JP7260871B2 - Displacement sensor - Google Patents

Displacement sensor Download PDF

Info

Publication number
JP7260871B2
JP7260871B2 JP2018195357A JP2018195357A JP7260871B2 JP 7260871 B2 JP7260871 B2 JP 7260871B2 JP 2018195357 A JP2018195357 A JP 2018195357A JP 2018195357 A JP2018195357 A JP 2018195357A JP 7260871 B2 JP7260871 B2 JP 7260871B2
Authority
JP
Japan
Prior art keywords
temperature
correlation
coil
displacement signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195357A
Other languages
Japanese (ja)
Other versions
JP2020063963A (en
Inventor
豊 久保山
泰志 中野
直也 井上
真史 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2018195357A priority Critical patent/JP7260871B2/en
Priority to KR1020190127436A priority patent/KR102275562B1/en
Priority to CN201910985095.XA priority patent/CN111059994B/en
Publication of JP2020063963A publication Critical patent/JP2020063963A/en
Application granted granted Critical
Publication of JP7260871B2 publication Critical patent/JP7260871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils

Description

本発明は、被測定物との距離すなわちギャップを非接触で検出する変位センサに関する。 The present invention relates to a displacement sensor that detects a distance, ie, a gap, from an object to be measured without contact.

コイルを利用した変位センサは、コイルに交流電流を流す発振器とともに、コイルのインピーダンス変化による信号変化を検出する回路を備えている。発振器の発振信号は、整流器にて直流信号に変換された後、リニアライザによって、被測定物とのギャップに応じて線形的に変化する信号が生成される(特許文献1、2参照)。 A displacement sensor using a coil includes an oscillator that supplies an alternating current to the coil and a circuit that detects a signal change due to a change in impedance of the coil. After the oscillation signal of the oscillator is converted into a DC signal by a rectifier, a linearizer generates a signal that varies linearly according to the gap from the object under test (see Patent Documents 1 and 2).

コイルは、温度によってインピーダンスが変化することが知られている。このため、特許文献1では、コイルを有する発振器から出力された発振信号の振幅レベルを温度により補正している。また、特許文献2では、リニアライザの出力を、温度に応じた補正値で補正している。 Coils are known to change their impedance depending on temperature. Therefore, in Patent Document 1, the amplitude level of an oscillation signal output from an oscillator having a coil is corrected by temperature. Further, in Patent Document 2, the output of the linearizer is corrected with a correction value according to the temperature.

特開2015-137888号公報JP 2015-137888 A 特開平8-271204号公報JP-A-8-271204

特許文献1は、整流器で整流する前の段階で温度補正を行っている。しかしながら、整流器にも温度によるオフセット変動があるし、リニアライザの電気特性も温度により変動する可能性がある。よって、特許文献1に開示された技術では、変位センサの出力信号が少なからず温度依存性を持っているおそれがある。 In Patent Document 1, temperature correction is performed before rectification by a rectifier. However, the rectifier also has offset variations with temperature, and the electrical characteristics of the linearizer may also vary with temperature. Therefore, in the technology disclosed in Patent Document 1, there is a possibility that the output signal of the displacement sensor may have temperature dependency to some extent.

また、整流器の前段側は、信号周波数が高いため、浮遊容量の影響を受けやすく、整流器の前段側に温度補正回路を設けると、信号周波数が高いために発熱が生じやすく、温度補正の精度に悪影響を与えるおそれがある。 In addition, since the signal frequency on the front stage of the rectifier is high, it is easily affected by stray capacitance. It may have an adverse effect.

一方、特許文献2は、R-V変換器の出力電圧をリニアライザの出力電圧に加算して補正処理を行っているが、単なる加算処理では、加算処理を行った特定の変位でしか補正処理が行えず、リニアライザの広範囲にわたる入出力特性を線形化させることはできない。 On the other hand, in Patent Document 2, correction processing is performed by adding the output voltage of the RV converter to the output voltage of the linearizer. It is not possible to linearize the wide range of input/output characteristics of the linearizer.

また、特許文献2のように、リニアライザの出力に対して温度補正を行う場合、リニアライザには温度補正を行っていない信号が入力されることになる。特に高音域では、整流回路からの信号の減衰が大きくなるため、このような減衰信号が入力されたリニアライザの出力に対して温度補正を行ったとしても、信号減衰分を補償できるほどの温度補正は行えないおそれがある。 Further, when temperature correction is performed on the output of the linearizer as in Patent Document 2, a signal that has not undergone temperature correction is input to the linearizer. Especially in the high frequency range, the attenuation of the signal from the rectifier circuit becomes large. may not be possible.

さらに、特許文献1も2も、補正処理を電気部品の組合せで行うことを念頭においており、温度等の環境条件や経年劣化による電気特性の変動が生じやすく、また、故障も起きやすいため、保守性が悪いという問題がある。 Furthermore, both Patent Documents 1 and 2 are intended to perform correction processing by combining electrical components, and electrical characteristics are likely to fluctuate due to environmental conditions such as temperature and deterioration over time, and failures are also likely to occur. There is a problem of bad sex.

本発明は、部材コストを削減しつつ、温度依存性をできるだけ少なくして、被測定物の変位に対する変位信号の線形性を向上させることが可能な変位センサを提供するものである。 SUMMARY OF THE INVENTION The present invention provides a displacement sensor capable of improving the linearity of a displacement signal with respect to the displacement of an object to be measured by reducing temperature dependence as much as possible while reducing member costs.

上記の課題を解決するために、本発明の一態様では、交流電流を供給することで交流磁場を発生させ、被測定物の位置の変位に応じて前記被測定物に誘導される渦電流に応じた出力を生成するコイルと、
前記コイル周辺の実温度を計測する温度計測器と、
前記コイル周辺の温度が所定値のときの前記コイルの出力と、前記コイルの出力から求まる温度補正された前記被測定物の位置の変位を示す補正変位信号と、の相関関係を用いて、前記実温度と前記コイルの出力とに対応する補正変位信号を被測定物の位置の変位を示す変位信号として出力する変位信号生成部を備える、変位センサが提供される。
In order to solve the above problems, in one aspect of the present invention, an alternating current is supplied to generate an alternating magnetic field, and an eddy current induced in the object to be measured according to the displacement of the position of the object to be measured is generated. a coil for generating an output responsive to
a temperature measuring instrument for measuring the actual temperature around the coil;
Using the correlation between the output of the coil when the temperature around the coil is a predetermined value and the corrected displacement signal indicating the displacement of the position of the object to be measured, which is obtained from the output of the coil and subjected to temperature correction, the A displacement sensor is provided, comprising a displacement signal generator that outputs a corrected displacement signal corresponding to the actual temperature and the output of the coil as a displacement signal indicating the displacement of the position of the object to be measured.

少なくとも1つの温度での前記コイルの出力と前記補正変位信号との相関関係から、前記温度計測器で計測された実温度に対応する補正変位信号を補間する補間処理部と、を備え、
前記変位信号生成部は、前記補間処理部にて補間された補正変位信号を前記変位信号として出力してもよい。
an interpolation processing unit that interpolates a corrected displacement signal corresponding to the actual temperature measured by the temperature measuring instrument from the correlation between the output of the coil at at least one temperature and the corrected displacement signal,
The displacement signal generator may output a corrected displacement signal interpolated by the interpolation processor as the displacement signal.

前記補間処理部は、前記コイルの出力の変化に対して前記補正変位信号が線形に変化するように、前記相関関係を補間して新たな相関関係を生成してもよい。 The interpolation processing section may interpolate the correlation to generate a new correlation such that the correction displacement signal linearly changes with respect to changes in the output of the coil.

前記補間処理部は、互いに異なる少なくとも2つの温度での前記コイルの出力と前記補正変位信号との相関関係から、前記2つの温度の間の中間温度における前記相関関係を生成してもよい。 The interpolation processing section may generate the correlation at an intermediate temperature between the two temperatures from the correlation between the output of the coil and the corrected displacement signal at at least two temperatures different from each other.

前記変位信号生成部が実装された基板と、
前記基板の温度を計測する基板温度計測器と、を備え、
前記補間処理部は、前記温度計測器で計測された前記コイル周辺の温度と前記基板温度計測器で計測された前記基板の温度とに基づいて、前記相関関係を補間してもよい。
a substrate on which the displacement signal generator is mounted;
a substrate temperature measuring instrument for measuring the temperature of the substrate,
The interpolation processing unit may interpolate the correlation based on the temperature around the coil measured by the temperature measuring device and the temperature of the substrate measured by the substrate temperature measuring device.

第1温度での前記コイルの出力と前記補正変位信号との第1相関関係を格納する第1相関関係格納部と、
前記第1温度とは異なる第2温度での前記コイルの出力と前記補正変位信号との第2相関関係を格納する第2相関関係格納部と、を備え、
前記補間処理部は、前記第1相関関係を使用して当該変位センサが計測を行っている間に、前記第1相関関係の補間処理にて前記第2相関関係を生成して前記第2相関関係格納部に格納し、
前記変位信号生成部は、前記温度計測器で計測された温度が前記第2温度に変わると、前記第2相関関係に基づいて前記補正変位信号を生成してもよい。
a first correlation storage that stores a first correlation between the output of the coil at a first temperature and the corrected displacement signal;
a second correlation storage unit that stores a second correlation between the output of the coil and the corrected displacement signal at a second temperature different from the first temperature;
The interpolation processing unit generates the second correlation by interpolation processing of the first correlation while the displacement sensor performs measurement using the first correlation, and calculates the second correlation. stored in the relational storage,
The displacement signal generator may generate the corrected displacement signal based on the second correlation when the temperature measured by the temperature measuring device changes to the second temperature.

第1温度での前記コイルの出力と前記補正変位信号との第1相関関係を格納する第1相関関係格納部と、
前記第1温度とは異なる第2温度での前記コイルの出力と前記補正変位信号との第2相関関係を格納する第2相関関係格納部と、を備え、
前記補間処理部は、前記第1相関関係を使用して当該変位センサが計測を行っている間に、前記温度計測器で計測された温度が前記第1温度から第2温度に変化すると、前記第1相関関係の補間処理にて前記第2相関関係を生成して前記第2相関関係格納部に格納してもよい。
a first correlation storage that stores a first correlation between the output of the coil at a first temperature and the corrected displacement signal;
a second correlation storage unit that stores a second correlation between the output of the coil and the corrected displacement signal at a second temperature different from the first temperature;
When the temperature measured by the temperature measuring instrument changes from the first temperature to the second temperature while the displacement sensor is measuring using the first correlation, the interpolation processing unit performs the The second correlation may be generated by interpolation processing of the first correlation and stored in the second correlation storage unit.

前記コイルのインピーダンスを利用して発振動作を行って前記交流電流を発生させるとともに、発振信号を出力する自励式発振回路を有し、
前記自励式発振回路の発振レベルは、前記被測定物に発生した渦電流による前記コイルのインピーダンスの変化の影響を受けて変化してもよい。
a self-excited oscillation circuit that generates the alternating current by performing an oscillation operation using the impedance of the coil and outputs an oscillation signal;
The oscillation level of the self-excited oscillator circuit may change under the influence of a change in impedance of the coil caused by an eddy current generated in the object to be measured.

本発明によれば、部材コストを削減できるとともに、被測定物の変位に対する変位信号の線形性を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to reduce member cost, the linearity of the displacement signal with respect to the displacement of a to-be-measured object can be improved.

第1の実施形態による変位センサの概略構成を示すブロック図。1 is a block diagram showing a schematic configuration of a displacement sensor according to a first embodiment; FIG. 第1補間処理を行う制御部の内部構成を示す機能ブロック図。FIG. 3 is a functional block diagram showing the internal configuration of a control unit that performs first interpolation processing; 温度T1での相関関係データを示す図。The figure which shows the correlation data in the temperature T1. 温度T2での相関関係データを示す図。The figure which shows the correlation data in the temperature T2. 補間処理後の相関関係データを示す。Fig. 3 shows correlation data after interpolation processing; 第1補間処理の処理手順を示すフローチャート。4 is a flowchart showing a processing procedure of a first interpolation process; 第2補間処理を行う制御部の内部構成を示す機能ブロック図。FIG. 5 is a functional block diagram showing the internal configuration of a control unit that performs a second interpolation process; 図5の補間処理部が行う第2補間処理の概要を説明する図。6A and 6B are diagrams for explaining an outline of a second interpolation process performed by an interpolation processing unit in FIG. 5; FIG. 図6Aに続く図。The figure following FIG. 6A. 第2補間処理の処理手順を示すフローチャート。6 is a flowchart showing a processing procedure of a second interpolation process; 第3補間処理を行う制御部の内部構成を示す機能ブロック図。FIG. 10 is a functional block diagram showing the internal configuration of a control unit that performs a third interpolation process; 図8の補間処理部が行う第2補間処理の概要を説明する図。FIG. 9 is a diagram for explaining an overview of second interpolation processing performed by the interpolation processing unit in FIG. 8 ; 図9Aに続く図。The figure following FIG. 9A. 第3補間処理の処理手順を示すフローチャート。10 is a flowchart showing a processing procedure of third interpolation processing; 第1の実施形態による制御部の処理動作の一例を示すフローチャート。4 is a flowchart showing an example of processing operations of a control unit according to the first embodiment;

以下、本発明の実施の形態について、詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

(第1の実施形態)
図1は第1の実施形態による変位センサ1の概略構成を示すブロック図である。図1の変位センサ1は、コイル2と、発振器3と、整流器4と、A/Dコンバータ5と、制御部(変位信号生成部)6と、D/Aコンバータ7と、出力アンプ8と、温度計測器9とを備えている。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of a displacement sensor 1 according to the first embodiment. The displacement sensor 1 of FIG. 1 includes a coil 2, an oscillator 3, a rectifier 4, an A/D converter 5, a control section (displacement signal generation section) 6, a D/A converter 7, an output amplifier 8, A temperature measuring instrument 9 is provided.

発振器3は、例えば自励式の発振回路で構成されている。自励式の発振回路は、他励式に比べて回路構成を簡略化でき、実装面積および部品コストを削減できる。また、コイルの共振を利用するため、距離の変化に伴う発振信号レベルの変化を大きくできるという利点もある。自励式の発振回路の具体的な回路構成は特に問わないが、例えば、コルピッツ発振回路を適用可能である。 The oscillator 3 is composed of, for example, a self-excited oscillation circuit. A self-excited oscillating circuit can simplify the circuit configuration compared to a separately-excited oscillating circuit, and can reduce the mounting area and the cost of parts. In addition, since the resonance of the coil is used, there is an advantage that the change in the oscillation signal level can be increased with the change in the distance. Although the specific circuit configuration of the self-excited oscillator circuit is not particularly limited, for example, a Colpitts oscillator circuit can be applied.

発振器3は、コイル2と不図示のコンデンサによる共振回路を内蔵している。コイル2には、共振周波数の交流電流が流れる。よって、コイル2からは交流電流に応じた磁束が発生し、この磁束によって、コイル2の近傍に配置された被測定物に渦電流が発生する。被測定物に渦電流が発生すると、その影響で、コイル2のインピーダンスが変化し、発振回路の発振信号の信号レベルも変化する。このように、コイル2は、交流電流を供給することで交流磁場を発生させ、被測定物の位置の変位に応じて被測定物に誘導される渦電流に応じた出力を生成する。 The oscillator 3 incorporates a resonance circuit made up of the coil 2 and a capacitor (not shown). An alternating current having a resonance frequency flows through the coil 2 . Therefore, a magnetic flux corresponding to the alternating current is generated from the coil 2 , and this magnetic flux generates an eddy current in the object to be measured placed near the coil 2 . When an eddy current is generated in the object to be measured, the impedance of the coil 2 changes due to its influence, and the signal level of the oscillation signal of the oscillation circuit also changes. In this way, the coil 2 generates an alternating magnetic field by supplying an alternating current, and generates an output corresponding to the eddy current induced in the object to be measured according to the displacement of the position of the object to be measured.

なお、被測定物が絶縁体の場合は、渦電流は発生しないため、図1の変位センサ1で変位すなわちギャップを検出可能な被測定物は、導電体に限定される。被測定物は、導電体であればよく、非磁性体でも磁性体でもよい。 If the object to be measured is an insulator, no eddy current is generated. Therefore, the object to be measured for which the displacement sensor 1 of FIG. 1 can detect the displacement, ie, the gap, is limited to a conductor. The object to be measured may be any conductor as long as it is a non-magnetic substance or a magnetic substance.

整流器4は、発振器3の発振信号すなわちコイル2の出力を整流して、直流信号に変換する。A/Dコンバータ5は、整流器4から出力された直流信号をデジタル信号に変換する。温度計測器9は、コイル2の周辺の実温度を計測する。図1の変位センサ1を、例えばエンジンのバルブの位置を計測するために用いる場合、コイル2の周辺の温度が100℃を超えるような高温になるおそれがある。上述したように、コイル2は、温度によってインピーダンスが変化し、変位センサ1の出力信号も変化してしまう。よって、変位センサ1の使用環境下で、コイル2にできるだけ近い場所の温度を計測するのが望ましい。温度計測器9は、コイル2自体の温度を測定してもよいし、コイル2の近傍の温度を計測してもよい。 Rectifier 4 rectifies the oscillation signal of oscillator 3, that is, the output of coil 2, and converts it into a DC signal. A/D converter 5 converts the DC signal output from rectifier 4 into a digital signal. A temperature measuring instrument 9 measures the actual temperature around the coil 2 . When the displacement sensor 1 of FIG. 1 is used to measure the position of an engine valve, for example, the temperature around the coil 2 may reach a high temperature exceeding 100.degree. As described above, the impedance of the coil 2 changes depending on the temperature, and the output signal of the displacement sensor 1 also changes. Therefore, it is desirable to measure the temperature at a location as close as possible to the coil 2 under the operating environment of the displacement sensor 1 . The temperature measuring instrument 9 may measure the temperature of the coil 2 itself or the temperature in the vicinity of the coil 2 .

制御部6は、コイル2周辺の温度が所定値のときのコイル2の出力と、コイル2の出力から求まる温度補正された被測定物の位置の変位を示す補正変位信号と、の相関関係を用いて、実温度とコイル2の出力とに対応する補正変位信号を被測定物の位置の変位を示す変位信号として出力する。より具体的には、制御部6は、複数の温度のそれぞれでのコイル2の出力と、コイル2の出力から求まる温度補正された被測定物の位置の変位を示す補正変位信号との相関関係に基づいて、温度計測器9で計測された実温度とコイル2の出力とに対応する補正変位信号を被測定物の位置の変位を示す変位信号として出力する。制御部6は、ソフトウェア処理によって、変位信号を生成するものであり、例えば、プログラム格納部10に格納されたプログラムを読み込んで実行することにより、上述した信号処理を行って変位信号を生成する。このように、制御部6は、より具体的には、上記プログラムを実行するMCU(Micro Control Unit)やMPU(Micro Processing Unit)などで構成可能である。 The control unit 6 calculates the correlation between the output of the coil 2 when the temperature around the coil 2 is a predetermined value and the corrected displacement signal indicating the displacement of the position of the object to be measured, which is obtained from the output of the coil 2 and corrected for the temperature. is used to output a corrected displacement signal corresponding to the actual temperature and the output of the coil 2 as a displacement signal indicating the displacement of the position of the object to be measured. More specifically, the control unit 6 determines the correlation between the output of the coil 2 at each of a plurality of temperatures and the corrected displacement signal indicating the displacement of the position of the object to be measured corrected for temperature, which is obtained from the output of the coil 2. , a corrected displacement signal corresponding to the actual temperature measured by the temperature measuring instrument 9 and the output of the coil 2 is output as a displacement signal indicating the positional displacement of the object to be measured. The control unit 6 generates displacement signals by software processing, and for example, reads and executes a program stored in the program storage unit 10 to perform the above-described signal processing and generate displacement signals. Thus, more specifically, the control unit 6 can be configured by an MCU (Micro Control Unit) or an MPU (Micro Processing Unit) that executes the above program.

制御部6には、相関関係格納部11と補間処理部12が内蔵または接続されている。なお、図1では、制御部6に相関関係格納部11と補間処理部12が内蔵される例を示しているが、相関関係格納部11と補間処理部12の少なくとも一方は、制御部6とは別個に設けられていてもよい。相関関係格納部11は、コイル2の複数の温度のそれぞれについて、整流器4の出力に対応するデジタル信号と、補正変位信号との相関関係データを格納している。相関関係格納部11に相関関係データを格納するにあたって、コイル2をある温度に設定した状態で、被測定物とのギャップを複数通りに変化させて、各ギャップにおける整流器4の出力信号に対応するデジタル信号を検出し、各ギャップにおける補正変位信号がギャップに対して線形に変化するように、コイル2の出力すなわち整流器4の出力信号と補正変位信号との相関関係データを生成する。このような相関関係データを、コイル2の温度を複数通りに変化させて、それぞれの温度について生成して、相関関係格納部11に格納しておく。 A correlation storage unit 11 and an interpolation processing unit 12 are built in or connected to the control unit 6 . Note that FIG. 1 shows an example in which the correlation storage unit 11 and the interpolation processing unit 12 are built in the control unit 6, but at least one of the correlation storage unit 11 and the interpolation processing unit 12 is may be provided separately. The correlation storage unit 11 stores correlation data between the digital signal corresponding to the output of the rectifier 4 and the corrected displacement signal for each of a plurality of temperatures of the coil 2 . In storing the correlation data in the correlation storage unit 11, the coil 2 is set to a certain temperature, and the gap from the object to be measured is changed in a plurality of ways to correspond to the output signal of the rectifier 4 at each gap. A digital signal is detected and correlation data between the output of the coil 2, that is, the output signal of the rectifier 4 and the correction displacement signal is generated so that the correction displacement signal at each gap varies linearly with respect to the gap. Such correlation data is generated for each temperature by changing the temperature of the coil 2 in a plurality of ways, and stored in the correlation storage unit 11 .

なお、制御部6は、相関関係格納部11に相関関係データを格納する代わりに、相関関係を表す関数式を設けて、この関数式に整流器4の出力に対応する入力パラメータを与えて演算処理を行って、補正変位信号を求めてもよい。 Instead of storing the correlation data in the correlation storage unit 11, the control unit 6 provides a function expression representing the correlation, gives the function expression an input parameter corresponding to the output of the rectifier 4, and performs arithmetic processing. may be performed to obtain the corrected displacement signal.

