実施した。金型を用いてフェライト磁性粉体を直径25mm、厚み2〜2.5mmの円盤状に1トン/cmの圧力で成形した後、これを本焼成して得られるフェライト焼結体の両面に、銀ペーストを塗布し、600℃で焼き付けた。超高抵抗/微少電流計(アドバンテスト製、R8340A)を用いて、印加電圧500Vで該焼結体の電気抵抗値を測定し、該焼結体の直径と厚さから次式のようにして体積固有抵抗を算出した。

体積固有抵抗(Ωm) = 電気抵抗値(Ω)×試料面積(cm)/試料厚み(cm)×10−2
(Measurement of volume resistivity)
The volume resistivity was measured by the following method. The ferrite magnetic powder is molded into a disk shape having a diameter of 25 mm and a thickness of 2 to 2.5 mm using a mold at a pressure of 1 ton / cm 2 , and then this is fired on both sides of the ferrite sintered body obtained. The silver paste was applied and baked at 600 ° C. The electrical resistance value of the sintered body was measured at an applied voltage of 500 V using an ultrahigh resistance / microammeter (manufactured by Advantest, R8340A), and the volume was determined from the diameter and thickness of the sintered body by the following formula. The specific resistance was calculated.

Volume resistivity (Ωm) = electric resistance value (Ω) × sample area (cm 2 ) / sample thickness (cm) × 10 −2

〔磁気測定〕
VSM(Vibrating Sample Magnetometer、振動試料型磁力計VSM−3S、東英工業(株)製)で磁気測定を行った。最大外部磁場は796kA/m(10kOe)、保磁力Hc測定時のスキャンスピードには3.98kA/m/min(50Oe/min)を用いた。
[Magnetic measurement]
Magnetic measurement was performed with VSM (Vibrating Sample Magnetometer, vibrating sample magnetometer VSM-3S, manufactured by Toei Industry Co., Ltd.). The maximum external magnetic field was 796 kA / m (10 kOe), and the scan speed when measuring the coercive force Hc was 3.98 kA / m / min (50 Oe / min).

〔半導体封止用樹脂組成物の信頼性試験〕
信頼性試験は以下の方法で実施した。半導体封止用樹脂組成物で10mm×10mm×厚さ0.5mmの成形体を作り、該表面に、太さ25μmのアルミニウム線を2本並べ、100μmの間隔を維持して上記成形体表面に接触させる。2本のアルミニウム線には直流30Vのバイアス電圧を負荷し、相対湿度85%、温度120℃の圧力容器の中で30時間試験を行った。電気抵抗が急激に低下したり、アルミニウム線の腐食など外観の異常を観察した。
図1に示す回路において、
1.抵抗測定:30時間、環境試験後に供試体を常温に戻し抵抗測定を行う。
・抵抗測定は、A−A’間とB−B’間は電気テスターHIOKI CE3030−10型で行う。
・A−B間とA’−B’間は超高抵抗/微少電流計アドバンテストR8340A型を用いて500V印加し、その時の電流値から抵抗値を算出する。
2.アルミニウム線と樹脂の状態観察
・抵抗測定を行った後、樹脂層を剥がし、アルミニウム線との接触面を光学顕微鏡(倍率1000)で観察する。
回路の抵抗の測定結果とアルミニウム線と樹脂の状態の観察から、表1に示す4段階の判定で評価した。
[Reliability test of resin composition for semiconductor encapsulation]
The reliability test was performed by the following method. A molded body of 10 mm × 10 mm × thickness 0.5 mm is made with a resin composition for semiconductor encapsulation, and two aluminum wires with a thickness of 25 μm are arranged on the surface, and the interval of 100 μm is maintained on the surface of the molded body. Make contact. The two aluminum wires were loaded with a bias voltage of DC 30V and tested for 30 hours in a pressure vessel with a relative humidity of 85% and a temperature of 120 ° C. Appearance abnormalities such as a sudden drop in electrical resistance and corrosion of aluminum wires were observed.
In the circuit shown in FIG.
1. Resistance measurement: After 30 hours of environmental test, the specimen is returned to room temperature and the resistance is measured.
-Resistance measurement is performed with an electric tester HIOKIE CE3030-10 between AA 'and BB'.
-Between A-B and A'-B ', 500V is applied using an ultra high resistance / microammeter Advantest R8340A type, and the resistance value is calculated from the current value at that time.
2. After the state observation and resistance measurement of the aluminum wire and the resin are performed, the resin layer is peeled off, and the contact surface with the aluminum wire is observed with an optical microscope (magnification 1000).
Based on the measurement result of the resistance of the circuit and the observation of the state of the aluminum wire and the resin, the evaluation was made according to the four-step judgment shown in Table 1.

