JP3863279B2 - Method for producing chlorinated vinyl chloride resin - Google Patents

Method for producing chlorinated vinyl chloride resin Download PDF

Info

Publication number
JP3863279B2
JP3863279B2 JP04520898A JP4520898A JP3863279B2 JP 3863279 B2 JP3863279 B2 JP 3863279B2 JP 04520898 A JP04520898 A JP 04520898A JP 4520898 A JP4520898 A JP 4520898A JP 3863279 B2 JP3863279 B2 JP 3863279B2
Authority
JP
Japan
Prior art keywords
pvc
vinyl chloride
cpvc
chloride resin
chlorination reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04520898A
Other languages
Japanese (ja)
Other versions
JPH11100411A (en
Inventor
英明 吉富
由紀 丸山
啓二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP04520898A priority Critical patent/JP3863279B2/en
Publication of JPH11100411A publication Critical patent/JPH11100411A/en
Application granted granted Critical
Publication of JP3863279B2 publication Critical patent/JP3863279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens

Description

【0001】
【発明の属する技術分野】
本発明は、塩素化塩化ビニル系樹脂の製造方法に関し、詳しくは加工性に優れた塩素化塩化ビニル系樹脂の製造方法に関する。
【0002】
【従来の技術】
塩素化塩化ビニル系樹脂(以下「CPVC」という)は、通常塩化ビニル系樹脂(以下「PVC」という)を後塩素化して得られる。
【0003】
CPVCは、PVCの長所といわれる優れた特性をそのまま保有し、かつPVCの欠点といわれる性質が改良されているので、有用な樹脂として多方面の用途に使用されている。即ち、CPVCは、PVCの長所といわれる優れた難燃性、耐候性、耐薬品性などを保有し、さらにPVCよりも熱変形温度が20〜40℃も高いため、PVCの使用可能な上限温度が60〜70℃付近であるのに対して、CPVCは100℃近くでも使用可能であり、耐熱パイプ、耐熱継手、耐熱バルブなどに好適に使用されている。
【0004】
しかしながら、上述したように、CPVCはPVCより熱変形温度が高いため、PVCより高温で加熱溶融しなければ成形加工することができない。
ところが、CPVCは一般に熱安定性(初期着色性、耐熱安定性)等が悪く、このように高い温度で加工しようとすれば着色が著しく、分解してしまうこともある。そのため熱変形温度が高いにも関わらず、PVCと同等の低い温度で成形加工しなければならない。従って、CPVCの成形加工はPVCと較べて困難であり、十分にゲル化させることができず、成形体の衝撃強度が劣るという問題点があった。
【0005】
熱安定性の良好なCPVCを製造する方法は、種々提案されている。例えば、特公昭45−30833号公報では、特定の重合方法によって作られた特定粒径のPVCを原料とし、これを水性媒体中に懸濁させ、この中へ酸素が0.05〜0.35容量%含まれている塩素を特定の流量で供給して55〜80℃の温度でPVCを塩素化することにより、熱安定性の良好なCPVCを得る方法が開示されている。
しかしながら、PVC原料が特定の重合方法によって作られた特定粒径のPVCに限定されているため実用上制約が多く、塩素中に酸素を含有させるため熱安定性も格段に優れているとはいえなかった。
【0006】
また、特表昭57−501285号公報では、PVCを高圧密閉容器に入れて水性媒体中に懸濁させ、水性媒体から全ての酸素を取り除いた後に塩素を圧入し、紫外線を照射しながら1.76kg/cm2 以上の加圧下で65〜120℃の比較的高い温度でPVCを塩素化することにより、熱安定性の良好なCPVCを得る方法が開示されている。
しかしながら、高温高圧下で紫外線を照射するには、これに耐える高価な装置が必要とされ、コストの高いものとなり、また、熱安定性も十分なものでなかった。
【0007】
このことは、以下のように説明される。PVCを水懸濁下で塩素化する方法としては、光照射下で行う方法、または加熱加圧下で光照射せずに行う方法が行われている。光照射下で塩素化反応を行う方法は80℃以下の比較的低温で行われているが、加熱加圧下で塩素化反応を行う方法は、一般にPVCのガラス転移温度よりも高い100℃を超える温度で反応が行われている。これは、光照射による反応促進が行えないため、温度を高くすることで反応速度を早くしなくてはならないからである。例えば、特公昭48−6194号公報では塩素化反応を100〜140℃で、蒸気圧+0.14kg/cm2 以上の圧力で行う方法が開示されている。