補間処理部12は、温度計測器9で計測された実温度に対応する補正変位信号を補間する。すなわち、補間処理部12は、相関関係格納部11に格納された相関関係データを、温度計測器9で計測された実温度に基づいて補間する。補間処理部12は、互いに異なる少なくとも2つの温度でのコイルの出力と補正変位信号との相関関係から、2つの温度の間の中間温度における相関関係を生成してもよい。補間処理部12が行う補間処理には、後述するように、複数通りが考えられる。補間処理部12が補間処理を行って新たに生成した相関関係データは、例えば、相関関係格納部11に格納される。あるいは、補間処理部12が新たに生成した相関関係データを、相関関係格納部11とは別個に格納してもよい。 The interpolation processor 12 interpolates a corrected displacement signal corresponding to the actual temperature measured by the temperature measuring instrument 9 . That is, the interpolation processing section 12 interpolates the correlation data stored in the correlation storage section 11 based on the actual temperature measured by the temperature measuring instrument 9 . The interpolation processing unit 12 may generate a correlation at an intermediate temperature between the two temperatures from the correlation between the output of the coil and the corrected displacement signal at at least two temperatures different from each other. As will be described later, a plurality of types of interpolation processing are conceivable for the interpolation processing performed by the interpolation processing unit 12 . The correlation data newly generated by interpolation processing performed by the interpolation processing unit 12 is stored in the correlation storage unit 11, for example. Alternatively, the correlation data newly generated by the interpolation processing unit 12 may be stored separately from the correlation storage unit 11 .

制御部6は、補間処理部にて補間された補正変位信号を変位信号として出力する。より具体的には、制御部6は、補間処理部12が補間処理によって新たに生成した相関関係データに基づいて、温度計測器9で計測された実温度での整流器4の出力信号に対応する補正変位信号を生成する。相関関係データの中に、整流器4の出力信号に対応するデータが含まれていない場合は、整流器4の出力信号に近接したデータを用いて補間処理によって補正変位信号を生成する。 The control unit 6 outputs the corrected displacement signal interpolated by the interpolation processing unit as a displacement signal. More specifically, the control unit 6 responds to the output signal of the rectifier 4 at the actual temperature measured by the temperature measuring device 9 based on the correlation data newly generated by the interpolation processing unit 12. Generate a corrected displacement signal. If the correlation data does not contain data corresponding to the output signal of the rectifier 4, data close to the output signal of the rectifier 4 is used to generate a corrected displacement signal through interpolation processing.

次に、制御部6が行う補間処理について詳細に説明する。制御部6内の補間処理部12が行う補間処理には複数通りが考えられる。以下では、代表的な第1~第3補間処理を順に説明する。補間処理部12は、以下に示す第1~第3補間処理のいずれを採用しても構わない。 Next, the interpolation processing performed by the control unit 6 will be described in detail. A plurality of types of interpolation processing can be considered for the interpolation processing performed by the interpolation processing unit 12 in the control unit 6 . Below, representative first to third interpolation processes will be described in order. The interpolation processing unit 12 may employ any one of the first to third interpolation processes described below.

図2は第1補間処理を行う制御部6の内部構成を示す機能ブロック図である。図2の制御部6は、上述した相関関係格納部11および補間処理部12と、データ出力部14とを有する。データ出力部14は、補間処理部12で補間処理した相関関係データに基づいて生成された補正変位信号を変位信号として出力する。 FIG. 2 is a functional block diagram showing the internal configuration of the control section 6 that performs the first interpolation processing. The control unit 6 in FIG. 2 has the correlation storage unit 11, the interpolation processing unit 12, and the data output unit 14 described above. The data output unit 14 outputs a corrected displacement signal generated based on the correlation data interpolated by the interpolation processing unit 12 as a displacement signal.

図3A、図3Bおよび図3Cは図2の補間処理部12が行う第1補間処理の概要を説明する図である。図3Aと図3Bは相関関係格納部11に予め格納されている相関関係データの一例を示しており、図3Aは温度T1での相関関係データcor1、図3Bは温度T2での相関関係データcor2を示している。 3A, 3B, and 3C are diagrams for explaining the outline of the first interpolation processing performed by the interpolation processing section 12 of FIG. 2. FIG. 3A and 3B show an example of correlation data stored in advance in the correlation storage unit 11. FIG. 3A shows correlation data cor1 at temperature T1, and FIG. 3B shows correlation data cor2 at temperature T2. is shown.

補間処理部12は、図3Cに示すように、温度計測器9で計測されたコイル2の周辺の温度に基づいて、図3Aの相関関係データcor1と図3Bの相関関係データcor2とを比例配分する補間処理を行って、新たな相関関係データcor3を生成する。 As shown in FIG. 3C, the interpolation processing unit 12 proportionally distributes the correlation data cor1 in FIG. 3A and the correlation data cor2 in FIG. 3B based on the temperature around the coil 2 measured by the temperature measuring instrument 9. Then, interpolation processing is performed to generate new correlation data cor3.

制御部6は、相関関係データcor3に基づいて、温度計測器9で計測されたコイル2の周辺の温度での整流器4の出力信号に対応する補正変位信号を生成する。 The control unit 6 generates a correction displacement signal corresponding to the output signal of the rectifier 4 at the temperature around the coil 2 measured by the temperature measuring instrument 9 based on the correlation data cor3.

図4は第1補間処理の処理手順を示すフローチャートである。まず、相関関係格納部11に、少なくとも2つの温度について、整流器4の出力と補正変位信号との相関関係データを格納しておく(ステップS1)。以下では、図3Aと図3Bに示すように、互いに相違する第1温度と第2温度についての2種類の相関関係データcor1、cor2が相関関係格納部11に格納されているものとする。また、以下では、第1温度での相関関係データを第1相関関係データcor1と呼び、第2温度での相関関係データを第2相関関係データcor2と呼ぶ。 FIG. 4 is a flow chart showing the procedure of the first interpolation process. First, correlation data between the output of the rectifier 4 and the corrected displacement signal is stored in the correlation storage unit 11 for at least two temperatures (step S1). Below, as shown in FIGS. 3A and 3B, it is assumed that two types of correlation data cor1 and cor2 regarding the first temperature and the second temperature, which are different from each other, are stored in the correlation storage unit 11. FIG. Also, hereinafter, the correlation data at the first temperature will be referred to as first correlation data cor1, and the correlation data at the second temperature will be referred to as second correlation data cor2.

次に、第1温度での第1相関関係データcor1に基づいて、整流器4の出力信号に対応する補正変位信号を取得するとともに、第2温度での第2相関関係データcor2に基づいて、整流器4の出力信号に対応する補正変位信号を取得する(ステップS2)。 Next, based on the first correlation data cor1 at the first temperature, a corrected displacement signal corresponding to the output signal of the rectifier 4 is acquired, and based on the second correlation data cor2 at the second temperature, the rectifier A corrected displacement signal corresponding to the output signal of 4 is acquired (step S2).

ここで、整流器4の出力信号に対応するデータが第1相関関係データcor1と第2相関関係データcor2のいずれにも存在しない場合、整流器4の出力信号の近傍のデータを用いて補間処理によって、補正変位信号を生成すればよい。 Here, when data corresponding to the output signal of the rectifier 4 does not exist in either the first correlation data cor1 or the second correlation data cor2, interpolation processing is performed using data near the output signal of the rectifier 4, A corrected displacement signal may be generated.

次に、第1温度での相関関係データcor1を用いて取得した補正変位信号と、第2温度での第2相関関係データcor2を用いて取得した補正変位信号とを用いて、補間処理によって新たな相関関係データcor3を生成し、この相関関係データcor3に基づいて温度計測器9で計測された実温度に対応する補正変位信号を生成する(ステップS3)。例えば、温度計測器9で計測した温度が第1温度と第2温度の中間の温度であれば、第1相関関係データcor1に基づいて取得した補正変位信号と、第2相関関係データcor2に基づいて取得した補正変位信号との平均値を、温度計測器9で計測した温度での整流器4の出力信号に対応する補正変位信号とすればよい。 Next, using the corrected displacement signal obtained using the correlation data cor1 at the first temperature and the corrected displacement signal obtained using the second correlation data cor2 at the second temperature, a new displacement signal is obtained by interpolation processing. Correlation data cor3 is generated, and based on this correlation data cor3, a correction displacement signal corresponding to the actual temperature measured by the temperature measuring instrument 9 is generated (step S3). For example, if the temperature measured by the temperature measuring instrument 9 is an intermediate temperature between the first temperature and the second temperature, the corrected displacement signal obtained based on the first correlation data cor1 and the second correlation data cor2 The average value of the corrected displacement signal acquired by the temperature measurement device 9 is used as the corrected displacement signal corresponding to the output signal of the rectifier 4 at the temperature measured by the temperature measuring instrument 9 .

図5は第2補間処理を行う制御部6の内部構成を示す機能ブロック図である。図5の制御部6は、相関関係格納部11と、補間処理部12と、データ出力部14とを有し、相関関係格納部11は、第1相関関係格納部11aと第2相関関係格納部11bとを含んでいる。第1相関関係格納部11aは、第1温度での整流器4の出力と補正変位信号との第1相関関係を格納する。第2相関関係格納部11bは、第1温度とは異なる第2温度での整流器4の出力と補正変位信号との第2相関関係を格納する。 FIG. 5 is a functional block diagram showing the internal configuration of the control section 6 that performs the second interpolation processing. The control unit 6 of FIG. 5 includes a correlation storage unit 11, an interpolation processing unit 12, and a data output unit 14. The correlation storage unit 11 includes a first correlation storage unit 11a and a second correlation storage unit 11a. and a portion 11b. The first correlation storage section 11a stores a first correlation between the output of the rectifier 4 at the first temperature and the corrected displacement signal. The second correlation storage section 11b stores a second correlation between the output of the rectifier 4 and the corrected displacement signal at a second temperature different from the first temperature.

図5の補間処理部12は、第1相関関係を使用して変位センサ1が計測を行っている間に、第1相関関係の補間処理を行って第2相関関係を生成して第2相関関係格納部11bに格納する。制御部6は、温度計測器9で計測された実温度が第2温度に変わると、第2相関関係に基づいて補正変位信号を生成する。 The interpolation processing unit 12 in FIG. 5 performs interpolation processing of the first correlation to generate the second correlation while the displacement sensor 1 performs measurement using the first correlation. Stored in the relationship storage unit 11b. The controller 6 generates a corrected displacement signal based on the second correlation when the actual temperature measured by the temperature measuring instrument 9 changes to the second temperature.

図6Aおよび図6Bは図5の補間処理部12が行う第2補間処理の概要を説明する図である。図6Aの実線は第1相関関係格納部11aに予め格納されている所定温度T3での相関関係データcor4である。図6Aの破線は、変位センサ1による変位計測を実行中に、所定温度T3からわずかにずらした温度での相関関係データcor5、cor6である。図6Bの実線は温度変化後の相関関係データcor6、図6Bの破線は元の相関関係データcor4である。 6A and 6B are diagrams for explaining the outline of the second interpolation processing performed by the interpolation processing section 12 of FIG. 5. FIG. The solid line in FIG. 6A is the correlation data cor4 at the predetermined temperature T3 pre-stored in the first correlation storage unit 11a. The dashed lines in FIG. 6A are the correlation data cor5 and cor6 at temperatures slightly shifted from the predetermined temperature T3 during the displacement measurement by the displacement sensor 1 . The solid line in FIG. 6B is the correlation data cor6 after the temperature change, and the broken line in FIG. 6B is the original correlation data cor4.

図7は第2補間処理の処理手順を示すフローチャートである。まず、相関関係格納部11に、ある所定温度での整流器4の出力と補正変位信号との相関関係データcor4を格納しておく(ステップS11)。この相関関係データを用いて、変位センサ1による変位計測処理を開始する(ステップS12)。この処理を継続して実行している最中に、相関関係格納部11に格納された相関関係データcor4を用いて、所定温度からわずかにずらした温度での相関関係データcor5、cor6を補間処理にて生成する(ステップS13)。新たな相関関係データcor5、cor6が完成すると、そのデータを相関関係格納部11または別の格納部に格納する(ステップS14)。 FIG. 7 is a flow chart showing the procedure of the second interpolation process. First, the correlation data cor4 between the output of the rectifier 4 and the correction displacement signal at a certain predetermined temperature is stored in the correlation storage unit 11 (step S11). Using this correlation data, displacement measurement processing by the displacement sensor 1 is started (step S12). While this process is continuously executed, the correlation data cor4 stored in the correlation storage unit 11 is used to interpolate the correlation data cor5 and cor6 at temperatures slightly shifted from the predetermined temperature. (step S13). When the new correlation data cor5 and cor6 are completed, the data are stored in the correlation storage unit 11 or another storage unit (step S14).

その後、制御部6は、温度計測器9で計測された実温度がステップS13およびS14で生成した相関関係データcor5またはcor6の温度になると、この相関関係データを用いて、整流器4の出力信号に対応する補正変位信号を取得する。図6Bは、相関関係データcor6に対応する温度になった例を示している。 After that, when the actual temperature measured by the temperature measuring device 9 reaches the temperature of the correlation data cor5 or cor6 generated in steps S13 and S14, the control unit 6 uses this correlation data to convert the output signal of the rectifier 4. Obtain the corresponding corrected displacement signal. FIG. 6B shows an example in which the temperature corresponds to the correlation data cor6.

図8は第3補間処理を行う制御部6の内部構成を示す機能ブロック図である。図8の制御部6は、図5の制御部6と類似の構成を有するが、第1相関関係格納部11aから読み出された補正変位信号がデータ出力部14に入力されることと、第2相関関係格納部11bには1種類の相関関係データが格納されることとが図5の制御部6とは異なっている。 FIG. 8 is a functional block diagram showing the internal configuration of the control section 6 that performs the third interpolation processing. The control unit 6 of FIG. 8 has a configuration similar to that of the control unit 6 of FIG. The difference from the control unit 6 in FIG. 5 is that one type of correlation data is stored in the 2-correlation storage unit 11b.

図9Aおよび図9Bは図8の補間処理部12が行う第3補間処理の概要を説明する図である。図9Aの実線は第1相関関係格納部11aに予め格納されている所定温度T4での相関関係データcor7である。図9Aの破線は、相関関係データcor7に対して第3補間処理を行うことで得られる相関関係データcor8である。図9Bの実線は相関関係データcor8、破線は元の相関関係データcor7である。 9A and 9B are diagrams for explaining the outline of the third interpolation processing performed by the interpolation processing section 12 of FIG. 8. FIG. The solid line in FIG. 9A is the correlation data cor7 at the predetermined temperature T4 pre-stored in the first correlation storage unit 11a. The dashed line in FIG. 9A is the correlation data cor8 obtained by performing the third interpolation processing on the correlation data cor7. The solid line in FIG. 9B is the correlation data cor8, and the dashed line is the original correlation data cor7.

図10は第3補間処理の処理手順を示すフローチャートである。まず、第1相関関係格納部11aに、ある所定温度での整流器4の出力と補正変位信号との相関関係データcor7を格納しておく(ステップS21)。この相関関係データcor7を用いて、変位センサ1による変位計測処理を開始する(ステップS22)。この処理を継続して実行している最中に、温度計測器9で計測された実温度が変化すると、第1相関関係格納部11aに格納された相関関係データcor7を用いて、補間処理にて、温度計測器9で計測された実温度での相関関係データcor8を生成する(ステップS23)。新たな相関関係データcor8が完成すると、この相関関係データcor8を第2相関関係格納部11bに格納する(ステップS24)。その後は、制御部6は、入れ替えた相関関係データを用いて、整流器4の出力に対応する補正変位信号を生成する。また、第1相関関係格納部11aに格納されていた相関関係データcor7を削除して、第2相関関係格納部11bに格納された相関関係データを第1相関関係格納部11aにコピーし、上述したステップS21以降の処理を繰り返し実行してもよい。 FIG. 10 is a flow chart showing the procedure of the third interpolation process. First, the correlation data cor7 between the output of the rectifier 4 and the corrected displacement signal at a certain predetermined temperature is stored in the first correlation storage unit 11a (step S21). Using this correlation data cor7, displacement measurement processing by the displacement sensor 1 is started (step S22). If the actual temperature measured by the temperature measuring instrument 9 changes while this process is continuously executed, the correlation data cor7 stored in the first correlation storage unit 11a is used to perform the interpolation process. Then, the correlation data cor8 at the actual temperature measured by the temperature measuring instrument 9 is generated (step S23). When the new correlation data cor8 is completed, this correlation data cor8 is stored in the second correlation storage section 11b (step S24). After that, the controller 6 uses the replaced correlation data to generate a corrected displacement signal corresponding to the output of the rectifier 4 . Also, the correlation data cor7 stored in the first correlation storage unit 11a is deleted, the correlation data stored in the second correlation storage unit 11b is copied to the first correlation storage unit 11a, and the above-described You may repeat the process after step S21 which carried out.

なお、補間処理部12は、第1~第3補間処理を行う際には、コイル2の出力すなわち整流器4の出力の変化に対して、補正変位信号が線形に変化するように補間処理を行うのが望ましい。これにより、整流器4の出力に対して線形に変化する補正変位信号を生成できる。 When performing the first to third interpolation processing, the interpolation processing unit 12 performs the interpolation processing so that the correction displacement signal changes linearly with respect to changes in the output of the coil 2, that is, the output of the rectifier 4. is desirable. Thereby, a correction displacement signal that varies linearly with respect to the output of the rectifier 4 can be generated.

図11は第1の実施形態による制御部6の処理動作の一例を示すフローチャートである。変位センサ1のコイル2を被測定物の近傍に配置すると、コイル2のインピーダンスが変化して、発振器3の発振信号の信号レベルが変化し、それに応じて、整流器4から出力される直流信号の信号レベルも変化する。この直流信号は、A/Dコンバータ5でデジタル信号に変化された後に、制御部6に入力される(ステップS31)。 FIG. 11 is a flow chart showing an example of the processing operation of the control section 6 according to the first embodiment. When the coil 2 of the displacement sensor 1 is arranged near the object to be measured, the impedance of the coil 2 changes, the signal level of the oscillation signal of the oscillator 3 changes, and accordingly the DC signal output from the rectifier 4 changes. The signal level also changes. This DC signal is converted into a digital signal by the A/D converter 5 and then inputted to the control section 6 (step S31).

制御部6は、ステップS31の処理に前後して、温度計測器9で計測されたコイル2の周辺の温度を取得する(ステップS32)。次に、制御部6は、コイル2の周辺の温度と、整流器4から出力されてA/Dコンバータ5でデジタル変換されたデジタル信号とに基づいて、補間処理部12が上述した第1~第3補間処理のいずれかを行って生成した相関関係データを用いて、補正変位信号を生成する(ステップS33)。 Before and after the process of step S31, the control unit 6 acquires the temperature around the coil 2 measured by the temperature measuring instrument 9 (step S32). Next, based on the temperature around the coil 2 and the digital signal output from the rectifier 4 and digitally converted by the A/D converter 5, the control unit 6 causes the interpolation processing unit 12 to perform the above-described first to first A corrected displacement signal is generated using the correlation data generated by performing any one of the three interpolation processes (step S33).

変位センサ1では、コイル2以外の構成部品は共通の基板上に実装され、コイル2だけがこの基板から離れた位置に配置されることが多い。この場合、コイル2の周辺の温度と基板の温度との温度差が大きくなる可能性がある。特に、エンジンのバルブの位置を検出する場合など、被測定物の温度が数百℃を超えるような高温になる場合は、コイル2の周辺の温度と基板の周辺の温度との温度差が大きくなりやすい。上述したように、コイル2の温度によってコイル2のインピーダンスは変化するが、基板の温度によっても基板内の各回路素子の電気的特性が変化し、補正変位信号の信号レベルに影響を与える。 In the displacement sensor 1, the components other than the coil 2 are mounted on a common substrate, and only the coil 2 is often placed apart from this substrate. In this case, the temperature difference between the temperature around the coil 2 and the temperature of the substrate may increase. In particular, when the temperature of the object to be measured exceeds several hundred degrees Celsius, such as when detecting the position of an engine valve, the temperature difference between the temperature around the coil 2 and the temperature around the substrate is large. Prone. As described above, the impedance of the coil 2 changes depending on the temperature of the coil 2, but the temperature of the substrate also changes the electrical characteristics of each circuit element in the substrate, affecting the signal level of the correction displacement signal.

よって、コイル2の周辺の温度と基板の周辺の温度とが相違する可能性がある場合には、コイル2の周辺の温度を計測する温度計測器9とは別に、基板の周辺の温度を計測する基板温度計測器13を設けてもよい。 Therefore, if there is a possibility that the temperature around the coil 2 and the temperature around the substrate are different, the temperature around the substrate is measured separately from the temperature measuring instrument 9 that measures the temperature around the coil 2. A substrate temperature measuring instrument 13 may be provided.

この場合、制御部6は、複数の温度での整流器4の出力と補正変位信号との相関関係に基づいて、温度計測器9で計測されたコイルの温度と、基板温度計測器13で計測された基板の温度とに対応する補正変位信号を生成する。 In this case, the control unit 6 controls the coil temperature measured by the temperature measuring device 9 and the substrate temperature measuring device 13 based on the correlation between the output of the rectifier 4 and the corrected displacement signal at a plurality of temperatures. A corrected displacement signal corresponding to the temperature of the substrate is generated.

これにより、コイル2の周辺の温度と基板の周辺の温度とを考慮に入れて、被測定物の変位に対する補正変位信号を生成でき、コイル2や基板の温度が変化しても、また、被測定物の変位が変化しても、変位に対する変位信号の線形性をより改善させることができる。 As a result, the temperature around the coil 2 and the temperature around the substrate can be taken into account to generate a correction displacement signal for the displacement of the object to be measured. Even if the displacement of the measurement object changes, the linearity of the displacement signal with respect to the displacement can be further improved.

このように、本実施形態では、複数の温度での整流器4の出力と補正変位信号との相関関係に基づいて、温度計測器9で計測された実温度での整流器4の出力信号に対応する補正変位信号を生成するため、温度計測器9で計測された実温度を考慮に入れて、ソフトウェア処理にて精度よく補正変位信号を生成できる。本実施形態では、少なくとも1種類の温度についての相関関係を用いて、補間処理にて、温度計測器9で計測された実温度に応じた相関関係を求めるため、多数の温度についての相関関係を予め用意する必要がない。よって、広範な温度範囲について、変位信号の生成が可能となる。 As described above, in this embodiment, based on the correlation between the output of the rectifier 4 and the corrected displacement signal at a plurality of temperatures, the output signal of the rectifier 4 at the actual temperature measured by the temperature measuring instrument 9 is corrected. Since the correction displacement signal is generated, the actual temperature measured by the temperature measuring instrument 9 is taken into consideration, and the correction displacement signal can be generated with high accuracy by software processing. In the present embodiment, correlations for a large number of temperatures are obtained by interpolating the correlations according to the actual temperatures measured by the temperature measuring instrument 9 using the correlations for at least one type of temperature. No need to prepare in advance. Therefore, displacement signals can be generated over a wide temperature range.

また、制御部6は、1個のMCUやMPUで構成できるため、ハードウェア構成を簡略化でき、部品コストを削減できる。さらに、制御部6の処理動作は、プログラムを改良することで種々に変更でき、被測定物の変位に対する変位信号の線形性をより改善させるような処理をハードウェアの変更なしに比較的容易に行うことができる。プログラムの置換が容易に行えるように、プログラム格納部10は、電気的に書換可能なフラッシュメモリやEEPROMなどで構成するのが望ましい。特に、本実施形態による変位センサ1を高温下で使用する場合には、高温下でもデータの保持性能の高い不揮発メモリを用いて相関関係格納部11やプログラム格納部10を構成するのがより望ましい。 In addition, since the control unit 6 can be configured with a single MCU or MPU, the hardware configuration can be simplified and the parts cost can be reduced. Furthermore, the processing operation of the control unit 6 can be changed in various ways by improving the program, and the processing for improving the linearity of the displacement signal with respect to the displacement of the object to be measured can be performed relatively easily without changing the hardware. It can be carried out. It is desirable that the program storage unit 10 is composed of an electrically rewritable flash memory, an EEPROM, or the like so that the programs can be easily replaced. In particular, when the displacement sensor 1 according to the present embodiment is used at high temperatures, it is more desirable to construct the correlation storage unit 11 and the program storage unit 10 using a non-volatile memory with high data retention performance even at high temperatures. .

本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Aspects of the present invention are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present invention are not limited to the above-described contents. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present invention derived from the content defined in the claims and equivalents thereof.

1 変位センサ、2 コイル、3 発振器、4 整流器、5 A/Dコンバータ、6 制御部、7 D/Aコンバータ、8 出力アンプ、9 温度計測器、10 プログラム格納部、11 相関関係格納部、11b 第2相関関係格納部、12 補間処理部、13 基板温度計測器 1 Displacement Sensor 2 Coil 3 Oscillator 4 Rectifier 5 A/D Converter 6 Control Unit 7 D/A Converter 8 Output Amplifier 9 Temperature Measuring Instrument 10 Program Storage Unit 11 Correlation Storage Unit 11b second correlation storage unit, 12 interpolation processing unit, 13 substrate temperature measuring instrument

Claims (6)

交流電流を供給することで交流磁場を発生させ、被測定物の位置の変位に応じて前記被測定物に誘導される渦電流に応じた出力を生成するコイルと、
前記コイルの周辺の実温度を計測する温度計測器と、
前記コイルの周辺の温度が所定値のときの前記コイルの出力と、前記コイルの出力から求まる温度補正された前記被測定物の位置の変位を示す補正変位信号と、の相関関係を用いて、前記実温度と前記コイルの出力とに対応する補正変位信号を前記被測定物の位置の変位を示す変位信号として出力する変位信号生成部と、
少なくとも1つの温度での前記コイルの出力と前記補正変位信号との相関関係から、前記温度計測器で計測された実温度に対応する補正変位信号を補間する補間処理部と、
第1温度での前記コイルの出力と前記補正変位信号との第1相関関係を格納する第1相関関係格納部と、
前記第1温度とは異なる第2温度での前記コイルの出力と前記補正変位信号との第2相関関係を格納する第2相関関係格納部と、を備え、
前記補間処理部は、前記第1相関関係を使用して前記被測定物の位置の変位の計測を行っている間に、前記第1相関関係の補間処理にて前記第2相関関係を生成して前記第2相関関係格納部に格納し、
前記変位信号生成部は、前記補間処理部にて補間された前記補正変位信号を前記変位信号として出力し、かつ、前記温度計測器で計測された温度が前記第2温度に変わると、前記第2相関関係に基づいて前記補正変位信号を生成する、変位センサ。
a coil that generates an alternating magnetic field by supplying an alternating current and generates an output corresponding to an eddy current induced in the object to be measured according to a displacement of the position of the object;
a temperature measuring instrument for measuring the actual temperature around the coil;
Using the correlation between the output of the coil when the temperature around the coil is a predetermined value and a corrected displacement signal indicating the displacement of the position of the object to be measured that has undergone temperature correction and is obtained from the output of the coil, a displacement signal generator that outputs a corrected displacement signal corresponding to the actual temperature and the output of the coil as a displacement signal indicating the displacement of the position of the object to be measured;
an interpolation processing unit that interpolates a corrected displacement signal corresponding to the actual temperature measured by the temperature measuring instrument based on the correlation between the output of the coil and the corrected displacement signal at at least one temperature;
a first correlation storage that stores a first correlation between the output of the coil at a first temperature and the corrected displacement signal;
a second correlation storage unit that stores a second correlation between the output of the coil and the corrected displacement signal at a second temperature different from the first temperature;
The interpolation processing unit generates the second correlation by interpolation processing of the first correlation while measuring the displacement of the position of the object to be measured using the first correlation. and store it in the second correlation storage unit,
The displacement signal generating section outputs the corrected displacement signal interpolated by the interpolation processing section as the displacement signal, and when the temperature measured by the temperature measuring instrument changes to the second temperature, the second A displacement sensor that generates the corrected displacement signal based on two correlations.
交流電流を供給することで交流磁場を発生させ、被測定物の位置の変位に応じて前記被測定物に誘導される渦電流に応じた出力を生成するコイルと、
前記コイルの周辺の実温度を計測する温度計測器と、
前記コイルの周辺の温度が所定値のときの前記コイルの出力と、前記コイルの出力から求まる温度補正された前記被測定物の位置の変位を示す補正変位信号と、の相関関係を用いて、前記実温度と前記コイルの出力とに対応する補正変位信号を前記被測定物の位置の変位を示す変位信号として出力する変位信号生成部と、
少なくとも1つの温度での前記コイルの出力と前記補正変位信号との相関関係から、前記温度計測器で計測された実温度に対応する補正変位信号を補間する補間処理部と、
第1温度での前記コイルの出力と前記補正変位信号との第1相関関係を格納する第1相関関係格納部と、
前記第1温度とは異なる第2温度での前記コイルの出力と前記補正変位信号との第2相関関係を格納する第2相関関係格納部と、を備え、
前記変位信号生成部は、前記補間処理部にて補間された前記補正変位信号を前記変位信号として出力し、かつ、前記第1相関関係を使用して前記被測定物の位置の変位の計測を行っている間に、前記温度計測器で計測された温度が前記第1温度から第2温度に変化すると、前記第1相関関係の補間処理にて前記第2相関関係を生成して前記第2相関関係格納部に格納する、変位センサ。
a coil that generates an alternating magnetic field by supplying an alternating current and generates an output corresponding to an eddy current induced in the object to be measured according to a displacement of the position of the object;
a temperature measuring instrument for measuring the actual temperature around the coil;
Using the correlation between the output of the coil when the temperature around the coil is a predetermined value and a corrected displacement signal indicating the displacement of the position of the object to be measured that has undergone temperature correction and is obtained from the output of the coil, a displacement signal generator that outputs a corrected displacement signal corresponding to the actual temperature and the output of the coil as a displacement signal indicating the displacement of the position of the object to be measured;
an interpolation processing unit that interpolates a corrected displacement signal corresponding to the actual temperature measured by the temperature measuring instrument based on the correlation between the output of the coil and the corrected displacement signal at at least one temperature;
a first correlation storage that stores a first correlation between the output of the coil at a first temperature and the corrected displacement signal;
a second correlation storage unit that stores a second correlation between the output of the coil and the corrected displacement signal at a second temperature different from the first temperature;
The displacement signal generation unit outputs the corrected displacement signal interpolated by the interpolation processing unit as the displacement signal, and uses the first correlation to measure the displacement of the position of the object to be measured. When the temperature measured by the temperature measuring instrument changes from the first temperature to the second temperature during the operation, the second correlation is generated by interpolation processing of the first correlation, and the second correlation is generated. Displacement sensor stored in the correlation storage unit.
前記補間処理部は、前記コイルの出力の変化に対して前記補正変位信号が線形に変化するように、前記相関関係を補間して新たな相関関係を生成する、請求項1又は2に記載の変位センサ。 3. The interpolation processing unit according to claim 1, wherein the interpolation processing unit interpolates the correlation to generate a new correlation such that the corrected displacement signal changes linearly with respect to changes in the output of the coil. Displacement sensor. 前記補間処理部は、互いに異なる少なくとも2つの温度での前記コイルの出力と前記補正変位信号との相関関係から、前記2つの温度の間の中間温度における前記相関関係を生成する、請求項1乃至3のいずれか一項に記載の変位センサ。 3. The interpolation processing unit generates the correlation at an intermediate temperature between the two temperatures from the correlation between the output of the coil and the corrected displacement signal at at least two temperatures different from each other. 4. The displacement sensor according to any one of 3. 前記変位信号生成部が実装された基板と、
前記基板の温度を計測する基板温度計測器と、を備え、
前記補間処理部は、前記温度計測器で計測された前記コイルの周辺の温度と前記基板温度計測器で計測された前記基板の温度とに基づいて、前記相関関係を補間する、請求項1乃至4のいずれか一項に記載の変位センサ。
a substrate on which the displacement signal generator is mounted;
a substrate temperature measuring instrument for measuring the temperature of the substrate,
2. The interpolation processing unit interpolates the correlation based on the temperature around the coil measured by the temperature measuring instrument and the temperature of the substrate measured by the substrate temperature measuring instrument. 5. The displacement sensor according to any one of 4.
前記コイルのインピーダンスを利用して発振動作を行って前記交流電流を発生させるとともに、発振信号を出力する自励式発振回路を有し、
前記自励式発振回路の発振レベルは、前記被測定物に発生した渦電流による前記コイルのインピーダンスの変化の影響を受けて変化する、請求項1乃至5のいずれか一項に記載の変位センサ。
a self-excited oscillation circuit that generates the alternating current by performing an oscillation operation using the impedance of the coil and outputs an oscillation signal;
6. The displacement sensor according to claim 1, wherein the oscillation level of said self-excited oscillator circuit changes under the influence of changes in impedance of said coil caused by eddy currents generated in said object to be measured.
JP2018195357A 2018-10-16 2018-10-16 Displacement sensor Active JP7260871B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018195357A JP7260871B2 (en) 2018-10-16 2018-10-16 Displacement sensor
KR1020190127436A KR102275562B1 (en) 2018-10-16 2019-10-15 Displacement sensor
CN201910985095.XA CN111059994B (en) 2018-10-16 2019-10-16 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195357A JP7260871B2 (en) 2018-10-16 2018-10-16 Displacement sensor

Publications (2)

Publication Number Publication Date
JP2020063963A JP2020063963A (en) 2020-04-23
JP7260871B2 true JP7260871B2 (en) 2023-04-19

Family

ID=70297536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195357A Active JP7260871B2 (en) 2018-10-16 2018-10-16 Displacement sensor

Country Status (3)

Country Link
JP (1) JP7260871B2 (en)
KR (1) KR102275562B1 (en)
CN (1) CN111059994B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982042A (en) * 2020-08-25 2020-11-24 淮阴工学院 Displacement detection device for parameter measurement
CN113203350B (en) * 2021-04-19 2022-03-11 浙江大学 Eddy current displacement sensor linearization method based on inverse function piecewise correction and eddy current displacement sensor using same
CN116772702A (en) * 2023-08-24 2023-09-19 河南卫华重型机械股份有限公司 Eddy current distance acquisition circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183106A (en) 1999-12-28 2001-07-06 Applied Electronics Corp Gap detecting device with temperature compensation
JP2003322546A (en) 2002-05-02 2003-11-14 Yoshikazu Ichiyama Position detector
JP2007525673A (en) 2004-06-16 2007-09-06 エーエムアイ セミコンダクター インク Reactive sensor with compensation supply module using compensation based on Pad 'approximation
JP2008164518A (en) 2006-12-28 2008-07-17 Toyota Motor Corp Displacement measuring method and device
JP2010101741A (en) 2008-10-23 2010-05-06 Nikon Corp Temperature measuring circuit, encoder system and temperature measuring method
JP5280921B2 (en) 2009-03-31 2013-09-04 富士機械製造株式会社 Substrate transfer device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280921A (en) * 1992-04-02 1993-10-29 Nippon Steel Corp Section measuring device of steel material
JPH08271204A (en) * 1995-03-31 1996-10-18 Tokyo Seimitsu Co Ltd Eddy current type displacement sensor
JPH10132605A (en) * 1996-10-28 1998-05-22 Sony Precision Technol Inc Position detector
DE10313022B4 (en) * 2003-03-24 2006-04-20 Siemens Ag Circuit arrangement with a linearly variable differential transformer (LVDT) as a displacement or force sensor
CN101126622A (en) * 2007-09-25 2008-02-20 深圳东方锅炉控制有限公司 High temperature non-contact type eddy current displacement sensor
CN102878916B (en) * 2012-08-30 2015-01-21 杨会峰 Device and method for measuring long stroke displacement based on Hall effect
US9389060B2 (en) * 2013-02-13 2016-07-12 Allegro Microsystems, Llc Magnetic field sensor and related techniques that provide an angle error correction module
JP6403247B2 (en) 2014-01-21 2018-10-10 新光電機株式会社 Displacement sensor
WO2016051592A1 (en) * 2014-10-03 2016-04-07 株式会社エスジー Position detection device
JP6352833B2 (en) * 2015-02-26 2018-07-04 住友重機械工業株式会社 Shape measuring device, processing device, and shape measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183106A (en) 1999-12-28 2001-07-06 Applied Electronics Corp Gap detecting device with temperature compensation
JP2003322546A (en) 2002-05-02 2003-11-14 Yoshikazu Ichiyama Position detector
JP2007525673A (en) 2004-06-16 2007-09-06 エーエムアイ セミコンダクター インク Reactive sensor with compensation supply module using compensation based on Pad 'approximation
JP2008164518A (en) 2006-12-28 2008-07-17 Toyota Motor Corp Displacement measuring method and device
JP2010101741A (en) 2008-10-23 2010-05-06 Nikon Corp Temperature measuring circuit, encoder system and temperature measuring method
JP5280921B2 (en) 2009-03-31 2013-09-04 富士機械製造株式会社 Substrate transfer device

Also Published As

Publication number Publication date
CN111059994A (en) 2020-04-24
CN111059994B (en) 2023-03-03
KR20200042864A (en) 2020-04-24
KR102275562B1 (en) 2021-07-09
JP2020063963A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7260871B2 (en) Displacement sensor
KR101616854B1 (en) Current Sensor, Sensor Element, and Control Device
US8427244B2 (en) Oscillation circuit and frequency-correcting oscillation circuit
JP2016514838A (en) Vibration sensor and method
JP4031369B2 (en) Temperature compensation circuit and method thereof
JP5108619B2 (en) Sensor signal detection circuit
JP5074796B2 (en) Sensor correction information acquisition method and detection apparatus
JP2018072271A (en) Self-excited resonance circuit
KR102234612B1 (en) Environmental compensation methods in proximity sensors and proximity sensors with improved environmental compensation
JP7185872B2 (en) Displacement sensor
JP5455776B2 (en) Current measuring device
JP2007240286A (en) Measuring method and measuring instrument
JP2005201790A (en) Contact type displacement measuring instrument
JP2017161543A (en) Vibratory sensor and method
JP2013156165A (en) Signal processing method and pressure sensor
JP2011142444A (en) Method for manufacturing piezoelectric oscillator, and piezoelectric oscillator
JPH10281709A (en) Method and device for measuring dynamic strain
JP2004198322A (en) Method of preparing conversion table for distance detection, and displacement sensor
JP4445836B2 (en) Sampling circuit and test apparatus
JP2005005913A (en) Ad conversion method and device thereof
JP2023122784A (en) Proximity switch and method for manufacturing the same
JP6450557B2 (en) Measuring apparatus, measuring method and program
JP6380850B2 (en) Toner amount detection device, image forming apparatus, and toner amount detection device adjustment method
JP6450559B2 (en) Measuring apparatus, measuring method and program
JP2010096630A (en) Signal processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7260871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150