〔複素透磁率の測定〕
複素透磁率測定用成形体を次の様にして作成した。粒状の半導体封止用樹脂組成物を、成形圧力6.68MPa、金型温度175℃、2分の条件で直径35mmのタブレット状に成形し、更に175℃×5時間の条件で硬化させた。この成形体を超音波カッターにより、外形7mm、内径3mm、厚さ2mmのドーナッツ状の試験片に切り出した。本試験片の複素透磁率を同軸管試験法で、ネットワークアナライザー(ヒューレットパッカード社製、8720D)により、周波数1GHzで測定した。
[Measurement of complex permeability]
A molded article for measuring complex permeability was prepared as follows. The granular resin composition for encapsulating a semiconductor was molded into a tablet shape having a diameter of 35 mm under a molding pressure of 6.68 MPa, a mold temperature of 175 ° C. for 2 minutes, and further cured under conditions of 175 ° C. × 5 hours. This molded body was cut into a donut-shaped test piece having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 2 mm using an ultrasonic cutter. The complex magnetic permeability of this test piece was measured at a frequency of 1 GHz with a network analyzer (manufactured by Hewlett-Packard, 8720D) by the coaxial tube test method.

〔溶融粘度の測定〕
樹脂組成物の粘度は、高化式フローテスター(島津製作所製、CFT500型)を用いて175℃の溶融粘度を測定した。
(Measurement of melt viscosity)
As for the viscosity of the resin composition, a melt viscosity at 175 ° C. was measured using a Koka flow tester (manufactured by Shimadzu Corporation, CFT500 type).

〔バリの測定〕
図2に概略を示すように、樹脂バリ評価用の金型を用い、キャビティから漏れた樹脂のバリの長さをノギスで測定した。バリが発生する部分のクリアランスは5〜20μmである。
[Measurement of burr]
As schematically shown in FIG. 2, a resin burr evaluation mold was used, and the length of the resin burr leaked from the cavity was measured with a caliper. The clearance of the part where burrs are generated is 5 to 20 μm.

以下、実施例に従い、本発明の態様を説明する。 Embodiments of the present invention will be described below according to examples.