【0008】
ところが、PVCのガラス転移温度よりも高い温度で塩素化反応を行うと、PVC樹脂内部の微細な形態が変化し、得られたCPVCは光照射反応品に比較して成形加工性の点で劣ったものとなる。光照射なしに加熱加圧下で塩素化反応を行うに際しても、100℃以下の比較的低温で行われることが好ましい。
しかしながら、100℃以下の比較的低温で光照射せず塩素化反応を行うと、反応時間が長くなるという欠点があった。この点を改善するための技術として、塩素化反応時に、膨潤剤として、クロロホルム、四塩化炭素等を添加する方法が知られているが、反応後の溶剤の分離回収が困難なことと、得られるCPVCの熱安定性が低下する等の問題点があった。
【0009】
また、光照射で得られたCPVCは、加熱加圧下で光照射なしで得られたCPVCに比較して熱安定性の点で劣るという問題点もあった。
【0010】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するものであって、光照射せず、膨潤剤も使用せず、塩素化反応を行い、加工性に優れ、熱安定性に優れたCPVCの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の塩素化塩化ビニル系樹脂の製造方法は、塩化ビニル系樹脂を水懸濁状態で塩素化反応を行うにあたり、塩化ビニル系樹脂に対して過酸化水素を5〜30ppm/Hrの添加速度で、全添加量が塩化ビニル系樹脂に対して60〜200ppmになるように、連続的にまたは断続的に添加し、65〜90℃の温度で塩素化反応を行うことを特徴とする。
【0012】
本発明では、塩素化反応の温度は低くなると反応に長時間を要し、生産性に劣り、高くなると得られるCPVCの成形加工性が損なわれるので、65〜90℃に制限される。
【0013】
本発明の過酸化水素の添加速度は小さくなると反応速度が遅く過酸化水素の添加効果が発揮されず、大きくなると熱安定性が損なわれるので、PVCに対して5〜30ppm/Hrに制限される。
【0014】
本発明では、過酸化水素の添加効果を発揮させるために、PVCを塩素化する過程で、塩素化反応の開始時より末期に到るまで連続的または断続的に過酸化水素を添加する。好ましくは塩素導入の直後より過酸化水素の添加を開始し、反応終了前の1時間から30分前に添加を停止する。
【0015】
本発明では、過酸化水素の全添加量は、少なくなると反応の促進効果が得られず、多くなると熱安定性が損なわれるので、PVCに対して60〜200ppmの範囲に制限され、60〜150ppmが好ましい。
【0016】
本発明で用いられる過酸化水素は、純粋な過酸化水素の状態で添加されてもよいが、水溶液の状態で添加されるのが好ましい。
【0017】
本発明で用いられるPVCとしては特に制限はないが、得られるCPVCの加工性が良好なものであるためには、水懸濁重合法によって得られた、高い空隙率を有するもの及び/または比表面積が大であるものが好ましい。PVCの空隙率は、低くなると塩素化反応に長時間かかるので、20容量%以上が好ましい。また、比表面積は小さくなると塩素化反応に長時間がかかるうえ、得られるCPVCの熱安定性も低下するので、1m2 /g以上が好ましい。
【0018】
上記PVCの平均粒子径は小さくなると取り扱いが難しくなり、大きくなると塩素化反応に長時間かかるので、100〜200μmが好ましい。PVCの平均重合度としては成形加工性に優れた600〜2000の範囲のものが好適に用いられる。水懸濁重合法としては、公知の方法が好適に用いられる。
【0019】
本発明で用いられるPVCは、例えば、以下の製造方法により得られる。
重合器にまず塩化ビニル系単量体、水性媒体、分散剤を投入し、更に重合開始剤を投入する。この時水性媒体/塩化ビニル系単量体の重量比率は1〜2が好ましい。
【0020】
次いで、所定の重合温度に昇温して重合反応を行う。塩化ビニル系単量体の重合転化率が70重量%〜90重量%の所定の割合に達した後、冷却、排ガス、脱モノマーの処理を行い、PVCを含むスラリーを得る。このスラリーを脱水乾燥することによりPVCが得られる。
【0021】
重合器は攪拌器、バッフル、ジャケットを備えたステンレス製の耐圧容器を使用するのが好ましい。この時、必要に応じてリフラックスコンデンサーを備えたものを用いることができる。
【0022】
上記塩化ビニル系単量体とは、塩化ビニル単量体単独、又は塩化ビニル単量体と共重合可能な他の単量体との混合物のことをいう。
上記塩化ビニルと共重合可能な他の単量体としては、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル;エチレン、プロピレン等のオレフィン;無水マレイン酸;アクリロニトリル;スチレン;塩化ビニリデンなど公知の単量体が例示されるが、これらに限定されるものではない。
【0023】
