JP2001181340A - Chlorinated vinyl chloride resin, its production method, and its molded article - Google Patents

Chlorinated vinyl chloride resin, its production method, and its molded article

Info

Publication number
JP2001181340A
JP2001181340A JP37215899A JP37215899A JP2001181340A JP 2001181340 A JP2001181340 A JP 2001181340A JP 37215899 A JP37215899 A JP 37215899A JP 37215899 A JP37215899 A JP 37215899A JP 2001181340 A JP2001181340 A JP 2001181340A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
chlorinated vinyl
chlorine
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37215899A
Other languages
Japanese (ja)
Inventor
Yuki Goto
祐樹 後藤
Yukio Shibazaki
行雄 柴崎
Yoshinobu Suenaga
義伸 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP37215899A priority Critical patent/JP2001181340A/en
Publication of JP2001181340A publication Critical patent/JP2001181340A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chlorinated vinyl chloride resin excellent in heat stability and gelling properties, its production method, and its molded article. SOLUTION: This chlorinated vinyl chloride resin is produced by chlorinating a vinyl chloride resin of which the peak ratio (chlorine element peak × 2/carbon element peak) in the 1S bond energy value (eV) of carbon atom and chlorine atom is higher than 0.6 in the particle surface analysis by electron-spectroscopic chemical analysis(ESCA). The chlorinated vinyl chloride resin is characterized in that the chlorine content is 60-72 wt.%; that the porosity measured by the mercury forcing-in method under a pressure of 196 MPa is 30-40 vol.%; and that the volume of micropores with 0.001-0.1 μm-size accounts for 2-15 vol.% of the volume of total micropores in the micropore volume distribution measured by the mercury forcing-in method under a pressure of 0-196 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化塩化ビニル
系樹脂、その製造方法及びその成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorinated vinyl chloride resin, a method for producing the same, and a molded product thereof.

【0002】[0002]

【従来の技術】従来より、塩化ビニル系樹脂(以下、P
VCという)は機械的強度、耐候性、耐薬品性に優れた
材料として、多くの分野に用いられている。しかしなが
ら、耐熱性に劣るため、PVCを塩素化することにより
耐熱性を向上させた塩素化塩化ビニル系樹脂(以下、C
PVCという)が開発されている。PVCは熱変形温度
が低く使用可能な上限温度が60〜70℃付近であるた
め、熱水に対して使用できないのに対し、CPVCは熱
変形温度がPVCよりも20〜40℃も高いため、熱水
に対しても使用可能であり、例えば、耐熱パイプ、耐熱
継手、耐熱バルブ、耐熱プレート等に好適に使用されて
いる。
2. Description of the Related Art Conventionally, vinyl chloride resins (hereinafter referred to as P
VC) is used in many fields as a material having excellent mechanical strength, weather resistance and chemical resistance. However, since the heat resistance is poor, a chlorinated vinyl chloride resin (hereinafter referred to as C) in which the heat resistance is improved by chlorinating PVC.
PVC) has been developed. Since PVC has a low heat distortion temperature and the maximum usable temperature is around 60 to 70 ° C, it cannot be used for hot water, whereas CPVC has a heat deformation temperature 20 to 40 ° C higher than PVC, It can be used for hot water, and is suitably used for heat-resistant pipes, heat-resistant joints, heat-resistant valves, heat-resistant plates, and the like.

【0003】しかしながら、CPVCは熱変形温度が高
いため、成形加工性時にゲル化させるには高温と剪断力
を必要とし、成形加工時に分解して着色しやすいという
傾向があった。従って、CPVCは成形加工幅が狭く、
不充分なゲル化状態で製品化されることが多く、素材の
もつ性能を充分発揮できているとはいえなかった。その
ため、CPVCの成形時の熱安定性を改良し、成形加工
性を向上させることが望まれている。
However, since CPVC has a high heat deformation temperature, a high temperature and a shearing force are required for gelling at the time of moldability, and it tends to be decomposed and colored during molding. Therefore, CPVC has a narrow forming width,
In many cases, the product is produced in an insufficient gelation state, and it cannot be said that the performance of the material can be sufficiently exhibited. Therefore, it is desired to improve the thermal stability at the time of molding the CPVC and to improve the molding processability.

【0004】このような問題点を解決するために、熱安
定性の良好なCPVCを製造する方法が提案されてい
る。例えば、特公昭45−30833号公報には、酸素
濃度が0.05〜0.35容量%の塩素を特定の流速で
供給して、55〜80℃の温度で塩素化すると、熱安定
性の良好なCPVCが得られるとしている。しかし、酸
素濃度が高く、低温での反応のため、熱安定性が格段に
すぐれているわけでなく、長期の押出成形、射出成形に
耐えられない。
[0004] In order to solve such a problem, there has been proposed a method for producing a CPVC having good thermal stability. For example, Japanese Patent Publication No. 45-30833 discloses that chlorine having an oxygen concentration of 0.05 to 0.35% by volume is supplied at a specific flow rate and chlorinated at a temperature of 55 to 80 ° C. It is stated that good CPVC can be obtained. However, due to the high oxygen concentration and the reaction at a low temperature, the thermal stability is not particularly excellent, and it cannot withstand long-term extrusion and injection molding.

【0005】また、例えば、特開平9−328518号
公報には、酸素濃度が200ppm以下の塩素を使用し
て紫外線照射下に塩素化する方法が提示されている。し
かしながら、紫外線照射による低温での反応のために、
熱安定性が格段に優れたCPVC樹脂は得られていな
い。さらに、特開平6−32822号公報では、10〜
100ppmの酸素を含んだ塩素を供給して110〜1
35℃の温度で塩素化する方法が提案されている。この
方法は、熱塩素化による高温での塩素化のため、熱安定
性に優れたCPVCを得ることが可能であり、塩素化反
応も円滑に進行する。しかしながら、高温反応による熱
エネルギーの影響のため、粒子内部の空隙の減少が起こ
り、成形加工時に十分なゲル化を発現しにくく、加工性
を向上させるには、さらに高温、高剪断による粒子内部
からの発熱を発生させる必要がある。
For example, Japanese Patent Application Laid-Open No. 9-328518 discloses a method of chlorinating under ultraviolet irradiation using chlorine having an oxygen concentration of 200 ppm or less. However, due to the low-temperature reaction caused by UV irradiation,
A CPVC resin having remarkably excellent thermal stability has not been obtained. Further, in Japanese Patent Application Laid-Open No. 6-32822,
Supplying chlorine containing 100 ppm of oxygen to 110-1
A method for chlorination at a temperature of 35 ° C. has been proposed. According to this method, CPVC having excellent thermal stability can be obtained due to chlorination at a high temperature by thermal chlorination, and the chlorination reaction proceeds smoothly. However, due to the effect of thermal energy due to the high-temperature reaction, the voids inside the particles are reduced, and it is difficult to develop sufficient gelation during molding. It is necessary to generate heat.

【0006】また、耐熱パイプ、耐熱継手、耐熱バル
ブ、耐熱プレート等の成形体においては、安全装置の作
動不良等が原因で100℃以上の高温蒸気が発生した
り、100℃以上に加温した薬液等が投入された場合、
従来の給湯管、給湯管継手、貯槽のレベルよりも、更に
高い耐熱性や耐薬品性を持つ管、継手、プレート等の成
形体が必要とされている。
In the case of molded articles such as heat-resistant pipes, heat-resistant joints, heat-resistant valves, heat-resistant plates, etc., high-temperature steam of 100 ° C. or more is generated or heated to 100 ° C. or more due to malfunction of safety devices. When a chemical solution is injected,
There is a need for molded articles such as pipes, joints, and plates having higher heat resistance and chemical resistance than conventional hot water supply pipes, hot water supply pipe joints, and storage tanks.

【0007】そこで、前記成形体の耐熱性を更に改良す
るために、従来のCPVCに比べ、塩素含有量を上げた
CPVC樹脂を用いて成形することが提示されている。
しかしながら、前述のように熱変形温度が高く、成形加
工性時にゲル化させるには高温と剪断力を必要とし、成
形加工時に分解しやすいため、不充分なゲル化状態で製
品化されることが多く、衝撃強度等の物性が充分発揮で
きているとはいえなかった。
[0007] Therefore, in order to further improve the heat resistance of the molded article, it has been proposed to mold using a CPVC resin having a higher chlorine content than conventional CPVC.
However, as described above, the heat deformation temperature is high, and high temperature and shearing force are required to gel at the time of moldability, and it is easy to decompose at the time of moldability. In many cases, it could not be said that physical properties such as impact strength were sufficiently exhibited.

【0008】また、CPVC管においては、ゲル化が不
充分になるほど、吸水量の増加、長期クリープ性能の低
下が起こる。吸水量が多いと、吸水による径膨張が大き
くなり、膨張破壊を起こしやすくなる。また、長期クリ
ープ性能が低下すると、破裂等が起こりやすくなり、管
としての使用が難しくなる。また、ライニング管では、
内面割れや、吸水膨張による管内閉塞が起こる。このた
め、充分にゲル化した管が求められている。
[0008] In the CPVC pipe, as the gelation becomes insufficient, the water absorption increases and the long-term creep performance decreases. When the amount of water absorption is large, the diametrical expansion due to the water absorption increases, and expansion and destruction are likely to occur. Further, when the long-term creep performance is reduced, rupture or the like is likely to occur, and it becomes difficult to use the tube as a tube. In the lining pipe,
Cracking of the inner surface or blockage in the pipe due to water absorption expansion occurs. For this reason, a sufficiently gelled tube is required.

【0009】さらにまた、CPVCは一般のPVCと比
較して粘度が高く、応力緩和時間が長いため、管の表面
(内面)が平滑性に劣るという欠点がある。管の内面が
平滑性に劣る場合、凹凸の影響により滞留が起こりやす
く、最近の繁殖やゴミの蓄積が起こりやすくなるため、
プラント用の超純水配管およびライニング管での使用が
難しい。一般に、成形品に平滑性を与えるためには、成
形樹脂温度、金型温度を上昇させたり、金型内での滞留
時間を長くしたりする対策がとられるが、CPVC管を
成形する場合には、樹脂が熱履歴を受け分解しやすく、
ロングラン性(連続製造性)に問題を生じることがあっ
た。
Furthermore, CPVC has a disadvantage that the surface (inner surface) of the pipe is inferior in smoothness due to its higher viscosity and longer stress relaxation time than ordinary PVC. If the inner surface of the tube is inferior in smoothness, stagnation tends to occur due to the effects of irregularities, and recent propagation and accumulation of garbage tend to occur.
It is difficult to use in ultrapure water pipes and lining pipes for plants. In general, in order to impart smoothness to a molded product, measures are taken to increase the molding resin temperature and the mold temperature or to increase the residence time in the mold. Means that the resin is easily decomposed due to heat history,
In some cases, there was a problem in long-run performance (continuous manufacturing).

【0010】このような問題を解決するために、例え
ば、特開昭49−6080号公報には、イオン性乳化
剤、水溶性金属及び水溶性高分子からなる懸濁安定剤を
使用し、約1μm の基本粒子からなる凝集体で構成され
たPVC樹脂を塩素化する方法が開示されている。しか
し、この方法では、成形加工時のゲル化性能は向上する
ものの、未だ耐熱性能とゲル化性能を充分に満足するも
のではない。
In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. Sho 49-6080 discloses a method using an ionic emulsifier, a water-soluble metal and a water-soluble polymer, Discloses a method of chlorinating a PVC resin composed of an aggregate comprising basic particles. However, in this method, although the gelling performance at the time of molding is improved, the heat resistance and the gelling performance are not yet sufficiently satisfied.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、熱安定性とゲル化発現性に優れた塩素化塩化ビニ
ル系樹脂、その製造方法及びその成形体を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a chlorinated vinyl chloride resin excellent in thermal stability and gelling property, a method for producing the same, and a molded article thereof. I do.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明(本
発明1という)による塩素化塩化ビニル系樹脂は、塩化
ビニル樹脂を塩素化してなる塩素化塩化ビニル系樹脂で
あって、前記塩化ビニル系樹脂は、電子分光化学分析
(ESCA)による粒子表面分析において、炭素原子と
塩素原子との1S結合エネルギー値(eV)におけるピ
ーク比(塩素元素ピーク×2/炭素元素ピーク)が、
0.6を超えるものであり、前記塩素化塩化ビニル系樹
脂は、塩素含有率は60〜72重量%、水銀圧入法によ
り圧力196MPaで測定した空隙率が30〜40容量
%、及び水銀圧入法により圧力が0〜196MPaで測
定した細孔容積分布において、0.001〜0.1μm
の空隙容積が、全空隙容積の2〜15容積%であるであ
ることを特徴とする。以下に本発明を詳述する。
The chlorinated vinyl chloride resin according to the first aspect of the present invention (hereinafter referred to as "the present invention 1") is a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin. The vinyl resin has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of carbon atom and chlorine atom in particle surface analysis by electron spectrochemical analysis (ESCA).
The chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight, a porosity measured at a pressure of 196 MPa by a mercury intrusion method of 30 to 40% by volume, and a mercury intrusion method. In the pore volume distribution measured at a pressure of 0 to 196 MPa, 0.001 to 0.1 μm
Is 2 to 15% by volume of the total void volume. Hereinafter, the present invention will be described in detail.

【0013】本発明のPVCとは、塩化ビニル単量体
(以下、VCMという)単独、又は、VCM及びVCM
と共重合可能な他の単量体との混合物を公知の方法で重
合してなる樹脂である。上記VCMと共重合可能な他の
単量体としては特に限定されず、例えば、酢酸ビニル等
のアルキルビニルエステル類;エチレン、プロピレン等
のα−モノオレフィン類;塩化ビニリデン;スチレン等
が挙げられる。これらは、単独で用いられてもよく、2
種以上が併用されてもよい。
The PVC of the present invention refers to a vinyl chloride monomer (hereinafter referred to as VCM) alone, or VCM and VCM.
It is a resin obtained by polymerizing a mixture with another monomer copolymerizable with a known method. Other monomers copolymerizable with the VCM are not particularly limited, and include, for example, alkyl vinyl esters such as vinyl acetate; α-monoolefins such as ethylene and propylene; vinylidene chloride; and styrene. These may be used alone, 2
More than one species may be used in combination.

【0014】上記PVCは、電子分光化学分析(ESC
A)による粒子表面分析において、炭素原子と塩素原子
との1S結合エネルギー値(eV)におけるピーク比
(塩素元素ピーク×2/炭素元素ピーク)が、0.6を
超えるものに限定され、好ましくは0.7を超えるもの
である。上記ピーク比が0.6以下では、PVC粒子表
面に分散剤等の添加剤が吸着していると考えられるた
め、後工程での塩素化速度が遅くなるだけでなく、PV
Cの成形加工性に問題を生じ、また、熱安定性が劣るよ
うになる。上記ピーク比が0.6を超えるPVCの中に
は、PVC粒子表面の表皮(以下、スキンという)面積
が少なく、粒子内部の微細構造(1次粒子)が露出して
いる粒子(以下、スキンレスPVC)が存在する。同じ
エネルギー比である場合は、スキンレスPVCを用いる
のが好ましい。
The above-mentioned PVC is obtained by an electron spectrochemical analysis (ESC).
In the particle surface analysis according to A), the peak ratio (chlorine element peak × 2 / carbon element peak) at a 1S bond energy value (eV) between a carbon atom and a chlorine atom is limited to a value exceeding 0.6, preferably It is more than 0.7. When the peak ratio is 0.6 or less, it is considered that an additive such as a dispersant is adsorbed on the surface of the PVC particles.
A problem arises in the formability of C, and the thermal stability becomes poor. Among the PVCs having a peak ratio of more than 0.6, particles (hereinafter, referred to as skin) having a small skin (hereinafter, referred to as skin) area on the surface of the PVC particles and exposing a fine structure (primary particles) inside the particles. Less PVC). When the energy ratio is the same, it is preferable to use skinless PVC.

【0015】上記PVCの化学的構造の原子存在比は、
塩素原子:炭素原子=1:2であり(末端構造、分岐を
考慮しない時)、上記1S結合エネルギー値(eV)に
おけるピーク比(塩素元素ピーク×2/炭素元素ピー
ク)は0〜1の値となる。ピーク比が0の場合は、PV
C粒子表面がPVC以外の物質で、且つ、塩素を含まな
い他の物質に覆われている事を意味し、ピーク比が1の
場合は、PVC粒子表面が、完全にPVC成分のみで覆
われていることを意味する。
The atomic abundance ratio of the chemical structure of PVC is as follows:
Chlorine atom: carbon atom = 1: 2 (when the terminal structure and branching are not considered), and the peak ratio (chlorine element peak × 2 / carbon element peak) in the above 1S binding energy value (eV) is 0 to 1. Becomes If the peak ratio is 0, PV
This means that the surface of the C particles is covered with a substance other than PVC and containing no chlorine. If the peak ratio is 1, the surface of the PVC particles is completely covered with only the PVC component. Means that.

【0016】本発明のCPVCは、塩素含有率、空隙
率、および0.001〜0.1μmの空隙容積により規
定される。即ち、上記CPVCの塩素含有率は、60〜
72重量%に限定され、好ましくは63〜70重量%で
ある。塩素含有率が60重量%未満になると、耐熱性の
向上が不十分であり、逆に72重量%を超えると、成形
加工が困難となりゲル化が不十分となる。
The CPVC of the present invention is defined by a chlorine content, a porosity, and a pore volume of 0.001 to 0.1 μm. That is, the chlorine content of the CPVC is 60 to
It is limited to 72% by weight, preferably 63 to 70% by weight. When the chlorine content is less than 60% by weight, the improvement in heat resistance is insufficient, and when it exceeds 72% by weight, molding processing becomes difficult and gelation becomes insufficient.

【0017】上記CPVCの空隙率は、水銀圧入法によ
り圧力196MPaで測定されるが、30〜40容量%
に限定され、好ましくは31〜38容量%である。空隙
率が30容量%未満になると、成形加工時のゲル化が遅
くなり、成形加工上好ましくなく、逆に40容量%を超
えると、成形時にスクリューへの食い込みが悪くなり、
ゲル化性が劣る。
The porosity of the above-mentioned CPVC is measured at a pressure of 196 MPa by a mercury intrusion method.
And preferably from 31 to 38% by volume. If the porosity is less than 30% by volume, the gelation at the time of molding becomes slow, which is not preferable for molding. On the other hand, if the porosity exceeds 40% by volume, biting into the screw during molding becomes worse,
Poor gelling properties.

【0018】上記CPVCの0.001〜0.1μm の
空隙容積は、水銀圧入法により圧力が0〜196MPa
で測定した細孔容積分布において、全空隙容積の2〜1
5容積%に限定され、好ましくは全空隙容積の3〜13
容積%である。樹脂粒子内の空隙細孔径は、樹脂の空隙
細孔部に圧入される水銀の圧力の関数になっているた
め、圧入圧力と水銀重量を連続的に測定すれば、細孔径
の分布が測定できることになる。0.001〜0.1μ
m の空隙容積が、全空隙容積の2容積%未満であると、
粒子内部の微細孔の割合が少ないため成形加工時のゲル
化性に劣り、15容積%を超えると、塩素化時の塩素の
拡散がバランスよく行われず、粒子内の塩素化度分布が
大きくなりすぎて、熱安定性がよくない。
The pore volume of the above-mentioned CPVC of 0.001 to 0.1 μm is set to a value of 0 to 196 MPa by a mercury intrusion method.
In the pore volume distribution measured in the above, 2 to 1 of the total void volume
5% by volume, preferably 3 to 13% of the total void volume
% By volume. Since the pore diameter in the resin particles is a function of the pressure of the mercury injected into the pores of the resin, the pore diameter distribution can be measured by continuously measuring the injection pressure and the mercury weight. become. 0.001-0.1μ
m is less than 2% by volume of the total void volume,
Since the ratio of micropores inside the particles is small, the gelling property during molding is inferior. If it exceeds 15% by volume, the diffusion of chlorine during chlorination is not performed in a well-balanced manner, and the chlorination degree distribution in the particles increases Too poor thermal stability.

【0019】請求項2記載の発明(本発明2という)に
よる塩素化塩化ビニル系樹脂は、塩化ビニル樹脂を塩素
化してなる塩素化塩化ビニル系樹脂であって、前記塩化
ビニル系樹脂は、電子分光化学分析(ESCA)による
粒子表面分析において、炭素原子と塩素原子との1S結
合エネルギー値(eV)におけるピーク比(塩素元素ピ
ーク×2/炭素元素ピーク)が、0.6を超えるもので
あり、前記塩素化塩化ビニル系樹脂は、塩素含有率は6
0〜72重量%、水銀圧入法により圧力196MPaで
測定した空隙率が30〜40容量%、及びBET比表面
積が2〜12m 2 /gであることを特徴とする。
According to the second aspect of the invention (hereinafter referred to as the second aspect)
Chlorinated vinyl chloride resin
A chlorinated vinyl chloride resin obtained by
Vinyl resin is measured by electron spectrochemical analysis (ESCA)
In particle surface analysis, 1S bond between carbon atom and chlorine atom
Peak ratio at combined energy value (eV)
Peak x 2 / carbon element peak) exceeds 0.6
The chlorinated vinyl chloride resin has a chlorine content of 6
0-72% by weight, at a pressure of 196MPa by mercury intrusion method
The measured porosity is 30 to 40% by volume, and the BET specific surface
Product is 2-12m Two/ G.

【0020】本発明2のPVCのESCA分析における
ピーク比は、本発明1と同様である。また、本発明2の
CPVCの塩素含有率及び空隙率は、本発明1と同様で
ある。
The peak ratio in the ESCA analysis of the PVC of the present invention 2 is the same as that of the present invention 1. Further, the chlorine content and the porosity of the CPVC of the second invention are the same as those of the first invention.

【0021】上記本発明2のCPVCのBET比表面積
値は、2〜12m2 /gに限定され、好ましくは3〜1
0m2 /gである。BET比表面積が2m2 /g未満に
なると、粒子内部の微細孔の割合が少ないため、成形加
工時に、粒子内溶融が起こりにくくなりゲル化性に劣
り、逆にBET比表面積が12m2 /gを超えると、内
部からの摩擦熱の発生が急激に起こり成形時の熱安定性
が劣る。
The BET specific surface area value of the CPVC of the present invention 2 is limited to 2 to 12 m 2 / g, preferably 3 to 1 m 2 / g.
0 m @ 2 / g. If the BET specific surface area is less than 2 m 2 / g, the ratio of micropores inside the particles is small, so that during the molding process, melting in the particles hardly occurs and the gelling property is poor, and conversely, the BET specific surface area is 12 m 2 / g. When it exceeds, frictional heat is generated from the inside rapidly and thermal stability during molding is inferior.

【0022】請求項3記載の発明(本発明3という)に
よる塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂を塩
素化してなる塩素化塩化ビニル系樹脂であって、前記塩
化ビニル系樹脂は、電子分光化学分析(ESCA)によ
る粒子表面分析において、炭素原子と塩素原子との1S
結合エネルギー値(eV)におけるピーク比(塩素元素
ピーク×2/炭素元素ピーク)が0.6を超えるもので
あり、前記塩素化塩化ビニル系樹脂は、塩素含有率が6
0〜72重量%、水銀圧入法により圧力196MPaで
測定した空隙率が30〜40容量%、水銀圧入法により
圧力が0〜196MPaで測定した細孔容積分布におい
て、0.001〜0.1μm の空隙容積が全空隙容積の
2〜15容積%、及び1g/kgテトラヒドロフラン溶
液の吸光度(セル長1cm、測定温度23℃)が、波長
235nmにおいて0.8以下であることを特徴とす
る。
The chlorinated vinyl chloride resin according to the invention of claim 3 (hereinafter referred to as the present invention 3) is a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin is In particle surface analysis by electron spectrochemical analysis (ESCA), 1S of carbon atom and chlorine atom
The peak ratio (chlorine element peak × 2 / carbon element peak) in the binding energy value (eV) exceeds 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 6%.
0 to 72% by weight, a porosity of 30 to 40% by volume measured at a pressure of 196 MPa by a mercury intrusion method, and a pore volume distribution of 0.001 to 0.1 μm in a pore volume distribution measured at a pressure of 0 to 196 MPa by a mercury intrusion method. The void volume is 2 to 15% by volume of the total void volume, and the absorbance (cell length 1 cm, measurement temperature 23 ° C.) of a 1 g / kg tetrahydrofuran solution is 0.8 or less at a wavelength of 235 nm.

【0023】本発明3のPVCのESCA分析における
ピーク比は、本発明1と同様である。また、本発明3の
CPVCの塩素含有率、空隙率、及び0.001〜0.
1μmの空隙容積は、本発明1と同様である。
The peak ratio in the ESCA analysis of the PVC of the third invention is the same as that of the first invention. Further, the chlorine content, porosity, and 0.001 to 0.
The void volume of 1 μm is the same as that of the first embodiment.

【0024】本発明3のCPVCの1g/kgテトラヒ
ドロフラン溶液の吸光度(セル長1cm、測定温度23
℃)は、波長235nmにおいて、0.8以下に限定さ
れ、好ましくは、0.2以下である。上記CPVCにお
いては、吸光度の値により、塩素化反応時の分子鎖中の
異種構造を定量化し、熱安定性の指標とする。紫外吸収
スペクトルを測定し、CPVC中の異種構造である、−
CH=CH−C(=O)−、−CH=CH−CH=CH
−が吸収をもつ波長235nmの吸光度(セル長1c
m、測定温度23℃)の値を読みとる方法である。吸光
度を0.8以下に限定する理由は、以下の通りである。
すなわち、二重結合の横の炭素に付いた塩素原子は不安
定であることから、そこを起点として、脱塩酸が起こ
る。つまり、吸光度の値が大きいほど、脱塩酸が起こり
易く、熱安定性が低いことになる。吸光度の値が0.8
を超えると、分子鎖中の異種構造の影響が大きくなるた
め、結果として熱安定性が劣ることとなる。
Absorbance of 1 g / kg tetrahydrofuran solution of CPVC of the present invention 3 (cell length 1 cm, measurement temperature 23
C) is limited to 0.8 or less at a wavelength of 235 nm, and is preferably 0.2 or less. In the above-mentioned CPVC, the heterogeneous structure in the molecular chain at the time of the chlorination reaction is quantified based on the value of the absorbance and used as an index of thermal stability. An ultraviolet absorption spectrum was measured, and a heterogeneous structure in CPVC,-
CH = CH-C (= O)-, -CH = CH-CH = CH
-Absorbance at a wavelength of 235 nm with absorption (cell length 1c
m, measurement temperature 23 ° C.). The reason for limiting the absorbance to 0.8 or less is as follows.
That is, since the chlorine atom attached to the carbon next to the double bond is unstable, dehydrochlorination starts from there. That is, as the value of the absorbance is larger, dehydrochlorination is more likely to occur and the thermal stability is lower. Absorbance value of 0.8
When the value exceeds, the influence of the heterogeneous structure in the molecular chain becomes large, and as a result, the thermal stability becomes poor.

【0025】また、1g/kgテトラヒドロフラン溶液
の吸光度を0.8以下にする塩素化方法として、熱塩素
化法や光塩素化法が挙げられるが、特に限定されず、高
温での熱塩素化方法が好適に使用される。高温反応によ
る高熱安定性発現には、塩素化反応中の酸化(カルボニ
ル基に代表される異種構造生成)が高温ほど起こりにく
い(高温程、反応の平衡が生成を抑制する方向に移動す
る)ことが起因する。具体的には、反応温度は70〜1
35℃が好ましく、90〜125℃がより好ましい。熱
塩素化の場合、反応温度が70℃未満では、塩素化の反
応速度が低いため、反応を進行させるには、過酸化物に
代表される反応触媒を多量に添加する必要があり、その
結果、得られる樹脂の熱安定性が劣ることもある。ま
た、光塩素化の場合、反応温度が70℃未満では、塩素
が水に溶解しやすくなり、反応槽中に酸素が発生しやす
くなる。その結果、得られる樹脂の熱安定性が劣ること
もある。逆に、反応温度が135℃を超えると、熱エネ
ルギーにより樹脂が劣化することがあり、得られるCP
VCが着色することがある
Examples of the chlorination method for reducing the absorbance of a 1 g / kg tetrahydrofuran solution to 0.8 or less include a thermal chlorination method and a photo chlorination method, but are not particularly limited. Is preferably used. In order to develop high thermal stability by high-temperature reaction, oxidation (formation of a heterogeneous structure represented by a carbonyl group) during the chlorination reaction is less likely to occur at higher temperatures (the higher the temperature, the more the reaction equilibrium moves in a direction to suppress the formation). Is caused by Specifically, the reaction temperature is 70 to 1
35 ° C is preferable, and 90 to 125 ° C is more preferable. In the case of thermal chlorination, if the reaction temperature is lower than 70 ° C., the reaction rate of chlorination is low. Therefore, in order to advance the reaction, it is necessary to add a large amount of a reaction catalyst represented by peroxide. Also, the thermal stability of the obtained resin may be poor. In the case of photochlorination, when the reaction temperature is lower than 70 ° C., chlorine is easily dissolved in water, and oxygen is easily generated in the reaction tank. As a result, the resulting resin may have poor thermal stability. Conversely, if the reaction temperature exceeds 135 ° C., the resin may be degraded by thermal energy, and the resulting CP
VC may be colored

【0026】請求項4記載の発明(本発明4 という)に
よる塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂を塩
素化してなる塩素化塩化ビニル系樹脂であって、前記塩
化ビニル系樹脂は、電子分光化学分析(ESCA)によ
る粒子表面分析において、炭素原子と塩素原子との1S
結合エネルギー値(eV)におけるピーク比(塩素元素
ピーク×2/炭素元素ピーク)が0.6を超えるもので
あり、前記塩素化塩化ビニル系樹脂は、塩素含有率が6
0〜72重量%、水銀圧入法により圧力196MPaで
測定した空隙率が30〜40容量%、BET比表面積が
2〜12m2 /g、及び1g/kgテトラヒドロフラン
溶液の吸光度(セル長1cm、測定温度23℃)が、波
長235nmにおいて0.8以下であることを特徴とす
る。
The chlorinated vinyl chloride resin according to the invention of claim 4 (hereinafter referred to as Invention 4) is a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin. In particle surface analysis by electron spectrochemical analysis (ESCA), 1S of carbon atom and chlorine atom
The peak ratio (chlorine element peak × 2 / carbon element peak) in the binding energy value (eV) exceeds 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 6%.
0 to 72% by weight, a porosity of 30 to 40% by volume measured at a pressure of 196 MPa by a mercury intrusion method, a BET specific surface area of 2 to 12 m 2 / g, and an absorbance of a 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) is 0.8 or less at a wavelength of 235 nm.

【0027】本発明4のPVCのESCA分析における
ピーク比は、本発明1と同様である。本発明4のCPV
Cの塩素含有率、空隙率、及びBET比表面積は、本発
明2と同様であり、235nmの吸光度は本発明3と同
様である。
The peak ratio in the ESCA analysis of the PVC of the present invention 4 is the same as that of the present invention 1. Invention 4 CPV
The chlorine content, the porosity, and the BET specific surface area of C are the same as those of the second invention, and the absorbance at 235 nm is the same as that of the third invention.

【0028】請求項5記載の発明(本発明5という)に
よる塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂を塩
素化してなる塩素化塩化ビニル系樹脂であって、前記塩
化ビニル系樹脂は、電子分光化学分析(ESCA)によ
る粒子表面分析において、炭素原子と塩素原子との1S
結合エネルギー値(eV)におけるピーク比(塩素元素
ピーク×2/炭素元素ピーク)が0.6を超えるもので
あり、前記塩素化塩化ビニル系樹脂は、塩素含有率は6
0〜72重量%、水銀圧入法により圧力196MPaで
測定した空隙率が30〜40容量%、水銀圧入法により
圧力が0〜196MPaで測定した細孔容積分布におい
て、0.001〜0.1μm の空隙容積が全空隙容積の
2 〜15容積%、及び1g/kgテトラヒドロフラン溶
液の吸光度(セル長1cm、測定温度23℃)が、波長
235nmにおいて0.2以下であることを特徴とす
る。
The chlorinated vinyl chloride-based resin according to the invention of claim 5 (hereinafter referred to as Invention 5) is a chlorinated vinyl chloride-based resin obtained by chlorinating a vinyl chloride-based resin. In particle surface analysis by electron spectrochemical analysis (ESCA), 1S of carbon atom and chlorine atom
The peak ratio (chlorine element peak × 2 / carbon element peak) in the binding energy value (eV) exceeds 0.6, and the chlorine content of the chlorinated vinyl chloride resin is 6%.
0 to 72% by weight, a porosity of 30 to 40% by volume measured at a pressure of 196 MPa by a mercury intrusion method, and a pore volume distribution of 0.001 to 0.1 μm in a pore volume distribution measured at a pressure of 0 to 196 MPa by a mercury intrusion method. The void volume is the total void volume
The absorbance (cell length 1 cm, measurement temperature 23 ° C.) of 2 to 15% by volume and 1 g / kg tetrahydrofuran solution is 0.2 or less at a wavelength of 235 nm.

【0029】本発明5のPVCのESCA分析における
ピーク比は、本発明1と同様である。また、本発明5の
CPVCの塩素含有率、空隙率、及び0.001〜0.
1μmの空隙容積は、本発明3と同様である。
The peak ratio in the ESCA analysis of the PVC of the fifth invention is the same as that of the first invention. Further, the chlorine content, porosity, and 0.001 to 0.
The void volume of 1 μm is the same as that of the third embodiment.

【0030】本発明5のCPVCの波長235nmの吸
光度は、0.2以下に限定される。CPVCの波長23
5nmの吸光度が0.2以下であると、熱安定性に特に
優れる。
The absorbance of the CPVC of the fifth invention at a wavelength of 235 nm is limited to 0.2 or less. CPVC wavelength 23
When the absorbance at 5 nm is 0.2 or less, the thermal stability is particularly excellent.

【0031】請求項6記載の発明(本発明6という)に
よる塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂を塩
素化してなる塩素化塩化ビニル系樹脂であって、前記塩
化ビニル系樹脂は、電子分光化学分析(ESCA)によ
る粒子表面分析において、炭素原子と塩素原子との1S
結合エネルギー値(eV)におけるピーク比(塩素元素
ピーク×2/炭素元素ピーク)が0.6を超えるもので
あり、前記塩素化塩化ビニル系樹脂は、塩素含有率は6
0〜72重量%、水銀圧入法により圧力196MPaで
測定した空隙率は30〜40容量%、BET比表面積が
2〜12m2 /g、及び1g/kgテトラヒドロフラン
溶液の吸光度(セル長1cm、測定温度23℃)は、波
長235nmにおいて0.2以下であることを特徴とす
る。
The chlorinated vinyl chloride resin according to the invention (claim 6) is a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin is In particle surface analysis by electron spectrochemical analysis (ESCA), 1S of carbon atom and chlorine atom
The peak ratio (chlorine element peak × 2 / carbon element peak) in the binding energy value (eV) exceeds 0.6, and the chlorine content of the chlorinated vinyl chloride resin is 6%.
The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, the BET specific surface area is 2 to 12 m 2 / g, and the absorbance of a 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) is 0.2 or less at a wavelength of 235 nm.

【0032】本発明6のPVCのESCA分析における
ピーク比は、本発明1と同様である。また、本発明6の
CPVCの塩素含有率、空隙率、BET比表面積は、本
発明4と同様であり、波長235nmの吸光度は本発明
5と同様である。
The peak ratio in the ESCA analysis of the PVC of the sixth invention is the same as that of the first invention. Further, the chlorine content, the porosity, and the BET specific surface area of the CPVC of the sixth invention are the same as those of the fourth invention, and the absorbance at a wavelength of 235 nm is the same as that of the fifth invention.

【0033】請求項7記載の発明(本発明7という)に
よる塩素化塩化ビニル系樹脂の製造方法は、塩化ビニル
系樹脂を塩素化してなる塩素化塩化ビニル系樹脂の製造
方法であって、前記塩化ビニル系樹脂は、BET比表面
積値が、1.3〜8m2 /gであり、電子分光化学分析
(ESCA)による粒子表面分析において、炭素元素と
塩素元素との1S結合エネルギー値( eV) におけるピ
ーク比(塩素元素ピーク×2/炭素元素ピーク)が0.
6を超えるものであり、また、前記塩素化は、塩化ビニ
ル系樹脂を水性媒体中で懸濁状態となした状態で、反応
器内に液体塩素又は気体塩素を導入し、反応温度を70
〜135℃の範囲で反応を行うことを特徴とする。
The method for producing a chlorinated vinyl chloride resin according to the invention of claim 7 (hereinafter referred to as Invention 7) is a method for producing a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin. The vinyl chloride resin has a BET specific surface area of 1.3 to 8 m 2 / g, and in particle surface analysis by electron spectrochemical analysis (ESCA), a 1S binding energy value (eV) of a carbon element and a chlorine element. The peak ratio (chlorine element peak × 2 / carbon element peak) at 0.
In addition, in the chlorination, liquid chlorine or gaseous chlorine is introduced into the reactor in a state where the vinyl chloride resin is suspended in an aqueous medium, and the reaction temperature is increased to 70%.
It is characterized in that the reaction is carried out in a temperature range of up to 135 ° C.

【0034】本発明7で用いられるPVCとは、VCM
単独、又は、VCM及びVCMと共重合可能な他の単量
体の混合物を公知の方法で重合してなる樹脂である。上
記VCNと重合可能な単量体としては特に限定されず、
例えば、酢酸ビニル等のアルキルビニルエステル類;エ
チレン、プロピレン等のα−モノオレフィン類;塩化ビ
ニリデン;スチレン等が挙げられる。これらは、単独で
用いられてもよく、2種以上が併用されてもよい。
The PVC used in the present invention 7 is VCM
This is a resin obtained by polymerizing VCM alone or a mixture of VCM and another monomer copolymerizable with VCM by a known method. The monomer polymerizable with the VCN is not particularly limited,
For example, alkyl vinyl esters such as vinyl acetate; α-monoolefins such as ethylene and propylene; vinylidene chloride; styrene; These may be used alone or in combination of two or more.

【0035】上記PVCの平均重合度としては、特に限
定されず、通常用いられる400〜3000のものが使
用できる。
The average degree of polymerization of the above PVC is not particularly limited, and those commonly used in the range of 400 to 3000 can be used.

【0036】本発明7で用いられるPVCのBET比表
面積値は、1.3〜8m2 /gに制限され、好ましく
は、1.5〜5m2 /gである。BET比表面積値が
1.3m 2 /g未満であると、PVC粒子内部に0.1
μm 以下の微細孔が少なくなるため、塩素化が均一にな
されなくなり、熱安定性が向上しなくなり、また、ゲル
化が遅くなる。逆に、BET比表面積値が8m2 /gを
超えると、塩素化前のPVC粒子自体の熱安定性が低下
するため、得られるCPVCの加工性が悪くなる。
BET ratio table of PVC used in the present invention 7
Area value is 1.3-8mTwo/ G, preferably
Is 1.5-5mTwo/ G. BET specific surface area
1.3m Two/ G is less than 0.1 in the PVC particles.
Chlorination becomes uniform because the number of micropores
No longer improves thermal stability,
Is slow. Conversely, the BET specific surface area value is 8mTwo/ G
If it exceeds, the thermal stability of PVC particles themselves before chlorination decreases.
Therefore, the workability of the obtained CPVC deteriorates.

【0037】上記本発明7で用いられるPVCは、ES
CA分析による粒子表面分析において、炭素元素と塩素
元素との1S結合エネルギー値(eV)におけるピーク
比(塩素元素ピーク×2/炭素元素ピーク)が0.6を
超えるものに制限され、好ましくは0.7を超えるもの
である。このピーク比が0.6以下であると、PVC粒
子表面に分散剤等の添加剤が吸着していると考えられる
ため、後工程での塩素化速度が遅くなるだけでなく、P
VCの成形加工性に問題を生じ、また、熱安定性が劣る
ようになる。上記ピーク比が0.6を超えるPVCの中
には、PVC粒子表面のスキン面積が少なく、粒子内部
の微細構造(1 次粒子)が露出している粒子(スキンレ
スPVCという)が存在する。同じエネルギー比である
場合は、スキンレスPVCを用いるのが好ましい。
The PVC used in the present invention 7 is ES
In the particle surface analysis by CA analysis, the peak ratio (chlorine element peak × 2 / carbon element peak) in the 1S bond energy value (eV) between the carbon element and the chlorine element is limited to a value exceeding 0.6, preferably 0. .7. When the peak ratio is 0.6 or less, it is considered that an additive such as a dispersant is adsorbed on the surface of the PVC particles.
A problem arises in the formability of the VC, and the thermal stability becomes poor. Among the PVCs having a peak ratio of more than 0.6, there are particles (skin-less PVC) having a small skin area on the surface of the PVC particles and exposing a fine structure (primary particles) inside the particles. When the energy ratio is the same, it is preferable to use skinless PVC.

【0038】上記PVCの化学的構造の原子存在比は、
塩素原子:炭素原子=1:2であり(末端構造、分岐を
考慮しない時)、上記1S結合エネルギー値(eV)に
おけるピーク比(塩素元素ピーク×2/炭素元素ピー
ク)は0 〜1 の値となる。ピーク比が0の場合は、PV
C粒子表面がPVC以外の物質で、且つ、塩素を含まな
い他の物質に覆われている事を意味し、ピーク比が1の
場合は、PVC粒子表面が、完全にPVC成分のみで覆
われていることを意味する。
The atomic abundance of the chemical structure of PVC is as follows:
The chlorine atom: carbon atom = 1: 2 (when the terminal structure and branching are not considered), and the peak ratio (chlorine element peak × 2 / carbon element peak) in the above 1S binding energy value (eV) is a value of 0 to 1. Becomes If the peak ratio is 0, PV
This means that the surface of the C particles is covered with a substance other than PVC and containing no chlorine. If the peak ratio is 1, the surface of the PVC particles is completely covered with only the PVC component. Means that.

【0039】上述したBET比表面積値及び1S結合エ
ネルギー値(eV)におけるピーク比を有するPVC
は、例えば、分散剤として高ケン化度(60〜90モル
%)若しくは低ケン化度(20〜60モル%)又はその
両方のポリ酢酸ビニル、高級脂肪酸エステル類等を、乳
化剤としてアニオン系乳化剤又はノニオン系乳化剤等を
添加して水懸濁重合することにより得ることができる。
PVC having a peak ratio at the above-mentioned BET specific surface area value and 1S binding energy value (eV)
Are, for example, polyvinyl acetate, higher fatty acid esters or the like having a high saponification degree (60 to 90 mol%) or a low saponification degree (20 to 60 mol%) as a dispersant, and an anionic emulsifier as an emulsifier. Alternatively, it can be obtained by adding a nonionic emulsifier or the like and conducting water suspension polymerization.

【0040】本発明7でPVCを重合する際に用いるこ
とができる重合器(耐圧オートクレーブ)の形状及び構
造としては、特に限定されず、一般にPVCの重合に使
用されているもの等を用いることができる。また、撹拌
翼としては、特に限定されず、例えば、ファウドラー
翼、パドル翼、タービン翼、ファンタービン翼、ブルマ
ージン翼等の汎用的に用いられているもの等が挙げられ
るが、特にファウドラー翼が好適に用いられ、邪魔板
(バッフル)との組み合わせも特に限定されない。
The shape and structure of the polymerization vessel (pressure-resistant autoclave) that can be used when polymerizing PVC in the present invention 7 are not particularly limited, and those generally used for polymerization of PVC may be used. it can. The stirring blade is not particularly limited, and includes, for example, those generally used such as a Faudler blade, a paddle blade, a turbine blade, a fan turbine blade, and a bull margin blade. It is preferably used, and the combination with a baffle is not particularly limited.

【0041】本発明7でPVCを塩素化する方法は、P
VCを水性媒体中で懸濁状態となした状態で、反応機内
に液体塩素又は気体塩素を導入し、反応温度70〜13
5℃の範囲で塩素化反応を行う方法である。
In the present invention 7, the method for chlorinating PVC is as follows.
In a state where VC is suspended in an aqueous medium, liquid chlorine or gaseous chlorine is introduced into the reactor, and a reaction temperature of 70 to 13 is applied.
This is a method in which a chlorination reaction is performed in a range of 5 ° C.

【0042】本発明7で使用する塩素化反応器の材質
は、グラスライニングが施されたステンレス製反応器の
他、チタン製反応器等、一般に使用されるものが適用で
きる。本発明7においては、塩素化はPVCを水性媒体
により懸濁状態になした状態で、液体塩素又は気体塩素
を導入することにより、塩素源を塩素化反応器内に導入
するが、液体塩素を導入することが工程上からも効率的
である。反応途中の圧力調整のため、また、塩素化反応
の進行に伴う塩素の補給については、液体塩素の他、気
体塩素を適宜吹き込むこともできる。
As the material of the chlorination reactor used in the present invention 7, in addition to a stainless steel reactor with a glass lining, a titanium reactor and the like can be used. In the present invention 7, chlorination is performed by introducing liquid chlorine or gaseous chlorine in a state where PVC is suspended in an aqueous medium, thereby introducing a chlorine source into the chlorination reactor. The introduction is efficient from the viewpoint of the process. For pressure adjustment during the reaction and for replenishment of chlorine with the progress of the chlorination reaction, gaseous chlorine other than liquid chlorine can be blown as appropriate.

【0043】上記PVCを懸濁状態に調製する方法とし
ては、PVCを重合した後、脱モノマー処理したケーキ
上の樹脂を用いるのが好ましいが、乾燥させたものを再
度、水性媒体で懸濁化してもよく、重合系中より、塩素
化反応に好ましくない物質を除去した懸濁液を使用して
もよい。また、反応器内に仕込む水性媒体の量は、特に
限定されないが、一般にPVCの重量1に対して2〜1
0倍(重量)量を仕込むのが好ましい。
As a method for preparing the above-mentioned PVC in a suspended state, it is preferable to use the resin on the cake which has been subjected to demonomerization treatment after polymerizing PVC, but the dried one is again suspended in an aqueous medium. Alternatively, a suspension obtained by removing substances that are not preferable for the chlorination reaction from the polymerization system may be used. The amount of the aqueous medium to be charged into the reactor is not particularly limited, but is generally 2 to 1 with respect to 1 weight of PVC.
It is preferable to charge 0 times (weight).

【0044】上述したような懸濁した状態で塩素化する
方法としては、熱により樹脂の結合や塩素を励起させて
塩素化を促進する方法(以下、熱塩素化という)と、光
を照射して光反応的に塩素化を促進する方法(以下、光
塩素化という)等が挙げられるが、特に限定されず、好
適に熱塩素化が使用される。熱塩素化を行う際、加熱方
法としては特に限定されず、例えば、反応器壁からの外
部ジャケット方式の他、内部ジャケット方式、スチーム
吹き込み方式等が挙げられ、通常は、外部ジャケット方
式又は内部ジャケット方式が効果的である。また、紫外
光線等の光エネルギーを併用しても良いが、この場合、
高温、高圧条件下での紫外線照射が可能な装置が必要に
なる。
As a method of chlorinating in a suspended state as described above, there are a method of promoting the chlorination by exciting resin binding and chlorine by heat (hereinafter referred to as hot chlorination) and a method of irradiating light. (Hereinafter referred to as photochlorination), etc., but there is no particular limitation, and thermal chlorination is preferably used. When performing the thermal chlorination, the heating method is not particularly limited, and examples thereof include an external jacket method from the reactor wall, an internal jacket method, a steam blowing method, and the like. The scheme is effective. Further, light energy such as ultraviolet rays may be used in combination, but in this case,
A device that can irradiate ultraviolet light under high temperature and high pressure conditions is required.

【0045】上記塩素化の工程で得られるCPVCの塩
素含有率は、60〜72重量%となるように調整するの
が好ましく、63〜70重量%がより好ましい。塩素含
有率が60重量%未満では、耐熱性に乏しくなることが
あり、72重量%を超えると、ゲル化性能が悪化するこ
とがあり、耐熱成形品を成形するのに不利となることが
ある。
The chlorine content of CPVC obtained in the chlorination step is preferably adjusted to be 60 to 72% by weight, more preferably 63 to 70% by weight. If the chlorine content is less than 60% by weight, the heat resistance may be poor. If the chlorine content is more than 72% by weight, the gelling performance may be deteriorated, which may be disadvantageous for forming a heat-resistant molded product. .

【0046】本発明7による塩素化の反応温度は、70
〜135℃に限定され、90〜125℃が好ましい。反
応温度が70℃未満では、塩素化反応速度が低いため
に、反応を進行させるには、過酸化物に代表される反応
触媒を多量に添加する必要があり、その結果、得られる
樹脂の熱安定性が劣るようになる。逆に、反応温度が1
35℃を超えると、熱エネルギーによって樹脂が劣化
し、得られるPVCが着色する。
The reaction temperature of the chlorination according to the present invention 7 is 70
To 135 ° C, preferably 90 to 125 ° C. If the reaction temperature is lower than 70 ° C., the chlorination reaction rate is low, so that it is necessary to add a large amount of a reaction catalyst typified by a peroxide in order to advance the reaction. Stability becomes poor. Conversely, if the reaction temperature is 1
When the temperature exceeds 35 ° C., the resin is deteriorated by heat energy, and the obtained PVC is colored.

【0047】本発明7で使用する塩素としては、特開平
6−32822号公報に記載されているような、ボンベ
塩素の5〜10重量%をパージした後の塩素を用いるの
が好ましい。また、反応器内のゲージ圧力は、特に限定
されないが、塩素圧力が高いほど塩素がPVC粒子の内
部に浸透しやすいため、0.3〜2MPaの範囲が好ま
しい。
As chlorine used in the present invention 7, it is preferable to use chlorine after purging 5 to 10% by weight of cylinder chlorine as described in JP-A-6-32822. Further, the gauge pressure in the reactor is not particularly limited, but is preferably in the range of 0.3 to 2 MPa because the higher the chlorine pressure, the more easily chlorine permeates into the PVC particles.

【0048】請求項8記載の発明(本発明8という)に
よる塩素化塩化ビニル系樹脂の製造方法は、塩化ビニル
系樹脂のBET比表面積が1.5〜5m2 /gである本
発明7 の塩素化塩化ビニル樹脂の製造方法である。
The method for producing a chlorinated vinyl chloride resin according to the invention of claim 8 (hereinafter referred to as Invention 8) is characterized in that the BET specific surface area of the vinyl chloride resin is 1.5 to 5 m 2 / g. This is a method for producing a chlorinated vinyl chloride resin.

【0049】請求項9記載の発明(本発明9という)に
よる塩素化塩化ビニル系樹脂の製造方法は、塩化ビニル
系樹脂のESCA分析による粒子表面分析における前記
ピーク比が、0.7を超えるものである本発明7又は8
の塩素化塩化ビニル系樹脂の製造方法である。
According to a ninth aspect of the present invention, there is provided a method for producing a chlorinated vinyl chloride resin, wherein the peak ratio in the particle surface analysis of the vinyl chloride resin by ESCA analysis exceeds 0.7. The present invention 7 or 8 which is
Is a method for producing a chlorinated vinyl chloride resin.

【0050】請求項10記載の発明(本発明10とい
う)による塩素化塩化ビニル系樹脂成形体は、本発明1
〜6いずれかの塩素化塩化ビニル系樹脂を成形して得ら
れる塩素化塩化ビニル系樹脂成形体であって、JIS
K 7206に準拠した方法で測定した9.8N荷重時
のビカット軟化温度が145℃以上であることを特徴と
する。
The chlorinated vinyl chloride resin molded article according to the invention of claim 10 (hereinafter referred to as invention 10) is characterized in that the invention 1
A chlorinated vinyl chloride resin molded article obtained by molding any one of chlorinated vinyl chloride resins according to JIS,
Vicat softening temperature under a load of 9.8 N measured by a method in accordance with K 7206 is 145 ° C. or more.

【0051】本発明10において、ビカット軟化温度
は、塩素化塩化ビニル系樹脂成形体の耐熱性の指標であ
り、145℃以上に限定され、好ましくは155℃以上
である。ビカット軟化温度が145℃未満であると、現
状の使用分野よりも高い耐熱性が要求される給湯管に代
表される分野である100℃以上の液体、気体を流す場
合の使用が難しい。上記ビカット軟化温度の上限はより
高い方が好ましいが、実際の管状成形体の押出成形を考
慮すると、185℃以下が好ましい。
In the present invention 10, the Vicat softening temperature is an index of the heat resistance of the chlorinated vinyl chloride resin molded product, and is limited to 145 ° C. or higher, and preferably 155 ° C. or higher. If the Vicat softening temperature is lower than 145 ° C., it is difficult to use a liquid or gas at a temperature of 100 ° C. or higher, which is a field represented by a hot water supply pipe that requires higher heat resistance than the current field of use. The upper limit of the Vicat softening temperature is preferably higher, but is preferably 185 ° C. or lower in consideration of the actual extrusion of a tubular molded body.

【0052】本発明10のCPVC成形体を成形するの
に際し、安定剤、滑剤、改質剤、充填剤、加工助剤、顔
料等、一般に用いられる配合剤を用いて成形することが
できる。上記CPVC成形体の成形においては、成形機
としては特に限定されず、例えば、押出成形機、射出成
形機、カレンダー成形機等が挙げられる。上記CPVC
成形体を成形する金型、樹脂温度、成形条件も特に限定
されない。
When molding the CPVC molded article of the present invention 10, it can be molded using commonly used compounding agents such as stabilizers, lubricants, modifiers, fillers, processing aids, pigments and the like. In molding the CPVC molded article, the molding machine is not particularly limited, and examples thereof include an extrusion molding machine, an injection molding machine, and a calender molding machine. The above CPVC
The mold for molding the molded body, the resin temperature, and the molding conditions are not particularly limited.

【0053】請求項11記載の発明(本発明11とい
う)による塩素化塩化ビニル系樹脂成形体は、本発明1
〜6いずれかの塩素化塩化ビニル系樹脂を成形して得ら
れる塩素化塩化ビニル系樹脂成形体であって、JIS
K 7206に準拠した方法で測定した9.8N荷重時
のビカット軟化温度が145℃以上であり、JIS K
7111に準拠した方法で測定したシャルピー衝撃値が
10kJ/m2 以上であることを特徴とする。
The chlorinated vinyl chloride resin molded article according to the invention of claim 11 (hereinafter referred to as invention 11) is the invention 1
A chlorinated vinyl chloride resin molded article obtained by molding any one of chlorinated vinyl chloride resins according to JIS,
Vicat softening temperature under a load of 9.8 N measured by a method in accordance with K 7206 is 145 ° C. or more, and is in accordance with JIS K
The Charpy impact value measured by a method based on 7111 is 10 kJ / m 2 or more.

【0054】本発明11のCPVC成形体のビカット軟
化温度は、本発明10と同様である。本発明11におい
ては、JIS K 7111に準拠した方法で測定した
シャルピー衝撃値が10kJ/m2 以上である。このシ
ャルピー衝撃値は成形体の衝撃強度の指標であり、シャ
ルピー衝撃値が10kJ/m2 以上であると、100℃
以上の液体、気体を流す成形体として好ましい。さら
に、本発明11のCPVC成形体は、本発明1〜6のC
PVCを用いて成形するが、一般には高塩素化樹脂を用
いると、成形時のゲル化が不充分なために、得られる成
形体が脆くなる。そのため、衝撃改質剤の添加量を増や
して成形することになるが、反面、耐熱性を低下させる
原因にもなる。よって、好ましい範囲は10〜60kJ
/m2 で、より好ましくは15〜50kJ/m2 であ
る。
The Vicat softening temperature of the CPVC compact of the eleventh invention is the same as that of the tenth invention. In the present invention 11, the Charpy impact value measured by a method based on JIS K 7111 is 10 kJ / m 2 or more. The Charpy impact value is an index of the impact strength of the molded product. If the Charpy impact value is 10 kJ / m 2 or more, the Charpy impact value is 100 ° C.
It is preferable as a molded body through which the above liquid and gas flow. Further, the CPVC molded article of the present invention 11 is a CVC molded article of the present invention 1-6.
Molding is performed using PVC. Generally, when a highly chlorinated resin is used, the resulting molded article becomes brittle due to insufficient gelation during molding. For this reason, molding is performed by increasing the amount of the impact modifier added, but on the other hand, it also causes a reduction in heat resistance. Therefore, a preferable range is 10 to 60 kJ.
/ M 2 , more preferably 15 to 50 kJ / m 2 .

【0055】請求項12記載の発明(本発明12とい
う)による塩素化塩化ビニル系樹脂成形体は、本発明1
〜6いずれかの塩素化塩化ビニル系樹脂を成形して得ら
れる塩素化塩化ビニル系樹脂成形体であって、JIS
K 7206に準拠した方法で測定した9.8N荷重時
のビカット軟化温度が145℃以上であり、JIS K
7111に準拠した方法で測定したシャルピー衝撃値が
20kJ/m2 以上であることを特徴とする。
The chlorinated vinyl chloride resin molded article according to the invention of the twelfth aspect (hereinafter referred to as the twelfth aspect) is the first aspect of the invention.
A chlorinated vinyl chloride resin molded article obtained by molding any one of chlorinated vinyl chloride resins according to JIS,
Vicat softening temperature under a load of 9.8 N measured by a method in accordance with K 7206 is 145 ° C. or more, and is in accordance with JIS K
The Charpy impact value measured by a method based on 7111 is 20 kJ / m 2 or more.

【0056】本発明12のCPVC成形体のビカット軟
化温度は、本発明10と同様である。本発明12のCP
VC成形体のシャルピー衝撃値は20kJ/m2 以上で
あり、より高い耐熱性と衝撃強度を求められる場合に好
適に用いられる。
The Vicat softening temperature of the CPVC molded article of the twelfth invention is the same as that of the tenth invention. CP of Invention 12
The VC shaped article has a Charpy impact value of 20 kJ / m 2 or more, and is suitably used when higher heat resistance and impact strength are required.

【0057】請求項13記載の発明(本発明13とい
う)による塩素化塩化ビニル系樹脂管は、本発明1〜6
いずれかの塩素化塩化ビニル系樹脂を成形して得られる
塩素化塩化ビニル系樹脂管であって、JIS K 72
06に準拠した方法で測定した9.8N荷重時のビカッ
ト軟化温度が120℃以上であり、90℃熱水浸漬試験
を60日間行った後の吸水率が1.5%以下であり、A
STM D 2837に準拠した90℃での長期内圧ク
リープ試験で、破壊時間1000時間経過時における破
壊応力が4.5MPa以上であることを特徴とする。
The chlorinated vinyl chloride resin pipe according to the invention of the thirteenth aspect (hereinafter referred to as the thirteenth invention) is the same as the first to sixth inventions.
A chlorinated vinyl chloride-based resin pipe obtained by molding any chlorinated vinyl chloride-based resin.
A Vicat softening temperature under a load of 9.8 N measured by a method in accordance with J.06 is 120 ° C. or higher, and a water absorption rate after performing a 90 ° C. hot water immersion test for 60 days is 1.5% or less.
In a long-term internal pressure creep test at 90 ° C. in accordance with STM D 2837, a breaking stress after a breaking time of 1000 hours is 4.5 MPa or more.

【0058】本発明13のCPVC管のビカット軟化温
度は、120℃以上である。ビカット軟化温度が120
℃未満であると、80〜90℃の熱水を流す給湯管とし
ての使用が難しい。上記ビカット軟化温度の上限はより
高い方が好ましいが、実際の管状成形体の押出成形を考
慮すると、185℃以下が好ましい。
The Vicat softening temperature of the CPVC tube of the thirteenth invention is 120 ° C. or higher. Vicat softening temperature of 120
If it is lower than ℃, it is difficult to use as a hot water supply pipe for flowing hot water of 80 to 90 ℃. The upper limit of the Vicat softening temperature is preferably higher, but is preferably 185 ° C. or lower in consideration of the actual extrusion of a tubular molded body.

【0059】本発明13のCPVC管は、90℃熱水浸
漬試験を60日間行った後の吸水率が1.5%以下であ
り、より好ましくは1.0%以下である。上記吸水率が
1.5%を超えると、吸水による膨張破壊が起こりやす
くなる。
The CPVC pipe of the thirteenth invention has a water absorption of 1.5% or less, more preferably 1.0% or less, after performing a hot water immersion test at 90 ° C. for 60 days. When the water absorption exceeds 1.5%, expansion and destruction due to water absorption are likely to occur.

【0060】本発明13のCPVC管は、ASTM D
2837に準拠した90℃での長期内圧クリープ試験
で破壊時間1000時間経過時における破壊応力が4.
5MPa以上であり、好ましくは6.0MPa以上であ
り、より好ましくは、7.0MPa以上である。上記破
壊応力が4.5MPa未満である場合は、給湯管として
長期間使用することが難しい。
The CPVC tube of the thirteenth invention is an ASTM D
In a long-term internal pressure creep test at 90 ° C. in accordance with No. 2837, the breaking stress after a lapse of 1000 hours was 4.
It is at least 5 MPa, preferably at least 6.0 MPa, more preferably at least 7.0 MPa. If the fracture stress is less than 4.5 MPa, it is difficult to use the hot water supply pipe for a long time.

【0061】本発明13のCPVC管を成形するのに際
し、安定剤、滑剤、改質剤、充填剤、加工助剤、顔料
等、一般に用いられる配合剤を用いて成形することがで
きる。上記CPVC管の成形においては、成形機として
は特に限定されず、例えば、単軸押出機、二軸異方向パ
ラレル押出機、二軸異方向コニカル押出機、二軸同方向
押出機等が挙げられる。上記CPVC管を成形する金
型、樹脂温度、成形条件も特に限定されない。
When molding the CPVC tube of the thirteenth invention, it can be molded using commonly used compounding agents such as stabilizers, lubricants, modifiers, fillers, processing aids, pigments and the like. In the molding of the CPVC pipe, the molding machine is not particularly limited, and examples thereof include a single-screw extruder, a twin-screw parallel directional extruder, a twin-screw conical extruder, and a twin-screw extruder. . The mold, resin temperature, and molding conditions for molding the CPVC pipe are not particularly limited.

【0062】請求項14記載の発明(本発明14とい
う)による塩素化塩化ビニル系樹脂管は、本発明1〜6
いずれかの塩素化塩化ビニル系樹脂を成形して得られる
塩素化塩化ビニル系樹脂管であって、JIS K 72
06に準拠した方法で測定した9.8N荷重時のビカッ
ト軟化温度が120℃以上であり、90℃熱水浸漬試験
を60日間行った後の吸水率が1.5%以下であり、A
STM D 2837に準拠した90℃での長期内圧ク
リープ試験で、破壊時間1000時間経過時における破
壊応力が4.5MPa以上であり、表面粗さRmaxが
5.0μm 以下であることを特徴とする。
The chlorinated vinyl chloride resin tube according to the invention of the fourteenth aspect (hereinafter referred to as the invention 14) is the same as that of the inventions 1-6.
A chlorinated vinyl chloride-based resin pipe obtained by molding any chlorinated vinyl chloride-based resin.
A Vicat softening temperature under a load of 9.8 N measured by a method in accordance with J.06 is 120 ° C. or higher, and a water absorption rate after performing a 90 ° C. hot water immersion test for 60 days is 1.5% or less.
In a long-term internal pressure creep test at 90 ° C. in accordance with STM D 2837, a breaking stress after a lapse of 1000 hours is 4.5 MPa or more, and a surface roughness Rmax is 5.0 μm or less.

【0063】本発明14のCPVC管のビカット軟化温
度、吸水率及び破壊応力は本発明13と同様である。本
発明14のCPVC管の表面粗さRmaxは、5.0μ
m 以下であり、好ましくは1.5μm であり、特に0.
5μm 以下が好ましい。Rmaxが、5.0μm を超え
ると、凹凸により滞留が起こり、滞留部に不純物が溜ま
ったり、細菌が発生するために管として使用することが
難しい。上記表面粗さRmaxが0.5μm 以下である
と、プラント用超純水配管に使用できる。本発明14の
CPVC管を成形するための、配合・成形条件は本発明
13と同様である。
The Vicat softening temperature, water absorption and breaking stress of the CPVC pipe of the fourteenth invention are the same as those of the thirteenth invention. The surface roughness Rmax of the CPVC tube according to Invention 14 is 5.0 μm.
m, preferably 1.5 μm, especially 0.1 μm.
It is preferably 5 μm or less. When Rmax exceeds 5.0 μm, stagnation occurs due to unevenness, and impurities are accumulated in the stagnation portion, and bacteria are generated, so that it is difficult to use the tube as a tube. When the surface roughness Rmax is 0.5 μm or less, it can be used for ultrapure water piping for plants. The blending and molding conditions for molding the CPVC pipe of the present invention 14 are the same as those of the present invention 13.

【0064】請求項15記載の発明(本発明15とい
う)による塩素化塩化ビニル系樹脂管は、給湯用の樹脂
管であることを特徴とする本発明13又は14の塩素化
塩化ビニル系樹脂管である。
The chlorinated vinyl chloride-based resin pipe according to the thirteenth or fourteenth aspect of the present invention is characterized in that the chlorinated vinyl chloride-based resin pipe according to the invention of claim 15 is a resin pipe for hot water supply. It is.

【0065】請求項16記載の発明(本発明16とい
う)によるライニング管は、金属管の内側に本発明13
又は14の塩素化塩化ビニル系樹脂管が内張りされてい
ることを特徴とする。
The lining pipe according to the sixteenth aspect of the present invention (hereinafter referred to as the sixteenth aspect) is provided inside the metal pipe.
Alternatively, 14 chlorinated vinyl chloride resin tubes are lined.

【0066】本発明16のライニング管に使用される金
属管は特に限定されず、鋼管が好適に使用される。ま
た、ライニング管において、金属管と本発明13又は1
4のCPVC管を接着する方法は特に限定されず、鋼管
の縮径による方法が好適に用いられる。更に、金属管と
CPVC管を接着する接着剤、接着条件等も特に限定さ
れない。
The metal pipe used for the lining pipe of the present invention 16 is not particularly limited, and a steel pipe is preferably used. In the lining pipe, the metal pipe and the present invention 13 or 1
The method for bonding the CPVC pipe No. 4 is not particularly limited, and a method based on diameter reduction of a steel pipe is suitably used. Further, the adhesive for bonding the metal pipe and the CPVC pipe, bonding conditions, and the like are not particularly limited.

【0067】本発明のCPVCでは、まず、CPVCの
粒子構造に特徴を持たせる。すなわち、内部多孔状態を
規定することにより成形加工時の易ゲル化性を発現させ
る。次に、CPVC分子鎖中の異種構造量を規定するこ
とにより高熱安定性を発現させる。こうして、本発明に
より、高熱安定性と易ゲル化性を併せ持つ樹脂が提供さ
れる。
In the CPVC of the present invention, first, a characteristic is given to the particle structure of the CPVC. That is, by defining the internal porous state, the gelling property at the time of molding is developed. Next, high heat stability is expressed by defining the amount of heterogeneous structure in the CPVC molecular chain. Thus, according to the present invention, a resin having both high heat stability and gelling property is provided.

【0068】本発明の製造方法では、まず、PVCの粒
子構造に特徴を持たせる。すなわち、表面状態及び内部
多孔状態を規定することにより成形加工時の易ゲル化性
を発現させる。次に、反応温度を規定することにより、
高熱安定性を発現させる。この高温反応による高熱安定
性の発現は、塩素化反応中の酸化(カルボニル基に代表
される異種構造生成)が高温ほど起こりにくい(高温
程、反応の平衡が生成を抑制する方向に移動する)こと
に基づいている。こうして、本発明により、高熱安定性
と易ゲル化性を併せ持つ樹脂を製造することが可能とな
る。
In the production method of the present invention, first, a characteristic is given to the particle structure of PVC. That is, by defining the surface state and the internal porous state, the gelling property at the time of molding is developed. Next, by defining the reaction temperature,
Develop high thermal stability. The development of high thermal stability due to this high-temperature reaction is such that oxidation (formation of a heterogeneous structure represented by a carbonyl group) during the chlorination reaction is less likely to occur at higher temperatures (the higher the temperature, the more the reaction equilibrium moves in a direction to suppress the formation). It is based on that. Thus, according to the present invention, it is possible to produce a resin having both high thermal stability and gelling property.

【0069】本発明のCPVC成形体は、本発明のCP
VCを用いることにより、成形加工時に充分ゲル化さ
せ、耐熱性や衝撃強度を発現させる。こうして、耐熱性
と衝撃強度に優れた成形体を製造することが可能とな
る。
The CPVC molded article of the present invention is
By using VC, the gel is sufficiently gelled at the time of molding, and heat resistance and impact strength are exhibited. In this way, it is possible to produce a molded article having excellent heat resistance and impact strength.

【0070】本発明のCPVC管は、本発明のCPVC
を用いることにより、成形加工時に充分ゲル化させ、耐
熱性等の物性を発現させる。こうして、高温クリープ性
能等に優れた管を製造することが可能となる。
The CPVC tube of the present invention is the same as the CPVC tube of the present invention.
By using, a gel is sufficiently formed at the time of molding, and physical properties such as heat resistance are exhibited. In this way, it is possible to manufacture a tube having excellent high-temperature creep performance and the like.

【発明の実施の形態】以下に実施例を掲げて本発明を更
に詳しく説明するが、本発明はこれら実施例のみに限定
されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0071】(実施例1 ) [PVCの調製]内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル%及び重合度700)400ppm、ソルビ
タンモノラウレート(HLB8.6)1600ppm、
ラウリン酸1500ppm、ポリアクリルアミド(20
℃、101325MPaで0.1重量%水溶液のブルッ
クフィールズ粘度が51mPa・s)100ppm、及
びt−ブチルパーオキシネオデカノエート500ppm
を投入した。次いで、重合器内を6kPaまで脱気した
後、塩化ビニル単量体33kgを仕込み撹拌を開始し
た。重合器を57℃に昇温して重合を開始し、重合反応
終了までこの温度を保った。重合転化率が90%になっ
た時点で反応を終了し、重合器内の未反応単量体を回収
した後、重合体をスラリー状で系外へ取り出し、脱水乾
燥してPVCを得た。得られたPVCのBET比表面積
は3.7m 2 /gであった。また、スキン層の存在程度
を示すESCA分析値は、0.80であった。なお、B
ET比表面積、及び、ESCA分析の測定は下記方法に
より実施した。
(Example 1) [Preparation of PVC] A polymerization vessel having an inner volume of 100 liter (withstand pressure)
50 kg of deionized water and vinyl chloride
Monomer, partially saponified polyvinyl acetate (average saponification
Degree 72 mol% and degree of polymerization 700) 400 ppm, sorby
1600 ppm of tantalum monolaurate (HLB8.6),
Lauric acid 1500 ppm, polyacrylamide (20
At 0.1325 MPa and a 0.1% by weight aqueous solution.
Kufields viscosity is 51 mPa · s) 100 ppm, and
And t-butyl peroxy neodecanoate 500 ppm
Was introduced. Next, the inside of the polymerization vessel was degassed to 6 kPa.
After that, charge 33 kg of vinyl chloride monomer and start stirring.
Was. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C.
This temperature was maintained until completion. 90% polymerization conversion
When the reaction is completed, the reaction is terminated and the unreacted monomer in the polymerization vessel is recovered.
After that, the polymer is taken out of the system in slurry form, dehydrated and dried.
After drying, PVC was obtained. BET specific surface area of the obtained PVC
Is 3.7m Two/ G. Also, the extent of the skin layer
The ESCA analysis value for was 0.80. Note that B
The measurement of the ET specific surface area and the ESCA analysis is performed by the following method.
More.

【0072】[CPVCの調製]内容積300リットル
のグラスライニング製耐圧反応槽に脱イオン水150k
gと上記で得たPVC40kgを入れ、攪拌してPVC
を水中に分散させ、真空ポンプにて内部空気を吸引し、
ゲージ圧が−78.4kPaになるまで減圧した。窒素
ガスで圧戻し(ゲージ圧が0になるまで戻すこと)を行
い、再び真空ポンプで吸引して反応槽内の酸素を除去し
た。この間、加熱したオイルをジャケットに通して反応
器内を加温した。反応槽内の温度が90℃に達したと
き、塩素ガスを供給し始め、110℃定温で反応を進行
させた。反応槽内の発生塩化水素濃度から塩素含有率を
計算し、塩素含有率63重量%の時点で濃度100pp
mの過酸化水素水を0.5kg/hrで連続添加しなが
ら反応を継続した。塩素含有率が66.5重量%に達し
た時点で塩素ガスの供給を停止し、塩素化反応を終了し
た。反応中添加した過酸化水素の量は、仕込み樹脂量に
対し4ppmであった。更に、反応槽内に窒素ガスを吹
き込んで未反応塩素を除去し、得られた樹脂を水で洗浄
し脱水、乾燥して粉末状のCPVCを得た。得られたC
PVCの塩素含有率は66.5重量%、空隙率は34.
6容量%、比表面積値は6.4m2 /g、0.001〜
0.1μm の範囲の空隙容積(以下、空隙容積という)
は7.8容積% であった。
[Preparation of CPVC] 150 k of deionized water was placed in a 300-liter glass-lined pressure-resistant reaction vessel.
g, and 40 kg of the PVC obtained above, and stirred.
Is dispersed in water, the internal air is sucked by a vacuum pump,
The pressure was reduced until the gauge pressure became -78.4 kPa. The pressure was returned with nitrogen gas (returned until the gauge pressure became 0), and the inside of the reaction tank was removed by suction with a vacuum pump again. During this time, the heated oil was passed through the jacket to heat the inside of the reactor. When the temperature in the reaction tank reached 90 ° C., the supply of chlorine gas was started, and the reaction was allowed to proceed at a constant temperature of 110 ° C. Calculate the chlorine content from the concentration of hydrogen chloride generated in the reaction tank, and when the chlorine content is 63% by weight, the concentration is 100 pp.
The reaction was continued while continuously adding 0.5 kg / hr of aqueous hydrogen peroxide. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. The amount of hydrogen peroxide added during the reaction was 4 ppm based on the charged resin amount. Furthermore, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the obtained resin was washed with water, dehydrated, and dried to obtain a powdery CPVC. Obtained C
The chlorine content of PVC is 66.5% by weight, and the porosity is 34.
6% by volume, specific surface area value is 6.4 m 2 / g, 0.001 to
Void volume in the range of 0.1 μm (hereinafter referred to as void volume)
Was 7.8% by volume.

【0073】(実施例2 )PVCの調製は、実施例1と
同様に実施した。 [CPVCの調製]内容積300リットルのグラスライ
ニング製反応槽に脱イオン水150kgと上記で得たP
VC40kgを入れ、攪拌してPVCを水中に分散さ
せ、真空ポンプにて内部空気を吸引し、ゲージ圧が−7
8.4kPaになるまで減圧した。窒素ガスで圧戻しを
行い、槽内を窒素ガスで置換した。この間、加熱したオ
イルをジャケットに通して反応器内を加温した。反応槽
内の温度が70℃に達したとき、塩素ガスを供給し始
め、水銀ランプにより槽内を紫外線で照射しながら反応
を進行させた。反応槽内の発生塩化水素濃度から塩素含
有率を計算し、塩素含有率が66.5重量%に達した時
点で塩素ガスの供給を停止し、塩素化反応を終了した。
更に、反応槽内に窒素ガスを吹き込んで未反応塩素を除
去し、得られた樹脂を水で洗浄し脱水、乾燥して粉末状
のCPVCを得た。得られたCPVCの塩素含有率は6
6.5重量%、空隙率は35.2容量%、比表面積値は
6.6m2 /g、空隙容積は8.1容積%であった。
(Example 2) Preparation of PVC was carried out in the same manner as in Example 1. [Preparation of CPVC] 150 kg of deionized water and P obtained above were placed in a glass-lined reaction vessel having an internal volume of 300 liters.
Add 40 kg of VC, stir to disperse PVC in water, suck the internal air with a vacuum pump, and set the gauge pressure to -7.
The pressure was reduced to 8.4 kPa. The pressure was returned with nitrogen gas, and the inside of the tank was replaced with nitrogen gas. During this time, the heated oil was passed through the jacket to heat the inside of the reactor. When the temperature inside the reaction tank reached 70 ° C., the supply of chlorine gas was started, and the reaction was allowed to proceed while irradiating the inside of the tank with ultraviolet rays using a mercury lamp. The chlorine content was calculated from the concentration of hydrogen chloride generated in the reaction tank. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated.
Furthermore, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the obtained resin was washed with water, dehydrated, and dried to obtain a powdery CPVC. The chlorine content of the obtained CPVC is 6
6.5% by weight, porosity was 35.2% by volume, specific surface area was 6.6 m 2 / g, and void volume was 8.1% by volume.

【0074】(実施例3)PVCの調製は、実施例1と
同様に実施した。 [CPVCの調製]内容積300リットルのグラスライ
ニング製耐圧反応槽に脱イオン水150kgと上記で得
たPVC40kgを入れ、攪拌してPVCを水中に分散
させ、真空ポンプにて内部空気を吸引し、ゲージ圧が−
78.4kPaになるまで減圧した。窒素ガスで圧戻し
を行い、再び真空ポンプで吸引して反応槽内の酸素を除
去した。この間、加熱したオイルをジャケットに通して
反応器内を加温した。反応槽内の温度が85℃に達した
とき、塩素ガスを供給し始め、90℃定温で反応を進行
させた。反応槽内の発生塩化水素濃度から塩素含有率を
計算し、塩素含有率62重量%の時点で濃度100pp
mの過酸化水素水を0.5kg/hrで連続添加しなが
ら反応を継続した。塩素含有率が66.5重量%に達し
た時点で塩素ガスの供給を停止し、塩素化反応を終了し
た。反応中添加した過酸化水素の量は、仕込み樹脂量に
対し8ppmであった。得られたCPVCの空隙率は3
5.0容量%、比表面積値は6.6m2 /g、空隙容積
は8.0容積%であった。
Example 3 Preparation of PVC was carried out in the same manner as in Example 1. [Preparation of CPVC] 150 kg of deionized water and 40 kg of the above-obtained PVC were placed in a 300-liter glass-lined pressure-resistant reaction vessel having an internal volume of 300 liters, and stirred to disperse the PVC in water. Gauge pressure is-
The pressure was reduced to 78.4 kPa. The pressure was returned with nitrogen gas, and the pressure in the reaction tank was removed again by suction with a vacuum pump to remove oxygen. During this time, the heated oil was passed through the jacket to heat the inside of the reactor. When the temperature in the reaction tank reached 85 ° C., the supply of chlorine gas was started, and the reaction was allowed to proceed at a constant temperature of 90 ° C. Calculate the chlorine content from the concentration of hydrogen chloride generated in the reaction tank, and when the chlorine content is 62% by weight, the concentration is 100 pp.
The reaction was continued while continuously adding 0.5 kg / hr of aqueous hydrogen peroxide. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. The amount of hydrogen peroxide added during the reaction was 8 ppm based on the charged resin amount. The porosity of the obtained CPVC is 3
5.0 volume%, the specific surface area value was 6.6 m 2 / g, and the void volume was 8.0 volume%.

【0075】(実施例4)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、反応温度を130
℃にしたこと、及び、過酸化水素を添加しなかったこと
以外は実施例1と同様に実施した。更に、反応槽内に窒
素ガスを吹き込んで未反応塩素を除去し、得られた樹脂
を水で洗浄し脱水、乾燥して粉末状のCPVCを得た。
得られたCPVCの塩素含有率は66.5重量%、空隙
率は33.9容量%、比表面積値は6.1m2 /g、空
隙容積は7.6容積%であった。
Example 4 Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC requires a reaction temperature of 130
The procedure was performed in the same manner as in Example 1 except that the temperature was changed to ° C., and hydrogen peroxide was not added. Furthermore, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the obtained resin was washed with water, dehydrated, and dried to obtain a powdery CPVC.
The chlorine content of the obtained CPVC was 66.5% by weight, the porosity was 33.9% by volume, the specific surface area value was 6.1 m 2 / g, and the void volume was 7.6% by volume.

【0076】(実施例5)PVCの調製は、部分ケン化
ポリ酢酸ビニルを550ppmにした以外は実施例1と
同様に行った。CPVCの調製は、実施例1と同様に実
施した。得られたCPVCの空隙率は33.8容量%、
比表面積値は5.2m2 /g、空隙容積は6.3容積%
であった。
Example 5 Preparation of PVC was performed in the same manner as in Example 1 except that the partially saponified polyvinyl acetate was changed to 550 ppm. Preparation of CPVC was performed in the same manner as in Example 1. The porosity of the obtained CPVC is 33.8% by volume,
Specific surface area value is 5.2 m 2 / g, void volume is 6.3% by volume
Met.

【0077】(実施例6)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、CPVCの塩素含
有率を64.0重量%としたこと、及び、過酸化水素を
添加しなかったこと以外は実施例1と同様に実施した。
得られたCPVCの空隙率は34.1容量%、比表面積
値は6.3m2 /g、空隙容積は7.6容積%であっ
た。
(Example 6) Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC was carried out in the same manner as in Example 1, except that the chlorine content of CPVC was 64.0% by weight, and hydrogen peroxide was not added.
The porosity of the obtained CPVC was 34.1% by volume, the specific surface area value was 6.3 m 2 / g, and the void volume was 7.6% by volume.

【0078】(実施例7)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、CPVCの塩素含
有率を70.0重量%としたこと以外は実施例1と同様
に実施した。添加した過酸化水素の量は仕込み樹脂量に
対して10ppmであった。得られたCPVCの空隙率
は35.3容量%、比表面積値は6.7m2 /g、空隙
容積は8.1容積%であった。
(Example 7) Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC was carried out in the same manner as in Example 1, except that the chlorine content of CPVC was 70.0% by weight. The amount of hydrogen peroxide added was 10 ppm based on the charged resin amount. The porosity of the obtained CPVC was 35.3% by volume, the specific surface area was 6.7 m 2 / g, and the void volume was 8.1% by volume.

【0079】(比較例1) [PVCの調製]内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル% 及び重合度750)1300ppmを懸濁
分散剤として添加後、t−ブチルパーオキシネオデカノ
エート550ppmを投入した。次いで、重合器内を4
5mmHgまで脱気した後、塩化ビニル単量体33kg
を仕込み撹拌を開始した。重合器を57℃に昇温して重
合を開始し、重合反応終了までこの温度を保った。重合
転化率が90%になった時点で反応を終了し、重合器内
の未反応単量体を回収した後、重合体をスラリー状で系
外へ取り出し、脱水乾燥してPVCを得た。得られたP
VCのBET比表面積は0.7m2 /gであった。ま
た、スキン層の存在程度を示すESCA分析値は、0.
20であった。なお、BET比表面積、及び、ESCA
分析の測定は下記方法により実施した。
(Comparative Example 1) [Preparation of PVC] In a polymerization vessel (pressure-resistant autoclave) having an internal volume of 100 liters, 50 kg of deionized water and a partially saponified polyvinyl acetate (average degree of saponification) with respect to a vinyl chloride monomer were used. After 1300 ppm of 72 mol% and a degree of polymerization of 750) were added as a suspending dispersant, 550 ppm of t-butylperoxy neodecanoate was added. Then, 4
After degassing to 5mmHg, vinyl chloride monomer 33kg
And stirring was started. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C., and this temperature was maintained until the polymerization reaction was completed. When the polymerization conversion reached 90%, the reaction was terminated. After the unreacted monomer in the polymerization vessel was recovered, the polymer was taken out of the system in the form of a slurry, and dehydrated and dried to obtain PVC. P obtained
The BET specific surface area of VC was 0.7 m 2 / g. The ESCA analysis value indicating the degree of the presence of the skin layer is 0.1.
20. The BET specific surface area and ESCA
The analysis was measured by the following method.

【0080】CPVCの調製は、実施例1と同様に実施
した。得られたCPVCの空隙率は27.3容量%、比
表面積値は1.8m2 /g、空隙容積は1.1容積%で
あった。
The preparation of CPVC was carried out as in Example 1. The porosity of the obtained CPVC was 27.3% by volume, the specific surface area was 1.8 m 2 / g, and the void volume was 1.1% by volume.

【0081】(比較例2)PVCの調製は、比較例1と
同様に実施した。CPVCの調製は、実施例2と同様に
実施した。得られたCPVCの空隙率は27.9容量
%、比表面積値は2.0m2 /g、空隙容積は1.4容
積%であった。
(Comparative Example 2) Preparation of PVC was carried out in the same manner as in Comparative Example 1. Preparation of CPVC was carried out as in Example 2. The porosity of the obtained CPVC was 27.9% by volume, the specific surface area was 2.0 m 2 / g, and the void volume was 1.4% by volume.

【0082】(比較例3)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、反応温度を140
℃にしたこと、及び、過酸化水素を添加しなかったこと
以外は実施例1と同様に実施した。得られたCPVCの
空隙率は28.8容量%、比表面積値は1.9m2
g、空隙容積は1.3容積%であった。
(Comparative Example 3) Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC requires a reaction temperature of 140
The procedure was performed in the same manner as in Example 1 except that the temperature was changed to ° C., and hydrogen peroxide was not added. The porosity of the obtained CPVC is 28.8% by volume, and the specific surface area value is 1.9 m 2 /
g, the void volume was 1.3% by volume.

【0083】(比較例4)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、CPVCの塩素含
有率を73.0重量%としたこと以外は実施例1と同様
に実施した。添加した過酸化水素の量は仕込み樹脂量に
対して40ppmであった。得られたCPVCの空隙率
は36.8容量%、比表面積値は10.0m2 /g、空
隙容積)は12.1容積%であった。
(Comparative Example 4) Preparation of PVC was carried out in the same manner as in Example 1. CPVC was prepared in the same manner as in Example 1 except that the chlorine content of CPVC was 73.0% by weight. The amount of hydrogen peroxide added was 40 ppm based on the charged resin amount. The porosity of the obtained CPVC was 36.8% by volume, the specific surface area value was 10.0 m 2 / g, and the void volume was 12.1% by volume.

【0084】上記実施例1〜7、及び比較例1〜4で得
られたCPVCについて性能評価を行い、その結果を表
1に示した。
The performance of the CPVC obtained in Examples 1 to 7 and Comparative Examples 1 to 4 was evaluated, and the results are shown in Table 1.

【0085】[0085]

【表1】 [Table 1]

【0086】(実施例8)PVCの調製、CPVCの調
製ともに実施例1と同様に実施した。得られたCPVC
をテトラヒドロフランに溶解し、濃度1g/kgの溶液
を調整した。この溶液の、波長235nmでの吸光度
を、セル長1cm、測定温度23℃で測定したところ、
0.13であった。
(Example 8) Both the preparation of PVC and the preparation of CPVC were carried out in the same manner as in Example 1. Obtained CPVC
Was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C.,
0.13.

【0087】(実施例9)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、実施例2と同様に
実施した。得られたCPVCをテトラヒドロフランに溶
解し、濃度1g/kgの溶液を調整した。この溶液の、
波長235nmでの吸光度を、セル長1cm、測定温度
23℃で測定したところ、0.70であった。
(Example 9) Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC was carried out as in Example 2. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. Of this solution,
When the absorbance at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.70.

【0088】(実施例10)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、実施例3と同様
に実施した。得られたCPVCをテトラヒドロフランに
溶解し、濃度1g/kgの溶液を調整した。この溶液
の、波長235nmでの吸光度を、セル長1cm、測定
温度23℃で測定したところ、0.12であった。
Example 10 Preparation of PVC was performed according to Example 1.
Was carried out in the same manner as Preparation of CPVC was carried out as in Example 3. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.12.

【0089】(実施例11)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、実施例4と同様
に実施した。得られたCPVCをテトラヒドロフランに
溶解し、濃度1g/kgの溶液を調整した。この溶液
の、波長235nmでの吸光度を、セル長1cm、測定
温度23℃で測定したところ、0.32であった。
(Example 11) Preparation of PVC was performed in the same manner as in Example 1.
Was carried out in the same manner as Preparation of CPVC was carried out as in Example 4. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.32.

【0090】(実施例12)PVCの調製、CPVCの
調製ともに実施例5と同様に実施した。得られたCPV
Cをテトラヒドロフランに溶解し、濃度1g/kgの溶
液を調整した。この溶液の、波長235nmでの吸光度
を、セル長1cm、測定温度23℃で測定したところ、
0.14であった。
(Example 12) Both the preparation of PVC and the preparation of CPVC were carried out in the same manner as in Example 5. Obtained CPV
C was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C.,
0.14.

【0091】(実施例13)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、実施例6と同様
に実施した。得られたCPVCをテトラヒドロフランに
溶解し、濃度1g/kgの溶液を調整した。この溶液
の、波長235nmでの吸光度を、セル長1cm、測定
温度23℃で測定したところ、0.10であった。
Example 13 Preparation of PVC was performed according to Example 1.
Was carried out in the same manner as Preparation of CPVC was carried out as in Example 6. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.10.

【0092】(実施例14)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、実施例7と同様
に実施した。得られたCPVCをテトラヒドロフランに
溶解し、濃度1g/kgの溶液を調整した。この溶液
の、波長235nmでの吸光度を、セル長1cm、測定
温度23℃で測定したところ、0.29であった。
Example 14 Preparation of PVC was performed according to Example 1.
Was carried out in the same manner as Preparation of CPVC was carried out as in Example 7. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.29.

【0093】(比較例5)PVCの調製、CPVCの調
製ともに比較例1と同様に実施した。得られたCPVC
をテトラヒドロフランに溶解し、濃度1g/kgの溶液
を調整した。この溶液の、波長235nmでの吸光度
を、セル長1cm、測定温度23℃で測定したところ、
0.27であった。
Comparative Example 5 Preparation of PVC and CPVC were performed in the same manner as in Comparative Example 1. Obtained CPVC
Was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C.,
0.27.

【0094】(比較例6)PVCの調製は、比較例1と
同様に実施した。CPVCの調製は、比較例2と同様に
実施した。得られたCPVCをテトラヒドロフランに溶
解し、濃度1g/kgの溶液を調整した。この溶液の、
波長235nmでの吸光度を、セル長1cm、測定温度
23℃で測定したところ、0.85であった。
(Comparative Example 6) Preparation of PVC was carried out in the same manner as in Comparative Example 1. Preparation of CPVC was performed in the same manner as in Comparative Example 2. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. Of this solution,
When the absorbance at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.85.

【0095】(比較例7)PVCの調製は、実施例1と
同様に実施した。 [CPVCの調製]内容積300リットルのグラスライ
ニング製耐圧反応槽に脱イオン水150kgと上記で得
たPVC40kgを入れ、攪拌してPVCを水中に分散
させ、真空ポンプにて内部空気を吸引し、ゲージ圧が−
78.4kPaになるまで減圧した。窒素ガスで圧戻し
を行い、再び真空ポンプで吸引して反応槽内の酸素を除
去した。この間、加熱したオイルをジャケットに通して
反応器内を加温した。反応槽内の温度が60℃に達した
とき、塩素ガスを供給し始め、65℃定温で反応を進行
させた。反応槽内の発生塩化水素濃度から塩素含有率を
計算し、塩素含有率63重量% の時点で濃度500pp
mの過酸化水素水を0.5kg/hrで連続添加しなが
ら反応を継続した。塩素含有率が66.5重量% に達し
た時点で塩素ガスの供給を停止し、塩素化反応を終了し
た。反応中添加した過酸化水素の量は、仕込み樹脂量に
対し500ppmであった。更に、反応槽内に窒素ガス
を吹き込んで未反応塩素を除去し、得られた樹脂を水で
洗浄し脱水、乾燥して粉末状のCPVCを得た。得られ
たCPVCの塩素含有率は66.5重量% であった。得
られたCPVCをテトラヒドロフランに溶解し、濃度1
g/kgの溶液を調整した。この溶液の、波長235n
mでの吸光度を、セル長1cm、測定温度23℃で測定
したところ、1.32であった。また、このCPVCの
空隙率は35.9容量% 、比表面積値は6.9m2 /
g、空隙容積は8.3容積% であった。
(Comparative Example 7) Preparation of PVC was carried out in the same manner as in Example 1. [Preparation of CPVC] 150 kg of deionized water and 40 kg of PVC obtained above were put into a pressure-resistant reaction vessel made of glass lining having an internal volume of 300 liters, and stirred to disperse the PVC in water. Gauge pressure is-
The pressure was reduced to 78.4 kPa. The pressure was returned with nitrogen gas, and the pressure in the reaction tank was removed again by suction with a vacuum pump to remove oxygen. During this time, the heated oil was passed through the jacket to heat the inside of the reactor. When the temperature in the reaction tank reached 60 ° C., the supply of chlorine gas was started, and the reaction was allowed to proceed at a constant temperature of 65 ° C. The chlorine content was calculated from the concentration of hydrogen chloride generated in the reaction tank, and when the chlorine content was 63% by weight, the concentration was 500 pp.
The reaction was continued while continuously adding 0.5 kg / hr of aqueous hydrogen peroxide. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. The amount of hydrogen peroxide added during the reaction was 500 ppm based on the charged resin amount. Furthermore, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the obtained resin was washed with water, dehydrated, and dried to obtain a powdery CPVC. The chlorine content of the obtained CPVC was 66.5% by weight. The obtained CPVC was dissolved in tetrahydrofuran and the concentration was 1
g / kg of solution was prepared. 235 n wavelength of this solution
When the absorbance at m was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 1.32. The porosity of this CPVC was 35.9% by volume, and the specific surface area was 6.9 m 2 /
g, the void volume was 8.3% by volume.

【0096】(比較例8)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、反応温度を60℃
にしたこと以外は実施例2と同様に実施した。得られた
CPVCをテトラヒドロフランに溶解し、濃度1g/k
gの溶液を調整した。この溶液の、波長235nmでの
吸光度を、セル長1cm、測定温度23℃で測定したと
ころ、0.92であった。また、このCPVCの空隙率
は36.0容量% 、比表面積値は7.0m2 /g、空隙
容積は8.5容積% であった。
Comparative Example 8 Preparation of PVC was carried out in the same manner as in Example 1. The preparation of CPVC requires a reaction temperature of 60 ° C.
Example 2 was carried out in the same manner as in Example 2, except that The obtained CPVC was dissolved in tetrahydrofuran, and the concentration was 1 g / k.
g of solution was prepared. When the absorbance of this solution at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.92. The CPVC had a porosity of 36.0% by volume, a specific surface area of 7.0 m @ 2 / g, and a void volume of 8.5% by volume.

【0097】(比較例9)PVCの調製は、実施例1と
同様に実施した。CPVCの調製は、比較例3と同様に
実施した。得られたCPVCをテトラヒドロフランに溶
解し、濃度1g/kgの溶液を調整した。この溶液の、
波長235nmでの吸光度を、セル長1cm、測定温度
23℃で測定したところ、0.41であった。
(Comparative Example 9) Preparation of PVC was carried out in the same manner as in Example 1. Preparation of CPVC was performed in the same manner as in Comparative Example 3. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. Of this solution,
When the absorbance at a wavelength of 235 nm was measured at a cell length of 1 cm and a measurement temperature of 23 ° C., it was 0.41.

【0098】(比較例10)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、比較例4と同様
に実施した。得られたCPVCをテトラヒドロフランに
溶解し、濃度1g/kgの溶液を調整した。この溶液
の、波長235nmでの吸光度を、セル長1cm、測定
温度23℃で測定したところ、0.52であった。
Comparative Example 10 Preparation of PVC was performed in the same manner as in Example 1.
Was carried out in the same manner as Preparation of CPVC was performed in the same manner as in Comparative Example 4. The obtained CPVC was dissolved in tetrahydrofuran to prepare a solution having a concentration of 1 g / kg. The absorbance of this solution at a wavelength of 235 nm was 0.52 when measured at a cell length of 1 cm and a measurement temperature of 23 ° C.

【0099】上記実施例8〜14、及び比較例5〜10
で得られたCPVCについて性能評価を行い、その結果
を表2に示した。
Examples 8 to 14 and Comparative Examples 5 to 10
The performance evaluation was performed on the CPVC obtained in Table 2, and the results are shown in Table 2.

【0100】[0100]

【表2】 [Table 2]

【0101】(実施例15)PVCの調製は、実施例1
と同様に実施した。CPVCの調製は、実施例1で最終
塩素含有率を70.5重量% としたこと以外は同様に実
施した。
Example 15 Preparation of PVC was performed according to Example 1.
Was carried out in the same manner as CPVC was prepared in the same manner as in Example 1, except that the final chlorine content was 70.5% by weight.

【0102】[配合]上記で得られたCPVC100重
量部(phr)に対して、表3の配合1に示す各種添加
剤を添加し、ヘンシェルミキサーにて加熱混合した。
[Blending] To 100 parts by weight (phr) of the CPVC obtained above, various additives shown in the blending 1 of Table 3 were added, and heated and mixed with a Henschel mixer.

【0103】[0103]

【表3】 [Table 3]

【0104】[成形]上記配合粉を用い、下記の押出条
件で成形を行い、口径20mmの管状成形体を得た。 ・押出機:SLM50(2軸異方向コニカル押出機、長
田製作所社製) ・金型:パイプ用金型(出口部外半径;11.66m
m、出口部内半径;9.4mm、樹脂流動面クロムメッ
キ、Rmax=5μm 、Ra=0.1μm (出口部周方
向4箇所平均)、3本ブリッジ) ・押出量:25〜30kg/hr ・樹脂温度:215〜217℃ ・回転数:20〜30rpm ・バレル温度:185〜210℃ ・金型温度:200〜215℃
[Molding] The above powder mixture was molded under the following extrusion conditions to obtain a tubular molded body having a diameter of 20 mm.・ Extruder: SLM50 (Two-axis different direction conical extruder, manufactured by Nagata Seisakusho Co., Ltd.) ・ Die: Die for pipe (outer radius of outlet: 11.66 m)
m, inner radius of outlet portion: 9.4 mm, chromium plating on resin flowing surface, Rmax = 5 μm, Ra = 0.1 μm (average of four locations in the circumferential direction of outlet portion, three bridges) ・ Amount of extrusion: 25 to 30 kg / hr ・ Resin Temperature: 215 to 217 ° C ・ Rotation speed: 20 to 30rpm ・ Barrel temperature: 185 to 210 ° C ・ Mold temperature: 200 to 215 ° C

【0105】(実施例16)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
5で反応温度を120℃で、過酸化水素添加を塩素含有
率が65重量% の時点で行うこと以外は実施例5と同様
にして実施した。配合・成形は、実施例15と同様にし
て実施した。
Example 16 Preparation of PVC was performed according to Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
5 and the reaction temperature was 120 ° C., and hydrogen peroxide was added in the same manner as in Example 5 except that the chlorine content was 65% by weight. The compounding and molding were performed in the same manner as in Example 15.

【0106】(実施例17)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
で最終塩素含有率を71.5重量% としたこと以外は同
様にして実施した。配合・成形は、実施例15と同様に
して実施した。
(Example 17) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
And the final chlorine content was changed to 71.5% by weight. The compounding and molding were performed in the same manner as in Example 15.

【0107】(比較例11)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
で反応温度を140℃で、最終塩素含有率を69.0重
量% としたこと以外は同様にして実施した。配合・成形
は、実施例15と同様にして実施した。
(Comparative Example 11) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
The reaction was carried out in the same manner except that the reaction temperature was 140 ° C. and the final chlorine content was 69.0% by weight. The compounding and molding were performed in the same manner as in Example 15.

【0108】上記実施例15〜17、及び比較例11で
得られたCPVCについて、下記の測定方法により、塩
素含有率、空隙率、空隙容積、BET比表面積、ESC
A分析値の測定を行った。また、管状成形体について下
記の測定方法により、ビカット軟化点を測定した結果を
表4 に示す。
For the CPVC obtained in Examples 15 to 17 and Comparative Example 11, the chlorine content, porosity, void volume, BET specific surface area, ESC
The A analysis value was measured. Table 4 shows the results of measuring the Vicat softening point of the tubular molded body by the following measurement method.

【0109】[0109]

【表4】 [Table 4]

【0110】(実施例18)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
5と同様にして実施した。配合・成形は、実施例15と
同様にして実施した。
(Example 18) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
The operation was performed in the same manner as in Example 5. The compounding and molding were performed in the same manner as in Example 15.

【0111】(実施例19)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
6と同様にして実施した。配合・成形は、実施例15と
同様にして実施した。
(Example 19) Preparation of PVC was performed according to Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
6 was carried out in the same manner. The compounding and molding were performed in the same manner as in Example 15.

【0112】(実施例20)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
7と同様にして実施した。配合・成形は、実施例15と
同様にして実施した。
(Example 20) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
7 was carried out in the same manner. The compounding and molding were performed in the same manner as in Example 15.

【0113】(比較例12)PVCの調製は、比較例1
と同様にして実施した。CPVCの調製は、実施例15
と同様にして実施した。配合・成形は実施例15と同様
にして実施した。
Comparative Example 12 Preparation of PVC was performed according to Comparative Example 1.
It carried out similarly to. Preparation of CPVC is described in Example 15
It carried out similarly to. The compounding and molding were performed in the same manner as in Example 15.

【0114】(比較例13)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
で反応温度を140℃で、最終塩素含有率を70.5重
量% としたこと以外は同様にして実施した。配合・成形
は、実施例15と同様にして実施した。
(Comparative Example 13) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
The reaction was carried out in the same manner except that the reaction temperature was 140 ° C. and the final chlorine content was 70.5% by weight. The compounding and molding were performed in the same manner as in Example 15.

【0115】(比較例14)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、比較例1
1と同様にして実施した。配合・成形は、実施例15と
同様にして実施した。
Comparative Example 14 Preparation of PVC was performed according to Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC was performed according to Comparative Example 1.
The procedure was performed in the same manner as in Example 1. The compounding and molding were performed in the same manner as in Example 15.

【0116】上記実施例18〜20、及び比較例12〜
14で得られたCPVCについて、下記の測定方法によ
り、塩素含有率、空隙率、空隙容積、BET比表面積、
ESCA分析値の測定を行った。また、管状成形体につ
いて下記の測定方法により、ビカット軟化点、シャルピ
ー衝撃値を測定した結果を表5に示す。
Examples 18 to 20 and Comparative Examples 12 to
About the CPVC obtained in 14, a chlorine content, a porosity, a void volume, a BET specific surface area,
ESCA analysis values were measured. Table 5 shows the results of measuring the Vicat softening point and the Charpy impact value of the tubular molded body by the following measurement methods.

【0117】[0117]

【表5】 [Table 5]

【0118】(実施例21)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
7と同様にして実施した。配合は、表3の配合2に示す
各種配合剤を添加して、ヘンシェルミキサーにて加熱混
合を行った。成形は、実施例15と同様にして実施し
た。
(Example 21) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
7 was carried out in the same manner. The compounding | mixing added the various compounding agents shown to the compounding 2 of Table 3, and heat-mixed with the Henschel mixer. The molding was performed in the same manner as in Example 15.

【0119】(実施例22)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、実施例1
6で最終塩素含有率を71.5重量% としたこと以外は
同様にして実施した。配合・成形は、実施例21と同様
にして実施した。
Example 22 Preparation of PVC was performed according to Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC is described in Example 1.
6, except that the final chlorine content was 71.5% by weight. The compounding and molding were performed in the same manner as in Example 21.

【0120】(比較例15)PVCの調製は、比較例1
と同様にして実施した。CPVCの調製は、実施例17
と同様にして実施した。配合・成形は実施例21と同様
にして実施した。
Comparative Example 15 Preparation of PVC was performed according to Comparative Example 1.
It carried out similarly to. Preparation of CPVC is described in Example 17
It carried out similarly to. Compounding and molding were performed in the same manner as in Example 21.

【0121】(比較例16)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、比較例1
3で最終塩素含有率を71.5重量% としたこと以外は
同様にして実施した。配合・成形は、実施例21と同様
にして実施した。
(Comparative Example 16) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC was performed according to Comparative Example 1.
3, except that the final chlorine content was 71.5% by weight. The compounding and molding were performed in the same manner as in Example 21.

【0122】(比較例17)PVCの調製は、実施例1
5と同様にして実施した。CPVCの調製は、比較例1
1と同様にして実施した。配合・成形は、実施例21と
同様にして実施した。
(Comparative Example 17) Preparation of PVC was performed in the same manner as in Example 1.
The operation was performed in the same manner as in Example 5. Preparation of CPVC was performed according to Comparative Example 1.
The procedure was performed in the same manner as in Example 1. The compounding and molding were performed in the same manner as in Example 21.

【0123】上記実施例21、22、及び比較例15〜
17で得られたCPVCについて、下記の測定方法によ
り、塩素含有率、空隙率、空隙容積、BET比表面積、
ESCA分析値の測定を行った。また、管状成形体につ
いて下記の測定方法により、ビカット軟化点、シャルピ
ー衝撃値を測定した結果を表6に示す。
Examples 21 and 22 and Comparative Examples 15 to
17, the chlorine content, the porosity, the void volume, the BET specific surface area,
ESCA analysis values were measured. Table 6 shows the results of measuring the Vicat softening point and the Charpy impact value of the tubular molded body by the following measuring methods.

【0124】[0124]

【表6】 [Table 6]

【0125】(実施例23) [PVCの調製]内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル% 及び重合度700)400ppm、ソルビ
タンモノラウレート(HLB8.6)1600ppm、
ラウリン酸1500ppm、ポリアクリルアミド(20
℃、101325MPaで0.1重量% 水溶液のブルッ
クフィールズ粘度が51mPa・s)100ppm並び
にt−ブチルパーオキシネオデカノエート500ppm
を投入した。次いで、重合器内を6kPaまで脱気した
後、塩化ビニル単量体33kgを仕込み撹拌を開始し
た。重合器を57℃に昇温して重合を開始し、重合反応
終了までこの温度を保った。重合転化率が90% になっ
た時点で反応を終了し、重合器内の未反応単量体を回収
した後、重合体をスラリー状で系外へ取り出し、脱水乾
燥してPVCを得た。得られたPVCのBET比表面積
は3.7m2 /gであった。また、スキン層の存在程度
を示すESCA分析値は、0.80であった。なお、B
ET比表面積、及び、ESCA分析の測定は下記方法に
より実施した。
(Example 23) [Preparation of PVC] In a polymerization vessel (pressure-resistant autoclave) having an internal volume of 100 liters, 50 kg of deionized water and a partially saponified polyvinyl acetate (average degree of saponification) with respect to a vinyl chloride monomer were used. 72 mol% and degree of polymerization 700) 400 ppm, sorbitan monolaurate (HLB 8.6) 1600 ppm,
Lauric acid 1500 ppm, polyacrylamide (20
Brookfield viscosity of a 0.1% by weight aqueous solution at 101325 MPa is 51 mPa · s) 100 ppm and t-butyl peroxy neodecanoate 500 ppm
Was introduced. Next, after degassing the inside of the polymerization vessel to 6 kPa, 33 kg of a vinyl chloride monomer was charged and stirring was started. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C., and this temperature was maintained until the polymerization reaction was completed. When the polymerization conversion reached 90%, the reaction was terminated, and the unreacted monomer in the polymerization vessel was recovered. Then, the polymer was taken out of the system in the form of slurry, and dehydrated and dried to obtain PVC. The BET specific surface area of the obtained PVC was 3.7 m 2 / g. The ESCA analysis value indicating the degree of the existence of the skin layer was 0.80. Note that B
The measurement of the ET specific surface area and the ESCA analysis were performed by the following methods.

【0126】[CPVCの調製]内容積300リットル
のグラスライニング製耐圧反応槽に脱イオン水150k
gと、上記で得たPVC40kgを入れ、攪拌してPV
Cを水中に分散させ、真空ポンプにて内部空気を吸引
し、ゲージ圧が−78.4kPaになるまで減圧した。
窒素ガスで圧戻しを行い、再び真空ポンプで吸引して反
応槽内の酸素を除去した。この間、加熱したオイルをジ
ャケットに通して反応器内を加温した。反応槽内の温度
が90℃に達したとき、塩素ガスを供給し始め、110
℃定温で反応を進行させた。反応槽内の発生塩化水素濃
度から塩素含有率を計算し、塩素含有率63重量% の時
点で濃度100ppmの過酸化水素水を0.5kg/h
rで連続添加しながら反応を継続した。塩素含有率が6
6.5重量% に達した時点で塩素ガスの供給を停止し、
塩素化反応を終了した。反応中添加した過酸化水素の量
は、仕込み樹脂量に対し4ppmであった。更に、反応
槽内に窒素ガスを吹き込んで未反応塩素を除去し、得ら
れた樹脂を水で洗浄し脱水、乾燥して粉末状のCPVC
を得た。得られたCPVCの塩素含有率は66.5重量
% 、空隙率は34.6容量% 、比表面積値は6.4m2
/g、空隙容積は7.8容積% 、及びESCA分析値は
0.71であった。
[Preparation of CPVC] 150 k of deionized water was placed in a 300-liter glass-lined pressure-resistant reaction vessel.
g and 40 kg of the PVC obtained above,
C was dispersed in water, the internal air was sucked by a vacuum pump, and the pressure was reduced until the gauge pressure became -78.4 kPa.
The pressure was returned with nitrogen gas, and the pressure in the reaction tank was removed again by suction with a vacuum pump to remove oxygen. During this time, the heated oil was passed through the jacket to heat the inside of the reactor. When the temperature in the reaction tank reached 90 ° C., the supply of chlorine gas was started, and
The reaction was allowed to proceed at a constant temperature. The chlorine content was calculated from the concentration of hydrogen chloride generated in the reaction tank, and when the chlorine content was 63% by weight, 0.5 kg / h of hydrogen peroxide having a concentration of 100 ppm was added.
The reaction was continued while continuously adding at r. Chlorine content is 6
When it reaches 6.5% by weight, the supply of chlorine gas is stopped,
The chlorination reaction was completed. The amount of hydrogen peroxide added during the reaction was 4 ppm based on the charged resin amount. Further, nitrogen gas is blown into the reaction tank to remove unreacted chlorine, and the obtained resin is washed with water, dehydrated and dried to obtain a powdery CPVC.
I got The chlorine content of the obtained CPVC is 66.5% by weight.
%, Porosity is 34.6% by volume, specific surface area value is 6.4m2
/ G, the void volume was 7.8% by volume, and the ESCA analysis value was 0.71.

【0127】[配合]上記CPVC100重量部(ph
r)に対して、表7に示す各種配合剤を添加し、ヘンシ
ェルミキサーにて加熱混合した。
[Formulation] 100 parts by weight of the above CPVC (ph
Various compounding agents shown in Table 7 were added to r), and mixed by heating with a Henschel mixer.

【0128】[0128]

【表7】 [Table 7]

【0129】[成形]上記配合粉を用い、下記の押出条
件で成形を行い、口径20mmの管を得た。 ・押出機:SLM50(2軸異方向コニカル押出機、長
田製作所社製) ・金型:パイプ用金型(出口部外半径;11.66m
m、出口部内半径;9.4mm、樹脂流動面クロムメッ
キ、Rmax=5μm 、Ra=0.1μm (出口部周方
向4 箇所平均)、3本ブリッジ) ・押出量:25〜30kg/hr ・樹脂温度:205〜207℃ ・回転数:20〜30rpm ・バレル温度:185〜210℃ ・金型温度:200〜215℃
[Molding] Using the above blended powder, molding was carried out under the following extrusion conditions to obtain a tube having a diameter of 20 mm.・ Extruder: SLM50 (Two-axis different direction conical extruder, manufactured by Nagata Seisakusho Co., Ltd.) ・ Die: Die for pipe (outer radius of outlet: 11.66 m)
m, outlet inner radius: 9.4 mm, chromium plating on the resin flow surface, Rmax = 5 μm, Ra = 0.1 μm (average of four locations in the circumferential direction of the outlet), three bridges) ・ Extrusion: 25-30 kg / hr ・ Resin Temperature: 205 to 207 ° C ・ Rotation speed: 20 to 30 rpm ・ Barrel temperature: 185 to 210 ° C ・ Mold temperature: 200 to 215 ° C

【0130】(実施例24)PVCの調製は、部分ケン
化ポリ酢酸ビニルを550ppmにしたこと以外は、実
施例23と同様にして実施した。得られたPVCのBE
T比表面積は2.5m2 /gであった。また、スキン層
の存在程度を示すESCA分析値は、0.63であっ
た。なお、BET比表面積、及び、ESCA分析の測定
は下記方法により実施した。CPVCの調製は、実施例
23と同様にして実施した。得られたCPVCの空隙率
は33.8容量% 、比表面積値は5.2m2 /g、空隙
容積は6.3容積%、及びESCA分析値は0.60で
あった。配合・成形は、実施例23と同様にして実施し
た。
Example 24 Preparation of PVC was carried out in the same manner as in Example 23 except that the partially saponified polyvinyl acetate was changed to 550 ppm. BE of the obtained PVC
The T specific surface area was 2.5 m @ 2 / g. The ESCA analysis value indicating the extent of the presence of the skin layer was 0.63. The BET specific surface area and ESCA analysis were measured by the following methods. Preparation of CPVC was performed in the same manner as in Example 23. The porosity of the obtained CPVC was 33.8% by volume, the specific surface area value was 5.2 m 2 / g, the void volume was 6.3% by volume, and the ESCA analysis value was 0.60. The compounding and molding were performed in the same manner as in Example 23.

【0131】(比較例18) [PVCの調製]内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル% 及び重合度750)1300ppmを懸濁
分散剤として添加後、t−ブチルパーオキシネオデカノ
エート550ppmを投入した。次いで、重合器内を4
5mmHgまで脱気した後、塩化ビニル単量体33kg
を仕込み撹拌を開始した。重合器を57℃に昇温して重
合を開始し、重合反応終了までこの温度を保った。重合
転化率が90% になった時点で反応を終了し、重合器内
の未反応単量体を回収した後、重合体をスラリー状で系
外へ取り出し、脱水乾燥してPVCを得た。得られたP
VCのBET比表面積は0.7m2 /gであった。ま
た、スキン層の存在程度を示すESCA分析値は、0.
20であった。なお、BET比表面積、及び、ESCA
分析の測定は下記方法により実施した。
(Comparative Example 18) [Preparation of PVC] In a polymerization vessel (pressure-resistant autoclave) having an inner volume of 100 liters, 50 kg of deionized water and a partially saponified polyvinyl acetate (average saponification degree) with respect to a vinyl chloride monomer were used. After 1300 ppm of 72 mol% and a degree of polymerization of 750) were added as a suspending dispersant, 550 ppm of t-butylperoxy neodecanoate was added. Then, 4
After degassing to 5mmHg, vinyl chloride monomer 33kg
And stirring was started. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C., and this temperature was maintained until the polymerization reaction was completed. When the polymerization conversion reached 90%, the reaction was terminated, and the unreacted monomer in the polymerization vessel was recovered. Then, the polymer was taken out of the system in the form of slurry, and dehydrated and dried to obtain PVC. P obtained
The BET specific surface area of VC was 0.7 m @ 2 / g. The ESCA analysis value indicating the degree of the presence of the skin layer is 0.1.
20. The BET specific surface area and ESCA
The analysis was measured by the following method.

【0132】CPVCの調製は、実施例23と同様に実
施した。得られたCPVCの空隙率は27.3容量% 、
比表面積値は1.8m2 /g、空隙容積は1.1容積%
、及びESCA分析値は0.21であった。配合・成
形は、実施例23と同様にして実施した。
The preparation of CPVC was carried out as in Example 23. The porosity of the obtained CPVC was 27.3% by volume,
Specific surface area value is 1.8 m 2 / g, void volume is 1.1% by volume
, And ESCA analysis were 0.21. The compounding and molding were performed in the same manner as in Example 23.

【0133】(比較例19)PVCの調製は、実施例2
3と同様に実施した。CPVCの調製は、最終塩素含有
率を64.0重量% とした以外は実施例23と同様にし
て実施した。得られたCPVCの空隙率は34.2容量
% 、比表面積値は5.8m2 /g、空隙容積は7.5容
積% 、ESCA分析値は0.70であった。配合・成形
は、実施例23と同様にして実施した。
(Comparative Example 19) Preparation of PVC was performed in the same manner as in Example 2.
The same operation as in Example 3 was performed. CPVC was prepared in the same manner as in Example 23 except that the final chlorine content was 64.0% by weight. The porosity of the obtained CPVC is 34.2 volumes
%, Specific surface area value was 5.8 m @ 2 / g, void volume was 7.5 volume%, and ESCA analysis value was 0.70. The compounding and molding were performed in the same manner as in Example 23.

【0134】(比較例20)PVCの調製は、比較例1
8と同様にして実施した。CPVCの調製は、最終塩素
含有率を68.5重量% とした以外は実施例23と同様
にして実施した。得られたCPVCの空隙率は29.1
容量% 、比表面積値は4.8m2 /g、空隙容積は4.
3容積% 、ESCA分析値は0.20であった。配合・
成形は、実施例23と同様にして実施した。
(Comparative Example 20) Preparation of PVC was performed according to Comparative Example 1.
8 was performed. CPVC was prepared in the same manner as in Example 23 except that the final chlorine content was 68.5% by weight. The porosity of the obtained CPVC is 29.1.
%, Specific surface area 4.8 m @ 2 / g, void volume 4.
3% by volume, ESCA analysis value was 0.20. Formulation
The molding was performed in the same manner as in Example 23.

【0135】上記実施例23、24、及び比較例18〜
20で得られたCPVCについて、下記の測定方法によ
り、塩素含有率、空隙率、空隙容積、BET比表面積、
ESCA分析値の測定を行った。また、管状成形体につ
いて下記の測定方法により、吸水率、ビカット軟化温
度、内圧クリープ試験(1000時間破壊応力)、表面
粗さRmaxを測定した結果を表8に示す。
Examples 23 and 24 and Comparative Examples 18 to
About the CPVC obtained in No. 20, a chlorine content, a porosity, a void volume, a BET specific surface area,
ESCA analysis values were measured. Table 8 shows the results of measuring the water absorption, the Vicat softening temperature, the internal pressure creep test (1000-hour fracture stress), and the surface roughness Rmax of the tubular molded body by the following measurement methods.

【0136】[0136]

【表8】 [Table 8]

【0137】[評価方法] (PVC評価)上記実施例1〜14、及び比較例1〜1
0で用いたPVCのBET比表面積値の測定及びESC
A分析の方法は以下の通りである。 (1)BET比表面積値の測定 試料管に測定サンプル約2gを投入し、前処理として7
0℃で3時間サンプルを真空脱気した後、サンプル重量
を正確に測定した。前処理の終了したサンプルを測定部
(40℃恒温槽)に取り付けて測定を開始した。測定終
了後、吸着等温線の吸着側のデータからBETプロット
を行い、比表面積を算出した。なお、測定装置として比
表面積測定装置「BELSORP28SA」(日本ベル
社製)を使用し、測定ガスとして窒素ガスを使用した。
[Evaluation Method] (Evaluation of PVC) The above Examples 1 to 14 and Comparative Examples 1 to 1
Of BET specific surface area value of PVC used at 0 and ESC
The method of A analysis is as follows. (1) Measurement of BET specific surface area value About 2 g of a measurement sample is put into a sample tube, and 7
After degassing the sample for 3 hours at 0 ° C., the sample weight was measured accurately. The sample after the pretreatment was attached to a measuring section (40 ° C. constant temperature bath) to start measurement. After the measurement, a BET plot was performed from the data on the adsorption side of the adsorption isotherm to calculate the specific surface area. In addition, a specific surface area measuring device “BELSORP28SA” (manufactured by Nippon Bell Co., Ltd.) was used as a measuring device, and nitrogen gas was used as a measuring gas.

【0138】(2)ESCA分析 PVC粒子の表面をESCA(Electron Sp
ectroscopyfor Chemical An
alysis:電子分光化学分析)でスキャンし、C1S
(炭素)、Cl1S(塩素)、O1S(酸素)の各ピーク面
積より塩素量を基準に粒子表面の塩化ビニル樹脂成分を
定量分析した。 ・使用機器:日本電子社製「JPS−90FX」 ・使用条件:X 線源(M gKα線)、12kV−15m
A ・スキャン速度:200ms/0.1eV/scan ・パスエネルギー:30eV
(2) ESCA Analysis The surface of the PVC particles was analyzed by ESCA (Electron Sp
electroscopyfor Chemical An
analysis (electron spectrochemical analysis) and C1S
From the peak areas of (carbon), Cl1S (chlorine) and O1S (oxygen), the vinyl chloride resin component on the particle surface was quantitatively analyzed based on the chlorine amount. -Equipment used: "JPS-90FX" manufactured by JEOL-Operating conditions: X-ray source (MgKα radiation), 12kV-15m
A ・ Scan speed: 200 ms / 0.1 eV / scan ・ Pass energy: 30 eV

【0139】(CPVC評価) (1)塩素含有率測定 JIS K 7229に準拠して行った。 (2)空隙率、細孔分布測定 水銀圧入ポロシメーターを用いて、196MPaで塩素
化塩化ビニル系樹脂100gに圧入される水銀の容量を
測定して空隙率を求めた。空隙率とは樹脂粒子体積に占
める空隙の割合である。細孔分布は、空隙率を測定する
ために0〜196MPaまで圧力を上げるが、その際に
水銀圧入量を連続的に測定し、細孔径の分布を測定し
た。 (3)BET比表面積の測定 上記PVCのBET比表面積の測定方法と同様に行っ
た。
(CPVC evaluation) (1) Measurement of chlorine content The measurement was carried out in accordance with JIS K 7229. (2) Measurement of Porosity and Pore Distribution Using a mercury intrusion porosimeter, the volume of mercury injected into 100 g of chlorinated vinyl chloride resin at 196 MPa was measured to determine the porosity. The porosity is a ratio of the porosity to the resin particle volume. In the pore distribution, the pressure was increased to 0 to 196 MPa in order to measure the porosity. At that time, the mercury intrusion amount was continuously measured, and the pore diameter distribution was measured. (3) Measurement of BET specific surface area The measurement was carried out in the same manner as the method for measuring the BET specific surface area of PVC.

【0140】(4)吸光度測定 CPVCをテトラヒドロフランに溶解し、濃度1g/k
gの溶液を調製し、分光光度計(日立製作所製「U−3
300」)により、セル長1cm、測定温度23℃、波
長235nmでの吸光度を測定した。
(4) Measurement of absorbance CPVC was dissolved in tetrahydrofuran, and the concentration was 1 g / k.
g of the solution, and a spectrophotometer (“U-3” manufactured by Hitachi, Ltd.)
300 ”), the absorbance at a cell length of 1 cm, a measurement temperature of 23 ° C., and a wavelength of 235 nm was measured.

【0141】(5)加工性(ゲル化温度の測定) Haake社製プラストミル「レオコード90」を使用
して、下記樹脂組成物55gを、回転数40rpmで、
温度を150℃から毎分5℃の昇温速度で上昇させなが
ら混練し、混練トルクが最大になる時の温度を測定し
た。なお、樹脂組成物としては、CPVC100重量部
に対して、三塩基性硫酸鉛3重量部、二塩基性ステアリ
ン酸鉛1重量部及びMBS樹脂10重量部からなるもの
を使用した。
(5) Processability (Measurement of Gelation Temperature) Using a plastmill “Rheocord 90” manufactured by Haake, 55 g of the following resin composition was applied at a rotation speed of 40 rpm.
The kneading was performed while increasing the temperature at a rate of 5 ° C./min from 150 ° C., and the temperature at which the kneading torque was maximized was measured. The resin composition used was composed of 3 parts by weight of tribasic lead sulfate, 1 part by weight of dibasic lead stearate, and 10 parts by weight of MBS resin based on 100 parts by weight of CPVC.

【0142】(6)熱安定性試験 上記樹脂組成物を、8インチロール2本からなる混練機
に供給してロール表面温度205℃で混練し、混練物を
ロールに巻き付けてから、30秒毎に巻き付いたCPV
Cシートを切り返しながら、3分毎に少量のシートを切
り出して、シートの着色度を比較し、黒褐色に変わる時
間で熱安定性を判定した。
(6) Thermal stability test The above resin composition was supplied to a kneader consisting of two 8-inch rolls and kneaded at a roll surface temperature of 205 ° C. CPV wrapped around
While turning back the C sheet, a small amount of the sheet was cut out every three minutes, the degree of coloring of the sheet was compared, and the thermal stability was determined by the time when the sheet turned blackish brown.

【0143】(7)空隙容積 上記CPVCの細孔分布より、空隙容積中の0.001
〜0.1μm の範囲の空隙容積の割合を算出した。 (8)ESCA分析 測定サンプルをCPVCとする以外は、上記PVC粒子
表面のESCA分析の方法と同様にした。
(7) Void volume From the pore distribution of CPVC, 0.001
The ratio of the void volume in the range of 0.10.1 μm was calculated. (8) ESCA analysis Except that the measurement sample was CPVC, the method was the same as the method for ESCA analysis on the surface of PVC particles.

【0144】(性能評価) (1)ビカット軟化温度 JIS K 7206(荷重9.8N)に準拠して測定
した。 (2)シャルピー衝撃値 JIS K 7111に準拠して測定した。 (3)吸水率 口径20mm管を押出方向に幅20mmで切り取り、9
0℃の熱水に60日間浸漬して、重量の変化を測定し、
重量の変化率を吸水率(%)とした。 (4)長期内圧クリープ試験 ASTM D 2837に準拠して、90℃の熱水で測
定した。
(Evaluation of Performance) (1) Vicat Softening Temperature Measured in accordance with JIS K 7206 (9.8 N load). (2) Charpy impact value Measured according to JIS K 7111. (3) Water absorption rate A pipe with a diameter of 20 mm was cut in the extrusion direction at a width of 20 mm,
Immerse in hot water of 0 ° C for 60 days, measure the change in weight,
The rate of change in weight was defined as the water absorption (%). (4) Long-term internal pressure creep test Measured with hot water at 90 ° C. in accordance with ASTM D2837.