実施例1について説明する。原料粉末のYを38.1mol%、Feを61.9mol%の組成になる様に秤量して、水を加えて混合して30重量%濃度スラリーとし、湿式アトライターで1時間微粉砕・混合した後、ろ過、乾燥する。得られた混合原料粉末を大気中、1100℃の温度で3時間 仮焼成する。得られた仮焼成物を乾式振動ミルで3時間粉砕することにより、ガーネット型フェライトを含む仮焼粒子を得た。ガーネット型フェライトを含む仮焼粒子をスラリー濃度70重量%で噴霧造粒・乾燥を行った。得られた球状の造粒粒子を大気中、1400℃の温度で2時間、本焼成を行った。本焼成した粉体は、ロールクラッシャーで解砕し、振動篩で63μm以上の粗粉を分級除去した。さらに粉体の重量の30倍のイオン交換水を用いて洗浄した後、120℃で5時間乾燥した。得られた球状フェライト磁性粉体は、X線回折でガーネット型結晶構造を持つことが同定され、平均粒径26μm、細孔容積0.035L/kg、BET法比表面積0.04m/g、可溶性イオンは検出限界以下、25℃の体積固有抵抗は2×1011Ωm、120℃の体積固有抵抗は3×10Ωm、飽和磁化は27.9Am/kg、保磁力は159A/mであった。図3にSEM(走査型電子顕微鏡)写真を示す。 Example 1 will be described. The raw material powder Y 2 O 3 was weighed to a composition of 38.1 mol% and Fe 2 O 3 to a composition of 61.9 mol%, and water was added and mixed to form a 30 wt% slurry. After pulverizing and mixing for 1 hour, it is filtered and dried. The obtained mixed raw material powder is calcined in the air at a temperature of 1100 ° C. for 3 hours. The obtained calcined product was pulverized with a dry vibration mill for 3 hours to obtain calcined particles containing garnet-type ferrite. The calcined particles containing garnet-type ferrite were spray granulated and dried at a slurry concentration of 70% by weight. The obtained spherical granulated particles were baked in the atmosphere at a temperature of 1400 ° C. for 2 hours. The main fired powder was crushed with a roll crusher, and coarse powder of 63 μm or more was classified and removed with a vibrating sieve. Furthermore, after washing | cleaning using ion-exchange water 30 times the weight of powder, it dried at 120 degreeC for 5 hours. The obtained spherical ferrite magnetic powder was identified to have a garnet-type crystal structure by X-ray diffraction, an average particle size of 26 μm, a pore volume of 0.035 L / kg, a BET specific surface area of 0.04 m 2 / g, Soluble ions are below the detection limit, volume resistivity at 25 ° C. is 2 × 10 11 Ωm, volume resistivity at 120 ° C. is 3 × 10 9 Ωm, saturation magnetization is 27.9 Am 2 / kg, coercive force is 159 A / m there were. FIG. 3 shows a SEM (scanning electron microscope) photograph.

表2にフェライト磁性粉体の原料組成A〜Kを示す。組成A〜Iはガーネット型フェライトの例である。組成Jは比較例4におけるようにNi−Zn−Cuスピネルフェライトの例である。組成Kは比較例5におけるようにMn−Znスピネルフェライトの例である。実施例2〜9と比較例1〜5について、原料組成、噴霧造粒の有無、本焼成温度、本焼成後の水洗におけるイオン交換水による希釈倍率とを種々変化させた以外は、実施例1の製造条件で行った。得られた粉体の結晶構造、平均粒径、細孔容積、BET法比表面積、可溶性イオン分析、体積固有抵抗、及びVSM法による磁気特性を測定した。実施例1〜9及び比較例1〜3はいずれもX線回折でガーネット型結晶構造を持つことが同定された。比較例4と5はスピネル型の結晶構造を持つことが同定された。表3に実施例1〜9と比較例1〜5について製造条件と得られたフェライト磁性粉体の特性をまとめる。 Table 2 shows the raw material compositions A to K of the ferrite magnetic powder. Compositions A to I are examples of garnet type ferrite. Composition J is an example of Ni—Zn—Cu spinel ferrite as in Comparative Example 4. Composition K is an example of Mn—Zn spinel ferrite as in Comparative Example 5. About Examples 2-9 and Comparative Examples 1-5, Example 1 except that the raw material composition, the presence or absence of spray granulation, the main firing temperature, and the dilution rate with ion-exchanged water in the water washing after the main firing were variously changed. The production conditions were as follows. The obtained powder was measured for crystal structure, average particle size, pore volume, BET specific surface area, soluble ion analysis, volume resistivity, and magnetic properties by VSM method. Examples 1 to 9 and Comparative Examples 1 to 3 were all identified as having a garnet crystal structure by X-ray diffraction. Comparative examples 4 and 5 were identified to have a spinel crystal structure. Table 3 summarizes the manufacturing conditions and the characteristics of the obtained ferrite magnetic powders for Examples 1 to 9 and Comparative Examples 1 to 5.

〔半導体封止用樹脂組成物の作製〕
シリカ粒子は、球状シリカ粉末(溶融シリカ、平均粒径10.0μm)100部に対してγ―グリシドキシプロピリトリメトキシシラン0.2部をヘンシェルミキサーにて、予め常法で混合処理して用いた。フェライト磁性粉体は、粉体100部に対してγ―グリシドキシプロピリトリメトキシシラン0.3部をヘンシェルミキサーにて、予め常法で混合処理して用いた。表2の実施例1〜9及び比較例1〜5のフェライト磁性粉体を用い、表3に示す割合でフェライト磁性粉体とシリカ粒子を配合し、球状シリカ粉末とフェライト磁性粉体を合わせたフィラー全体に対して、0.8vol%のポリエチレンワックスを加え、さらに配合の残りの体積分に合うように下記の樹脂組成の割合で樹脂成分を追加して、ヘンシェルミキサーにて混合処理し、半導体封止用樹脂組成物用混合物を得た。該混合物を温度95〜110℃に加熱した熱ロールで3分間溶融混合して冷却した後、10メッシュの篩を通過した粉末状の半導体封止用樹脂組成物を作製した。フェライト磁性粉体の密度を5.1×10−3kg/m(5.1g/cm)、シリカ粒子の密度を2.2×10−3kg/m、ポリエチレンワックスの密度を0.95×10−3kg/m、下記樹脂組成の密度を1.1×10−3kg/mとして計算する。

樹脂組成
ビフェニル型エポキシ樹脂(軟化点105℃、エポキシ当量192) 100部
フェノールアラルキル樹脂(軟化点60℃、水酸基当量169) 70部
臭素化ビスフェノールA型エポキシ樹脂(軟化点77℃、水酸基当量465) 8部
三酸化アンチモン 3部
カーボンブラック 0.5部
[Preparation of resin composition for semiconductor encapsulation]
The silica particles are prepared by subjecting 100 parts of spherical silica powder (fused silica, average particle size 10.0 μm) to 0.2 parts of γ-glycidoxypropyltrimethoxysilane in advance using a Henschel mixer. Using. The ferrite magnetic powder was used by previously mixing 0.3 parts of γ-glycidoxypropyltrimethoxysilane with a Henschel mixer in a conventional manner with respect to 100 parts of the powder. Using the ferrite magnetic powders of Examples 1 to 9 and Comparative Examples 1 to 5 in Table 2, the ferrite magnetic powder and the silica particles were blended at the ratio shown in Table 3, and the spherical silica powder and the ferrite magnetic powder were combined. 0.8 vol% polyethylene wax is added to the entire filler, and the resin components are added at the ratio of the following resin composition so as to match the remaining volume of the blend. A mixture for sealing resin composition was obtained. The mixture was melt-mixed for 3 minutes with a hot roll heated to a temperature of 95 to 110 ° C. and cooled, and then a powdery resin composition for encapsulating a semiconductor that passed through a 10-mesh sieve was prepared. The density of the ferrite magnetic powder is 5.1 × 10 −3 kg / m 3 (5.1 g / cm 3 ), the density of the silica particles is 2.2 × 10 −3 kg / m 3 , and the density of the polyethylene wax is 0. .95 × 10 −3 kg / m 3 , and the density of the following resin composition is calculated as 1.1 × 10 −3 kg / m 3 .

Resin composition Biphenyl type epoxy resin (softening point 105 ° C, epoxy equivalent 192) 100 parts phenol aralkyl resin (softening point 60 ° C, hydroxyl group equivalent 169) 70 parts Brominated bisphenol A type epoxy resin (softening point 77 ° C, Hydroxyl group equivalent 465) 8 parts antimony trioxide 3 parts carbon black 0.5 part

表4は半導体封止用樹脂組成物の実施例及び比較例を示す。実施例10は、表3の実施例1の球状ガーネット型フェライト磁性粉体を35vol%、平均粒径10μmの球状シリカを26vol%配合し、樹脂組成物の磁気特性μ″、溶融粘度、成形バリ、及び信頼性試験を行った結果を示している。 Table 4 shows examples and comparative examples of the resin composition for semiconductor encapsulation. In Example 10, 35 vol% of the spherical garnet-type ferrite magnetic powder of Example 1 in Table 3 and 26 vol% of spherical silica having an average particle diameter of 10 μm were blended, and the magnetic properties μ ″, melt viscosity, molding burr of the resin composition were blended. , And the result of the reliability test.