上記分散剤としては一般に塩化ビニルの懸濁重合に使用されるものが好適に用いられる。このような分散剤としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等水溶性セルロース類;部分ケン化ポリビニルアルコール、ポリエチレンオキサイド、アクリル酸重合体、ゼラチン等の水溶性高分子;ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート等の水溶性乳化剤などが挙げられ、これらは単独で用いられてもよく、2種以上が併用されてもよい。
上記分散剤の使用量としては、塩化ビニル系単量体の重量に対して0.01〜0.5重量%の範囲が好ましい。
【0024】
上記重合開始剤としては一般に塩化ビニルの懸濁重合に使用される油溶性の開始剤が好適に用いられる。このような重合開始剤としては、例えば、ジ−2−エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート、α−クミルパーオキシネオデカーネート、t−ブチルパーオキシネオデカーネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4−トリメチルペンチル−2−パーオキシフェノキシアセテート、ラウロイルパーオキサイド等が挙げられ、これらは単独で用いられてもよく、2種以上が併用されてもよい。
上記重合開始剤の使用量としては、塩化ビニル系単量体の重量に対して0.001〜2重量%の範囲が好ましい。
【0025】
さらに、塩化ビニル系単量体の重合に通常使用される重合調整剤、連鎖移動剤、pH調整剤、帯電防止剤、架橋剤、安定剤、充填剤、酸化防止剤、スケール防止剤等が添加されてもよい。
【0026】
本発明においては、上記の方法によって得られたPVCを水性媒体中で塩素化する場合には、反応器中に懸濁重合で得られたPVCを水性媒体から分離せずにそのまま使用するか、または、上記懸濁物からPVCを分離した後、PVCを再び別の水性媒体中に分散させる。
【0027】
本発明においては、反応器中を真空にして酸素を除去した後、65〜90℃の範囲で、好ましくはPVCのガラス転移温度以下である70〜85℃の範囲に昇温し、塩素化反応を開始する。
【0028】
上記塩素の添加の直後より、反応促進のため過酸化水素の添加を開始する。過酸化水素はPVCに対して5〜30ppm/Hrの添加速度で添加することで塩素化反応は順調に進行する。また、全添加量はPVCに対し60〜200ppmに制限され、60〜150ppmの範囲が好ましい。
【0029】
上記過酸化水素は水で適当な濃度に希釈して用いられてもよい。過酸化水素は初期に一括添加されるよりも、反応継続の間、連続的、又は断続的に添加を続けることが好ましい。
【0030】
塩素化反応はCPVC中の塩素含有量が所定の重量%に到達した時に、残存塩素を排ガスし、冷却して、反応を停止する。
得られたCPVCスラリーを水洗して塩酸を除去し、必要に応じて中和剤等を加え、脱水、乾燥の工程を経てCPVC粉末を得る。
本発明で得られるCPVCの塩素含有量は特に限定されないが、60〜70重量%とするのが好ましい。
【0031】
【発明の実施の形態】
以下に実施例を掲げて本発明を詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0032】
(実施例1)
内容積300リットルのグラスライニング製反応器に、脱イオン水200kgと平均重合度1000のPVC40kgを投入し、攪拌してPVCを水中に分散させた後反応器内を加熱して、70℃に昇温した。次いで、反応器中を真空にして酸素を除去した後、塩素ガスを塩素分圧が0.4MPaになるよう導入し、次いで1000ppmの過酸化水素水を0.8L/Hr(PVCに対して過酸化水素として20ppm/Hr)となるよう添加し塩素化反応を開始した。塩素化反応は70℃、塩素分圧0.4MPa一定の条件で、反応中も上記速度で一定量の過酸化水素水の添加を続けた。塩素含有量が66.5重量%に達した時点で塩素ガスの供給を停止し、塩素化反応を終了した。
次いで、窒素ガスを通気して、未反応塩素を除去し、得られたCPVCスラリーを水酸化ナトリウムで中和し、水で洗浄し、脱水した後、乾燥して粉末状のCPVCを得た。
【0033】
(実施例2〜5、比較例1〜4)
塩素化反応の温度並びに過酸化水素の添加速度及び添加量を表1に示す通り行った事以外は実施例1と同様に行い、CPVCを得た。
【0034】
(実施例6)
内容積300リットルのグラスライニング製反応器に、脱イオン水200kgと平均重合度1000のPVC40kgを投入し、攪拌してPVCを水中に分散させた後反応器内を加熱して、70℃に昇温した。次いで、反応器中を真空にして酸素を除去した後、塩素ガスを塩素分圧が0.8MPaになるよう導入し、次いで1000ppmの過酸化水素水を0.4L/Hr(PVCに対して過酸化水素として10ppm/Hr)となるよう添加し塩素化反応を開始した。塩素化反応は70℃、塩素分圧0.8MPa一定の条件で、反応中も上記速度で一定量の過酸化水素水の添加を続けた。塩素含有量が66.5重量%に達した時点で塩素ガスの供給を停止し、塩素化反応を終了した。
次いで、窒素ガスを通気して、未反応塩素を除去し、得られたCPVCスラリーを水酸化ナトリウムで中和し、水で洗浄し、脱水した後、乾燥して粉末状のCPVCを得た。
【0035】
(実施例7)
塩素化反応の温度及び過酸化水素の添加量を表1に示す通り行った事以外は実施例6と同様に行い、CPVCを得た。
【0036】
尚、上記実施例及び比較例で得られたCPVCの物性評価を以下の通り行い、その結果を表1に示す。
(1)ゲル化時間
CPVC100重量部、ブチルステアレート0.5重量部、MBS樹脂10重量部、加工助剤0.5重量部及びマレート錫系安定剤2重量部からなる配合物60gをプラストミル(東洋精機社製「ラボプラストミル」)を使用して、回転数40rpm、試験温度190℃で混練し、混練トルクがピークになる時の時間をゲル化時間とした。
【0037】
(2)熱安定性
上記配合物を2本の8インチロールに供給し、190℃で3分混練して、厚さ0.5mmのシートを作成した。このシートをギヤオーブン中で200℃の温度で加熱し、黒化するまでの時間(分)を測定した。
【0038】
(3)抗張力、伸び
上記と同様の方法で、厚さ0.5mmのシートを作成した。このシートを重ね合わせ195℃で5分間プレスして、厚さ2mmのプレス板を得た。このプレス板より試験片を切り出し、JIS K 7113に準拠して測定した。
【0039】
(4)シャルピー衝撃値
上記と同様の方法で、厚さ3mmのプレス板を作成し、このプレス板より試験片を切り出して、JIS K 7111に準拠して測定した。
【0040】
【表1】

Figure 0003863279
【0041】
【発明の効果】
本発明のCPVCの製造方法は、上述の通りであり、熱安定性に優れ、ゲル化し易く、耐熱性に優れ、成形性のよいCPVCを効率よく製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a chlorinated vinyl chloride resin, and more particularly to a method for producing a chlorinated vinyl chloride resin having excellent processability.
[0002]
[Prior art]
A chlorinated vinyl chloride resin (hereinafter referred to as “CPVC”) is usually obtained by post-chlorinating a vinyl chloride resin (hereinafter referred to as “PVC”).
[0003]
CPVC retains the excellent properties said to be the advantages of PVC as it is, and has improved properties called PVC defects, so it is used as a useful resin in various applications. That is, CPVC possesses excellent flame retardancy, weather resistance, chemical resistance, etc., which are said to be the advantages of PVC, and further has a heat deformation temperature of 20 to 40 ° C. higher than PVC, so the upper limit temperature at which PVC can be used. Is around 60-70 ° C., CPVC can be used even near 100 ° C., and is suitably used for heat-resistant pipes, heat-resistant joints, heat-resistant valves, and the like.
[0004]
However, as described above, since CPVC has a higher heat deformation temperature than PVC, it cannot be molded unless heated and melted at a higher temperature than PVC.
However, CPVC generally has poor thermal stability (initial colorability, heat resistance stability) and the like, and if it is intended to be processed at such a high temperature, the coloration may be remarkable and may be decomposed. Therefore, although it has a high thermal deformation temperature, it must be molded at a low temperature equivalent to PVC. Therefore, the molding process of CPVC is difficult as compared with PVC, and cannot be sufficiently gelled, and there is a problem that the impact strength of the molded article is inferior.