【0145】(5)表面粗さ(Rmax) 成形品の内面周方向8箇所(45°間隔)の各部で下記
の方法により表面粗さを測定し、その平均値を計算し
て、Rmaxを求めた。即ち、軸方向に8回測定を繰り
返し(リターンせず)、最大値と最小値を除いた6点の
平均値をもって、その箇所の平均粗さとし、8箇所の表
面粗さの平均値を、そのサンプルのRmaxとした。 ・測定機器:東洋精機社製、SURFCOM1.63 ・測定速度:0.3mm/s ・評価長さ:0.25mm ・カットオフ値:0.08mm ・傾斜補正:R 面 ・フィルタ種別:ガウシアン ・λsフィルタ:なし ・予備駆動長さ:カットオフ比/3 ・算出規格:JIS−’94
(5) Surface Roughness (Rmax) The surface roughness was measured by the following method at each of eight places (45 ° intervals) in the circumferential direction of the inner surface of the molded product, and the average value was calculated to obtain Rmax. Was. That is, the measurement is repeated eight times in the axial direction (without returning), the average value of the six points excluding the maximum value and the minimum value is defined as the average roughness of the point, and the average value of the surface roughness of the eight points is calculated. The Rmax of the sample was used. -Measuring equipment: SURFCOM 1.63, manufactured by Toyo Seiki Co., Ltd.-Measurement speed: 0.3 mm / s-Evaluation length: 0.25 mm-Cutoff value: 0.08 mm-Tilt correction: R surface-Filter type: Gaussian-λs Filter: None ・ Preliminary drive length: Cut-off ratio / 3 ・ Calculation standard: JIS-'94

【0146】[0146]

【発明の効果】本発明の塩素化塩化ビニル系樹脂及びそ
の製造方法は、上述の構成よりなるので、熱安定性とゲ
ル化発現性に優れた塩素化塩化ビニル系樹脂が提供され
る。本発明の塩素化塩化ビニル系樹脂成形体は、上述の
構成よりなるので、耐熱性と衝撃強度に優れ、また、本
発明の塩素化塩化ビニル系樹脂管は、上述の構成よりな
るので、耐熱温度が高く、低吸水性であるため、熱水に
よる破壊の無い管として、例えば、給湯管、ライニング
管等の内張り、耐薬品管等に好適に使用できる。更に、
本発明の塩素化塩化ビニル系樹脂管は、優れた平滑性も
併せ持っており、管内の細菌の繁殖やゴムの蓄積を防止
することができるので、プラント用純水配管等にも好適
に使用できる。
As described above, the chlorinated vinyl chloride resin of the present invention and the method for producing the same have the above-mentioned constitutions, so that a chlorinated vinyl chloride resin having excellent heat stability and gelling property is provided. Since the chlorinated vinyl chloride resin molded article of the present invention has the above-described configuration, it has excellent heat resistance and impact strength, and the chlorinated vinyl chloride-based resin pipe of the present invention has the above-described configuration, and thus has high heat resistance. Since the pipe is high in temperature and has low water absorption, it can be suitably used as a pipe which is not broken by hot water, for example, a lining pipe such as a hot water supply pipe and a lining pipe, and a chemical resistant pipe. Furthermore,
The chlorinated vinyl chloride resin pipe of the present invention also has excellent smoothness and can prevent the propagation of bacteria and accumulation of rubber in the pipe, so that it can be suitably used for pure water piping for plants and the like. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA24 AA85 AB13 AD03 AD06 AF10Y AF15Y AF23Y BA01 BB06 BC05 4J100 AA02Q AA03Q AB02Q AC03P AC04Q AG04Q BB01H CA01 CA04 EA13 HA21 JA67  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F071 AA24 AA85 AB13 AD03 AD06 AF10Y AF15Y AF23Y BA01 BB06 BC05 4J100 AA02Q AA03Q AB02Q AC03P AC04Q AG04Q BB01H CA01 CA04 EA13 HA21 JA67

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率が60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率が30〜40容量%、及び水銀圧入法により圧力が0
〜196MPaで測定した細孔容積分布において、0.
001〜0.1μm の空隙容積が全空隙容積の2〜15
容積%であることを特徴とする塩素化塩化ビニル系樹
脂。
1. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has carbon atoms and chlorine atoms in particle surface analysis by electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by the mercury intrusion method is 30 to 40% by volume, and the pressure is 0 by the mercury intrusion method.
In the pore volume distribution measured at ~ 196MPa, the
The void volume of 001 to 0.1 μm is 2 to 15 of the total void volume.
Chlorinated vinyl chloride resin characterized by volume%.
【請求項2】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率が60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率が30〜40容量%、及びBET比表面積が2〜12
2 /gであることを特徴とする塩素化塩化ビニル系樹
脂。
2. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has a carbon atom and a chlorine atom in a particle surface analysis by an electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the BET specific surface area is 2 to 12%.
A chlorinated vinyl chloride resin characterized by having a m 2 / g.
【請求項3】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率が60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率が30〜40容量%、水銀圧入法により圧力が0〜1
96MPaで測定した細孔容積分布において、0.00
1〜0.1μm の空隙容積が全空隙容積の2〜15容積
%、及び1g/kgテトラヒドロフラン溶液の吸光度
(セル長1cm、測定温度23℃)が、波長235nm
において0.8以下であることを特徴とする塩素化塩化
ビニル系樹脂。
3. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has carbon atoms and chlorine atoms in particle surface analysis by electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the pressure is 0 to 1 by a mercury intrusion method.
In the pore volume distribution measured at 96 MPa, 0.00
The void volume of 1 to 0.1 μm is 2 to 15% by volume of the total void volume, and the absorbance of 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) is 235 nm wavelength.
Chlorinated vinyl chloride resin characterized in that the ratio is 0.8 or less.
【請求項4】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率が60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率が30〜40容量%、BET比表面積が2〜12m2
/g、及び1g/kgテトラヒドロフラン溶液の吸光度
(セル長1cm、測定温度23℃)が、波長235nm
において0.8以下であることを特徴とする塩素化塩化
ビニル系樹脂。
4. A chlorinated vinyl chloride-based resin obtained by chlorinating a vinyl chloride-based resin, wherein the vinyl chloride-based resin has a carbon atom and a chlorine atom in a particle surface analysis by electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the BET specific surface area is 2 to 12 m 2.
/ G, and the absorbance of a 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) was measured at a wavelength of 235 nm.
Chlorinated vinyl chloride resin characterized in that the ratio is 0.8 or less.
【請求項5】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率は60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率が30〜40容量%、水銀圧入法により圧力が0〜1
96MPaで測定した細孔容積分布において、0.00
1〜0.1μm の空隙容積が全空隙容積の2 〜15容積
%、及び1g/kgテトラヒドロフラン溶液の吸光度
(セル長1cm、測定温度23℃)が、波長235nm
において0.2以下であることを特徴とする塩素化塩化
ビニル系樹脂。
5. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has carbon atoms and chlorine atoms in particle surface analysis by electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the pressure is 0 to 1 by a mercury intrusion method.
In the pore volume distribution measured at 96 MPa, 0.00
The pore volume of 1 to 0.1 μm is 2 to 15% by volume of the total pore volume, and the absorbance of 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) is 235 nm.
A chlorinated vinyl chloride-based resin, wherein the chlorinated vinyl chloride-based resin is 0.2 or less.
【請求項6】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、前記塩化ビニル系樹脂
は、電子分光化学分析(ESCA)による粒子表面分析
において、炭素原子と塩素原子との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が0.6を超えるものであり、前記塩素
化塩化ビニル系樹脂は、塩素含有率は60〜72重量
%、水銀圧入法により圧力196MPaで測定した空隙
率は30〜40容量%、BET比表面積が2〜12m2
/g、及び1g/kgテトラヒドロフラン溶液の吸光度
(セル長1cm、測定温度23℃)は、波長235nm
において0.2以下であることを特徴とする塩素化塩化
ビニル系樹脂。
6. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has carbon atoms and chlorine atoms in particle surface analysis by electron spectrochemical analysis (ESCA). Has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of more than 0.6, and the chlorinated vinyl chloride resin has a chlorine content of 60 to 72% by weight. The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the BET specific surface area is 2 to 12 m 2.
/ G, and the absorbance of the 1 g / kg tetrahydrofuran solution (cell length 1 cm, measurement temperature 23 ° C.) were measured at a wavelength of 235 nm.
A chlorinated vinyl chloride-based resin, wherein the chlorinated vinyl chloride-based resin is 0.2 or less.
【請求項7】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂の製造方法であって、前記塩化ビニ
ル系樹脂は、BET比表面積値が、1.3〜8m2 /g
であり、電子分光化学分析(ESCA)による粒子表面
分析において、炭素元素と塩素元素との1S結合エネル
ギー値( eV) におけるピーク比(塩素元素ピーク×2
/炭素元素ピーク)が0.6を超えるものであり、ま
た、前記塩素化は、塩化ビニル系樹脂を水性媒体中で懸
濁状態となした状態で、反応器内に液体塩素又は気体塩
素を導入し、反応温度を70〜135℃の範囲で反応を
行うことを特徴とする塩素化塩化ビニル系樹脂の製造方
法。
7. A method for producing a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has a BET specific surface area of 1.3 to 8 m 2 / g.
In the particle surface analysis by electron spectrochemical analysis (ESCA), the peak ratio (eV) of the carbon element and the chlorine element in the 1S bond energy value (eV) (chlorine element peak × 2)
/ Carbon element peak) exceeds 0.6, and in the chlorination, liquid chlorine or gaseous chlorine is introduced into a reactor in a state where a vinyl chloride resin is suspended in an aqueous medium. A method for producing a chlorinated vinyl chloride resin, which comprises introducing and reacting at a reaction temperature of 70 to 135 ° C.
【請求項8】 塩化ビニル系樹脂のBET比表面積が
1.5〜5m2 /gである請求項7記載の塩素化塩化ビ
ニル樹脂の製造方法。
8. The method for producing a chlorinated vinyl chloride resin according to claim 7, wherein the BET specific surface area of the vinyl chloride resin is 1.5 to 5 m 2 / g.
【請求項9】 塩化ビニル系樹脂の電子分光化学分析
(ESCA)による粒子表面分析における前記ピーク比
が、0.7を超えるものである請求項7 又は8記載の塩
素化塩化ビニル系樹脂の製造方法。
9. The production of a chlorinated vinyl chloride resin according to claim 7, wherein the peak ratio in the particle surface analysis of the vinyl chloride resin by electron spectrochemical analysis (ESCA) exceeds 0.7. Method.
【請求項10】 請求項1〜6いずれかに記載の塩素化
塩化ビニル系樹脂を成形して得られる塩素化塩化ビニル
系樹脂成形体であって、JIS K 7206に準拠し
た方法で測定した9.8N荷重時のビカット軟化温度が
145℃以上であることを特徴とする塩素化塩化ビニル
系樹脂成形体。
10. A chlorinated vinyl chloride-based resin molded article obtained by molding the chlorinated vinyl chloride-based resin according to claim 1, which is measured by a method according to JIS K7206. A chlorinated vinyl chloride resin molded product having a Vicat softening temperature of at least 145 ° C. under a load of 8 N.
【請求項11】 請求項1〜6いずれかに記載の塩素化
塩化ビニル系樹脂を成形して得られる塩素化塩化ビニル
系樹脂成形体であって、JIS K 7206に準拠し
た方法で測定した9.8N荷重時のビカット軟化温度が
145℃以上であり、JIS K 7111に準拠した
方法で測定したシャルピー衝撃値が10kJ/m2 以上
であることを特徴とする塩素化塩化ビニル系樹脂成形
体。
11. A chlorinated vinyl chloride resin molded article obtained by molding the chlorinated vinyl chloride resin according to any one of claims 1 to 6, which is measured by a method in accordance with JIS K7206. A chlorinated vinyl chloride-based resin molded product having a Vicat softening temperature under a load of 8 N of 145 ° C. or more and a Charpy impact value of 10 kJ / m 2 or more measured by a method according to JIS K 7111.
【請求項12】 請求項1〜6いずれかに記載の塩素化
塩化ビニル系樹脂を成形して得られる塩素化塩化ビニル
系樹脂成形体であって、JIS K 7206に準拠し
た方法で測定した9.8N荷重時のビカット軟化温度が
145℃以上であり、JIS K 7111に準拠した
方法で測定したシャルピー衝撃値が20kJ/m2 以上
であることを特徴とする塩素化塩化ビニル系樹脂成形
体。
12. A chlorinated vinyl chloride resin molded article obtained by molding the chlorinated vinyl chloride resin according to claim 1, which is measured by a method according to JIS K7206. A chlorinated vinyl chloride resin molded article characterized in that the Vicat softening temperature under a load of 8 N is 145 ° C. or higher and the Charpy impact value measured by a method according to JIS K 7111 is 20 kJ / m 2 or more.
【請求項13】 請求項1〜6いずれかに記載の塩素化
塩化ビニル系樹脂を成形して得られる塩素化塩化ビニル
系樹脂管であって、JIS K 7206に準拠した方
法で測定した9.8N荷重時のビカット軟化温度が12
0℃以上であり、90℃熱水浸漬試験を60日間行った
後の吸水率が1.5%以下であり、ASTM D 28
37に準拠した90℃での長期内圧クリープ試験で、破
壊時間1000時間経過時における破壊応力が4.5M
Pa以上であることを特徴とする塩素化塩化ビニル系樹
脂管。
13. A chlorinated vinyl chloride-based resin tube obtained by molding the chlorinated vinyl chloride-based resin according to claim 1, which is measured by a method according to JIS K7206. Vicat softening temperature under 8N load is 12
0 ° C. or higher, the water absorption after performing a hot water immersion test at 90 ° C. for 60 days is 1.5% or less, and ASTM D 28
In a long-term internal pressure creep test at 90 ° C. in accordance with No. 37, the breaking stress after a lapse of 1000 hours was 4.5 M.
A chlorinated vinyl chloride resin tube having a pressure of not less than Pa.
【請求項14】 請求項1〜6いずれかに記載の塩素化
塩化ビニル系樹脂を成形して得られる塩素化塩化ビニル
系樹脂管であって、JIS K 7206に準拠した方
法で測定した9.8N荷重時のビカット軟化温度が12
0℃以上であり、90℃熱水浸漬試験を60日間行った
後の吸水率が1.5%以下であり、ASTM D 28
37に準拠した90℃での長期内圧クリープ試験で、破
壊時間1000時間経過時における破壊応力が4.5M
Pa以上であり、表面粗さRmaxが5.0μm 以下で
あることを特徴とする塩素化塩化ビニル系樹脂管。
14. A chlorinated vinyl chloride-based resin tube obtained by molding the chlorinated vinyl chloride-based resin according to any one of claims 1 to 6, which is measured by a method in accordance with JIS K7206. Vicat softening temperature under 8N load is 12
0 ° C. or higher, the water absorption after performing a hot water immersion test at 90 ° C. for 60 days is 1.5% or less, and ASTM D 28
In a long-term internal pressure creep test at 90 ° C. in accordance with No. 37, the breaking stress after a lapse of 1000 hours was 4.5 M.
A chlorinated vinyl chloride resin tube having a surface roughness Rmax of not more than Pa and a surface roughness Rmax of not more than 5.0 μm.
【請求項15】 給湯用の樹脂管であることを特徴とす
る請求項13又は14記載の塩素化塩化ビニル系樹脂
管。
15. The chlorinated vinyl chloride resin tube according to claim 13, which is a resin tube for hot water supply.
【請求項16】 金属管の内側に請求項13又は14記
載の塩素化塩化ビニル系樹脂管が内張りされていること
を特徴とするライニング管。
16. A lining pipe, characterized in that the chlorinated vinyl chloride resin pipe according to claim 13 is lined inside a metal pipe.
JP37215899A 1999-12-28 1999-12-28 Chlorinated vinyl chloride resin, its production method, and its molded article Pending JP2001181340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37215899A JP2001181340A (en) 1999-12-28 1999-12-28 Chlorinated vinyl chloride resin, its production method, and its molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37215899A JP2001181340A (en) 1999-12-28 1999-12-28 Chlorinated vinyl chloride resin, its production method, and its molded article

Publications (1)

Publication Number Publication Date
JP2001181340A true JP2001181340A (en) 2001-07-03

Family

ID=18499956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37215899A Pending JP2001181340A (en) 1999-12-28 1999-12-28 Chlorinated vinyl chloride resin, its production method, and its molded article

Country Status (1)

Country Link
JP (1) JP2001181340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203858A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203858A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride resin
JPWO2020203858A1 (en) * 2019-03-29 2021-10-28 積水化学工業株式会社 Chlorinated vinyl chloride resin
CN113646339A (en) * 2019-03-29 2021-11-12 积水化学工业株式会社 Chlorinated polyvinyl chloride resin
KR20210148098A (en) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 Chlorinated vinyl chloride resin
JP7016953B2 (en) 2019-03-29 2022-02-07 積水化学工業株式会社 Chlorinated vinyl chloride resin
KR102455105B1 (en) 2019-03-29 2022-10-14 세키스이가가쿠 고교가부시키가이샤 Chlorinated vinyl chloride resin
CN113646339B (en) * 2019-03-29 2022-12-23 积水化学工业株式会社 Chlorinated polyvinyl chloride resin

Similar Documents

Publication Publication Date Title
WO2008062526A1 (en) Chlorinated vinyl chloride resins and process for production
JP7379575B2 (en) Method for chlorinating polyvinyl chloride
WO1999067305A1 (en) Chlorinated vinyl chloride-based resin and molded articles
JP2001181340A (en) Chlorinated vinyl chloride resin, its production method, and its molded article
JP4331813B2 (en) Method for producing chlorinated vinyl chloride resin particles and resin particles obtained thereby
JP2000273121A (en) Chlorinated polyvinyl chloride-based resin and its manufacture
JP2000186113A (en) Molded article of heat resistant polyvinyl chloride based resin and pipe comprising heat resistant polyvinyl chloride based resin
JP3814733B2 (en) Method for producing chlorinated vinyl chloride resin
JP2001278992A (en) Molded product of chlorinated vinyl chloride resin and resin pipe
JP3487742B2 (en) Method for producing chlorinated vinyl chloride resin
JP4555494B2 (en) Vinyl chloride resin composition
JPH11158221A (en) Vinyl chloride-based resin and chlorinated vinyl chloride-based resin
JPH11209425A (en) Production of chlorinated vinyl chloride resin
JP2000136213A (en) Chlorinated vinyl chloride-based resin and its production
JP2006322013A (en) Method for producing chlorinated vinyl chloride-based resin
JP3802668B2 (en) Method for producing chlorinated vinyl chloride resin
KR102498961B1 (en) Chlorinated vinyl chloride resin
JP2002060421A (en) Method for producing chlorinated vinyl chloride resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
JP2000352481A (en) Chlorinated vinyl chloride resin pipe, joint, plate and lining pipe
JP3481099B2 (en) Chlorinated vinyl chloride resin and production method
JPH11124407A (en) Production of chlorinated vinyl chloride-based resin
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JPH1192525A (en) Preparation of chlorinated vinyl chloride-based resin
JPH11140122A (en) Manufacture of chlorinated vinyl chloride resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Effective date: 20090204

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090610