実施例10〜20はいずれも溶融粘度が400以下で、成形バリは目標とする2mm以下を達成した。更に、樹脂組成物としての1GHzでのμ″は目標とする0.8以上であった。信頼性試験では特に外観上の大きな異常は認められなかった。 In all of Examples 10 to 20, the melt viscosity was 400 or less, and the molding burr achieved a target of 2 mm or less. Further, the μ ″ at 1 GHz as the resin composition was 0.8 or more as a target. In the reliability test, no significant abnormality in appearance was observed.

比較例7は、フェライト磁性粉体の焼成温度が低いために体積固有抵抗が低く、信頼性試験でアルミニウム線の腐食が激しかった。 In Comparative Example 7, since the firing temperature of the ferrite magnetic powder was low, the volume resistivity was low, and the corrosion of the aluminum wire was severe in the reliability test.

比較例8は、水洗を省略した為に可溶性イオンが5ppmを超えて多く含まれるので、信頼性試験で、アルミニウム線の腐食が進んでいた。 In Comparative Example 8, since the washing with water was omitted, a large amount of soluble ions exceeding 5 ppm was included, and corrosion of the aluminum wire was advanced in the reliability test.

比較例9は、不定形の形状で且つ粒度が小さいので、175℃の溶融粘度が555dPa・sと高く、成形金型に注入できなかった。 Since Comparative Example 9 had an irregular shape and small particle size, the melt viscosity at 175 ° C. was as high as 555 dPa · s, and could not be injected into the molding die.

比較例10は、Ni−Zn系フェライトであり、体積固有抵抗がMn−Znフェライトより大きいものの十分では無く、信頼性試験の結果、アルミニウム線の表面に変色が観察された。 Comparative Example 10 is a Ni—Zn-based ferrite having a volume resistivity larger than that of Mn—Zn ferrite, but not sufficient. As a result of the reliability test, discoloration was observed on the surface of the aluminum wire.

比較例11は、体積固有抵抗が低いMn−Znフェライトであって噴霧造粒を行わないため、粒度が小さく、且つ不定形形状なので、175℃の溶融粘度が553dPa・sと高く、成形金型に注入できなかった。更に、信頼性試験で、アルミニウム線の腐食が激しかった。 Comparative Example 11 is a Mn—Zn ferrite having a low volume resistivity and does not perform spray granulation, so the particle size is small and the shape is irregular, so the melt viscosity at 175 ° C. is as high as 553 dPa · s, and the molding die Could not be injected. Further, in the reliability test, the corrosion of the aluminum wire was severe.

比較例12は、シリカ粒子単独の場合で、電磁波の吸収遮蔽特性が無い。 Comparative Example 12 is a case of silica particles alone and does not have electromagnetic wave absorption and shielding properties.

比較例13は、フェライトの体積充填量が25vol%と少ない場合で、半導体封止用としてはμ″が0.5と低過ぎる。更にシリカを含めた充填量が低いので175℃の溶融粘度が95dPa・sと低過ぎるために成形バリが大きくなるので、量産に支障を来たす。 Comparative Example 13 is a case where the volume filling amount of ferrite is as small as 25 vol%, and μ ″ is too low as 0.5 for semiconductor encapsulation. Further, since the filling amount including silica is low, the melt viscosity at 175 ° C. is low. Since it is too low at 95 dPa · s, the molding burr becomes large, which hinders mass production.

比較例14は、総充填量が80vol%を越えたため、175℃の溶融粘度は570dPa・sであった。成形金型に注入できないために、成形バリの測定ができなかった。 In Comparative Example 14, since the total filling amount exceeded 80 vol%, the melt viscosity at 175 ° C. was 570 dPa · s. The molding burr could not be measured because it could not be injected into the molding die.

半導体封止用樹脂組成物信頼性試験の回路略図Circuit schematic of resin composition reliability test for semiconductor encapsulation 成形バリ測定概略図Molding burr measurement schematic 実施例1の球状フェライト磁性粉体SEM写真SEM photograph of spherical ferrite magnetic powder of Example 1

Claims (8)

120℃における体積固有抵抗が5×10Ωm(5×10Ωcm)以上及び25℃における体積固有抵抗が3×10Ωm(3×1011Ωcm)以上であり、可溶性イオンが5ppm以下であり、細孔容積が0.035L/kg以下であることを特徴とするフェライト磁性粉体。



The volume resistivity at 120 ° C. is 5 × 10 7 Ωm (5 × 10 9 Ωcm) or more, the volume resistivity at 25 ° C. is 3 × 10 9 Ωm (3 × 10 11 Ωcm) or more, and soluble ions are 5 ppm or less. Ah it is, a ferrite magnetic powder, wherein the pore volume is less than 0.035L / kg.



形状が球状であることを特徴とする請求項1に記載のフェライト磁性粉体。 The ferrite magnetic powder according to claim 1, wherein the ferrite magnetic powder has a spherical shape. 平均粒子径が5〜50μmであることを特徴とする請求項1又は2のいずれかに記載のフェライト磁性粉体。 3. The ferrite magnetic powder according to claim 1, wherein an average particle diameter is 5 to 50 μm. ガーネット型の結晶構造を有することを特徴とする請求項1〜のいずれかに記載のフェライト磁性粉体。 Ferrite magnetic powder according to any one of claims 1 to 3, characterized by having a crystal structure of garnet-type. 組成が酸化物換算で5.5〜42.5mol%のY、0〜35.5mol%のGd、57.5〜67.5mol%のFe、0〜1.5mol%のIn及び0〜1.0mol%のBiからなることを特徴とする請求項に記載のフェライト磁性粉体。 Composition 5.5~42.5Mol% of Y 2 O 3 in terms of oxides, 0~35.5mol% of Gd 2 O 3, 57.5~67.5mol% of Fe 2 O 3, 0~1. 5. The ferrite magnetic powder according to claim 4 , comprising 5 mol% In 2 O 3 and 0 to 1.0 mol% Bi 2 O 3 . 組成が酸化物換算で50〜60mol%のCaO、26〜36mol%のFe、8〜18mol%のV、0〜1.0mol%のIn及び0〜5mol%のBiからなることを特徴とする請求項に記載のフェライト磁性粉体。 Composition of 50~60Mol% in terms of oxide CaO, 26~36mol% of Fe 2 O 3, V 2 O 5 of 8~18mol%, of 0~1.0mol% In 2 O 3 and 0 to 5 mol% The ferrite magnetic powder according to claim 4 , comprising Bi 2 O 3 . 請求項1〜のいずれかに記載のフェライト磁性粉体を体積基準で、少なくとも30vol%以上含むことを特徴とする半導体封止用樹脂組成物。 Claim 1 by volume ferrite magnetic powder according to one or more of 6, the semiconductor encapsulating resin composition which comprises at least 30 vol% or more. シリカ粒子を含むことを特徴とする請求項に記載の半導体封止用樹脂組成物。


The resin composition for semiconductor encapsulation according to claim 7 , comprising silica particles.


JP2003379787A 2003-11-10 2003-11-10 Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder Expired - Fee Related JP4831282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379787A JP4831282B2 (en) 2003-11-10 2003-11-10 Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379787A JP4831282B2 (en) 2003-11-10 2003-11-10 Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JP2005139050A JP2005139050A (en) 2005-06-02
JP4831282B2 true JP4831282B2 (en) 2011-12-07