[0005]
Various methods for producing CPVC having good thermal stability have been proposed. For example, in Japanese Examined Patent Publication No. 45-30833, PVC having a specific particle size produced by a specific polymerization method is used as a raw material, suspended in an aqueous medium, and oxygen is added to 0.05 to 0.35 therein. There is disclosed a method for obtaining CPVC having good thermal stability by supplying chlorine contained in a volume% at a specific flow rate and chlorinating PVC at a temperature of 55 to 80 ° C.
However, there are many practical restrictions because the PVC raw material is limited to PVC having a specific particle size made by a specific polymerization method, and thermal stability is remarkably excellent because oxygen is contained in chlorine. There wasn't.
[0006]
In JP-A-57-501285, PVC is suspended in an aqueous medium by putting it in a high-pressure sealed container, all oxygen is removed from the aqueous medium, chlorine is injected, and ultraviolet rays are irradiated. A method for obtaining CPVC having good thermal stability by chlorinating PVC at a relatively high temperature of 65 to 120 ° C. under a pressure of 76 kg / cm 2 or more is disclosed.
However, in order to irradiate ultraviolet rays under high temperature and high pressure, an expensive device capable of withstanding this is required, resulting in high cost and insufficient thermal stability.
[0007]
This is explained as follows. As a method for chlorinating PVC under suspension in water, a method performed under light irradiation or a method performed without light irradiation under heat and pressure is performed. The method of performing the chlorination reaction under light irradiation is performed at a relatively low temperature of 80 ° C. or less, but the method of performing the chlorination reaction under heating and pressure generally exceeds 100 ° C., which is higher than the glass transition temperature of PVC. The reaction is taking place at temperature. This is because the reaction cannot be accelerated by light irradiation, and the reaction rate must be increased by increasing the temperature. For example, Japanese Examined Patent Publication No. 48-6194 discloses a method in which the chlorination reaction is performed at 100 to 140 ° C. at a vapor pressure of +0.14 kg / cm 2 or more.
[0008]
However, when the chlorination reaction is performed at a temperature higher than the glass transition temperature of PVC, the fine form inside the PVC resin changes, and the obtained CPVC is inferior in terms of molding processability compared to the light irradiation reaction product. It will be. Even when the chlorination reaction is performed under heat and pressure without light irradiation, it is preferably performed at a relatively low temperature of 100 ° C. or less.
However, when the chlorination reaction is carried out without light irradiation at a relatively low temperature of 100 ° C. or lower, there is a drawback that the reaction time becomes long. As a technique for improving this point, a method of adding chloroform, carbon tetrachloride, etc. as a swelling agent during the chlorination reaction is known, but it is difficult to separate and recover the solvent after the reaction. There was a problem that the thermal stability of the obtained CPVC was lowered.
[0009]
In addition, CPVC obtained by light irradiation has a problem that it is inferior in thermal stability as compared with CPVC obtained without light irradiation under heat and pressure.
[0010]
[Problems to be solved by the invention]
The present invention solves the above-described problems, and provides a method for producing CPVC that does not irradiate light, does not use a swelling agent, performs a chlorination reaction, has excellent workability, and has excellent thermal stability. There is to do.
[0011]
[Means for Solving the Problems]
The method for producing a chlorinated vinyl chloride resin of the present invention is such that, when the chlorination reaction is carried out in a water suspension state of the vinyl chloride resin, hydrogen peroxide is added at a rate of 5 to 30 ppm / Hr with respect to the vinyl chloride resin. Then, it is added continuously or intermittently so that the total addition amount is 60 to 200 ppm relative to the vinyl chloride resin, and the chlorination reaction is performed at a temperature of 65 to 90 ° C.
[0012]
In the present invention, if the temperature of the chlorination reaction is low, the reaction takes a long time, the productivity is inferior, and if it is high, the molding processability of the obtained CPVC is impaired, so it is limited to 65 to 90 ° C.
[0013]
When the addition rate of hydrogen peroxide of the present invention is reduced, the reaction rate is slow and the effect of addition of hydrogen peroxide is not exerted. When the addition rate is increased, the thermal stability is impaired, so it is limited to 5 to 30 ppm / Hr with respect to PVC. .
[0014]
In the present invention, in order to exert the effect of adding hydrogen peroxide, in the process of chlorinating PVC, hydrogen peroxide is added continuously or intermittently from the start to the end of the chlorination reaction. Preferably, the addition of hydrogen peroxide is started immediately after the introduction of chlorine, and the addition is stopped from 1 hour to 30 minutes before the end of the reaction.
[0015]
In the present invention, if the total amount of hydrogen peroxide is reduced, the effect of promoting the reaction cannot be obtained, and if it is increased, the thermal stability is impaired. Therefore, it is limited to the range of 60 to 200 ppm with respect to PVC, and 60 to 150 ppm. Is preferred.
[0016]
The hydrogen peroxide used in the present invention may be added in a pure hydrogen peroxide state, but is preferably added in an aqueous solution state.
[0017]
Although there is no restriction | limiting in particular as PVC used by this invention, In order to have the favorable workability of CPVC obtained, what has a high porosity and / or ratio obtained by the water suspension polymerization method is used. Those having a large surface area are preferred. When the porosity of PVC is low, the chlorination reaction takes a long time, so 20% by volume or more is preferable. Further, if the specific surface area is small, it takes a long time for the chlorination reaction, and the thermal stability of the resulting CPVC is also lowered, so 1 m 2 / g or more is preferable.
[0018]
Handling becomes difficult when the average particle size of the PVC becomes small, and it takes a long time for the chlorination reaction when the average particle size becomes large, so 100 to 200 μm is preferable. As the average degree of polymerization of PVC, those having a range of 600 to 2000 excellent in moldability are preferably used. As the water suspension polymerization method, a known method is preferably used.
[0019]
The PVC used in the present invention is obtained, for example, by the following production method.
First, a vinyl chloride monomer, an aqueous medium and a dispersing agent are charged into the polymerization vessel, and a polymerization initiator is further charged. At this time, the weight ratio of the aqueous medium / vinyl chloride monomer is preferably 1 to 2.
[0020]
Next, the temperature is raised to a predetermined polymerization temperature to carry out the polymerization reaction. After the polymerization conversion rate of the vinyl chloride monomer reaches a predetermined ratio of 70% to 90% by weight, cooling, exhaust gas, and de-monomer treatment are performed to obtain a slurry containing PVC. PVC is obtained by dehydrating and drying this slurry.
[0021]
The polymerization vessel is preferably a stainless pressure vessel equipped with a stirrer, baffle and jacket. At this time, one provided with a reflux capacitor can be used as necessary.
[0022]
The vinyl chloride monomer refers to a vinyl chloride monomer alone or a mixture with other monomers copolymerizable with the vinyl chloride monomer.
Other monomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene And known monomers such as olefins such as propylene, maleic anhydride, acrylonitrile, styrene, and vinylidene chloride, but are not limited thereto.
[0023]
As the dispersant, those generally used for suspension polymerization of vinyl chloride are preferably used. Examples of such a dispersant include water-soluble celluloses such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose; water-soluble polymers such as partially saponified polyvinyl alcohol, polyethylene oxide, acrylic acid polymer, and gelatin; sorbitan mono Examples thereof include water-soluble emulsifiers such as laurate and polyoxyethylene sorbitan monolaurate, and these may be used alone or in combination of two or more.
The amount of the dispersant used is preferably in the range of 0.01 to 0.5% by weight with respect to the weight of the vinyl chloride monomer.
[0024]
As the polymerization initiator, an oil-soluble initiator generally used for suspension polymerization of vinyl chloride is preferably used. Examples of such a polymerization initiator include di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate, α-cumyl peroxyneodecanate, t-butylperoxyneodecanate, and t-butyl. Peroxypivalate, t-butylperoxy-3,5,5-trimethylhexanoate, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate, lauroyl peroxide, etc. These may be used alone or in combination of two or more.
The amount of the polymerization initiator used is preferably in the range of 0.001 to 2% by weight with respect to the weight of the vinyl chloride monomer.
[0025]
In addition, polymerization modifiers, chain transfer agents, pH adjusters, antistatic agents, cross-linking agents, stabilizers, fillers, antioxidants, scale inhibitors, etc. that are commonly used for the polymerization of vinyl chloride monomers are added. May be.
[0026]
In the present invention, when the PVC obtained by the above method is chlorinated in an aqueous medium, the PVC obtained by suspension polymerization in the reactor is used as it is without being separated from the aqueous medium, Alternatively, after separating the PVC from the suspension, the PVC is again dispersed in another aqueous medium.
[0027]
In the present invention, after removing oxygen by evacuating the reactor, the temperature is raised in the range of 65 to 90 ° C., preferably in the range of 70 to 85 ° C. which is lower than the glass transition temperature of PVC, and the chlorination reaction is performed. To start.
