JP2001181045A - Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same - Google Patents

Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same

Info

Publication number
JP2001181045A
JP2001181045A JP37380399A JP37380399A JP2001181045A JP 2001181045 A JP2001181045 A JP 2001181045A JP 37380399 A JP37380399 A JP 37380399A JP 37380399 A JP37380399 A JP 37380399A JP 2001181045 A JP2001181045 A JP 2001181045A
Authority
JP
Japan
Prior art keywords
zinc sulfide
powder
niobium oxide
based sintered
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37380399A
Other languages
Japanese (ja)
Inventor
Takashi Ueno
崇 上野
Yukio Noguchi
幸雄 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Furuya Metal Co Ltd
Original Assignee
Kyocera Corp
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Furuya Metal Co Ltd filed Critical Kyocera Corp
Priority to JP37380399A priority Critical patent/JP2001181045A/en
Priority to US09/740,098 priority patent/US6656260B2/en
Priority to EP00128011A priority patent/EP1112988A1/en
Priority to TW89127488A priority patent/TW574171B/en
Priority to KR1020000083106A priority patent/KR20010062782A/en
Publication of JP2001181045A publication Critical patent/JP2001181045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zinc sulfide-based sintered material, especially a sputtering target material used for forming a zinc sulfide-based thin film and further provide a sintered compact for a sputtering target for forming the thin film of a protective film on a recording layer of a phase-change type optical recording medium having an alloy recording layer containing Te or Sb. SOLUTION: This zinc sulfide-based sintering material consists essentially of zinc sulfide and contains niobium oxide. The sintering material is converted into a zinc sulfide-based sintered compact and is used for the sputtering target by regulating the content of niobium oxide to 10-50 wt.% expressed in terms of Nb2O5 and regulating the surface resistivity thereof to <=10 Ω/square surface. The target of the sintered compact can be utilized for DC sputtering having a high thin-film forming rate. The sintered compact is obtained by preparing a mixture of a zinc sulfide powder having 0.5-20 μm average particle diameter with a niobium oxide powder having <=5 μm average particle diameter, hot pressing the resultant mixture at 800-1,100 temperature and providing the sintered compact of a desired shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化亜鉛系焼結材
料とその製造方法、特に、硫化亜鉛系薄膜の形成に使用
されるスパッタリングターゲット材料に関する。
The present invention relates to a zinc sulfide based sintered material and a method for producing the same, and more particularly to a sputtering target material used for forming a zinc sulfide based thin film.

【0002】[0002]

【従来の技術】硫化亜鉛系材料は、蛍光体として周知で
あり、エレクトロルミネッセンスとしても知られている
が、光電子工学の分野では、透光性で高い屈折率の薄膜
として利用されている。例えば、硫化亜鉛系薄膜は、T
eやSbの合金を記録層に利用した相変化型光記録媒体
において、記録層を保護するための保護層として利用さ
れている。この媒体は、CD−RW、DVD−RAM、
DVD−RW、DVD+RW等の書き換えが可能な光デ
ィスクとして知られているが、図1に示すように、ディ
スク状基板10上に、第1の保護層2(21)と、その
上に記録層3を形成し、記録層3上には、さらに第2の
保護層2(22)を形成し、その上にアルミニウム、
金、銀、あるいはそれを主成分とする合金などの反射層
4を形成して構成されている。
2. Description of the Related Art Zinc sulfide-based materials are well known as phosphors and also known as electroluminescence. However, in the field of optoelectronics, they are used as light-transmitting thin films having a high refractive index. For example, a zinc sulfide-based thin film is T
In a phase-change optical recording medium using an alloy of e or Sb for a recording layer, it is used as a protective layer for protecting the recording layer. This medium is a CD-RW, DVD-RAM,
Although known as rewritable optical disks such as DVD-RW and DVD + RW, as shown in FIG. 1, a first protective layer 2 (21) is provided on a disk-shaped substrate 10, and a recording layer 3 is provided thereon. Is formed on the recording layer 3, a second protective layer 2 (22) is further formed, and aluminum,
The reflective layer 4 is formed of gold, silver, or an alloy containing the same as a main component.

【0003】前述した光ディスクは、ディスク状基板1
0側からレーザビームが照射され、保護層2を透過して
記録層3に照射され、反射層4により反射されて、記録
層3と保護層2を経由して、照射側に戻る。相変化型の
光記録媒体は、記録時には、信号強度に対応して変調さ
れたレーザ光が照射され、その熱エネルギーにより記録
層3を相変化させ(例として、記録層の合金薄膜を結晶
相と非晶相とに相互に変化させる)、信号情報はこの相
変化として記録させ、再生時には、レーザビームを照射
して記録層3における相変化に伴ったレーザ光の反射強
度変化を信号として、検出するものである。
[0003] The above-mentioned optical disk has a disk-shaped substrate 1.
The laser beam is irradiated from the 0 side, passes through the protective layer 2, irradiates the recording layer 3, is reflected by the reflective layer 4, and returns to the irradiation side via the recording layer 3 and the protective layer 2. During recording, a phase-change type optical recording medium is irradiated with a laser beam modulated in accordance with the signal intensity, and changes the phase of the recording layer 3 by the thermal energy thereof (for example, by changing the alloy thin film of the recording layer to a crystalline phase). Signal information is recorded as this phase change, and at the time of reproduction, a laser beam is irradiated to reflect the change in the reflection intensity of the laser light accompanying the phase change in the recording layer 3 as a signal. It is to detect.

【0004】保護層2は、レーザビームを透過し且つ記
録層3に接してその両面を保護するものであるが、これ
には、例えば、ZnS-SiO2の複合材料が知られてい
る。例えば、このZnS-SiO2材料は、モル比で、8
0モル%ZnS‐20モル%SiO2の組成のものが知
られている。
The protective layer 2 transmits a laser beam and contacts the recording layer 3 to protect both surfaces thereof. For example, a composite material of ZnS-SiO 2 is known. For example, this ZnS—SiO 2 material has a molar ratio of 8
A composition having a composition of 0 mol% ZnS-20 mol% SiO 2 is known.

【0005】この2層の保護膜2は、RFスパッタリン
グ法により薄膜に形成されている。この処理は、RFス
パッタリング装置内に、ディスク状基板10と、これと
対置してターゲットとが配置され、高真空で希薄なAr
中で、高周波プラズマを発生させて、上記のディスク状
基板10上に皮膜形成される。さらに記録層3の形成し
た後にも、その記録層3上に、RFスパッタリング装置
内で、皮膜形成されていた。
The two-layer protective film 2 is formed in a thin film by an RF sputtering method. In this process, a disk-shaped substrate 10 and a target are placed in opposition to the disk-shaped substrate 10 in an RF sputtering apparatus.
Inside, a high-frequency plasma is generated to form a film on the disk-shaped substrate 10. Further, even after the formation of the recording layer 3, a film was formed on the recording layer 3 in an RF sputtering apparatus.

【0006】そして、このスパッタリングのターゲット
材には、従来は、ZnS-SiO2焼結体が利用されお
り、例えば、特開平11−278936号や特開平7−
138071号公報に開示されている。また、焼結体の
成形法には、例えば、硫化亜鉛とシリカとの混合粉末か
ら不活性ガス雰囲気中で特定の高い焼結温度でホットプ
レスする方法、混合粉末を成形した成形体を常圧焼成す
る方法が利用されていた。また、焼結体を更に緻密化さ
せるために、熱間静水圧プレス(HIP)を行なう方法
も知られていた。
Conventionally, a ZnS—SiO 2 sintered body has been used as a target material for this sputtering. For example, Japanese Unexamined Patent Publication No.
No. 138071. Examples of the method of forming a sintered body include a method of hot pressing a mixed powder of zinc sulfide and silica at a specific high sintering temperature in an inert gas atmosphere, and a method of forming a molded body of the mixed powder at normal pressure. A firing method has been used. Also, a method of performing hot isostatic pressing (HIP) to further densify the sintered body has been known.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来は、こ
のようなZnS-SiO2焼結体を用いて、上記光媒体に
保護層2を形成するには、RFスパッタリング法でしか
利用できなかった。即ち、ZnS−SiO2焼結体は高
い電気抵抗を有するので、直流スパッタリング法を利用
できず、RFスパッタリング法は、ターゲットに高い電
気的パワーを投入することが困難で、スパッタリング速
度が低く、光記録媒体の薄膜生産性を高めることができ
なかった。
Conventionally, in order to form the protective layer 2 on the optical medium using such a ZnS-SiO 2 sintered body, only the RF sputtering method can be used. . That is, since the ZnS-SiO 2 sintered body has a high electric resistance, a direct current sputtering method cannot be used. In the RF sputtering method, it is difficult to apply a high electric power to a target, a sputtering speed is low, and The thin film productivity of the recording medium could not be increased.

【0008】このようなRFスパッタリングは、ポリマ
ー、例えば、ポリカーボネート等で形成したディスク状
基板10に高周波による電気的加熱(高周波加熱)を発
生させるため、ディスク状基板10に熱的損傷を与える
危険があり、この点からも、基板10の損傷や光記録媒
体の生産性の問題になっていた。
Since such RF sputtering generates electric heating (high-frequency heating) by high frequency on the disk-shaped substrate 10 formed of a polymer, for example, polycarbonate, there is a danger that the disk-shaped substrate 10 may be thermally damaged. Also, from this point, there has been a problem of damage to the substrate 10 and productivity of the optical recording medium.

【0009】また、保護層2の形成には、ディスク状基
板10の寸法に対応した大きさを有するターゲットを用
いることが、膜厚均一化の制御のため好ましいが、大型
のZnS-SiO2焼結体は、緻密化し難いため、焼結強
度が低く、製造能率も低いという問題があった。
Further, the formation of the protective layer 2 may be used a target having a size corresponding to the dimensions of the disk-shaped substrate 10 is, although desirable for the control of the film thickness uniform, large ZnS-SiO 2 sintered Since the compact is hard to be densified, there is a problem that the sintering strength is low and the production efficiency is low.

【0010】ターゲットとしての焼結体は、内部気孔が
少なく、相対密度が高いことが必要である。即ち、気孔
率の大きい焼結体からなるターゲットを用いてスパッタ
すると、焼結体に含まれる空気の放出により、スパッタ
の際の雰囲気を高真空に保持することが難しくなるから
で、雰囲気が高真空に保持できずに複合材料を成膜する
と、薄膜の組成がターゲットの焼結体組成とズレが生じ
るという問題があった。また、高真空に保持できない
と、スパッタ速度が低下するので、薄膜生産性が低いと
いう問題があった。
[0010] The sintered body as a target needs to have a small internal pore and a high relative density. That is, when sputtering is performed using a target made of a sintered body having a high porosity, it is difficult to maintain the atmosphere during sputtering at a high vacuum due to the release of air contained in the sintered body. If the composite material is formed without being kept in a vacuum, there is a problem that the composition of the thin film is shifted from the composition of the sintered body of the target. In addition, if the vacuum cannot be maintained at a high vacuum, the sputtering rate is reduced, so that the productivity of the thin film is low.

【0011】本発明は、ZnS系材料であって、電気抵
抗が低く、焼結の成形性に優れた焼結材料を提供しよう
とするものである。本発明は、ターゲットに電流を流す
タイプの膜形成手段、特に直流スパッタリングが利用可
能なZnS系材料の焼結体を提供しようとするものであ
る。
An object of the present invention is to provide a ZnS-based material having a low electric resistance and excellent sintering formability. An object of the present invention is to provide a film forming means of a type in which a current flows through a target, in particular, a sintered body of a ZnS-based material that can be used for DC sputtering.

【0012】[0012]

【課題を解決するための手段】本発明の焼結材料は、硫
化亜鉛を主成分として、酸化ニオブを含有する硫化亜鉛
系焼結材料である。硫化亜鉛(ZnS)自体は絶縁体で
あるが、焼結体中の酸化ニオブの添加は、ZnS系焼結
材料の電気抵抗を低下させ、さらに、ZnS系焼結材料
の焼結性を高める。
The sintered material according to the present invention is a zinc sulfide based sintered material containing zinc sulfide as a main component and niobium oxide. Although zinc sulfide (ZnS) itself is an insulator, the addition of niobium oxide in the sintered body lowers the electrical resistance of the ZnS-based sintered material and further increases the sinterability of the ZnS-based sintered material.

【0013】本発明において、焼結体中の酸化ニオブの
形態は、必ずしも明らかでないが、酸化ニオブには、ニ
オブ酸化数の低次の多数の酸化物を含まれる。以下の説
明では、酸化ニオブは、便宜上、Nb25で表すことに
するが、これに限定されるものではない。
In the present invention, the form of niobium oxide in the sintered body is not necessarily clear, but niobium oxide includes a large number of oxides having a lower niobium oxidation number. In the following description, niobium oxide will be represented by Nb 2 O 5 for convenience, but is not limited thereto.

【0014】本発明のZnS−Nb25系焼結材料は、
焼結体の電気抵抗が小さいので、導電性のZnS系焼結
体として利用される。そのような例として、その焼結体
を、薄膜形成用のターゲットに利用することが可能にな
る。この焼結材料は、ターゲットに電流を流すタイプの
膜形成手段、特に直流スパッタリング法による薄膜形成
に利用することが可能である。
The ZnS—Nb 2 O 5 based sintered material of the present invention comprises:
Since the sintered body has a small electric resistance, it is used as a conductive ZnS-based sintered body. As such an example, the sintered body can be used as a target for forming a thin film. This sintered material can be used for a film forming means of a type in which an electric current flows through a target, particularly for forming a thin film by a DC sputtering method.

【0015】本発明のZnS−Nb25系焼結材料から
なるターゲットより形成した薄膜は、光記録媒体に配置
される記録層を保護するためのZnS系の保護層に好適
に利用することができる。
The thin film formed of the ZnS—Nb 2 O 5 based sintered material of the present invention is preferably used as a ZnS based protective layer for protecting a recording layer disposed on an optical recording medium. Can be.

【0016】詳しくは、本発明の硫化亜鉛系焼結材料
は、酸化ニオブの添加により電気抵抗を、表面抵抗値と
して100Ω/□以下に、低減する。特に、焼結体中に
酸化ニオブをNb25として、5%(重量%、以下同
じ)を超えて含有させると、焼結体の電気抵抗が急激に
低下し、導電性を生じる。さらに、Nb25を10〜5
0%含む焼結体は、電気抵抗を、表面抵抗値として10
Ω/□以下に低減することができる。
More specifically, the zinc sulfide-based sintered material of the present invention reduces the electric resistance to a surface resistance of 100 Ω / □ or less by adding niobium oxide. In particular, when the sintered body contains more than 5% (% by weight, the same applies hereinafter) of niobium oxide as Nb 2 O 5 , the electric resistance of the sintered body is sharply reduced and conductivity is generated. Further, Nb 2 O 5 is adjusted to 10 to 5
A sintered body containing 0% has an electric resistance of 10% as a surface resistance value.
Ω / □ or less.

【0017】Nb25を10〜50%含む焼結材料は、
低い電気抵抗の点から、直流スパッタリング用のターゲ
ットとして優れており、スパッタリング成膜時に、ター
ゲットに大電力を供給して、スパッタ膜の形成速度を高
め、薄膜生産性を向上することができる。
The sintered material containing 10 to 50% of Nb 2 O 5 is as follows:
It is excellent as a target for DC sputtering in terms of low electric resistance, and can supply a large amount of power to the target during sputtering film formation, increase the sputter film formation speed, and improve thin film productivity.

【0018】本発明において、ZnS−Nb25系焼結
材料中のNb25の添加は、この焼結体の焼結性を高
め、大径の板状焼結体が欠陥なく形成でき、直流スパッ
タリング用のターゲットに使用して、大径のディスク状
基板の光記録媒体の形成に有効に利用できる。
[0018] In the present invention, the addition of Nb 2 O 5 of ZnS-Nb 2 O 5 based sintered material enhances the sinterability of the sintered body, forming a plate-shaped sintered body having a large diameter without defects It can be used as a target for DC sputtering, and can be effectively used for forming an optical recording medium having a large-diameter disk-shaped substrate.

【0019】本発明は、硫化亜鉛系焼結材料を形成する
ための原料として、0.5〜20μmの硫化亜鉛粉末
と、平均粒径5μm以下の酸化ニオブ粉末とから成る硫
化亜鉛系焼結材料用の原料粉体を含む。
The present invention relates to a zinc sulfide based sintered material comprising a zinc sulfide powder having a particle size of 0.5 to 20 μm and a niobium oxide powder having an average particle size of 5 μm or less as raw materials for forming the zinc sulfide based sintered material. Including raw material powder.

【0020】本発明は、さらに、上記粒径分布の硫化亜
鉛粉末と酸化ニオブ粉末との混合物から、焼結により製
造されるが、焼結法には、混合物から圧縮成形した後、
成形体の常圧焼結法、混合物からの熱間焼成法(ホット
プレス法)、熱間静水圧プレス法(HIP法)が利用で
き、所望形状の焼結体に形成される。
The present invention is further produced by sintering from a mixture of a zinc sulfide powder and a niobium oxide powder having the above-mentioned particle size distribution.
A normal-pressure sintering method, a hot sintering method from a mixture (hot pressing method), and a hot isostatic pressing method (HIP method) of a compact can be used to form a sintered body having a desired shape.

【0021】[0021]

【発明の実施の形態】本発明の硫化亜鉛系焼結材料は、
ZnSを主成分として、酸化ニオブを含有する焼結体で
あるが、好ましくは、酸化ニオブは、Nb25に換算し
て、含有量が、5%(重量%、以下同じ)を超え、50
%以下の範囲である。Nb25は、ZnS−Nb25
焼結材料の電気抵抗を低下させる成分であるが、その含
有量が5%以下では、電気抵抗は高く、Nb25は5%
を超えると、表面抵抗値を100Ω/□以下にすること
ができる。特に、焼結体自体からは、Nb25は、10
%以上を含有するのが好ましく、この場合、表面抵抗値
を10Ω/□程度ないしはそれ以下にすることができ
る。他方、Nb25の含有量は、ZnSを主成分とする
焼結体では、50%以下が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The zinc sulfide based sintered material of the present invention comprises:
It is a sintered body containing ZnS as a main component and containing niobium oxide. Preferably, the content of niobium oxide exceeds 5% (% by weight, hereinafter the same) in terms of Nb 2 O 5 , 50
% Or less. Nb 2 O 5 is a component that lowers the electrical resistance of the ZnS—Nb 2 O 5 sintered material, but when its content is 5% or less, the electrical resistance is high, and Nb 2 O 5 is 5%.
Is exceeded, the surface resistance can be reduced to 100Ω / □ or less. In particular, from the sintered body itself, Nb 2 O 5
% Or more, and in this case, the surface resistance can be reduced to about 10 Ω / □ or less. On the other hand, the content of Nb 2 O 5 is preferably 50% or less in a sintered body containing ZnS as a main component.

【0022】本発明の硫化亜鉛系焼結材料は、好ましく
は、主成分のZnSに、5%を超え50%以下のNb2
5を含有して、スパッタリング薄膜形成用のターゲッ
トとして利用される。スパッタリング用のターゲットと
しては、Nb25の含有量は、特に、10〜50%の範
囲が好ましい。主成分であるZnSにNb25を10%
以上の特定量添加することにより、焼結体は、高くても
10Ω/□の表面抵抗が得られ、その焼結材料をターゲ
ットとして、特に、RFスパッタリングとともに、DC
スパッタリングにより薄膜層の形成が可能になる。DC
スパッタリングは大電流供給が容易であり、これによ
り、薄膜形成速度を高め、成膜工程の短縮に有効にな
る。
Preferably, the zinc sulfide-based sintered material of the present invention contains more than 5% and not more than 50% of Nb 2 in the main component ZnS.
Contains O 5 and is used as a target for forming a sputtering thin film. As the target for sputtering, the content of Nb 2 O 5 is particularly preferably in the range of 10-50%. 10% Nb 2 O 5 in ZnS, the main component
By adding the above specific amount, the sintered body can obtain a surface resistance of at most 10Ω / □.
The thin film layer can be formed by sputtering. DC
Sputtering can easily supply a large current, thereby increasing the thin film forming speed and being effective in shortening the film forming process.

【0023】本発明の硫化亜鉛系焼結材料は、緻密であ
ることが好ましく、相対密度で70%以上が好ましい。
相対密度70%未満では、焼結体の強度が小さく、特に
80%以上とするのが好ましい。特に、スパッタリング
用のターゲットとしては、相対密度で70%以上を確保
する。相対密度70%未満では、焼結体の強度が小さ
く、さらに、スパッタ膜の形成速度が小さすぎる。特
に、スパッタ膜の形成速度を高めるには、相対密度80
%以上とするのが好ましく、さらには相対密度90%以
上とすることが、スパッタリング時における真空度の低
下を防ぎ、形成薄膜の組成ズレを防止する点で好まし
い。
The zinc sulfide based sintered material of the present invention is preferably dense, and preferably has a relative density of 70% or more.
If the relative density is less than 70%, the strength of the sintered body is low, and it is particularly preferable that the relative density be 80% or more. In particular, as a sputtering target, a relative density of 70% or more is secured. If the relative density is less than 70%, the strength of the sintered body is low, and the formation rate of the sputtered film is too low. In particular, to increase the sputter film formation speed, the relative density 80
% Or more, and more preferably 90% or more in terms of relative density, from the viewpoint of preventing a reduction in the degree of vacuum at the time of sputtering and preventing a composition deviation of a formed thin film.

【0024】本発明の硫化亜鉛系焼結材料ないしスパッ
タリング用のターゲットは、硫化亜鉛粉末と酸化ニオブ
粉末を原料として、その混合物から、焼結により形成さ
れるが、これら原料は、0.5〜20μmの硫化亜鉛粉
末と、平均粒径5μm以下の酸化ニオブ粉末とを利用す
る。
The zinc sulfide based sintered material or sputtering target of the present invention is formed by sintering a mixture of zinc sulfide powder and niobium oxide powder as raw materials. A 20 μm zinc sulfide powder and a niobium oxide powder having an average particle size of 5 μm or less are used.

【0025】硫化亜鉛粉末の平均粒度は、焼結体の緻密
化とクラック発生に関連しており、、緻密化のために
は、硫化亜鉛粒子は20μm以下の微細が良く、20μ
mより大きいと、硫化亜鉛系焼結材料は、通常の焼成条
件で緻密化できない。また、このような粗粒は、酸化ニ
オブ粉末を均一に分散できないので、局部的な抵抗値の
ばらつきが生じる。他方、硫化亜鉛粒子が0.5μm未
満の微粉であると、焼成中に内部応力が発生し、その応
力の開放によりクラックが発生することが多い。
The average particle size of the zinc sulfide powder is related to the densification and crack generation of the sintered body. For the densification, the zinc sulfide particles are preferably finer than 20 μm,
If it is larger than m, the zinc sulfide-based sintered material cannot be densified under normal firing conditions. In addition, such coarse particles cannot uniformly disperse the niobium oxide powder, so that local resistance value variation occurs. On the other hand, when the zinc sulfide particles are fine powder having a particle size of less than 0.5 μm, internal stress occurs during firing, and cracks often occur due to release of the stress.

【0026】配合する酸化ニオブ粉末については、平均
粒子径5.0μm以下が好ましく、5.0μmを超える
ものでは、酸化ニオブの分散状態が均一にならず、焼結
体内で局部的な抵抗値のバラツキが発生するのと同時
に、スパッタリングで成膜する際、組成ズレの原因とな
ることに加え、得られた薄膜に関しても品質的な安定
性、特に光学的な特性に関して、バラツキが生じること
となる。
The niobium oxide powder to be blended preferably has an average particle diameter of 5.0 μm or less, and if it exceeds 5.0 μm, the dispersion state of the niobium oxide is not uniform, and the local resistance value of the niobium oxide in the sintered body is low. Simultaneously with the occurrence of the variation, in addition to the cause of the composition deviation when the film is formed by sputtering, the quality of the obtained thin film also varies with respect to the quality stability, particularly the optical characteristics. .

【0027】硫化亜鉛系焼結材料の製造には、上記の粒
径分布の硫化亜鉛粉末と酸化ニオブ粉末とを混合した原
料粉体を所定の形状に保持して焼成する焼結法が利用さ
れる。焼結のための焼結温度は、硫化亜鉛の昇華温度よ
り低い温度で、他方では焼結反応の大きい領域が選ばれ
る。焼結温度の上限は、好ましくは、昇華の防止の点か
ら1200℃であり、下限は、約700℃であろう。
For the production of a zinc sulfide-based sintered material, a sintering method is used in which a raw material powder obtained by mixing zinc sulfide powder and niobium oxide powder having the above-mentioned particle size distribution is held in a predetermined shape and fired. You. The sintering temperature for sintering is lower than the sublimation temperature of zinc sulfide, and on the other hand, a region where the sintering reaction is large is selected. The upper limit of the sintering temperature is preferably 1200 ° C. for the purpose of preventing sublimation, and the lower limit will be about 700 ° C.

【0028】硫化亜鉛系焼結材料及びスパッタリングタ
ーゲットを製造する1つの方法として、上記粒径分布の
硫化亜鉛粉末と酸化ニオブ粉末との原料粉体をホットプ
レスして所望形状の焼結体とする方法が採用できる。
As one method of manufacturing a zinc sulfide based sintered material and a sputtering target, a raw material powder of zinc sulfide powder and niobium oxide powder having the above-mentioned particle size distribution is hot-pressed into a sintered body having a desired shape. The method can be adopted.

【0029】ホットプレスに際しては、所望形状の内面
形状を有するプレス型内に、上記混合した原料粉体を充
填し、そのままに150kg/cm2(14.7Pa)
以上の面圧を付与して、所要時間、上記の焼結温度で加
熱保持して、焼結する。焼結温度は、好ましくは、80
0〜1100℃の温度が利用できる。800℃以下の焼
成温度では、焼結反応が遅く、相対密度が80%以下と
なる惧れがある。このような低い相対密度は、スパッタ
リングターゲットとして使用すると、スパッタ膜の形成
速度が低くなり、また、焼結体自体の強度が非常に低く
なるため、スパッタリング成膜時の電力投入の際、ター
ゲットの焼結体の割れや欠損の原因となる。
At the time of hot pressing, the mixed raw material powder is filled in a press die having a desired inner surface shape, and is kept as it is at 150 kg / cm 2 (14.7 Pa).
Sintering is performed by applying the above-mentioned surface pressure, heating and holding at the above-mentioned sintering temperature for a required time. The sintering temperature is preferably 80
Temperatures from 0 to 1100 ° C are available. At a firing temperature of 800 ° C. or lower, the sintering reaction is slow, and the relative density may be 80% or lower. When such a low relative density is used as a sputtering target, the rate of forming a sputtered film becomes low, and the strength of the sintered body itself becomes extremely low. This may cause cracking or loss of the sintered body.

【0030】別の製造方法には、硫化亜鉛粉末と酸化ニ
オブ粉末を混合した原料粉体を、予め所望形状に成形し
た後、この成形体を不活性ガス中で700〜1200℃
の温度で常圧下で焼成して焼結体とする方法も採用でき
る。
In another production method, a raw material powder obtained by mixing a zinc sulfide powder and a niobium oxide powder is formed into a desired shape in advance, and the formed body is heated to 700 to 1200 ° C. in an inert gas.
At this temperature, a method of firing under normal pressure to obtain a sintered body can also be adopted.

【0031】この方法は、上記混合した原料粉体を予め
冷間で、金型中で圧縮成形され、この成形体を常圧で加
熱保持して、焼結させるものである。この方法は、硫化
亜鉛と酸化ニオブの原料粉末に、有機系のバインダーを
加えるなどして、望むべき焼結体形状に考慮し、金型成
形などにより、圧粉体に圧縮成形し、この成形体を、不
活性ガス雰囲気中にて、700℃〜1200℃の範囲で
常圧焼成する。
In this method, the mixed raw material powder is compression-molded in a mold in a cold state in advance, and the molded body is heated and held at normal pressure to be sintered. In this method, an organic binder is added to the raw material powder of zinc sulfide and niobium oxide, and the shape of the desired sintered body is taken into consideration. The body is fired at normal pressure in the range of 700 ° C to 1200 ° C in an inert gas atmosphere.

【0032】さらに焼結体の緻密化を図るために、上記
のようにホットプレス又は常圧焼結された焼結体を、さ
らに、800〜1200℃の温度範囲で、熱間静水圧プ
レス(HIP)をするのが好ましい。この方法において
は、焼結体にかかる圧力は、500〜3000Paと
し、焼結温度が800〜1200℃の範囲が利用でき
る。圧力が500Pa以下で焼結温度が800℃以下で
あると、HIPによる十分な緻密効果が得られない。ま
た、圧力の上限に関しては3000Paを越えても、緻
密化が飽和して期待できない。
In order to further densify the sintered body, the hot-pressed or normal-pressure-sintered sintered body is further subjected to a hot isostatic pressing at a temperature in the range of 800 to 1200 ° C. HIP). In this method, the pressure applied to the sintered body is set to 500 to 3000 Pa, and the sintering temperature in the range of 800 to 1200 ° C. can be used. If the pressure is 500 Pa or less and the sintering temperature is 800 ° C. or less, a sufficient densification effect by HIP cannot be obtained. In addition, even if the upper limit of the pressure exceeds 3000 Pa, the densification is saturated and cannot be expected.

【0033】これらの焼結法により、緻密な焼結体が得
られ、焼結体は、相対密度で、70%以上、さらには8
0%以上を確保でき、特に、熱間静水圧プレスの利用に
より90%以上の相対密度が得られる。
By these sintering methods, a dense sintered body is obtained, and the sintered body has a relative density of 70% or more, and
0% or more can be secured, and in particular, a relative density of 90% or more can be obtained by using a hot isostatic press.

【0034】原料中の不純物について、特に、上記光記
録媒体用の保護層用に利用する場合には、主成分となる
硫化亜鉛粉末と添加剤としての酸化ニオブについては、
高純度のものが好ましいが、特に、純度99.9%以上
のものを使用するのが好ましい。
Regarding impurities in the raw materials, particularly, when used for the protective layer for the optical recording medium, zinc sulfide powder as a main component and niobium oxide as an additive include:
High-purity ones are preferred, and those with a purity of 99.9% or more are particularly preferred.

【0035】硫化亜鉛粉末と酸化ニオブ粉末の不純物と
しては、Fe、Ni、Cu、Mn、Pdなどの金属元素
が含まれることが多いが、これらが保護層中に存在する
と、光学的特性を害するおそれがあり、同時に、薄膜の
信頼性を著しく低下する。このため焼結体を得る際に使
用する原料粉末は、極力高純度のものが好ましい。
The metallic impurities such as Fe, Ni, Cu, Mn, and Pd are often contained as impurities in the zinc sulfide powder and the niobium oxide powder, but when these are present in the protective layer, the optical characteristics are impaired. And at the same time, significantly reduces the reliability of the thin film. For this reason, the raw material powder used for obtaining a sintered body is preferably as high as possible.

【0036】硫化亜鉛には、六方晶系と立方晶系とがあ
り、何れも利用されるが、六方晶硫化亜鉛粉末は、立方
晶硫化亜鉛に比して、水との反応性が低いため、スラリ
ーに調製することができる。この方法は、水と硫化亜鉛
粉末とから粉砕混練してスラリーにし、有機系のバイン
ダーを添加し、混合撹拌した後、噴霧乾燥して乾燥粉末
を得る。この粉末を金型成形や、冷間静水圧プレスなど
にて圧粉体として、とりわけ異形状品、大型品への製造
が容易である。不活性ガス雰囲気下での常圧焼成が可能
となリ、ホットプレス等の複雑な焼結法を回避すること
ができる。
There are hexagonal and cubic zinc sulfides, both of which are used. However, hexagonal zinc sulfide powder has a lower reactivity with water than cubic zinc sulfide. , Can be prepared into a slurry. In this method, water and zinc sulfide powder are pulverized and kneaded to form a slurry, an organic binder is added, mixed, stirred, and then spray-dried to obtain a dry powder. This powder is easily formed into a green compact by molding, cold isostatic pressing, or the like, and is particularly easy to produce into a deformed product or a large product. It is possible to avoid complicated sintering methods such as hot pressing and the like, which enable normal pressure firing under an inert gas atmosphere.

【0037】上記の方法により得られた焼結体は、スパ
ッタリングターゲットとして有効に機能させるために表
面を研削加工や研磨加工にてフラットに仕上げられる。
The surface of the sintered body obtained by the above method is flattened by grinding or polishing in order to effectively function as a sputtering target.

【0038】[0038]

【実施例】実施例1 原料には、平均粒径4μmの純度99.9%の六方晶硫
化亜鉛粉末と、平均粒径0.3μmの純度99.9%の
酸化ニオブ粉末とを利用し、硫化亜鉛粉末に対し、酸化
ニオブの含有量を0.5〜30%の範囲で変えて添加し
た原料粉体を得た。
EXAMPLES Example 1 As raw materials, a hexagonal zinc sulfide powder having an average particle diameter of 4 μm and a purity of 99.9% and a niobium oxide powder having an average particle diameter of 0.3 μm and a purity of 99.9% were used. A raw material powder was obtained in which the content of niobium oxide was changed in the range of 0.5 to 30% with respect to the zinc sulfide powder.

【0039】各原料粉体は、樹脂製ポットにジルコニア
ボールを用いて乾式混合を24時間行った。造粒後、ホ
ットプレスで900℃まで3℃/minで昇温し、Ar
雰囲気で、面圧250kg/cm2で加圧しながら、3
時間焼結を行って直径50mm×厚み5mmの円盤状を
した硫化亜鉛系焼結材料からなる試料を得た。そして、
得られた硫化亜鉛系焼結材料の表面抵抗値を、四探針法
により測定した。測定結果を表1に示す。
Each raw material powder was dry-mixed for 24 hours using zirconia balls in a resin pot. After granulation, the temperature was raised to 900 ° C. at 3 ° C./min by hot pressing, and Ar
In an atmosphere, pressurizing at a surface pressure of 250 kg / cm 2
Sintering was performed for a time to obtain a disk-shaped sample made of a zinc sulfide-based sintered material having a diameter of 50 mm and a thickness of 5 mm. And
The surface resistance value of the obtained zinc sulfide-based sintered material was measured by a four probe method. Table 1 shows the measurement results.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から、Nb25含有量が5.0%以下
では、ZnS−Nb25系焼結材料の表面抵抗値に、特
に大きな変化がないが、5.0%を超えて、10%に至
る含有量で、表面抵抗値が、10Ω/□にまで低下し、
20〜30%では、1Ω/□以下に低下することがわか
る。
From Table 1, it can be seen that when the Nb 2 O 5 content is 5.0% or less, the surface resistance of the ZnS—Nb 2 O 5 based sintered material does not change particularly, but exceeds 5.0%. And at a content of up to 10%, the surface resistance drops to 10Ω / □,
It turns out that it falls to 1 Ω / □ or less at 20 to 30%.

【0042】実施例2 この例は、ホットプレスによりターゲットを焼結した例
を示す。原料には、平均粒径4μmの純度99.9%の
六方晶硫化亜鉛粉末と、平均粒径0.3μmの純度9
9.9%の酸化ニオブ粉末とを利用した。これら硫化亜
鉛粉末80%と酸化ニオブ粉末20%とを混合して原料
粉体とした。原料粉体は、樹脂製ポットにジルコニアボ
ールを用いて乾式混合を24時間行った。造粒後、ホッ
トプレスで900℃まで3℃/minで昇温し、Ar雰
囲気で、面圧250kg/cm2で加圧しながら、3時
間焼結を行って直径50mm×厚み5mmの円盤状をし
た硫化亜鉛系焼結材料を得た。この硫化亜鉛系焼結材料
の相対密度と表面抵抗値を測定した。相対密度は、アル
キメデス法により測定した。得られた結果を表2に示
す。
Example 2 This example shows an example in which a target was sintered by hot pressing. The raw materials include a hexagonal zinc sulfide powder having an average particle diameter of 4 μm and a purity of 99.9%, and a powder having an average particle diameter of 0.3 μm and a purity of 9 μm.
9.9% niobium oxide powder was utilized. 80% of the zinc sulfide powder and 20% of the niobium oxide powder were mixed to obtain a raw material powder. The raw material powder was dry-mixed for 24 hours using zirconia balls in a resin pot. After granulation, the temperature is raised to 900 ° C. at 3 ° C./min by hot pressing, and sintering is performed for 3 hours in an Ar atmosphere while pressing at a surface pressure of 250 kg / cm 2 to form a disc having a diameter of 50 mm and a thickness of 5 mm. The obtained zinc sulfide based sintered material was obtained. The relative density and surface resistance of the zinc sulfide based sintered material were measured. The relative density was measured by the Archimedes method. Table 2 shows the obtained results.

【0043】得られた焼結体をダイヤモンドツールにて
所定寸法に研削し、焼結体を銅バッキング板にInをボ
ンディング材として貼り付け、スパッタリングターゲッ
トを作成した。そして、得られたスパッタリングターゲ
ットは、RFスパッタリングとDCスパッタリングに使
用して、石英基板上に成膜した。
The obtained sintered body was ground to a predetermined size with a diamond tool, and the sintered body was attached to a copper backing plate using In as a bonding material to prepare a sputtering target. Then, the obtained sputtering target was used for RF sputtering and DC sputtering to form a film on a quartz substrate.

【0044】RFスパッタリングの条件として、投入電
力800W、Arガス1Paを選定し、1000Åの膜厚
みとなるよう石英基板上に成膜した。
As the conditions of the RF sputtering, an input power of 800 W and an Ar gas of 1 Pa were selected, and a film was formed on a quartz substrate to a film thickness of 1000 °.

【0045】DCスパッタリングの条件として、DCパ
ワーを2kWとし、Arガス圧を1Paに選び、100
nmの膜厚みなるよう同様に石英基板上に成膜した。R
FスパッタとDCスパッタの膜形成速度と、得られた膜
の性質について、表3に示す。
As conditions for DC sputtering, DC power was set to 2 kW, Ar gas pressure was set to 1 Pa, and 100
The film was similarly formed on a quartz substrate so as to have a thickness of nm. R
Table 3 shows the film formation rates of F sputtering and DC sputtering and the properties of the obtained films.

【0046】実施例3 この例は、スラリーを利用して、常圧焼成にてターゲッ
トを焼結した例を示す。実施例2と同じように、六方晶
硫化亜鉛粉末80%と酸化ニオブ粉末20%とを混合し
て原料粉体とした。原料粉体は、樹脂製ポットに蒸留水
と有機系バインダーを加え、ジルコニアボールを用いて
湿式混合を24時間行うことによりスラリーを製作し
た。得られたスラリーを噴霧乾燥、造粒した後、金型を
用いて圧縮成形体を得た。この成形体を1100℃まで
3℃/minで昇温し、Ar雰囲気で、3時間焼結を行
って直径50mm×厚み5mmの円盤状をした硫化亜鉛
系焼結材料を得た。更にこの硫化亜鉛系焼結材料を、圧
力2000Pa、温度900℃にてHIPし高密度化を
図った。この硫化亜鉛系焼結材料の密度と表面抵抗値を
測定した。相対密度は、アルキメデス法により測定し
た。得られた結果を表2に示す。
Example 3 This example shows an example in which a target was sintered by normal pressure firing using a slurry. As in Example 2, a raw material powder was prepared by mixing 80% of hexagonal zinc sulfide powder and 20% of niobium oxide powder. As the raw material powder, a slurry was produced by adding distilled water and an organic binder to a resin pot, and performing wet mixing using zirconia balls for 24 hours. After the obtained slurry was spray-dried and granulated, a compression molded body was obtained using a mold. This molded body was heated to 1100 ° C. at a rate of 3 ° C./min, and sintered in an Ar atmosphere for 3 hours to obtain a disc-shaped zinc sulfide-based sintered material having a diameter of 50 mm and a thickness of 5 mm. Further, this zinc sulfide-based sintered material was HIPed at a pressure of 2000 Pa and a temperature of 900 ° C. to increase the density. The density and surface resistance of this zinc sulfide-based sintered material were measured. The relative density was measured by the Archimedes method. Table 2 shows the obtained results.

【0047】得られた焼結体をダイヤモンドツールにて
所定寸法に研削し、実施例2と同様にスパッタリングタ
ーゲットを作成し、実施例2と同様な成膜評価を行っ
た。
The obtained sintered body was ground to a predetermined size with a diamond tool, a sputtering target was prepared in the same manner as in Example 2, and the same film formation evaluation as in Example 2 was performed.

【0048】比較例1 平均粒径4μmの純度99.9%の六方晶硫化亜鉛粉末
に、平均粒径10μmの純度99.9%の酸化珪素粉末
を20%添加し、樹脂製ポットにジルコニアボールを用
いて乾式混合を24時間行った。造粒後、ホットプレス
で900℃まで3℃/minで昇温し、Ar雰囲気で、
面圧250kg/cm2で加圧しながら、3時間焼結を
行って直径50mm×厚み5mmの円盤状をした硫化亜
鉛−酸化珪素系焼結材料を製作し、この焼結体の密度と
表面抵抗値を測定した。相対密度は、アルキメデス法に
より測定した。得られた結果を表2に示す。
Comparative Example 1 To a hexagonal zinc sulfide powder having an average particle size of 4 μm and a purity of 99.9%, 20% of silicon oxide powder having an average particle size of 10 μm and a purity of 99.9% was added, and a zirconia ball was added to a resin pot. Dry mixing was carried out for 24 hours. After granulation, the temperature was raised to 900 ° C. at a rate of 3 ° C./min by hot pressing, and in an Ar atmosphere,
Sintering was performed for 3 hours while pressing at a surface pressure of 250 kg / cm 2 to produce a disc-shaped zinc sulfide-silicon oxide-based sintered material having a diameter of 50 mm and a thickness of 5 mm, and the density and surface resistance of the sintered body The value was measured. The relative density was measured by the Archimedes method. Table 2 shows the obtained results.

【0049】得られた焼結体を使用して、実施例2と同
様にスパッタリングターゲットを作成し、実施例2と同
様な成膜評価を行った。
Using the obtained sintered body, a sputtering target was prepared in the same manner as in Example 2, and the same film formation evaluation as in Example 2 was performed.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】試験結果の表2と表3とから、実施例2,
3の硫化亜鉛−酸化ニオブ系焼結材料については何れ
も、焼結体の密度が相対密度90%以上と高い緻密性を
示した。また、比較例1の硫化亜鉛−酸化珪素系焼結材
料も88%の高い緻密性を示した。ところが、表面抵抗
値に関しては、実施例2の場合で0.8Ω/□、実施例
3の場合で0.9Ω/□と高い導電性を示した。比較例
1は、表面抵抗値が109Ω/□以上となり、絶縁性が高
いことがわかる。
From Tables 2 and 3 of the test results, Examples 2 and 3
All of the zinc sulfide-niobium oxide-based sintered materials of No. 3 showed a high compactness with the relative density of the sintered body being 90% or more. In addition, the zinc sulfide-silicon oxide based sintered material of Comparative Example 1 also exhibited a high compactness of 88%. However, with respect to the surface resistance value, a high conductivity of 0.8 Ω / □ was obtained in Example 2 and 0.9 Ω / □ was obtained in Example 3. Comparative Example 1 has a surface resistance of 10 9 Ω / □ or more, indicating that the insulating property is high.

【0053】スパッタリング速度については、全く同条
件で薄膜を形成しても、比較例1に比して、実施例2,
3の方が20〜50%スパッタリング速度を高めること
ができ、顕著に有為差が得られることがわかった。
Regarding the sputtering rate, even if a thin film was formed under exactly the same conditions, the sputtering rate of Example 2 was lower than that of Comparative Example 1.
3, it was found that the sputtering rate could be increased by 20 to 50%, and a significant difference was obtained.

【0054】また、比較例1の硫化亜鉛−酸化珪素系焼
結材料についてはDCスパッタにて成膜が全く不可能で
あったが、実施例2,3の硫化亜鉛−酸化ニオブ系焼結
材料についてはDCスパッタにて成膜でき、RFスパッ
タ法に比して2倍のスパッタリング速度が得られた。
The zinc sulfide-silicon oxide based sintered material of Comparative Example 1 could not be formed at all by DC sputtering, but the zinc sulfide-niobium oxide based sintered material of Examples 2 and 3 was used. The film was formed by DC sputtering, and a sputtering rate twice as high as that of the RF sputtering method was obtained.

【0055】[0055]

【発明の効果】本発明の硫化亜鉛系焼結材料は、80モ
ル%ZnS-20モル%SiO2系焼結材料と比較して、
導電性が高く低抵抗であるために、従来RFスパッタリ
ング法しか実施できなかった薄膜の形成プロセスが、D
Cスパッタリング法も可能になり、スパッタリング速度
を高めることができる。このDCスパッタリング法で薄
膜を形成することにより、Te又はSb合金記録層を利
用した相変化型光記録媒体において、は保護層の薄膜生
産速度を高めることができる。また、大型の焼結体も製
作が可能となる。
According to the present invention, the zinc sulfide based sintered material according to the present invention is compared with 80 mol% ZnS-20 mol% SiO 2 based sintered material.
Due to the high conductivity and low resistance, the thin film forming process that could only be performed by the RF sputtering method in the past has been
The C sputtering method is also possible, and the sputtering rate can be increased. By forming a thin film by this DC sputtering method, in a phase-change optical recording medium using a Te or Sb alloy recording layer, the production rate of the protective layer thin film can be increased. In addition, a large-sized sintered body can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 相変化型の記録層とこれと接触する保護層と
を備えた光記録媒体の部分断面図を示す。
FIG. 1 is a partial cross-sectional view of an optical recording medium including a phase-change recording layer and a protective layer in contact with the phase-change recording layer.

【符号の説明】[Explanation of symbols]

1 光記録媒体 10 ディスク基板 2 保護層 3 記録層 4 反射層 DESCRIPTION OF SYMBOLS 1 Optical recording medium 10 Disk substrate 2 Protective layer 3 Recording layer 4 Reflective layer

フロントページの続き (72)発明者 野口 幸雄 京都府京都市伏見区竹田鳥羽殿町6番地 京セラ株式会社内 Fターム(参考) 4G030 AA20 AA56 BA15 GA11 GA24 GA27 GA29 4K029 AA09 AA24 BA18 BA43 BA51 BB01 BC08 BD12 CA05 DC05 DC09 5D121 AA04 EE09 EE11 EE14 Continued on the front page (72) Inventor Yukio Noguchi 6F, Takeda Toba-cho, Fushimi-ku, Kyoto, Kyoto Prefecture F-term in Kyocera Corporation (reference) 4G030 AA20 AA56 BA15 GA11 GA24 GA27 GA29 4K029 AA09 AA24 BA18 BA43 BA51 BB01 BC08 BD12 CA05 DC05 DC09 5D121 AA04 EE09 EE11 EE14

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 硫化亜鉛を主成分として、酸化ニオブを
含有する硫化亜鉛系焼結材料。
1. A zinc sulfide-based sintered material containing zinc sulfide as a main component and containing niobium oxide.
【請求項2】 酸化ニオブの含有量が、Nb25に換算
して5重量%を超え、50重量%以下の範囲である請求
項1に記載の硫化亜鉛系焼結材料。
2. The zinc sulfide-based sintered material according to claim 1, wherein the content of niobium oxide is more than 5% by weight and not more than 50% by weight in terms of Nb 2 O 5 .
【請求項3】 硫化亜鉛を主成分とし、酸化ニオブをN
25に換算して5重量%を超え50重量%以下含有す
る硫化亜鉛系焼結材料からなるスパッタリングターゲッ
ト。
3. A composition comprising zinc sulfide as a main component and niobium oxide as N
A sputtering target comprising a zinc sulfide-based sintered material containing more than 5% by weight and not more than 50% by weight in terms of b 2 O 5 .
【請求項4】 酸化ニオブの含有量が、Nb25に換算
して10〜50重量%であって、且つ、表面抵抗値が1
0Ω/□以下である請求項3に記載のスパッタリングタ
ーゲット。
4. The content of niobium oxide is 10 to 50% by weight in terms of Nb 2 O 5 , and the surface resistance is 1%.
The sputtering target according to claim 3, wherein the sputtering target is 0 Ω / □ or less.
【請求項5】 硫化亜鉛系焼結材料を形成するための原
料粉体であって、0.5〜20μmの硫化亜鉛粉末と、
平均粒径5μm以下の酸化ニオブ粉末とから成る硫化亜
鉛系焼結材料用の原料粉体。
5. A raw material powder for forming a zinc sulfide-based sintered material, comprising: zinc sulfide powder having a particle size of 0.5 to 20 μm;
A raw material powder for a zinc sulfide-based sintered material, comprising a niobium oxide powder having an average particle size of 5 μm or less.
【請求項6】 平均粒径が0.5〜20μmの硫化亜鉛
粉末と、平均粒径5μm以下の酸化ニオブ粉末との混合
物を800〜1100℃の温度でホットプレスをして焼
結体とする硫化亜鉛系焼結材料の製造方法。
6. A mixture of zinc sulfide powder having an average particle size of 0.5 to 20 μm and niobium oxide powder having an average particle size of 5 μm or less is hot-pressed at a temperature of 800 to 1100 ° C. to form a sintered body. A method for producing a zinc sulfide-based sintered material.
【請求項7】 平均粒径が0.5〜20μmの硫化亜鉛
粉末と、平均粒径5μm以下の酸化ニオブ粉末との混合
物を所望形状に成形した後、この成形体を不活性ガス中
で700〜1200℃の温度で焼成して焼結体とする硫
化亜鉛系焼結材料の製造方法。
7. A mixture of a zinc sulfide powder having an average particle size of 0.5 to 20 μm and a niobium oxide powder having an average particle size of 5 μm or less is formed into a desired shape, and the formed product is mixed with an inert gas at a temperature of 700 μm. A method for producing a zinc sulfide-based sintered material which is fired at a temperature of about 1200 ° C. to obtain a sintered body.
【請求項8】 上記混合物中における酸化ニオブの含有
量が、Nb25に換算して5重量%を超え、50重量%
以下である請求項6又は7に記載の硫化亜鉛系焼結材料
の製造方法。
8. The content of niobium oxide in the mixture exceeds 5% by weight in terms of Nb 2 O 5 , and is 50% by weight.
The method for producing a zinc sulfide-based sintered material according to claim 6 or 7, wherein:
【請求項9】 請求項7の硫化亜鉛系焼結材料を、80
0〜1200℃の温度範囲で熱間静水圧プレスをする硫
化亜鉛系焼結材料の製造方法。
9. The method according to claim 7, wherein the zinc sulfide-based sintered material is
A method for producing a zinc sulfide-based sintered material that is subjected to hot isostatic pressing in a temperature range of 0 to 1200 ° C.
JP37380399A 1999-12-28 1999-12-28 Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same Pending JP2001181045A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP37380399A JP2001181045A (en) 1999-12-28 1999-12-28 Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same
US09/740,098 US6656260B2 (en) 1999-12-28 2000-12-19 ZnS-series sintered material and method for producing the same, target using the ZnS-series sintered material, thin film, and optical recording medium using the thin film
EP00128011A EP1112988A1 (en) 1999-12-28 2000-12-20 ZnS-series sintered material and method for producing the same, target using the ZnS-series sintered material, thin film, and optical recording medium using the thin film
TW89127488A TW574171B (en) 1999-12-28 2000-12-21 ZnS-series sintered material and method for producing the same, target using the ZnS-series sintered material, thin film, and optical recording medium using the thin film
KR1020000083106A KR20010062782A (en) 1999-12-28 2000-12-27 ZnS-SERIES SINTERED MATERIAL AND METHOD FOR PRODUCING THE SAME, TARGET USING THE ZnS-SERIES SINTERED MATERIAL, THIN FILM, AND OPTICAL RECORDING MEDIUM USING THE THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37380399A JP2001181045A (en) 1999-12-28 1999-12-28 Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same

Publications (1)

Publication Number Publication Date
JP2001181045A true JP2001181045A (en) 2001-07-03

Family

ID=18502789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37380399A Pending JP2001181045A (en) 1999-12-28 1999-12-28 Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same

Country Status (1)

Country Link
JP (1) JP2001181045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084696A (en) * 2003-03-04 2009-04-23 Nikko Kinzoku Kk Process for producing sputtering target
JP2011165230A (en) * 2010-02-04 2011-08-25 Tdk Corp Optical medium, sputtering target for optical medium, and method for producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084696A (en) * 2003-03-04 2009-04-23 Nikko Kinzoku Kk Process for producing sputtering target
JP2011165230A (en) * 2010-02-04 2011-08-25 Tdk Corp Optical medium, sputtering target for optical medium, and method for producing them

Similar Documents

Publication Publication Date Title
JP2012052227A (en) Method for manufacturing sputtering target, and sputtering target
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
JP3533333B2 (en) Sputtering target for interference film of optical recording medium and method of manufacturing the same
EP1985725B1 (en) Thin film in anoptical information recording medium and process for producing the same
US6261984B1 (en) Sputtering target and process for the preparation thereof
KR100673263B1 (en) Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
US6656260B2 (en) ZnS-series sintered material and method for producing the same, target using the ZnS-series sintered material, thin film, and optical recording medium using the thin film
JP5727043B2 (en) Conductive oxide sintered body and method for producing the same
JP2001181045A (en) Zinc sulfide-based sintering material, method for producing the same and sputtering target using the same
JP3915109B2 (en) Sputtering target material for forming an optical recording medium protective layer
JP4250686B2 (en) Sputtering target
TW593718B (en) Sputtering target for forming optical recording protective film and manufacturing method for the same
TWI237668B (en) ZnS-SiO2 sputtering target and optical recording medium having ZnS-SiO2 phase-change type optical disc protective film formed through use of that target
JP3882186B2 (en) Sputtering target for forming an optical recording protective film capable of direct current sputtering
TW201505739A (en) Sputtering target for thin film formation and method of producing the same
JP2001181833A (en) Sputtering target for deposit optical recording medium protective film free from sputtering crack
JP6957815B2 (en) Oxide sputtering target
JP2002294439A (en) Sputtering target and manufacturing method
JP5534191B2 (en) BiTi-based oxide target containing Bi4Ti3O12 phase and method for producing the same
EP1757712B1 (en) Sputtering target, optical information recording medium and method for producing same
JP2001316804A (en) Sputtering target for formation of optical logging protection film capable of dc sputtering and low in abnormal discharge
JP2001192819A (en) Sputtering target for depositing optical recording protective film capable of direct current sputtering
JP5533411B2 (en) BiTi-based oxide sputtering target and method for producing the same
JP2000219962A (en) High strength sputtering target for forming optical recording protective film
JP2016176114A (en) Mn-Zn-Mo-O SYSTEM SPUTTERING TARGET, AND MANUFACTURING METHOD THEREFOR