Family

ID=34689729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379787A Expired - Fee Related JP4831282B2 (en) 2003-11-10 2003-11-10 Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JP4831282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072125A (en) * 2014-07-10 2014-10-01 成都八九九科技有限公司 Gyromagnetic material with low loss power and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692735B2 (en) * 2005-05-25 2011-06-01 戸田工業株式会社 Ferrite magnetic powder having garnet structure and resin composition for semiconductor encapsulation containing the ferrite magnetic powder
JP4893178B2 (en) * 2005-09-20 2012-03-07 宇部興産株式会社 Conductive inorganic substance-containing silicon carbide fine particles, radio wave absorber and radio wave absorber
JP5124930B2 (en) * 2005-10-05 2013-01-23 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4853618B2 (en) * 2005-11-09 2012-01-11 戸田工業株式会社 Spherical composite particle powder for radio wave absorber, production method thereof, and resin composition for semiconductor encapsulation containing the composite particle powder
KR101344644B1 (en) * 2006-06-06 2013-12-26 도다 고교 가부시끼가이샤 Spherical sintered ferrite particle, semiconductor sealing resin composition making use of the same and semiconductor device obtained therewith
TWI383477B (en) * 2006-06-06 2013-01-21 Nitto Denko Corp Spherical sintered ferrite particles, resin composition for semiconductor encapsulation comprising them and semiconductor devices produced by using the same
JP5152711B2 (en) 2007-07-06 2013-02-27 独立行政法人産業技術総合研究所 Structure composed of filler and incompatible resin or elastomer, production method thereof and use thereof
JP6493727B2 (en) * 2014-09-19 2019-04-03 パウダーテック株式会社 Spherical ferrite powder, resin composition containing the spherical ferrite powder, and molded body using the resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508443B1 (en) * 1968-12-17 1975-04-04
JPS5210594A (en) * 1975-07-15 1977-01-26 Toshiba Corp Ferrimagnetism material for microwave
JPS5726411A (en) * 1981-04-09 1982-02-12 Hitachi Metals Ltd Garnet magnetic material
JPH0629142B2 (en) * 1985-11-07 1994-04-20 松下電器産業株式会社 Method for producing yttrium iron garnet powder
JP3738454B2 (en) * 1993-08-11 2006-01-25 住友化学株式会社 Composite metal oxide powder and method for producing the same
JPH0826734A (en) * 1994-07-15 1996-01-30 Tokin Corp Magnetic ca-v garnet oxide powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072125A (en) * 2014-07-10 2014-10-01 成都八九九科技有限公司 Gyromagnetic material with low loss power and preparation method thereof

Also Published As

Publication number Publication date
JP2005139050A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP2036860B1 (en) Spherical sintered ferrite particle, semiconductor sealing resin composition making use of the same and semiconductor device obtained therewith
EP1266936B1 (en) Epoxy resin composition used for encapsulating semiconductor and semiconductor device using the composition
EP0112577B2 (en) Magnetic core and method of producing the same
EP1265280B9 (en) Resin component for encapsulating semiconductor and semiconductor device using it
JP4692735B2 (en) Ferrite magnetic powder having garnet structure and resin composition for semiconductor encapsulation containing the ferrite magnetic powder
JP4853618B2 (en) Spherical composite particle powder for radio wave absorber, production method thereof, and resin composition for semiconductor encapsulation containing the composite particle powder
JP4831282B2 (en) Ferrite magnetic powder and resin composition for semiconductor encapsulation containing ferrite magnetic powder
EP3453680B1 (en) Ferrite powder, resin composition, electromagnetic shielding material, electronic circuit substrate, electronic circuit component, and electronic device housing
JP7390590B2 (en) Resin powder, encapsulant, electronic components, and method for producing resin powder
JP5095136B2 (en) Manufacturing method of resin composition for semiconductor encapsulation
Dosoudil et al. Influence of the synthesis method of filler on permeability and microwave absorption properties of ferrite/polymer composites
JP4651004B2 (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation using the same, and semiconductor device obtained using the same
JPWO2019027023A1 (en) Composite particles, powder, resin composition and molded body
JP5549063B2 (en) Ferrite material and method for producing ferrite material
JP5483727B2 (en) Epoxy resin composition for encapsulating chip inductor and electronic circuit
JP3668403B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006249343A (en) Epoxy resin composition and package for housing semiconductor element
TWI383477B (en) Spherical sintered ferrite particles, resin composition for semiconductor encapsulation comprising them and semiconductor devices produced by using the same
JP2003128880A (en) Epoxy resin composition and electronic device
KR102329662B1 (en) Multi-types hexaferrites and method for preparing the same
CN117735970A (en) Filling agent of packaging material, preparation method of filling agent, magnetic plastic packaging material and packaging device
KR20170061391A (en) Epoxy Molding Compound for Electromagnetic Shielding and Shielding Device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4831282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees