JP2001183106A - Gap detecting device with temperature compensation - Google Patents

Gap detecting device with temperature compensation

Info

Publication number
JP2001183106A
JP2001183106A JP37357999A JP37357999A JP2001183106A JP 2001183106 A JP2001183106 A JP 2001183106A JP 37357999 A JP37357999 A JP 37357999A JP 37357999 A JP37357999 A JP 37357999A JP 2001183106 A JP2001183106 A JP 2001183106A
Authority
JP
Japan
Prior art keywords
temperature
circuit
coil
signal
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37357999A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakaki
哲夫 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Electronics Corp
Original Assignee
Applied Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Electronics Corp filed Critical Applied Electronics Corp
Priority to JP37357999A priority Critical patent/JP2001183106A/en
Publication of JP2001183106A publication Critical patent/JP2001183106A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve measurement precision of a gap sensor which is different in tendency and degree of influence on a high temperature and a low temperature. SOLUTION: This gap detecting device is provided with a coil 11 for a sensor, an oscillation circuit 5 having a capacitor 4, a detection rectification circuit 6, and a linealizer 37 linealizing a detected gap signal G. When temperatures of a coil temperature detecting circuit 12 and the coil 11 are low, the rate of change of a temperature signal T is changed with a first voltage adjusting circuit 32. A low temperature region correcting circuit 20 adds the signal T to a gap signal G on a precedent stage of the linealizer 37. When a temperature of the coil 11 is high, the rate of change of the temperature signal T is changed with another voltage adjusting circuit 41. A high temperature range correcting circuit 21 adds the signal T to the gap signal G on the subsequent stage of the linearlizer 37.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、渦電流損失型無接
触式ギャップ検出装置において、温度補償を行いうるよ
うにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current loss type non-contact type gap detecting device capable of performing temperature compensation.

【0002】[0002]

【従来の技術】渦電流損失型無接触式ギャップ検出装置
(以下ギャップセンサと略称する)は、高速回転体の回転
数や、磁気浮上走行車の浮上ギャップ等を無接触的に計
るのに多く利用されている。
2. Description of the Related Art Eddy current loss type non-contact type gap detector
Gap sensors (hereinafter abbreviated as gap sensors) are often used to measure the number of revolutions of a high-speed rotating body, the levitation gap of a magnetic levitation traveling vehicle, and the like in a non-contact manner.

【0003】渦電流型のギャップセンサは、コイルを検
知センサとし、発振回路に内蔵されたコンデンサと検知
センサのコイルを共振させて、基本周波数を発振させて
いる。この発振状態にあるコイルの磁界内に、電気材
料、例えば電気抵抗の低い金属等が入ると、被検知体た
る電気材料の中で、コイルは渦電流損失を生じて発振回
路の共振電圧に変化を生じ、この共振電圧の変化に基づ
いて、電気材料とコイルの距離、即ちギャップを検出す
ることができる。
An eddy current type gap sensor uses a coil as a detection sensor, and resonates a capacitor built in an oscillation circuit and the coil of the detection sensor to oscillate a fundamental frequency. When an electric material, for example, a metal having low electric resistance, enters the magnetic field of the coil in the oscillation state, the coil generates an eddy current loss in the electric material to be detected and changes to a resonance voltage of the oscillation circuit. And the distance between the electric material and the coil, that is, the gap can be detected based on the change in the resonance voltage.

【0004】[0004]

【発明が解決しようとする課題】ギャップセンサは、プ
ローブとしての検知コイルを、接続ケーブルを介して測
定器本体の外部に引き出されて使用される。また、制御
電子回路を搭載した基板から、プローブ部分を引き出し
て、プローブ常設型のギャップセンサとしても使用され
る。
The gap sensor is used by pulling a detection coil as a probe to the outside of the measuring instrument main body through a connection cable. In addition, the probe portion is pulled out from the substrate on which the control electronic circuit is mounted, and is used as a probe-installed gap sensor.

【0005】上記のようなプローブ分離型の測定器は、
プローブ部分と、制御回路を搭載した回路基板部分との
温度雰囲気が大幅に相違することが多く、電子回路の基
板側で温度測定をして、温度補償を行うことは困難であ
る。
A probe-separated measuring instrument as described above is
In many cases, the temperature atmospheres of the probe portion and the circuit board portion on which the control circuit is mounted are significantly different, and it is difficult to measure the temperature on the board side of the electronic circuit and perform temperature compensation.

【0006】特に、ギャップセンサにおいては、プロー
ブに使用されているコイルは、合成樹脂製又はセラミッ
ク製の巻枠に巻回されているが、この巻枠は、温度の上
昇とともに膨張するため、巻枠に巻回されたコイルの寸
法が大きくなり、コイルのインダクタンスが増して、発
振電圧が大きくなる。
In particular, in a gap sensor, a coil used for a probe is wound around a synthetic resin or ceramic winding frame. Since this winding frame expands with an increase in temperature, it is wound. The size of the coil wound around the frame increases, the inductance of the coil increases, and the oscillation voltage increases.

【0007】また、プローブの周辺の温度雰囲気によ
り、コイルの抵抗値が変化するが、コイルの抵抗値の温
度変化により、コイルの性状を示すQ(クオリテイ フ
ァクタ)は変化して、発信電圧は変動する。コイルは金
属の導線からなっているため、この抵抗値は、正の温度
係数をもって変動し、温度の増加とともに、抵抗値も増
大する。
The resistance of the coil changes depending on the temperature atmosphere around the probe. However, the Q (quality factor) indicating the property of the coil changes due to the temperature change of the resistance of the coil, and the transmission voltage fluctuates. I do. Since the coil is made of a metal wire, the resistance value varies with a positive temperature coefficient, and the resistance value increases as the temperature increases.

【0008】上記コイルの抵抗とQが共振電圧に与える
影響は、常温より低い温度から、漸次温度を上昇させた
場合、最初の低温時には、インダクタンスが増大する影
響が勝って、共振電圧が増す。温度が上昇するのに従っ
て、コイルのQの低下の影響が大となり、互いの影響が
打ち消し合う温度の所を過ぎると、Qの低下の影響が勝
って、共振電圧は減少する。
The effect of the resistance and Q of the coil on the resonance voltage is such that when the temperature is gradually increased from a temperature lower than room temperature, the effect of increasing the inductance at the first low temperature is greater, and the resonance voltage is increased. As the temperature rises, the effect of the decrease in Q of the coil becomes greater, and after the temperature where the mutual effects cancel each other, the effect of the decrease in Q prevails and the resonance voltage decreases.

【0009】図5は、上記した関係を具体的に示すもの
で、被検知体とプローブの距離(以下ギャップとする)
(G)を一定としたときの、温度(T)対共振電圧(V)の関
係を示すグラフである。なお、ギャップ(G)は、0〜3
mmの間を、0.2mm間隔で変化させたものである。
FIG. 5 specifically shows the above-mentioned relationship, in which the distance between the object to be detected and the probe (hereinafter referred to as a gap) is shown.
9 is a graph showing the relationship between temperature (T) and resonance voltage (V) when (G) is constant. The gap (G) is 0 to 3
The distance between mm is changed at intervals of 0.2 mm.

【0010】この共振電圧(V)の温度特性曲線から解る
如く、コイルの共振電圧(V)は、ギャップ(G)のみによ
って一義的に定まるものではなく、温度の低、中、高に
よって、温度の影響の度合いや、正負の極性が異なるた
め、単にプローブの温度を測定しても、その温度値から
容易に適正な修正値を得ることは困難である。
As can be seen from the temperature characteristic curve of the resonance voltage (V), the resonance voltage (V) of the coil is not uniquely determined only by the gap (G), but depends on the low, middle and high temperatures. And the positive and negative polarities are different, it is difficult to easily obtain an appropriate correction value from the temperature value simply by measuring the temperature of the probe.

【0011】また、ギャップ(G)が大きくなるに連れ
て、温度特性曲線の中央部が上方に凸となる傾向が強ま
り、1つのギャップ(G)の値に対して、共振電圧(V)
が、温度(T)の低域と高域の2個所に対応点をもち、従
来のアナログ計算式の折れ線近似直線化手段により直線
化することは困難であるため、この直線化と温度補償
を、同時に考慮することは困難であった。
Further, as the gap (G) increases, the central portion of the temperature characteristic curve tends to be upwardly convex, and the resonance voltage (V) for one value of the gap (G).
However, since there are two corresponding points in the low and high ranges of the temperature (T), and it is difficult to linearize with the conventional analog calculation broken-line approximation linearization means, this linearization and temperature compensation are performed. It was difficult to consider at the same time.

【0012】本発明は、上述の問題点に鑑み、ギャップ
センサにおいて、簡単な手段で、広範囲の温度に対し
て、温度補償を施したギャップ出力信号を得ることを目
的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to obtain a gap output signal in which a temperature is compensated for a wide range of temperatures by a simple means in a gap sensor.

【0013】[0013]

【課題を解決するための手段】本発明によると、上記課
題は、次のようにして解決される。 (1) 被検知電気材料に接近して設けられたセンサ用コ
イルと、そのコイルと共振させるコンデンサを備える発
振回路と、発振回路の発振電圧を検出する検波整流回路
と、検波整流回路の出力電圧に対する被検知電気材料と
コイルの距離との関係を、直線的に対応させる直線化回
路とを具備するギャップ検出装置において、コイルの電
気抵抗を計りコイルの周囲温度を電気値に変換するコイ
ル温度検出回路と、コイル温度検出回路の出力電圧が、
被検知電気材料とコイルの距離を一定としたときの発振
回路出力電圧対コイル温度の温度特性曲線の極点より低
い温度を示すとき、コイル温度検出回路より得られる温
度対出力電圧特性における温度対出力信号の変化率がほ
ぼ一定した温度対応信号を、温度対出力信号の変化率を
変更しうる電圧調整回路により、別の変化率をもって温
度にほぼ直線的に対応する低温度域補正信号に変換し、
その低温度域補正信号を、前記直線化回路の前段におい
て、検波整流回路の出力電圧から得られるギャップ信号
に加減するようにした低温度域補正回路とを設ける。
According to the present invention, the above-mentioned problem is solved as follows. (1) A sensor coil provided close to an electric material to be detected, an oscillation circuit including a capacitor that resonates with the coil, a detection rectifier circuit that detects an oscillation voltage of the oscillation circuit, and an output voltage of the detection rectifier circuit. And a linearization circuit for linearly associating the relationship between the detected electrical material and the distance of the coil with respect to the temperature of the coil, wherein the coil temperature detection measures the electrical resistance of the coil and converts the ambient temperature of the coil into an electrical value. The output voltage of the circuit and the coil temperature detection circuit
Oscillation circuit output voltage vs. coil temperature when the distance between the detected electrical material and the coil is constant. When the temperature is lower than the extreme point of the temperature characteristic curve of the coil temperature, the temperature vs. output in the temperature vs. output voltage characteristics obtained from the coil temperature detection circuit. The temperature-corresponding signal whose signal change rate is almost constant is converted to a low temperature range correction signal that corresponds to the temperature almost linearly with another change rate by a voltage adjustment circuit that can change the change rate of the temperature versus output signal. ,
There is provided a low temperature range correction circuit which adjusts the low temperature range correction signal to a gap signal obtained from the output voltage of the detection and rectification circuit at a stage preceding the linearization circuit.

【0014】(2) 被検知電気材料に接近して設けられ
たセンサ用コイルと、そのコイルと共振させるコンデン
サを備える発振回路と、発振回路の発振電圧を検出する
検波整流回路と、検波整流回路の出力電圧に対する被検
知電気材料とコイルの距離との関係を、直線的に対応さ
せる直線化回路とを具備するギャップ検出装置におい
て、コイルの電気抵抗を計りコイルの周囲温度を電気値
に変換するコイル温度検出回路と、コイル温度検出回路
が出力する温度信号の出力電圧が、ギャップ一定時の発
振回路出力電圧対コイル温度の温度特性曲線の極点より
高い温度を示すとき、コイル温度検出回路の出力電圧よ
り得られる温度対出力信号の変化率がほぼ一定した温度
対応信号を、温度対出力信号の変化率を変更しうる電圧
調整回路により、別の変化率をもって温度にほぼ直線的
に対応する高温度域補正信号に変換し、その高温度域補
正信号を、前記直線化回路の後段において、検波整流回
路の出力電圧から得られるギャップ信号を直線化したギ
ャップ信号に加減するようにした高温度域補正回路とを
設ける。
(2) An oscillating circuit including a sensor coil provided close to the electric material to be detected, a capacitor for resonating with the coil, a detection rectification circuit for detecting an oscillation voltage of the oscillation circuit, and a detection rectification circuit And a linearizing circuit for linearly associating the relationship between the detected electric material and the distance of the coil with respect to the output voltage of the coil, and converting the ambient temperature of the coil into an electric value by measuring the electric resistance of the coil. When the output voltage of the coil temperature detection circuit and the temperature signal output by the coil temperature detection circuit indicate a temperature higher than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage versus the coil temperature when the gap is constant, the output of the coil temperature detection circuit A temperature-corresponding signal in which the rate of change of the output signal with respect to the temperature obtained from the voltage is substantially constant is converted into another signal by the voltage adjusting circuit capable of changing the rate of change of the output signal with respect to the temperature. Is converted into a high-temperature range correction signal that substantially linearly corresponds to the temperature with the conversion ratio, and the high-temperature range correction signal is converted into a gap signal obtained from the output voltage of the detection and rectification circuit at a subsequent stage of the linearization circuit. And a high temperature range correction circuit configured to adjust the gap signal.

【0015】(3) 被検知電気材料に接近して設けられ
たセンサ用コイルと、そのコイルと共振させるコンデン
サを備える発振回路と、発振回路の発振電圧を検出する
検波整流回路と、検波整流回路の出力電圧に対する被検
知電気材料とコイルの距離との関係を、直線的に対応さ
せる直線化回路とを具備するギャップ検出装置におい
て、コイルの電気抵抗を計りコイルの周囲温度を電気値
に変換するコイル温度検出回路と、コイル温度検出回路
の出力電圧が、被検知電気材料とコイルの距離を一定と
したときの発振回路出力電圧対コイル温度の温度特性曲
線の極点より低い温度を示すとき、コイル温度検出回路
より得られる温度対出力電圧特性における温度対出力信
号の変化率がほぼ一定した温度対応信号を、温度対出力
信号の変化率を変更しうる電圧調整回路によって、別な
変化率をもって温度にほぼ直線的に対応する低温度域補
正信号に変換し、その低温度域補正信号を、前記直線化
回路の前段において、検波整流回路の出力電圧から得ら
れるギャップ信号に加減するようにした低温度域補正回
路と、コイル温度検出回路が出力する温度信号の出力電
圧が、ギャップ一定時の発振回路出力電圧対コイル温度
の温度特性曲線の極点より高い温度を示すとき、コイル
温度検出回路の出力電圧より得られる温度対出力信号の
変化率がほぼ一定した温度対応信号を、温度対出力信号
の変化率を変更しうる電圧調整回路により、別の変化率
をもって温度にほぼ直線的に対応する高温度域補正信号
に変換し、その高温度域補正信号を、前記直線化回路の
後段において、検波整流回路の出力電圧から得られるギ
ャップ信号を直線化したギャップ信号に、加減するよう
にした高温度域補正回路とを設ける。
(3) An oscillating circuit including a sensor coil provided close to the electric material to be detected, a capacitor for resonating with the coil, a detection rectifier circuit for detecting an oscillation voltage of the oscillation circuit, and a detection rectifier circuit And a linearizing circuit for linearly associating the relationship between the detected electric material and the distance of the coil with respect to the output voltage of the coil, and converting the ambient temperature of the coil into an electric value by measuring the electric resistance of the coil. When the coil temperature detection circuit and the output voltage of the coil temperature detection circuit indicate a temperature lower than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage versus the coil temperature when the distance between the detected electric material and the coil is fixed, A temperature-corresponding signal in which the rate of change of the temperature-to-output signal in the temperature-output voltage characteristic obtained from the temperature detection circuit is substantially constant, and the rate of change of the temperature-to-output signal is changed. A voltage adjustment circuit converts the low temperature range correction signal to a low temperature range correction signal substantially linearly corresponding to the temperature with another change rate, and outputs the low temperature range correction signal to the output voltage of the detection and rectification circuit at a stage preceding the linearization circuit. And the output voltage of the temperature signal output by the coil temperature detection circuit is calculated from the extreme point of the temperature characteristic curve of the oscillation circuit output voltage versus the coil temperature when the gap is constant. When a high temperature is indicated, a temperature-corresponding signal in which the rate of change of the output signal with respect to the temperature obtained from the output voltage of the coil temperature detection circuit is substantially constant is converted into another signal by the voltage adjusting circuit capable of changing the rate of change of the temperature-output signal. The change rate is converted into a high temperature range correction signal that substantially linearly corresponds to the temperature, and the high temperature range correction signal is output to the output voltage of the detection rectifier circuit at a stage subsequent to the linearization circuit. The gap signal obtained al a linearized gap signal, provided the high temperature region correction circuit so as to moderate.

【0016】[0016]

【発明の実施の形態】図1は、本発明の一実施形態を示
す電気回路図である。ギャップ検出回路(1)は、被検知
電気材料(2)に接近して位置するセンサ用コイル(3)
と、このコイル(3)と共振するコンデンサ(4)と、コイ
ル(3)とコンデンサ(4)を共振させる発振回路(5)と、
発振回路(5)の発振電圧(e)を検出する検波整流回路
(6)とを備えている。
FIG. 1 is an electric circuit diagram showing an embodiment of the present invention. The gap detection circuit (1) includes a sensor coil (3) located close to the electrical material to be detected (2).
A capacitor (4) that resonates with the coil (3), an oscillation circuit (5) that resonates the coil (3) and the capacitor (4),
Detection and rectification circuit for detecting the oscillation voltage (e) of the oscillation circuit (5)
(6).

【0017】コイル(3)は、接続端子(7)(8)に接続さ
れたプローブ導出用のケーブル(9)を介して、ギャップ
検出回路(1)を形成する回路基板(10)の外部に、ギャッ
プ検出プローブ(11)として導出されている。
The coil (3) is connected to connection terminals (7) and (8) via a probe leading cable (9) to the outside of a circuit board (10) forming a gap detection circuit (1). , And is derived as a gap detection probe (11).

【0018】検波整流回路(6)は、発振回路(5)によっ
てコイル(3)とコンデンサ(4)が励振させられた交流の
発振電圧(e)を、検波整流して直流のギャップ検出信号
(V)に変換する。
The detection and rectification circuit (6) detects and rectifies the AC oscillation voltage (e) excited by the coil (3) and the capacitor (4) by the oscillation circuit (5) and performs DC gap detection signal detection.
(V).

【0019】ギャップ検出信号(V)は、被検知電気材料
(2)とコイル(3)の距離、即ちギャップ(G)に対応す
る。
The gap detection signal (V) is used for detecting the electric material to be detected.
This corresponds to the distance between (2) and the coil (3), that is, the gap (G).

【0020】コイル(3)は、温度検出回路(12)のブリッ
ジ回路(13)に直流的に接続されている。
The coil (3) is DC-connected to the bridge circuit (13) of the temperature detection circuit (12).

【0021】温度検出回路(12)は、互いに直列接続した
抵抗(R1)とコイル(3)、及び抵抗(R2)(R3)を、さ
らに互いに並列接続させてブリッジ回路(13)を構成し、
このブリッジ回路(13)における抵抗(R1)とコイル(3)
の直列接続点(14)と、抵抗(R2)と(R3)の直列接続点
(15)とを、それぞれ、差動増幅回路をなす平衡電圧検出
回路(16)の入力端(17)(18)に接続して形成されている。
The temperature detecting circuit (12) constitutes a bridge circuit (13) by further connecting the resistor (R1) and the coil (3) and the resistors (R2) and (R3) connected in series to each other in parallel.
The resistor (R1) and the coil (3) in this bridge circuit (13)
Series connection point (14) and the series connection point of resistors (R2) and (R3)
(15) and (15) are connected to input terminals (17) and (18) of a balanced voltage detection circuit (16) forming a differential amplifier circuit, respectively.

【0022】なお、図1における各増幅回路は、アナロ
グ演算増幅器で構成されており、各増幅回路の入力端に
示す−と+の記号は、それぞれ反転入力端子と非反転入
力端子を示し、以下の説明においては、−記号の反転入
力端子を負入力端子、+記号の非反転入力端子を正入力
端子と呼ぶ。
Each amplifying circuit in FIG. 1 is constituted by an analog operational amplifier, and the-and + symbols shown at the input terminals of each amplifying circuit indicate an inverting input terminal and a non-inverting input terminal, respectively. In the description above, the inverting input terminal of a minus sign is called a negative input terminal, and the non-inverting input terminal of a plus sign is called a positive input terminal.

【0023】前記ブリッジ回路(13)の接続点(14)(15)が
接続されている平衡電圧検出回路(16)の入力端子(17)(1
8)には、互いに抵抗値を平衡させた入力抵抗(R5)(R
4)と、同じく互いに抵抗値を平衡させた帰還抵抗(R
7)(R6)が接続されている。
The input terminals (17) (1) of the balanced voltage detection circuit (16) to which the connection points (14) and (15) of the bridge circuit (13) are connected.
8) has input resistances (R5) (R
4) and a feedback resistor (R
7) (R6) is connected.

【0024】この温度検出回路(12)の出力、即ち平衡電
圧検出回路(16)の出力には、図4に示すような、温度に
対して出力電圧がほぼ直線的に変化する温度信号(T)が
得られる。この温度信号(T)は、コイル(3)の直流抵抗
値に応じて得られるもので、コイル(3)自体の温度、即
ちコイル(3)の巻枠を含めたプローブ(11)の温度に対応
している。
The output of the temperature detecting circuit (12), that is, the output of the balanced voltage detecting circuit (16) is provided with a temperature signal (T) whose output voltage changes almost linearly with temperature as shown in FIG. ) Is obtained. This temperature signal (T) is obtained according to the DC resistance value of the coil (3), and depends on the temperature of the coil (3) itself, that is, the temperature of the probe (11) including the winding frame of the coil (3). Yes, it is.

【0025】なお、ブリッジ回路(13)におけるコイル
(3)の抵抗成分には、ケーブル(9)の抵抗分を含むが、
コイル(3)は、線径が細くて、ケーブル(9)の抵抗分に
比して十分高い抵抗値を有するため、ケーブル(9)の抵
抗分に係る温度変化については、無視することができ
る。
The coil in the bridge circuit (13)
The resistance component of (3) includes the resistance of the cable (9),
Since the coil (3) has a small wire diameter and a sufficiently high resistance value as compared with the resistance of the cable (9), the temperature change relating to the resistance of the cable (9) can be ignored. .

【0026】上記温度信号(T)は、補償温度域判別回路
(19)、低温度域補償回路(20)、高温度域補償回路(21)
に、それぞれ入力している。
The temperature signal (T) is supplied to a compensation temperature range determination circuit.
(19), low temperature range compensation circuit (20), high temperature range compensation circuit (21)
, Respectively.

【0027】補償温度域判別回路(19)は、低温度域判別
回路(22)と高温度域判別回路(23)を備え、両判別回路(2
2)(23)は、ウインドコンパレータによって構成されてい
る。低温度域判別回路(22)には、正入力端子(24)に、低
温度域と中温度域を区分するための温度(T1)に対応し
た基準電圧(E1)を設定してある。
The compensation temperature range determination circuit (19) includes a low temperature range determination circuit (22) and a high temperature range determination circuit (23).
2) (23) is composed of a window comparator. In the low temperature range determination circuit (22), a reference voltage (E1) corresponding to a temperature (T1) for distinguishing between a low temperature range and a middle temperature range is set to a positive input terminal (24).

【0028】高温度域判別回路(23)の負入力端子(25)に
は、中温度域と高温度域を区分するための温度(T2)に
対応した基準電圧(E2)を設定してある。両基準電圧
(E1)(E2)は、安定化した基準電圧源(26)に接続さ
れ、互いに直列接続された可変抵抗器(R8)(R9)から
与えられている。
A reference voltage (E2) corresponding to a temperature (T2) for distinguishing between a middle temperature range and a high temperature range is set at the negative input terminal (25) of the high temperature range determination circuit (23). . Both reference voltages
(E1) and (E2) are connected to a stabilized reference voltage source (26), and are provided from variable resistors (R8) and (R9) connected in series to each other.

【0029】低温度域判別回路(22)の基準電圧(E1)
は、低い電圧側の可変抵抗(R8)の摺動端子(27)から、
また高温度域判別回路(23)の基準電圧(E2)は、高い電
圧側の可変抵抗(R9)の摺動端子(28)から、それぞれ取
り出される。
The reference voltage (E1) of the low temperature range determination circuit (22)
From the sliding terminal (27) of the variable resistor (R8) on the low voltage side,
Further, the reference voltage (E2) of the high temperature range discriminating circuit (23) is taken out from the sliding terminal (28) of the variable resistor (R9) on the high voltage side.

【0030】低温度域判別回路(22)の負入力端子(29)、
及び高温度域判別回路(23)の正入力端子(30)には、前記
温度検出回路(12)の温度信号(T)が入力している。
The negative input terminal (29) of the low temperature range determination circuit (22),
The temperature signal (T) of the temperature detection circuit (12) is input to a positive input terminal (30) of the high temperature range determination circuit (23).

【0031】基準電圧(E1)と温度信号(T)の大小を比
較して得られる低温度域判別回路(22)の低温度域検出信
号(L)は、低温度域補償回路(20)に入力し、同じく基準
電圧(E2)と温度信号(T)の大小を比較して得られる高
温度域判別回路(25)の高温度域検出信号(H)は、高温度
補償回路(21)に入力している。なお、抵抗(R10)(R11)
は、両判別回路(22)(23)の出力インピーダンスを安定さ
せる出力抵抗である。
The low temperature range detection signal (L) of the low temperature range determination circuit (22) obtained by comparing the magnitude of the reference voltage (E1) with the temperature signal (T) is supplied to the low temperature range compensation circuit (20). The high temperature range detection signal (H) of the high temperature range discrimination circuit (25) obtained by comparing the reference voltage (E2) and the magnitude of the temperature signal (T) is input to the high temperature compensation circuit (21). You are typing. In addition, resistance (R10) (R11)
Is an output resistance for stabilizing the output impedance of both discriminating circuits (22) and (23).

【0032】低温度域補償回路(20)は、所要の利得を有
する加減算増幅回路(31)と、温度信号(T)を入力して、
その温度信号(T)の温度対出力電圧の変化率(δV/δ
T)を調節する第1の電圧調整器(32)と、電圧調整器(3
2)の出力信号(T1)を、加減算増幅回路(31)の正入力端
子(33)に対してオンオフするアナログスイッチ(34)とを
備えている。
The low temperature range compensation circuit (20) receives an addition / subtraction amplification circuit (31) having a required gain and a temperature signal (T),
The rate of change of the output voltage with respect to the temperature of the temperature signal (T) (δV / δ
T) and a first voltage regulator (32) for adjusting T).
An analog switch (34) for turning on / off the output signal (T1) of (2) with respect to the positive input terminal (33) of the addition / subtraction amplification circuit (31).

【0033】電圧調整器(32)は、一般の測定回路等にお
いて、スパン調整回路、またはフルスケール調整回路等
と称され、ゼロ点を固定した可変利得増幅回路で構成さ
れ、入力電圧に対する出力電圧の勾配、即ち変化率を調
節しうる回路からなっている。
The voltage regulator (32) is called a span adjustment circuit or a full-scale adjustment circuit in a general measurement circuit or the like, and is constituted by a variable gain amplifier circuit having a fixed zero point. , That is, a circuit capable of adjusting the gradient, that is, the rate of change.

【0034】加減算増幅回路(31)には、負入力端子(35)
に、前記ギャップ検出回路(1)からのギャップ検出信号
(V)が、入力抵抗(R12)を介して入力し、この加減算増
幅回路(31)は、帰還抵抗(R13)を可変することにより、
利得を調節しうるようになっている。
The addition / subtraction amplification circuit (31) has a negative input terminal (35).
The gap detection signal from the gap detection circuit (1)
(V) is input via an input resistor (R12), and the addition / subtraction amplifier circuit (31) changes the feedback resistor (R13) to
The gain can be adjusted.

【0035】加減算増幅回路(31)の正入力端子(33)に
は、入力インピーダンスを安定させる接地抵抗(R14)が
接続され、その加減算増幅回路(31)の出力は、直線化回
路(36)に入力している。
A grounding resistor (R14) for stabilizing the input impedance is connected to the positive input terminal (33) of the addition / subtraction amplification circuit (31). The output of the addition / subtraction amplification circuit (31) is connected to a linearization circuit (36). Is being entered.

【0036】直線化回路(36)は、加算バイアス点の異な
る演算増幅器を多段に使用した折線近似リニアライザ(3
7)(回路図省略)からなり、アナログスイッチ(34)がオフ
した状態において、加減算増幅回路(31)の正入力端子(3
3)に低温度域温度補償信号(TL)が入力していないとき
に、図3、図4に示す非補償直線化信号(V1)を出力す
る。
The linearizing circuit (36) is a linearizer approximating linearizer (3) using operational amplifiers having different addition bias points in multiple stages.
7) (Circuit diagram omitted), and when the analog switch (34) is off, the positive input terminal (3
When the low temperature range temperature compensation signal (TL) is not input to 3), the non-compensation linearization signal (V1) shown in FIGS. 3 and 4 is output.

【0037】図3および図4は、図5において示す複数
の固定されたギャップ(G)に対応する温度特性曲線を、
ギャップ(G)対出力電圧(V)の特性曲線に変換したもの
である。 なお、図示の出力電圧(V1)は、前記加減算増
幅回路(31)が低温度域温度補償信号(TL)を入力してい
ないときの出力電圧である。
FIGS. 3 and 4 show temperature characteristic curves corresponding to a plurality of fixed gaps (G) shown in FIG.
This is converted into a characteristic curve of the gap (G) versus the output voltage (V). The output voltage (V1) shown is an output voltage when the addition / subtraction amplifier circuit (31) does not input the low temperature range temperature compensation signal (TL).

【0038】図3に示す出力電圧(V1)は、低温度域の
特性図を示すもので、図5においてギャップ(G)が大き
いところ(上方の曲線)で顕著に現れる、特性曲線が上方
に最大に凸となる極大値に近い80℃の温度より低温度
領域の、−20℃、0℃、20℃、40℃、80℃の各
温度で、ギャップ(G)対発振電圧(V1)を、定温度測定
した特性曲線である。
The output voltage (V1) shown in FIG. 3 is a characteristic diagram in a low temperature range. In FIG. 5, the characteristic curve appears remarkably at a large gap (G) (upper curve). The gap (G) vs. the oscillation voltage (V1) at each temperature of −20 ° C., 0 ° C., 20 ° C., 40 ° C., and 80 ° C. in the temperature range lower than the temperature of 80 ° C. which is close to the maximum value which becomes the maximum convex. And characteristic curves measured at constant temperature.

【0039】図4に示す出力電圧(V1)は、高温度領域
の特性図を示すもので、図5においてギャップ(G)が大
きいところ(上方の曲線)で顕著に示される、特性曲線が
上方に凸する極大値に近い80℃の温度より高温度域
の、100℃、140℃、180℃の各温度で、ギャッ
プ(G)対発振電圧(V1)を、定温度測定した特性曲線で
ある。
The output voltage (V1) shown in FIG. 4 is a characteristic diagram in a high temperature region. In FIG. 5, the characteristic curve which is remarkably shown when the gap (G) is large (upper curve) is higher. FIG. 6 is a characteristic curve obtained by measuring the gap (G) versus the oscillation voltage (V1) at a constant temperature at each of 100 ° C., 140 ° C., and 180 ° C. in a higher temperature range than the temperature of 80 ° C. which is close to the maximum value protruding from .

【0040】ギャップ(G)が大きい40℃と100℃温
度特性は、図5では互いに近似する出力電圧を示し、図
3、図4においてはほぼ重なっている。この40℃と1
00℃のギャップ(G)の小さなところは、100℃の方
が若干下目になっているが、非常に接近している。
The temperature characteristics of 40 ° C. and 100 ° C. with a large gap (G) show output voltages that are close to each other in FIG. 5, and almost overlap in FIGS. This 40 ℃ and 1
The portion where the gap (G) at 00 ° C. is small is slightly lower at 100 ° C., but is very close.

【0041】図3および図4において、点線で示す80
℃の定温度特性曲線は、図5においては、低温度域と高
温度域の境目、即ち各ギャップ(G)における極大値の部
分の定温度特性曲線に相当する。
In FIGS. 3 and 4, reference numeral 80 indicates a dotted line.
In FIG. 5, the constant temperature characteristic curve of ° C. corresponds to the boundary between the low temperature region and the high temperature region, that is, the constant temperature characteristic curve of the maximum value portion in each gap (G).

【0042】図3〜図5の各特性曲線図から解る如く、
40℃、80℃、100℃の領域は、図3および図4に
おいては非常に接近していて、各特性曲線の間に隔たり
の小さい温度特性を示し、温度に対する影響が相対的に
小さい領域を中温度領域とする。
As can be seen from the characteristic curve diagrams of FIGS.
The regions of 40 ° C., 80 ° C., and 100 ° C. are very close to each other in FIGS. 3 and 4 and exhibit small temperature characteristics with a small gap between the characteristic curves. It is a medium temperature range.

【0043】リニアライザー(37)は、低温度域と高温度
域の温度を固定した多数の特性曲線の中で、互いに曲線
の特徴が近似するものを選択して、直線化の較正調整を
行うようにする。
The linearizer (37) performs calibration adjustment for linearization by selecting, from among a number of characteristic curves in which the temperatures of the low temperature range and the high temperature range are fixed, those whose characteristics are similar to each other. To do.

【0044】即ち、本発明に係るリニアライザー(37)
は、低温度域の補償においても、高温度域の補償におい
ても、折れ点が不連続しない1回路(1種類)からなる折
れ線式関数変換器を使用する。
That is, the linearizer (37) according to the present invention.
Uses a broken-line function converter composed of one circuit (one type) in which the breakpoints are not discontinuous in both the low temperature range compensation and the high temperature range compensation.

【0045】具体的には、1回路からなるリニアライザ
ー(37)は、−20〜80℃の低温度域、80〜180℃
の高温度域のいずれか一か所の温度における特性曲線に
ついてのみ、直線化が行われる。
More specifically, the linearizer (37) composed of one circuit has a low temperature range of -20 to 80.degree.
Is linearized only for the characteristic curve at any one of the temperatures in the high temperature range.

【0046】そのためには、低温度域と高温度域の特性
曲線の中で、双方に共通性の高い、即ち、前記40℃と
100℃のように、定温度特性曲線が重なり合うような
ものが好ましく、それらの温度についてのギャップ対出
力電圧の特性曲線が、低温度域と高温度域で近似してい
る特性曲線のうち、低温度域の方について、実測値に基
づいて、直線化の較正(キャリブレーション)を行うよう
にする。
For this purpose, among the characteristic curves in the low temperature range and the high temperature range, those having a high degree of commonality to both, that is, the constant temperature characteristic curves such as the above-mentioned 40 ° C. and 100 ° C. which overlap each other. Preferably, the characteristic curve of the gap versus the output voltage for those temperatures is similar to the characteristic curve in the low temperature range and the high temperature range, and the calibration of the linearization is performed based on the actually measured value in the low temperature range. (Calibration).

【0047】このリニアライザー(37)の較正時の特定温
度(Tx)を、前記低温度域と中温度域を区分するための
温度(T1)とし、特定温度(Tx)の定温度特性に対して
高温度域側において近似する定温度特性の温度(Tz)
を、中温度域と高温度域を区分するための温度(T2)と
する。
The specific temperature (Tx) at the time of calibration of the linearizer (37) is defined as a temperature (T1) for distinguishing the low temperature range from the medium temperature range, and the constant temperature characteristic of the specific temperature (Tx) is determined. (Tz) of the constant temperature characteristic approximating on the high temperature range side
Is the temperature (T2) for distinguishing between the medium temperature range and the high temperature range.

【0048】特定温度(Tx=T1)とそれと対応する温度
(Tz=T2)の間を中温度域とするが、この中温度域の相
対的温度依存性は、前述の如く、非常に小さいので、温
度補償に関しては無補償とする。
Specific temperature (Tx = T1) and corresponding temperature
The intermediate temperature range is defined as (Tz = T2). Since the relative temperature dependency of the intermediate temperature range is extremely small as described above, no compensation is made for the temperature compensation.

【0049】リニアライザー(37)の較正時の特定温度
(Tx=T1)におけるギャップ信号(V)は、加減算増幅回
路(31)の正入力端子(33)が零入力のとき、図3と図4に
おいて、いずれも直線(A)と(B)の出力特性を示すよう
になる。上述のリニアライザー(37)の出力信号(V2')
は、高温度補償回路(21)に入力している。
Specific temperature at the time of calibration of the linearizer (37)
When the positive input terminal (33) of the addition / subtraction amplifier circuit (31) has a zero input, the gap signal (V) at (Tx = T1) is represented by the straight lines (A) and (B) in FIGS. Output characteristics are shown. The output signal (V2 ') of the above linearizer (37)
Are input to the high temperature compensation circuit (21).

【0050】高温度補償回路(21)は、加減算増幅回路(3
8)と、前記同様の電圧調整器(39)を備え、加減算増幅回
路(38)は、加算回路として2つの加算入力端を有し、そ
の一方の加算入力端には、入力抵抗(R15)を介して、前
記リニアライザー(37)の出力信号(V2)が入力してい
る。
The high temperature compensation circuit (21) is provided with an addition / subtraction amplification circuit (3
8) and a voltage regulator (39) similar to the above, and the addition / subtraction amplification circuit (38) has two addition inputs as an addition circuit, and one of the addition inputs has an input resistor (R15). , The output signal (V2) of the linearizer (37) is input.

【0051】もう一方の加算入力端は、前記入力抵抗
(R15)に対して、それと同じ値の入力抵抗(R16)を介し
て、加減算増幅器(38)の負入力端子(40)間に設けられ、
加算入力端には、アナログスイッチ(41)を介して、第2
の電圧調整器(39)の出力信号が入力している。
The other addition input terminal is connected to the input resistance
(R15) is provided between the negative input terminal (40) of the addition / subtraction amplifier (38) via an input resistor (R16) having the same value as that of (R15),
The second input terminal is connected to the second input terminal via an analog switch (41).
The output signal of the voltage regulator (39) is input.

【0052】第2の電圧調整器(41)は、第1の電圧調整
器(32)と同様に、温度信号(T)の温度対出力電圧の変化
率(δV/δT)を調節するものである。しかし、この第
2の電圧調整器(41)は、第1の電圧調整器(32)とは別
に、高温度域の温度補正に適した変化率(δV/δT)を
設定しうるようにしたもので、それの出力信号は、アナ
ログスイッチ(41)を介して、加減算増幅器(38)に入力す
る高温度域温度補償信号(TH)となる。
The second voltage regulator (41), like the first voltage regulator (32), adjusts the rate of change of the temperature signal (T) versus the output voltage (δV / δT). is there. However, the second voltage regulator (41) can set a rate of change (δV / δT) suitable for temperature correction in a high temperature range, separately from the first voltage regulator (32). The output signal is a high temperature range temperature compensation signal (TH) input to the addition / subtraction amplifier (38) via the analog switch (41).

【0053】加減算増幅器(38)は、負入力端子(39)に接
続する帰還抵抗(R17)と、正入力端子(42)に接続する接
地抵抗(R18)を備え、この加減算増幅器(38)の出力信号
は、ギャップ(G)に対してほぼ直線的に比例し、かつ低
温度域から高温度域まで、温度補償がなされたギャップ
信号(V3)となる。
The addition / subtraction amplifier (38) has a feedback resistance (R17) connected to the negative input terminal (39) and a ground resistance (R18) connected to the positive input terminal (42). The output signal is substantially linearly proportional to the gap (G), and becomes a gap signal (V3) whose temperature is compensated from a low temperature range to a high temperature range.

【0054】上記低温度域補償回路(20)においては、低
温度判別回路(22)の基準電圧(E1)を、上記リニアライ
ザー(37)の直線化の較正温度(Tx=T1)に対応する温度
信号(T)の電圧と同じ値に設定しておくことにより、低
温度判別回路(22)が、較正温度(Tx)より温度信号(T)
が小さいときに、低温度域検出信号(L)がハイレベルと
なって、アナログスイッチ(34)をONにして、第1の電
圧調整器(32)の低温度域温度補償信号(TL)を、加減増
幅回路(31)に入力する。
In the low temperature range compensation circuit (20), the reference voltage (E1) of the low temperature discrimination circuit (22) corresponds to the linearization calibration temperature (Tx = T1) of the linearizer (37). By setting the voltage to the same value as the voltage of the temperature signal (T), the low temperature discriminating circuit (22) can detect the temperature signal (T) from the calibration temperature (Tx).
Is low, the low temperature range detection signal (L) becomes high level, the analog switch (34) is turned on, and the low temperature range temperature compensation signal (TL) of the first voltage regulator (32) is turned on. , And input to the adjustable amplifier circuit (31).

【0055】高温度域補償回路(21)においては、高温度
判別回路(23)の基準電圧(E2)を、上記リニアライザー
(37)の直線化の較正温度(Tx)の特性曲線に近似した高
温度域の特性曲線に対応する温度(Tz)の電圧と同じ値
に設定しておくことにより、高温度判別回路(22)が、そ
の温度(Tz=T2)より温度信号(T)が大きいときに、高
温度域検出信号(H)がハイレベルとなって、アナログス
イッチ(41)をONにして、第2の電圧調整器(39)の高温
度域温度補償信号(TH)を、加減増幅回路(38)に入力す
る。
In the high temperature range compensation circuit (21), the reference voltage (E2) of the high temperature discrimination circuit (23) is converted to the linearizer
By setting the same value as the voltage of the temperature (Tz) corresponding to the characteristic curve of the high temperature range approximated to the characteristic curve of the calibration temperature (Tx) of the linearization of (37), the high temperature discrimination circuit (22 ), When the temperature signal (T) is higher than the temperature (Tz = T2), the high temperature range detection signal (H) becomes high level, the analog switch (41) is turned on, and the second voltage The high temperature range temperature compensation signal (TH) of the regulator (39) is input to the adjustable amplifier circuit (38).

【0056】温度が40℃〜100℃の中間温度領域に
おいては、低温度判別回路(22)及び高温度判別回路(23)
共に、出力をローレベルとし、アナログスイッチ(34)(4
1)は、両方ともオフ状態にある。
In the intermediate temperature range where the temperature is between 40 ° C. and 100 ° C., the low temperature discriminating circuit (22) and the high temperature discriminating circuit (23)
In both cases, set the output to low level and set the analog switch (34) (4
1) are both in the off state.

【0057】これにより、中間温度領域においては、低
温度域補償回路(20)と高温度域補償回路(21)が、低温度
域温度補償信号(TL)及び高温度域温度補償信号(TH)
を、元のギャップ信号(V1)、(V2')に対して、加減算
することなく、無補償でそれぞれ通過させる。
Thus, in the intermediate temperature range, the low temperature range compensation circuit (20) and the high temperature range compensation circuit (21) provide the low temperature range temperature compensation signal (TL) and the high temperature range temperature compensation signal (TH).
Is passed without compensation to the original gap signals (V1) and (V2 ') without addition or subtraction.

【0058】温度信号(T)が、40℃以下の低温度領域
にあるとき、その温度信号(T)は、電圧調節器(32)にお
いて、温度対出力電圧の変化率が調節され、その際にオ
ンになっているアナログスイッチ(34)を介して、加減算
増幅回路(31)の正入力端子(33)に、低温度域温度補償信
号(TL)として入力される。
When the temperature signal (T) is in a low temperature range of 40 ° C. or less, the temperature signal (T) is adjusted by the voltage regulator (32) at a rate of change of temperature versus output voltage. The low temperature range temperature compensation signal (TL) is input to the positive input terminal (33) of the addition / subtraction amplification circuit (31) via the analog switch (34) that is turned on.

【0059】この際、加減算増幅回路(31)の正入力端子
(32)には、図3に示す如く、較正温度(Tx=40℃)の
ときに零レベルとなるように調整した、低温度域温度補
償信号(TL)が入力している。加減算増幅回路(31)にお
いては、検波整流回路(6)の出力するギャップ信号(V)
に加算される。
At this time, the positive input terminal of the addition / subtraction amplification circuit (31)
As shown in FIG. 3, a low temperature range temperature compensation signal (TL) adjusted so as to become zero level at the calibration temperature (Tx = 40 ° C.) is input to (32). In the addition / subtraction amplifier circuit (31), the gap signal (V) output from the detection rectifier circuit (6)
Is added to

【0060】図3においては、無補償のギャップ信号
(V1)と低温度域温度補償信号(TL)が加算されて、リ
ニアライザー(37)に入力する。
In FIG. 3, the uncompensated gap signal
(V1) and the low temperature range temperature compensation signal (TL) are added and input to the linearizer (37).

【0061】図3の(TL’)は、低温度域温度補償信号
(TL)のみをリニアライザー(37)に通したときの特性曲
線であり、−20℃のときに、補償後のギャップ信号
(V2)が40℃の較正特性直線(A)に重なるように、電
圧調整回路(32)の出力電圧が調整される。ただし、前記
40℃においての零点は、維持しておく。
(TL ') in FIG. 3 is a low temperature range temperature compensation signal.
(TL) is a characteristic curve when only the linearizer (37) is passed, and the gap signal after compensation is obtained at −20 ° C.
The output voltage of the voltage adjusting circuit (32) is adjusted so that (V2) overlaps the calibration characteristic line (A) at 40 ° C. However, the zero point at 40 ° C. is maintained.

【0062】このように、低温度域においては、補償上
限の温度、即ち直線化の較正温度(Tx=40℃)から、
補償下限の温度−20℃の範囲において、その上限温度
と下限温度の両方において、電圧調整回路(32)の出力電
圧基準点(零点)と温度対出力電圧の変化率(δV/δT)
をもって、補償の度合いを適正に合わせ込むことが可能
となり、その途中の整合度は、若干の誤差を含むとして
も、無補償のものに比して、十分に高精度に補償されて
いる。
As described above, in the low temperature range, from the temperature of the upper limit of compensation, that is, the calibration temperature for linearization (Tx = 40 ° C.),
In the range of the lower limit temperature of −20 ° C., at both the upper limit temperature and the lower limit temperature, the output voltage reference point (zero point) of the voltage adjustment circuit (32) and the rate of change of the output voltage with respect to temperature (δV / δT)
Thus, the degree of compensation can be appropriately adjusted, and the degree of matching in the middle is compensated with sufficiently higher accuracy than that without compensation, even if it includes a slight error.

【0063】なお、これらの補償の調整は、低温度域全
体の誤差率、及び最も利用率の高い温度域の誤差率等を
考慮して、合わせ込む対象点や値を、適当に変更して較
正を行うのが好ましい。
Adjustment of these compensations is performed by appropriately changing the target points and values to be adjusted in consideration of the error rate of the entire low temperature range, the error rate of the temperature range having the highest utilization rate, and the like. Preferably, a calibration is performed.

【0064】この低温度域においては、リニアライザー
(37)が出力する補償済みのギャップ信号(V2=A)が、
高温度域補償回路(21)を無補償で通過して、加減算増幅
回路(38)の出力から、補償済みのギャップ信号(V3)を
出力する。
In this low temperature range, the linearizer
The compensated gap signal (V2 = A) output by (37) is
The signal passes through the high temperature range compensation circuit (21) without compensation, and outputs a compensated gap signal (V3) from the output of the addition / subtraction amplification circuit (38).

【0065】同様にして、高温度域において、温度信号
(T)が、100℃以上になると、その温度信号(T)は、
もう一方の電圧調節器(41)において、温度対出力電圧の
変化率が調節され、その際にオンになっているアナログ
スイッチ(41)を介して、加減算増幅回路(38)の負入力端
子(40)に、高温度域温度補償信号(TH)として入力され
る。
Similarly, in the high temperature range, the temperature signal
When (T) becomes 100 ° C. or higher, the temperature signal (T) becomes
In the other voltage regulator (41), the rate of change of the temperature with respect to the output voltage is adjusted, and the analog switch (41) which is turned on at that time passes through the negative input terminal (38) of the addition / subtraction amplifier circuit (38). 40) is input as a high temperature range temperature compensation signal (TH).

【0066】高温度域温度補償信号(TH)は、図4に示
す如く、加減算増幅回路(38)に対して、100℃のとき
零レベルとなるように調節されている。
As shown in FIG. 4, the high temperature range temperature compensation signal (TH) is adjusted so that the addition / subtraction amplification circuit (38) becomes zero level at 100 ° C.

【0067】図4に示す如く、高温度域においては、無
補償で、かつ直線化されたギャップ信号(V2'=B)は、
温度変化に対して、温度が上昇するとギャップ信号(V
2')が減少するように、直線(B)に対して平行移動する
特性を示す。高温度域温度補償信号(TH)は、高温度域
の上限温度180℃において、100℃の特性曲線に重
なるように、温度対出力電圧の変化率(δV/δT)が調
節される。
As shown in FIG. 4, in the high temperature range, the uncompensated and linearized gap signal (V2 '= B) is
When the temperature rises in response to a temperature change, a gap signal (V
It shows the characteristic of moving parallel to the straight line (B) so that 2 ′) decreases. In the high temperature range temperature compensation signal (TH), the rate of change of temperature versus output voltage (δV / δT) is adjusted so as to overlap the characteristic curve of 100 ° C at the upper limit temperature of 180 ° C in the high temperature range.

【0068】これにより、高温度域の100〜180の
範囲においては、温度に比例して増加する高温度域温度
補償信号(TH)が、加減算増幅回路(38)において加算さ
れ、この加減算増幅回路(38)からは、高精度に温度補償
がなされた補償済みのギャップ信号(V3)が出力され
る。なお、40℃〜100℃の中温度域においては、無
補償で直線化されたギャップ信号(V2=A)が、加算増
幅回路(38)を無補償で通過して、最終的なギャップ信号
(V3)として出力される。
Thus, in the high temperature range of 100 to 180, the high temperature range temperature compensation signal (TH) which increases in proportion to the temperature is added in the addition / subtraction amplification circuit (38), and this addition / subtraction amplification circuit (38) From (38), a compensated gap signal (V3) that has been subjected to high-precision temperature compensation is output. In the middle temperature range of 40 ° C. to 100 ° C., the gap signal (V 2 = A) linearized without compensation passes through the addition amplifier circuit (38) without compensation, and the final gap signal
(V3) is output.

【0069】本発明に係るギャップ検出装置は、携帯式
の汎用計測器としては、温度補償範囲を広範囲とするこ
とが必要であるため、低温度補償回路(20)と高温度補償
回路(23)の両方を備えたものが好ましいが、プローブと
して検知コイルを常設したギャップ検出装置、例えば、
屋内用磁気浮上走行装置のギャップ検出装置等、屋内の
常温環境で移用されるものにおいては、低温度補償回路
(20)のみを有する、低温度域専用、もしくは低温度域と
中温度域用のもので、十分に温度補償の機能が達成でき
る。
Since the gap detecting device according to the present invention requires a wide temperature compensation range as a portable general-purpose measuring instrument, the low temperature compensation circuit (20) and the high temperature compensation circuit (23) Although a device having both of these is preferable, a gap detection device having a detection coil permanently installed as a probe, for example,
Low temperature compensation circuits are used for indoor magnetic levitation traveling devices such as gap detection devices that are transferred in indoor normal temperature environments.
It has only (20), only for the low temperature range, or for the low temperature range and the middle temperature range, and can sufficiently achieve the temperature compensation function.

【0070】また、中温度から高温度にかけて使用され
るギャップ検出装置については、高温度補償回路(21)の
みを有する、中温度域と高温度域用、もしくは高温度域
専用のもので、十分に温度補償の機能が達成できる。
As for the gap detecting device used from the middle temperature to the high temperature, a gap detecting device having only the high temperature compensating circuit (21) for the medium temperature region and the high temperature region or dedicated to the high temperature region is sufficient. The function of temperature compensation can be achieved.

【0071】上記においては、本発明の実施に使用され
る各電子回路を、アナログ演算増幅器等によるものとし
て説明したが、低温度補償回路(20)及び高温度補償回路
(21)、並びに直線化回路(36)等の部分を、ディジタル化
したものにおいても、適用できることは言うまでもな
い。
In the above description, each electronic circuit used in the embodiment of the present invention is described as being constituted by an analog operational amplifier or the like, but the low temperature compensation circuit (20) and the high temperature compensation circuit
It goes without saying that the present invention can be applied to digitalized parts of (21) and the linearizing circuit (36).

【0072】[0072]

【発明の効果】本発明によれば、以下のような効果を奏
することができる。 (a) 検知ブローブのコイルの温度を直接的に温度信号
として検出し、そのコイルの各種の温度パラメータに係
る発振特性への影響が、ギャップ対発振電圧の温度特性
曲線で、傾向が似ている温度範囲に、前記検出した温度
信号をもって区分し、その区分した温度範囲で、前記温
度信号を影響の傾向と度合いに応じて、ギャップ信号に
加えるようにしてあるため、補償回路の回路構成が線形
回路のみであり、簡潔である。
According to the present invention, the following effects can be obtained. (a) The temperature of the coil of the detection probe is directly detected as a temperature signal, and the effect on the oscillation characteristics related to various temperature parameters of the coil is similar in the temperature characteristic curve of the gap versus the oscillation voltage. The detected temperature signal is divided into temperature ranges, and the temperature signal is added to the gap signal according to the tendency and degree of influence in the divided temperature range, so that the circuit configuration of the compensation circuit is linear. The circuit is only simple.

【0073】(b) 区分した温度範囲の影響が、非線形
にあらわれる部分については、本来備わっているリニア
ライザーの非線形変換部を利用するので、補償回路とし
ては、非線形回路を別に必要せず、回路構成が簡潔で安
価になる。
(B) For the part where the influence of the divided temperature range appears non-linearly, the non-linear conversion part of the inherent linearizer is used. Therefore, a separate non-linear circuit is not required as a compensation circuit. The configuration is simple and inexpensive.

【0074】(c) ギャップセンサとして本来備えてい
るリニアライザーの較正作業を別にすれば、本発明の温
度補償に係る較正作業は、各温度範囲について、下目と
上目の2個所の調整で済み、補償の調整が簡単である。
(C) Aside from the calibration work of the linearizer originally provided as the gap sensor, the calibration work related to the temperature compensation of the present invention is performed by adjusting the lower and upper eyes for each temperature range. And adjustment of compensation is simple.

【0075】(d) 検知プローブのコイルの温度を測っ
た温度信号は、ギャップ検出環境の雰囲気温度を代表す
る温度信号として利用でき、ギャップセンサを利用した
自動制御装置における自動監視システムの、重要な監視
パラメータとして使用できる。
(D) The temperature signal obtained by measuring the temperature of the coil of the detection probe can be used as a temperature signal representing the ambient temperature of the gap detection environment, and is important for the automatic monitoring system in the automatic control device using the gap sensor. Can be used as a monitoring parameter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度補償付きギャップ検出装置の
具体的一例を示す電気回路図である。
FIG. 1 is an electric circuit diagram showing a specific example of a gap detection device with temperature compensation according to the present invention.

【図2】図1における検知コイルを温度センサーとした
場合の、温度検出回路の温度特性図である。
FIG. 2 is a temperature characteristic diagram of a temperature detection circuit when the detection coil in FIG. 1 is a temperature sensor.

【図3】図1のギャップ検出回路における、低温度領域
のギャップ対出力電圧の温度特性図である。
FIG. 3 is a graph showing a temperature characteristic of a gap-output voltage in a low temperature region in the gap detection circuit of FIG. 1;

【図4】図1のギャップ検出回路における、高温度領域
のギャップ対出力電圧の温度特性図である。
FIG. 4 is a graph showing a temperature characteristic of a gap-output voltage in a high temperature region in the gap detection circuit of FIG. 1;

【図5】特定の検知コイルにおいて、ギャップを一定と
した場合の、ギャップ対共振電圧の温度特性を、ギャッ
プの大きさを順次変更して測定した、複数のギャップの
温度特性図である。
FIG. 5 is a temperature characteristic diagram of a plurality of gaps obtained by sequentially changing the size of the gap and measuring the temperature characteristic of the gap-to-resonance voltage when the gap is constant in a specific detection coil.

【符号の説明】[Explanation of symbols]

(1)ギャップ検出回路 (2)被検知電気材料 (3)コイル (4)コンデンサ (5)発振回路 (6)検波整流回路 (7)(8)接続端子 (9)ケーブル (10)回路基板 (11)ギャップ検出プローブ (12)温度検出回路 (13)ブリッジ回路 (14)直列接続点 (15)直列接続点 (16)平衡電圧検出回路 (17)(18)入力端 (19)補償温度域判別回路 (20)低温度域補償回路 (21)高温度域補償回路 (22)低温度域判別回路 (23)高温度域判別回路 (24)正入力端子 (25)負入力端子 (26)基準電圧源 (27)摺動端子 (28)摺動端子 (29)負入力端子 (30)正入力端子 (31)加減算増幅回路 (32)電圧調整器 (33)正入力端子 (34)アナログスイッチ (35)負入力端子 (36)直線化回路 (37)リニアライザー (38)加減増幅回路 (39)電圧調節器 (40)負入力端子 (41)アナログスイッチ (42)正入力端子 (e)発振電圧 (G)ギャップ (T)温度信号 (T1)(T2)(Tz)温度 (Tx)特定温度 (TH)高温度域温度補償信号 (TL)低温度域温度補償信号 (V)ギャップ検出信号 (V1)(V2)(V2’)(V3)ギャップ信号 (E1)(E2)基準電圧 (R1)〜(R18)抵抗 (R8)(R9)可変抵抗器 (1) Gap detection circuit (2) Electrical material to be detected (3) Coil (4) Capacitor (5) Oscillation circuit (6) Detection and rectification circuit (7) (8) Connection terminal (9) Cable (10) Circuit board ( 11) Gap detection probe (12) Temperature detection circuit (13) Bridge circuit (14) Series connection point (15) Series connection point (16) Balanced voltage detection circuit (17) (18) Input terminal (19) Compensation temperature range discrimination Circuit (20) Low temperature range compensation circuit (21) High temperature range compensation circuit (22) Low temperature range discrimination circuit (23) High temperature range discrimination circuit (24) Positive input terminal (25) Negative input terminal (26) Reference voltage (27) Sliding terminal (28) Sliding terminal (29) Negative input terminal (30) Positive input terminal (31) Addition / subtraction amplifier circuit (32) Voltage regulator (33) Positive input terminal (34) Analog switch (35 ) Negative input terminal (36) Linearizer (37) Linearizer (38) Adjustable amplifier (39) Voltage regulator (40) Negative input terminal (41) Analog switch (42) Positive input terminal (e) Oscillation voltage ( G) Gap (T) Temperature signal (T1) (T2) (Tz) temperature (Tx) Specific temperature (TH) High temperature range temperature compensation signal (TL) Low temperature range temperature compensation signal (V) Gap detection signal (V1) (V2) (V2 ') (V3) Gap signal (E1) (E2) Reference voltage (R1)-(R18) Resistance (R8) (R9) Variable resistor

フロントページの続き Fターム(参考) 2F063 AA23 AA50 BD11 CA10 CB01 DA01 DA04 DB03 DC08 DD02 GA08 LA05 LA11 LA23 LA27 2F077 AA13 FF31 TT11 TT35 UU07 5J081 AA02 BB04 CC17 EE02 EE03 FF07 FF08 FF11 FF23 HH02 HH06 KK03 KK24 MM01 MM03Continued on the front page F-term (reference) 2F063 AA23 AA50 BD11 CA10 CB01 DA01 DA04 DB03 DC08 DD02 GA08 LA05 LA11 LA23 LA27 2F077 AA13 FF31 TT11 TT35 UU07 5J081 AA02 BB04 CC17 EE02 EE03 FF07 FF08 KK11 H03 MM03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検知電気材料に接近して設けられたセ
ンサ用コイルと、そのコイルと共振させるコンデンサを
備える発振回路と、発振回路の発振電圧を検出する検波
整流回路と、検波整流回路の出力電圧に対する被検知電
気材料とコイルの距離との関係を、直線的に対応させる
直線化回路とを具備するギャップ検出装置において、 コイルの電気抵抗を計りコイルの周囲温度を電気値に変
換するコイル温度検出回路と、 コイル温度検出回路の出力電圧が、被検知電気材料とコ
イルの距離を一定としたときの発振回路出力電圧対コイ
ル温度の温度特性曲線の極点より低い温度を示すとき、
コイル温度検出回路より得られる温度対出力電圧特性に
おける温度対出力信号の変化率がほぼ一定した温度対応
信号を、温度対出力信号の変化率を変更しうる電圧調整
回路により、別の変化率をもって温度にほぼ直線的に対
応する低温度域補正信号に変換し、その低温度域補正信
号を、前記直線化回路の前段において、検波整流回路の
出力電圧から得られるギャップ信号に加減するようにし
た低温度域補正回路とを設けてなることを特徴とする温
度補償付きギャップ検出装置。
An oscillation circuit including a sensor coil provided close to an electric material to be detected, a capacitor for resonating the coil, a detection rectification circuit for detecting an oscillation voltage of the oscillation circuit, and a detection rectification circuit. A gap detection device comprising: a linearization circuit for linearly associating the relationship between an electric voltage to be detected and the distance of the coil with respect to the output voltage. A coil for measuring the electric resistance of the coil and converting the ambient temperature of the coil into an electric value. When the output voltage of the temperature detection circuit and the coil temperature detection circuit indicates a temperature lower than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage versus the coil temperature when the distance between the detected electric material and the coil is constant,
The temperature-corresponding signal in which the rate of change of the temperature-to-output signal in the temperature-output voltage characteristic obtained from the coil temperature detection circuit is almost constant is changed by a voltage adjusting circuit capable of changing the rate of change of the temperature-to-output signal with a different rate of change. It is converted to a low temperature range correction signal corresponding almost linearly to the temperature, and the low temperature range correction signal is added to or subtracted from the gap signal obtained from the output voltage of the detection and rectification circuit at a stage prior to the linearization circuit. A gap detection device with temperature compensation, comprising a low temperature range correction circuit.
【請求項2】 被検知電気材料に接近して設けられたセ
ンサ用コイルと、そのコイルと共振させるコンデンサを
備える発振回路と、発振回路の発振電圧を検出する検波
整流回路と、検波整流回路の出力電圧に対する被検知電
気材料とコイルの距離との関係を、直線的に対応させる
直線化回路とを具備するギャップ検出装置において、 コイルの電気抵抗を計りコイルの周囲温度を電気値に変
換するコイル温度検出回路と、 コイル温度検出回路が出力する温度信号の出力電圧が、
ギャップ一定時の発振回路出力電圧対コイル温度の温度
特性曲線の極点より高い温度を示すとき、コイル温度検
出回路の出力電圧より得られる温度対出力信号の変化率
がほぼ一定した温度対応信号を、温度対出力信号の変化
率を変更しうる電圧調整回路により、別の変化率をもっ
て温度にほぼ直線的に対応する高温度域補正信号に変換
し、その高温度域補正信号を、前記直線化回路の後段に
おいて、検波整流回路の出力電圧から得られるギャップ
信号を直線化したギャップ信号に加減するようにした高
温度域補正回路とを設けてなることを特徴とする温度補
償付きギャップ検出装置。
2. An oscillating circuit including a sensor coil provided close to an electric material to be detected, a capacitor that resonates with the coil, a detection rectifier circuit that detects an oscillation voltage of the oscillation circuit, and a detection rectifier circuit. A gap detection device comprising: a linearization circuit for linearly associating the relationship between an electric voltage to be detected and the distance of the coil with respect to the output voltage. A coil for measuring the electric resistance of the coil and converting the ambient temperature of the coil into an electric value. The output voltage of the temperature signal output from the temperature detection circuit and the coil temperature detection circuit is
When the temperature is higher than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage vs. coil temperature when the gap is constant, the temperature-corresponding signal in which the rate of change of the temperature-to-output signal obtained from the output voltage of the coil temperature detection circuit is substantially constant is By a voltage adjusting circuit capable of changing the rate of change of the output signal with respect to temperature, the signal is converted into a high temperature range correction signal substantially linearly corresponding to the temperature with another change rate, and the high temperature range correction signal is converted into the linearization circuit. And a high temperature range correction circuit configured to add or subtract a gap signal obtained from an output voltage of the detection rectifier circuit to a linearized gap signal in a subsequent stage.
【請求項3】 被検知電気材料に接近して設けられたセ
ンサ用コイルと、そのコイルと共振させるコンデンサを
備える発振回路と、発振回路の発振電圧を検出する検波
整流回路と、検波整流回路の出力電圧に対する被検知電
気材料とコイルの距離との関係を、直線的に対応させる
直線化回路とを具備するギャップ検出装置において、 コイルの電気抵抗を計りコイルの周囲温度を電気値に変
換するコイル温度検出回路と、 コイル温度検出回路の出力電圧が、被検知電気材料とコ
イルの距離を一定としたときの発振回路出力電圧対コイ
ル温度の温度特性曲線の極点より低い温度を示すとき、
コイル温度検出回路より得られる温度対出力電圧特性に
おける温度対出力信号の変化率がほぼ一定した温度対応
信号を、温度対出力信号の変化率を変更しうる電圧調整
回路によって、別な変化率をもって温度にほぼ直線的に
対応する低温度域補正信号に変換し、その低温度域補正
信号を、前記直線化回路の前段において、検波整流回路
の出力電圧から得られるギャップ信号に加減するように
した低温度域補正回路と、 コイル温度検出回路が出力する温度信号の出力電圧が、
ギャップ一定時の発振回路出力電圧対コイル温度の温度
特性曲線の極点より高い温度を示すとき、コイル温度検
出回路の出力電圧より得られる温度対出力信号の変化率
がほぼ一定した温度対応信号を、温度対出力信号の変化
率を変更しうる電圧調整回路により、別の変化率をもっ
て温度にほぼ直線的に対応する高温度域補正信号に変換
し、その高温度域補正信号を、前記直線化回路の後段に
おいて、検波整流回路の出力電圧から得られるギャップ
信号を直線化したギャップ信号に、加減するようにした
高温度域補正回路とを設けてなることを特徴とする温度
補償付きギャップ検出装置。
3. A sensor coil provided close to an electric material to be detected, an oscillation circuit including a capacitor for resonating with the coil, a detection rectifier circuit detecting an oscillation voltage of the oscillation circuit, and a detection rectifier circuit. A gap detection device comprising: a linearization circuit for linearly associating the relationship between an electric voltage to be detected and the distance of the coil with respect to the output voltage. A coil for measuring the electric resistance of the coil and converting the ambient temperature of the coil into an electric value. When the output voltage of the temperature detection circuit and the coil temperature detection circuit indicates a temperature lower than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage versus the coil temperature when the distance between the detected electric material and the coil is constant,
The temperature-corresponding signal in which the rate of change of the temperature-to-output signal in the temperature-output voltage characteristic obtained from the coil temperature detection circuit is almost constant is changed with a different rate of change by the voltage adjustment circuit that can change the rate of change of the temperature-to-output signal. It is converted to a low temperature range correction signal corresponding almost linearly to the temperature, and the low temperature range correction signal is added to or subtracted from the gap signal obtained from the output voltage of the detection and rectification circuit at a stage prior to the linearization circuit. The output voltage of the temperature signal output by the low temperature range correction circuit and the coil temperature detection circuit is
When the temperature is higher than the extreme point of the temperature characteristic curve of the oscillation circuit output voltage vs. coil temperature when the gap is constant, the temperature-corresponding signal in which the rate of change of the temperature-to-output signal obtained from the output voltage of the coil temperature detection circuit is substantially constant is By a voltage adjusting circuit capable of changing the rate of change of the output signal with respect to temperature, the signal is converted into a high temperature range correction signal substantially linearly corresponding to the temperature with another change rate, and the high temperature range correction signal is converted into the linearization circuit. A gap detection device with temperature compensation, comprising, in a subsequent stage, a high-temperature region correction circuit configured to add or subtract a gap signal obtained by linearizing a gap signal obtained from an output voltage of a detection and rectification circuit.
JP37357999A 1999-12-28 1999-12-28 Gap detecting device with temperature compensation Pending JP2001183106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37357999A JP2001183106A (en) 1999-12-28 1999-12-28 Gap detecting device with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37357999A JP2001183106A (en) 1999-12-28 1999-12-28 Gap detecting device with temperature compensation

Publications (1)

Publication Number Publication Date
JP2001183106A true JP2001183106A (en) 2001-07-06

Family

ID=18502408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37357999A Pending JP2001183106A (en) 1999-12-28 1999-12-28 Gap detecting device with temperature compensation

Country Status (1)

Country Link
JP (1) JP2001183106A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155727A (en) * 2005-12-02 2007-06-21 Vibro-Meter Sa Eddy current sensor and its sensor coil
US7235965B2 (en) 2004-01-15 2007-06-26 Kabushiki Kaisha Teikoku Denki Seisakusho Motor bearing wear detecting device
RU2561244C2 (en) * 2013-07-02 2015-08-27 Закрытое акционерное общество "Газприборавтоматикасервис" Distance meter for measuring of distance between sensor and conducting material object
JP2018527576A (en) * 2015-09-15 2018-09-20 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲーMicro−Epsilon Messtechnik Gesellschaft Mit Beschrankter Haftung & Compagnie Kommanditgesellschaft Non-contact distance and / or position measuring device and sensor of measurement object
JP2020063962A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor
JP2020063963A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500301A (en) * 1981-03-05 1983-02-24 バブコツク−ブリストル リミテツド Bridge circuit compensation method and device corresponding to environmental factors
JPS58172502A (en) * 1982-04-02 1983-10-11 Kawasaki Steel Corp Eddy-current type distance measuring method
JPH01248010A (en) * 1988-03-30 1989-10-03 Hitachi Ltd Throttle sensor and temperature compensation
JPH08271204A (en) * 1995-03-31 1996-10-18 Tokyo Seimitsu Co Ltd Eddy current type displacement sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500301A (en) * 1981-03-05 1983-02-24 バブコツク−ブリストル リミテツド Bridge circuit compensation method and device corresponding to environmental factors
JPS58172502A (en) * 1982-04-02 1983-10-11 Kawasaki Steel Corp Eddy-current type distance measuring method
JPH01248010A (en) * 1988-03-30 1989-10-03 Hitachi Ltd Throttle sensor and temperature compensation
JPH08271204A (en) * 1995-03-31 1996-10-18 Tokyo Seimitsu Co Ltd Eddy current type displacement sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235965B2 (en) 2004-01-15 2007-06-26 Kabushiki Kaisha Teikoku Denki Seisakusho Motor bearing wear detecting device
JP2007155727A (en) * 2005-12-02 2007-06-21 Vibro-Meter Sa Eddy current sensor and its sensor coil
RU2561244C2 (en) * 2013-07-02 2015-08-27 Закрытое акционерное общество "Газприборавтоматикасервис" Distance meter for measuring of distance between sensor and conducting material object
JP2018527576A (en) * 2015-09-15 2018-09-20 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲーMicro−Epsilon Messtechnik Gesellschaft Mit Beschrankter Haftung & Compagnie Kommanditgesellschaft Non-contact distance and / or position measuring device and sensor of measurement object
JP2020063962A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor
JP2020063963A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor
KR20200042865A (en) * 2018-10-16 2020-04-24 나부테스코 가부시키가이샤 Displacement sensor
KR102376828B1 (en) * 2018-10-16 2022-03-21 나부테스코 가부시키가이샤 Displacement sensor
JP7185872B2 (en) 2018-10-16 2022-12-08 ナブテスコ株式会社 Displacement sensor
JP7260871B2 (en) 2018-10-16 2023-04-19 ナブテスコ株式会社 Displacement sensor

Similar Documents

Publication Publication Date Title
US20090115412A1 (en) Magnetic sensing device and electronic compass using the same
US5343755A (en) Strain gage sensor with integral temperature signal
US4798093A (en) Apparatus for sensor compensation
KR20000028396A (en) Temperature sensing circuit using thermopile sensor
WO1988006719A1 (en) Transducer signal conditioner
EP0180297B1 (en) Temperature compensation of a quartz oscillator pressure measuring apparatus
US4190796A (en) Pressure detecting apparatus having linear output characteristic
US5475623A (en) Method for the conversion of a measured signal, a converter as well as a measurement setup and a pirani measuring circuit
JP2001183106A (en) Gap detecting device with temperature compensation
US3906796A (en) Electronic temperature measuring apparatus
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
US3339412A (en) Capacitance measuring apparatus
KR100904225B1 (en) Apparatus for measuring water level
CN111238673B (en) Measuring circuit of film temperature sensor
JP7407617B2 (en) Acceleration measurement device and acceleration measurement method
US5376880A (en) Method and apparatus for measuring the average power in an electric signal
JP3084579B2 (en) Temperature sensor linearization processing method
JPH0564762U (en) Gas detector
JP2003035730A (en) Current detector
CN217424394U (en) Zero-full-position adjusting system of sensor
JPH0720155A (en) Temperature coefficient measuring method for hall element and temperature compensation method for current detector
JPH03183924A (en) Temperature compensator for torque measuring instrument
KR19980021473A (en) Temperature measuring device and temperature compensation method
JP3684691B2 (en) Temperature characteristic compensation circuit and magnetoelectric conversion element driving device using the temperature characteristic compensation circuit
JPH08233867A (en) Bridge detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608