[0028]
Immediately after the addition of chlorine, the addition of hydrogen peroxide is started to promote the reaction. By adding hydrogen peroxide at a rate of 5 to 30 ppm / Hr with respect to PVC, the chlorination reaction proceeds smoothly. Moreover, the total addition amount is restrict | limited to 60-200 ppm with respect to PVC, and the range of 60-150 ppm is preferable.
[0029]
The hydrogen peroxide may be used after diluting to an appropriate concentration with water. It is preferable that hydrogen peroxide is continuously or intermittently added during the reaction rather than being initially added all at once.
[0030]
In the chlorination reaction, when the chlorine content in CPVC reaches a predetermined weight%, residual chlorine is exhausted and cooled to stop the reaction.
The obtained CPVC slurry is washed with water to remove hydrochloric acid, a neutralizing agent and the like are added as necessary, and CPVC powder is obtained through steps of dehydration and drying.
Although the chlorine content of CPVC obtained by this invention is not specifically limited, It is preferable to set it as 60 to 70 weight%.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
[0032]
Example 1
Into a glass-lined reactor with an internal volume of 300 liters, 200 kg of deionized water and 40 kg of PVC with an average degree of polymerization of 1000 were added, and after stirring and dispersing the PVC in water, the reactor was heated to 70 ° C. Warm up. Next, after the reactor was evacuated to remove oxygen, chlorine gas was introduced so that the partial pressure of chlorine was 0.4 MPa, and then 1000 ppm of hydrogen peroxide was added to 0.8 L / Hr (over PVC). The hydrogenation was added to 20 ppm / Hr) to start the chlorination reaction. The chlorination reaction was carried out at a constant temperature of 70 ° C. and a partial pressure of 0.4 MPa. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped and the chlorination reaction was terminated.
Next, nitrogen gas was passed through to remove unreacted chlorine, and the obtained CPVC slurry was neutralized with sodium hydroxide, washed with water, dehydrated, and dried to obtain powdery CPVC.
[0033]
(Examples 2-5, Comparative Examples 1-4)
CPVC was obtained in the same manner as in Example 1 except that the temperature of the chlorination reaction and the addition rate and addition amount of hydrogen peroxide were as shown in Table 1.
[0034]
(Example 6)
Into a glass-lined reactor with an internal volume of 300 liters, 200 kg of deionized water and 40 kg of PVC with an average degree of polymerization of 1000 were added, and after stirring and dispersing the PVC in water, the reactor was heated to 70 ° C. Warm up. Next, after the reactor was evacuated to remove oxygen, chlorine gas was introduced so that the chlorine partial pressure was 0.8 MPa, and then 1000 ppm of hydrogen peroxide was added to 0.4 L / Hr (over PVC). The chlorination reaction was started by adding hydrogen oxide to 10 ppm / Hr). The chlorination reaction was carried out under the conditions of 70 ° C. and a constant chlorine partial pressure of 0.8 MPa, and a constant amount of hydrogen peroxide solution was continuously added at the above rate during the reaction. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped and the chlorination reaction was terminated.
Next, nitrogen gas was passed through to remove unreacted chlorine, and the obtained CPVC slurry was neutralized with sodium hydroxide, washed with water, dehydrated, and dried to obtain powdery CPVC.
[0035]
(Example 7)
CPVC was obtained in the same manner as in Example 6 except that the temperature of the chlorination reaction and the amount of hydrogen peroxide added were as shown in Table 1.
[0036]
In addition, the physical property evaluation of CPVC obtained by the said Example and comparative example was performed as follows, and the result is shown in Table 1.
(1) Gelation time 60 g of a composition comprising 100 parts by weight of CPVC, 0.5 parts by weight of butyl stearate, 10 parts by weight of MBS resin, 0.5 parts by weight of processing aid and 2 parts by weight of malate tin stabilizer was added to plastoyl ( Using “Toyo Seiki Co., Ltd.” “Lab Plast Mill”), kneading was carried out at a rotation speed of 40 rpm and a test temperature of 190 ° C., and the time when the kneading torque peaked was defined as the gelation time.
[0037]
(2) Thermal stability The above blend was supplied to two 8-inch rolls and kneaded at 190 ° C. for 3 minutes to prepare a sheet having a thickness of 0.5 mm. This sheet was heated in a gear oven at a temperature of 200 ° C., and the time (minutes) until blackening was measured.
[0038]
(3) Tensile strength and elongation A sheet having a thickness of 0.5 mm was prepared in the same manner as described above. The sheets were stacked and pressed at 195 ° C. for 5 minutes to obtain a press plate having a thickness of 2 mm. A test piece was cut out from the press plate and measured according to JIS K7113.
[0039]
(4) Charpy impact value A press plate having a thickness of 3 mm was prepared in the same manner as described above, and a test piece was cut out from the press plate and measured according to JIS K 7111.
[0040]
[Table 1]
Figure 0003863279
[0041]
【The invention's effect】
The method for producing CPVC of the present invention is as described above, and it is possible to efficiently produce CPVC having excellent thermal stability, easy gelation, excellent heat resistance, and good moldability.

Claims (1)

塩化ビニル系樹脂を水懸濁状態で塩素化反応を行うにあたり、塩化ビニル系樹脂に対して過酸化水素を5〜30ppm/Hrの添加速度で、全添加量が塩化ビニル系樹脂に対して60〜200ppmになるように、連続的にまたは断続的に添加し、65〜90℃の温度で塩素化反応を行うことを特徴とする塩素化塩化ビニル系樹脂の製造方法。In conducting the chlorination reaction in a suspension state of the vinyl chloride resin, hydrogen peroxide is added to the vinyl chloride resin at a rate of 5 to 30 ppm / Hr , and the total addition amount is 60 to the vinyl chloride resin. A method for producing a chlorinated vinyl chloride resin, which is added continuously or intermittently so as to be ˜200 ppm and is subjected to a chlorination reaction at a temperature of 65 to 90 ° C.
JP04520898A 1997-07-31 1998-02-26 Method for producing chlorinated vinyl chloride resin Expired - Fee Related JP3863279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04520898A JP3863279B2 (en) 1997-07-31 1998-02-26 Method for producing chlorinated vinyl chloride resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-206240 1997-07-31
JP20624097 1997-07-31
JP04520898A JP3863279B2 (en) 1997-07-31 1998-02-26 Method for producing chlorinated vinyl chloride resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006003660A Division JP4338703B2 (en) 1997-07-31 2006-01-11 Method for producing chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPH11100411A JPH11100411A (en) 1999-04-13
JP3863279B2 true JP3863279B2 (en) 2006-12-27

Family

ID=26385183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04520898A Expired - Fee Related JP3863279B2 (en) 1997-07-31 1998-02-26 Method for producing chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP3863279B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224176A (en) * 2013-05-15 2014-12-04 積水化学工業株式会社 Heat-chlorinated polyvinyl chloride resin composition and molded article
KR102312194B1 (en) * 2016-03-08 2021-10-14 옥시 비닐스, 엘.피. How to Chlorinate Polyvinyl Chloride
JP7155415B2 (en) * 2020-03-31 2022-10-18 積水化学工業株式会社 Chlorinated vinyl chloride resin

Also Published As

Publication number Publication date
JPH11100411A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
CN113166303B (en) Preparation method of chlorinated polyvinyl chloride resin
EP3127926A1 (en) Production method for chlorinated vinyl chloride resin
JP5891242B2 (en) Method for producing chlorinated vinyl chloride resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
JP2001151815A (en) Method of manufacturing for chlorinated vinyl chloride resin
JP4338703B2 (en) Method for producing chlorinated vinyl chloride resin
JP4728701B2 (en) Method for producing chlorinated vinyl chloride resin
WO2018043945A1 (en) Method for preparing chlorinated vinyl chloride resin
JP2000119333A (en) Production of chlorinated vinyl chloride-based resin
JP4610877B2 (en) Method for producing chlorinated vinyl chloride resin
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JP3164743B2 (en) Method for producing chlorinated vinyl chloride resin
JPH1129613A (en) Production of chlorinated vinyl chloride-based resin
JP2000344830A (en) Production of chlorinated vinyl chloride resin
JPH10279627A (en) Production of chlorinated vinyl chloride resin
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JP3652832B2 (en) Method for producing chlorinated vinyl chloride resin
JPH10251333A (en) Production of chlorinated vinyl chloride resin
JPH1112318A (en) Production of chlorinated vinyl chloride-based resin
JP3487742B2 (en) Method for producing chlorinated vinyl chloride resin
JPH10306108A (en) Production of vinyl chloride resin and chlorinated vinyl chloride resin
JPH11246605A (en) Production of vinyl chloride-based resin and production of chlorinated vinyl chloride-based resin
JP3802668B2 (en) Method for producing chlorinated vinyl chloride resin
JP2000063428A (en) Preparation of chlorinated vinyl chloride resin
JP2003119220A (en) Process for producing chlorinated vinyl chloride resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees