JP2001179167A - Thin film deposition method - Google Patents

Thin film deposition method

Info

Publication number
JP2001179167A
JP2001179167A JP36754899A JP36754899A JP2001179167A JP 2001179167 A JP2001179167 A JP 2001179167A JP 36754899 A JP36754899 A JP 36754899A JP 36754899 A JP36754899 A JP 36754899A JP 2001179167 A JP2001179167 A JP 2001179167A
Authority
JP
Japan
Prior art keywords
thin film
substrate
pattern
forming
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36754899A
Other languages
Japanese (ja)
Other versions
JP3926076B2 (en
Inventor
Hiroshi Tanabe
浩 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP36754899A priority Critical patent/JP3926076B2/en
Publication of JP2001179167A publication Critical patent/JP2001179167A/en
Application granted granted Critical
Publication of JP3926076B2 publication Critical patent/JP3926076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the quantity of a raw material to be used by supplying raw materials previously selectively on a substrate and to simplify the manufacturing process by dispensing with a photolithography process and an etching process. SOLUTION: This thin film depositing method for depositing a silicon based semiconductor film, a silicon oxide based insulating film and the like is composed of a process for depositing a liquid pattern 103 by discharging plural times a flowable raw material toward a prescribed direction as liquid drops 102, a process for depositing into a thin film pattern 10 by solidifying the liquid pattern 104 and a process for depositing into a crystallized film 106 by irradiating the thin film pattern 104 with laser. The manufacturing process is simplified and the quantity of the material to be used is reduced by dispensing with the lithography process and the etching process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基体や絶縁
性基体上への半導体、絶縁体、導電体等からなる薄膜の
形成方法に関し、特に、半導体基板やガラス基板上に、
シリコン系半導体薄膜や、酸化シリコン系絶縁体薄膜等
を形成するのに適した薄膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film comprising a semiconductor, an insulator, a conductor and the like on a semiconductor substrate or an insulating substrate.
The present invention relates to a thin film forming method suitable for forming a silicon-based semiconductor thin film, a silicon oxide-based insulator thin film, and the like.

【0002】[0002]

【従来の技術】今日までに幅広く普及してきた半導体素
子、たとえばシリコン系MOSデバイスでは、シリコンウ
エハー内部にその能動層を有し、熱酸化された表面酸化
膜上にゲート電極を形成することにより、MOS(Metal-O
xide-Semiconductor:金属-酸化膜-半導体)構造を形成
している。シリコンウエハー内部では、イオン注入法な
どを用いて局所的に不純物拡散層が制御されており、島
状構造等の局所的な構造変化を用いる例は少ない。一
方、シリコンウエハ上部に形成されるゲート電極や金属
配線等は、所望の素子間の信号伝達を必要とするため、
線状や島状等の所定のパターン形状に形成される。一般
にこのようなパターン形成は以下のような手順で行われ
る。
2. Description of the Related Art Semiconductor devices, such as silicon-based MOS devices, which have become widespread to date, have an active layer inside a silicon wafer and form a gate electrode on a thermally oxidized surface oxide film. MOS (Metal-O
xide-Semiconductor: A metal-oxide-semiconductor structure is formed. Inside the silicon wafer, the impurity diffusion layer is locally controlled using an ion implantation method or the like, and there are few examples of using a local structural change such as an island structure. On the other hand, a gate electrode, a metal wiring, and the like formed on the silicon wafer require signal transmission between desired elements.
It is formed in a predetermined pattern shape such as a linear shape or an island shape. Generally, such a pattern is formed by the following procedure.

【0003】1)基板全面に所望の薄膜を形成する、2)
その表面にフォトレジストを塗布する、3)ステッパを
用いて所望の領域を露光する、4)露光領域を現像しフ
ォトレジストパターンに形成する、5)フォトレジスト
パターンをマスクとして開口部に露出した薄膜をエッチ
ングする、6)フォトレジストの剥離、洗浄を行う。
[0003] 1) forming a desired thin film on the entire surface of the substrate; 2)
3) exposing a desired area using a stepper; 4) developing an exposed area to form a photoresist pattern; 5) a thin film exposed to the opening using the photoresist pattern as a mask. 6) Strip and remove the photoresist.

【0004】上記のような方法では、例えば基板の全面
に作製した金属薄膜の不要部分をフォトリソグラフィ工
程とエッチング工程とにより選択的に除去するものであ
り、材料が無駄となるばかりか、工程数が増加するなど
の問題を有している。これらの課題を解決する手段とし
ては、有機金属原料を用いたレーザCVD法などによっ
て、局所的に金属薄膜を形成する手法が試みられてい
る。
In the above-described method, for example, an unnecessary portion of a metal thin film formed on the entire surface of a substrate is selectively removed by a photolithography step and an etching step. Have problems such as an increase in As a means for solving these problems, a technique of locally forming a metal thin film by a laser CVD method using an organic metal material has been attempted.

【0005】さらに、SOI(半導体-酸化膜-絶縁体)デ
バイスの台頭や、アクティブマトリックス液晶ディスプ
レイに代表される大面積デバイスの実用化と共に、上述
の配線金属材料ばかりでなく、能動層となるシリコン半
導体層のパターン化が必要になってきた。たとえばアク
ティブマトリックス液晶ディスプレイに用いられるアモ
ルファスシリコン薄膜トランジスタにおいては、1)シ
ランガスを原料としたプラズマCVD法によるアモルファ
ス窒化珪素、アモルファスシリコン膜の基板全面への形
成、2)その表面にフォトレジストを塗布、3)ステッパ
を用いて所望の領域の露光、5)露光領域を現像しフォ
トレジストパターンを形成、6)フォトレジストパター
ンをマスクとして開口部に露出したアモルファスシリコ
ン膜をエッチング、7)フォトレジストの剥離、洗浄等の
工程が順次に実施される。
Further, with the rise of SOI (semiconductor-oxide-insulator) devices and the practical use of large-area devices typified by active matrix liquid crystal displays, not only the above-mentioned wiring metal materials but also silicon as active layers Patterning of semiconductor layers has become necessary. For example, in an amorphous silicon thin film transistor used for an active matrix liquid crystal display, 1) amorphous silicon nitride by plasma CVD using silane gas as a raw material, formation of an amorphous silicon film over the entire surface of a substrate, 2) application of a photoresist on the surface, ) Exposure of the desired area using a stepper, 5) Development of the exposed area to form a photoresist pattern, 6) Etching of the amorphous silicon film exposed in the opening using the photoresist pattern as a mask, 7) Stripping of the photoresist, Steps such as washing are sequentially performed.

【0006】上記工程も、不要部分をフォトリソグラフ
ィ工程とエッチング工程とにより選択的に除去するもの
であり、材料の無駄や工程数が増加するなどの問題は、
すでに述べた配線材料と同様である。しかも、上述の半
導体素子が6インチ程度の基板から多数のチップが製造
されるのに対し、ディスプレイ装置は、単体でも対角20
インチといった大きさを有するため、除去により廃棄さ
れる薄膜の量も飛躍的に大きくなる。
[0006] In the above-mentioned process, unnecessary portions are selectively removed by a photolithography process and an etching process. Problems such as waste of materials and an increase in the number of processes are as follows.
This is the same as the wiring material already described. In addition, while the above-described semiconductor elements are manufactured on a large number of chips from a substrate having a size of about 6 inches, the display device can be used on its own with a diagonal of 20
Because of the size of inches, the amount of thin film discarded by removal also increases dramatically.

【0007】[0007]

【発明が解決しようとする課題】以上のような問題を解
決する手段として、特開平4-180624号公報では、アモル
ファスシリコン薄膜の所望のパターン領域を再結晶化し
た後に、アモルファスシリコンと結晶性シリコンのエッ
チングレートの違いを利用して、アモルファスシリコン
領域のみをエッチングし、結晶性シリコンからなるパタ
ーンを形成する技術が提案されている。このような方法
を採ることによって、フォトレジストプロセスを省略で
きるという利点があるが、シリコン系薄膜が全面に形成
された後に除去されるために、原材料を必要以上に消費
するという問題は依然として残る。
As means for solving the above-mentioned problems, Japanese Patent Application Laid-Open No. Hei 4-180624 discloses that after a desired pattern region of an amorphous silicon thin film is recrystallized, amorphous silicon and crystalline silicon are recrystallized. Utilizing the difference in the etching rates described above, a technique has been proposed in which only the amorphous silicon region is etched to form a pattern made of crystalline silicon. By adopting such a method, there is an advantage that the photoresist process can be omitted. However, since the silicon-based thin film is removed after being formed on the entire surface, there still remains a problem that raw materials are consumed more than necessary.

【0008】そこで、本発明は、フォトリソグラフィ工
程及びエッチング工程の省略を可能にすると共に、使用
する原材料の量を削減可能な薄膜形成方法を提供するこ
とを目的とする。
Accordingly, an object of the present invention is to provide a method of forming a thin film which can omit a photolithography step and an etching step and can reduce the amount of raw materials used.

【0009】本発明は、さらに、絶縁性薄膜及び導電性
薄膜の双方の形成に共通技術を適用することによって、
新しい半導体素子及び液晶素子の形成方法を提供するこ
とをも目的とする。
The present invention further provides a common technique for forming both an insulating thin film and a conductive thin film.
Another object is to provide a new method for forming a semiconductor element and a liquid crystal element.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、以下の第1〜第3の薄膜形成方法を提供
する。
In order to achieve the above object, the present invention provides the following first to third thin film forming methods.

【0011】1)流動性原料を選択的に基板上に塗布し
て所望のパターンを形成する工程と、該所望のパターン
を基板上に固化して固化パターンを形成する工程とを有
することを特徴とする薄膜形成方法。
[0011] 1) A step of selectively applying a fluid material on a substrate to form a desired pattern, and a step of solidifying the desired pattern on the substrate to form a solidified pattern. A thin film forming method.

【0012】上記第1の発明方法では、例えば液体原料
の小滴を所定の方向に複数回吐出、飛翔させて基板上に
液体原料を選択的に塗布することで、液体原料の所望の
パターンを形成する。これによって、リソグラフィ工程
とエッチング工程とを省略する。上記小滴の吐出及び飛
翔には、液体原料を所定の方向に吐出する複数の吐出口
及び原料液体の供給口を有する液滴吐出手段を用い、複
数の液滴を同時に選択的に吐出することが好ましい。液
滴吐出手段としては、液体原料の加熱による気化・体積
膨張現象を利用したものや、ピエゾ素子等による機械的
な振動によるものを用いることができる。
In the first invention method, for example, a desired pattern of the liquid material is formed by selectively applying the liquid material on the substrate by discharging and flying a plurality of small droplets of the liquid material in a predetermined direction. Form. Thereby, the lithography step and the etching step are omitted. For discharging and flying the small droplets, a plurality of droplets are selectively discharged at the same time by using a droplet discharging means having a plurality of discharge ports for discharging a liquid material in a predetermined direction and a material liquid supply port. Is preferred. As the droplet discharging means, a means utilizing a vaporization / volume expansion phenomenon due to heating of the liquid raw material, or a means utilizing mechanical vibration by a piezo element or the like can be used.

【0013】流動性原料としては、上述のような液体の
他に、液体と微粒子の混合物、流動性の高い微粒子等を
用いることができる。塗布後、固化工程前に形成したパ
ターンが崩れないようにするために、基板上での液体の
表面張力や、粘度を適当に調整する必要がある。固体微
粒子を用いたような場合には、基板や固体微粒子をあら
かじめ帯電しておくことによって、パターン崩れを防止
できる。
As the fluid raw material, in addition to the liquid described above, a mixture of liquid and fine particles, fine particles having high fluidity, and the like can be used. It is necessary to appropriately adjust the surface tension and viscosity of the liquid on the substrate so that the pattern formed before the solidification step does not collapse after the application. In the case where solid fine particles are used, pattern collapse can be prevented by charging the substrate and the solid fine particles in advance.

【0014】形成される薄膜パターンの膜厚としては、
例えば1μm程度の膜厚に制御することが好ましい。液
滴の吐出及び飛翔によって所望の膜厚及びパターンサイ
ズを得るためには、吐出口のサイズ、吐出圧力、基板又
は吐出手段の移動速度等の条件を適切に制御する。所定
膜厚以上の薄膜を形成した後に、研磨やイオンミリング
等によってその厚みを小さくすることも出来る。また、
固化工程では、熱による液体原料の乾燥、微粒子の溶融
固化や化学反応による固体形成などを用いることができ
る。
The thickness of the formed thin film pattern is as follows:
For example, it is preferable to control the film thickness to about 1 μm. In order to obtain a desired film thickness and pattern size by discharging and flying droplets, conditions such as a discharge port size, a discharge pressure, and a moving speed of a substrate or a discharge unit are appropriately controlled. After a thin film having a predetermined thickness or more is formed, the thickness can be reduced by polishing, ion milling, or the like. Also,
In the solidification step, drying of a liquid raw material by heat, melting and solidification of fine particles, solid formation by a chemical reaction, and the like can be used.

【0015】2)流動性原料を選択的に基板上に塗布し
て所望のパターンを形成する工程と、該所望のパターン
を基板上で再結晶化又は非晶質化する工程とを有する薄
膜形成方法。
2) A thin film forming method comprising the steps of selectively applying a fluid material onto a substrate to form a desired pattern, and recrystallizing or amorphizing the desired pattern on the substrate. Method.

【0016】上記第2の発明方法においても液滴の吐出
及び飛翔を用いることが出来る。本発明方法における好
適な態様では、液体原料を基板上で固化し非晶質薄膜や
多結晶性薄膜を形成する。これらの薄膜にレーザ、電子
ビーム、ランプ光等のエネルギービームを照射すること
によって、溶融再結晶化を促し非晶質薄膜の結晶化や多
結晶薄膜の高品質化、単結晶化を実現できる。
The method of the second aspect of the invention can also use the ejection and flying of droplets. In a preferred embodiment of the method of the present invention, the liquid raw material is solidified on a substrate to form an amorphous thin film or a polycrystalline thin film. By irradiating these thin films with an energy beam such as a laser, an electron beam, or a lamp, melting and recrystallization is promoted, and crystallization of an amorphous thin film, high quality of a polycrystalline thin film, and single crystallization can be realized.

【0017】3)液体原料を基板上に塗布して液体パタ
ーンを形成する工程、該液体パターンを酸化又は窒化す
る工程とを有する薄膜形成方法。
3) A method of forming a thin film, comprising the steps of applying a liquid material on a substrate to form a liquid pattern, and oxidizing or nitriding the liquid pattern.

【0018】液体原料の塗布は、基板全面に塗布するこ
とも、或いは、本発明の第1又は第2発明の方法によっ
て所望のパターンに塗布することも出来る。液体原料と
して、一般式SinH2n+1(n>=2)であらわされるような高
次シランを用いると、純度の高いシリコン薄膜を得やす
い。特にトリシランSi3H8、テトラシランSi4H10および
それ以上の高次シランは室温で液体であるため扱いやす
い。シラン類は大気或いは酸化性雰囲気で酸素と反応し
易い、すなわち酸化されや易いという特徴があるため、
高次シランを塗布した後に、酸化性雰囲気にさらすこと
によりシリコン酸化膜が形成される。スピン塗布等の方
法を用いた塗布後、酸化することにより酸化膜を基板全
面に形成することができ、或いは、液滴により選択的に
塗布した後酸化することにより選択的に酸化膜を形成す
る。
The liquid material can be applied to the entire surface of the substrate, or can be applied to a desired pattern by the method of the first or second invention of the present invention. When a high-order silane represented by the general formula Si n H 2n + 1 (n> = 2) is used as a liquid raw material, it is easy to obtain a silicon thin film with high purity. In particular, trisilane Si 3 H 8 , tetrasilane Si 4 H 10 and higher silanes are easy to handle because they are liquid at room temperature. Silanes have a characteristic that they easily react with oxygen in the air or an oxidizing atmosphere, that is, they are easily oxidized.
After applying the high order silane, the silicon oxide film is formed by exposing to an oxidizing atmosphere. After coating using a method such as spin coating, an oxide film can be formed on the entire surface of the substrate by oxidizing, or an oxide film can be formed selectively by selectively applying droplets and then oxidizing. .

【0019】[0019]

【発明の実施の形態】図1〜4を参照し、本発明の実施
形態例に基づいて本発明を更に詳細に説明する。図1
(a)〜(d)は、本発明の一実施形態例における薄膜
形成方法の工程を順次に示す断面図である。まず、基板
101上に液滴102を飛翔・付着させ(同図(a))、液体
パターン103を形成する(同図(b))。パターンサイ
ズ及び膜厚は、飛翔・付着される液滴の単位量、数によ
って制御される。液滴吐出手段を基板101に対して相対
的に移動させる、或いは、基板101を液滴吐出手段に対
し相対的に移動させることにより、基板101の表面に所
望の液体パターンが形成できる。このように形成された
液体パターンを加熱乾燥させることにより薄膜104を形
成する(同図(c))。さらに、必要に応じてレーザ10
5を基板全面或いはその一部に照射することにより、結
晶化膜106を形成する(同図(d))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to FIGS. FIG.
4A to 4D are cross-sectional views sequentially illustrating steps of a thin film forming method according to an embodiment of the present invention. First, the substrate
A droplet 102 is made to fly and adhere on 101 (FIG. 1A), and a liquid pattern 103 is formed (FIG. 2B). The pattern size and the film thickness are controlled by the unit amount and the number of the droplets that fly and adhere. A desired liquid pattern can be formed on the surface of the substrate 101 by moving the droplet discharging means relatively to the substrate 101 or by moving the substrate 101 relatively to the liquid droplet discharging means. The liquid pattern thus formed is dried by heating to form a thin film 104 (FIG. 3C). In addition, a laser 10
The crystallized film 106 is formed by irradiating 5 with the entire surface of the substrate or a part thereof (FIG. 4D).

【0020】本実施形態例で用いられる液体として、一
般式SinH2n+1(n>=2)であらわされるような高次シラン
を用いると、純度の高いシリコン薄膜を得やすい。特に
トリシランSi3H8、テトラシランSi4H10およびそれ以上
の高次シランは室温で液体であるため扱いやすい。ただ
し、大気或いは酸化性雰囲気で酸素と反応し易いため、
上記液滴の形成は窒素や不活性ガス雰囲気、或いは減圧
雰囲気で行われることが望ましい。高次シランを用い、
加熱により液体パターンを固化する工程では、シリコン
原子に結合している水素原子を放出し、シリコン原子同
士が無秩序に結合することによって固化する。有限な時
間で固相成長が観測される約600℃以上の加熱・冷却工
程を用いれば、より安定な結合状態で結合するため結晶
性のシリコン薄膜が得られる。一方、液晶ディスプレイ
基板といったガラス質基板を用いる場合には、処理温度
を600〜300℃程度或いはそれ以下に抑制する必要があ
り、300℃程度以下の熱処理を用いると、非晶質シリコ
ンが形成される。低温の熱処理で結晶性シリコン薄膜を
形成するためには、エキシマレーザ(XeCl,KrF,XeF,
ArF等)や、YAGレーザ、Arレーザ等を用いたレーザ再結
晶化工程を応用する。この場合、ガラスのような低軟化
点基板を用いた場合であっても、非晶質シリコンの結晶
化を促すことが可能となる。
If a high-order silane represented by the general formula Si n H 2n + 1 (n> = 2) is used as the liquid used in this embodiment, a silicon thin film with high purity can be easily obtained. In particular, trisilane Si 3 H 8 , tetrasilane Si 4 H 10 and higher silanes are easy to handle because they are liquid at room temperature. However, since it easily reacts with oxygen in air or oxidizing atmosphere,
It is desirable that the droplets are formed in a nitrogen or inert gas atmosphere or a reduced pressure atmosphere. Using high order silane,
In the step of solidifying the liquid pattern by heating, hydrogen atoms bonded to silicon atoms are released, and the silicon atoms are solidified by being randomly bonded. By using a heating / cooling process at about 600 ° C. or higher in which solid phase growth is observed in a finite time, a crystalline silicon thin film can be obtained because bonding is performed in a more stable bonding state. On the other hand, when a glassy substrate such as a liquid crystal display substrate is used, the processing temperature needs to be suppressed to about 600 to 300 ° C. or less. You. In order to form a crystalline silicon thin film by low-temperature heat treatment, an excimer laser (XeCl, KrF, XeF,
A laser recrystallization process using ArF or the like, a YAG laser, an Ar laser, or the like is applied. In this case, crystallization of amorphous silicon can be promoted even when a low softening point substrate such as glass is used.

【0021】図2は液滴吐出手段を表す図である。図2
(a)に吐出手段単体の断面図を示す。ノズル201には供給
口204側から原料が供給される。例えば、テトラシランS
i4H 10を用いた場合には、その1気圧下の沸点が108℃程
度であるため、ヒータ202を120℃程度に加熱することに
より、ノズル内のヒータ近傍の領域でテトラシランが気
化し、体積が膨張する。吐出口203側は液体が抵抗なく
流出できるため、気化・膨張による圧力によって吐出口
付近にあった液体テトラシランが吐出・飛翔する。以上
のようなノズルを複数個並べることにより、液滴の供給
を高速に行う。図2(b)はそのような構造を有する液滴吐
出手段の斜視図である。ヒータ202の加熱を制御する駆
動回路206が制御手段208に接続してあり、それらは駆動
回路基板205に保持される。なお、同図ではノズル20
1が1次元のアレイ状に配置されているが、ノズルアレ
イを2次元状に配置することにより、処理をより高速に
することも可能である。
FIG. 2 is a diagram showing the droplet discharging means. FIG.
(a) shows a sectional view of the discharge means alone. Supply to nozzle 201
Raw material is supplied from the port 204 side. For example, tetrasilane S
iFourH TenWhen used, the boiling point under one atmosphere is about 108 ° C
The heater 202 to about 120 ° C.
As a result, tetrasilane is vaporized in a region near the heater in the nozzle.
And the volume expands. No liquid on the discharge port 203 side
Outlet can be discharged by pressure due to vaporization / expansion
The liquid tetrasilane in the vicinity is ejected and flies. that's all
Droplet supply by arranging multiple nozzles like
Do it fast. FIG. 2 (b) shows a droplet discharge having such a structure.
It is a perspective view of an output means. A drive for controlling the heating of the heater 202
The driving circuit 206 is connected to the control means 208,
It is held on the circuit board 205. Note that in FIG.
1 are arranged in a one-dimensional array.
Processing speeds up by arranging the a in two dimensions
It is also possible.

【0022】液滴形成手段としては、図2に示した加熱
による気化・体積膨張機構を利用した方法ばかりでな
く、ピエゾ素子等を用いた機械的な圧力による噴出機構
やスクリーン印刷や凹版印刷なども利用できる。流動性
原料として、シリコン微粒子、酸化シリコン微粒子或い
はそれらを溶媒に分散させたものを用いることで、シリ
コン薄膜、酸化シリコン薄膜を形成することができる。
このような場合には、基板上に静電潜像を形成し、帯電
した原料を用いて現像する。或いは、感光体上に形成し
た静電潜像を上記微粒子を用いて現像した後に、その微
粒子パターンを基板上に転写する方法を用いてもよい。
As the droplet forming means, not only a method utilizing a vaporization / volume expansion mechanism by heating shown in FIG. 2, but also a jetting mechanism by mechanical pressure using a piezo element or the like, screen printing, intaglio printing, etc. Also available. By using silicon fine particles, silicon oxide fine particles, or those obtained by dispersing them in a solvent as a fluid raw material, a silicon thin film or a silicon oxide thin film can be formed.
In such a case, an electrostatic latent image is formed on the substrate, and is developed using a charged raw material. Alternatively, a method of developing the electrostatic latent image formed on the photoreceptor using the fine particles and transferring the fine particle pattern onto the substrate may be used.

【0023】図3に液体パターン形成装置の概略を示
す。薄膜パターンが形成されるべき基板310は、ゲート
バルブ306を介して搬送室305内に導入される。搬送に
は、図示しない搬送ロボットが利用される。基板310の
導入後に、搬送室305内の雰囲気は窒素雰囲気に置換さ
れる。置換後に、基板310はさらに第2のゲートバルブ30
6を介してプロセス室309内に導入される。プロセス室30
9内で基板310は基板ステージ310上に配置される。プロ
セス室309は、第3のゲートバルブを介して排気装置312
に接続され、窒素導入機構又は不活性ガス導入機構と同
時に制御される(図示せず)ことにより、雰囲気の清浄化
が図られる。基板上で適切なギャップを保ったまま吐出
装置308が移動することにより、基板上に所望のパター
ンを形成する。さらに、プロセス室はレーザ導入窓307
を有する。レーザ発振器301から光学素子302を介して供
給されるレーザ光を基板310の表面に導入することによ
り、パターン化された薄膜の改質或いは結晶化を行う。
レーザ光についても光学素子群に移動手段303を設ける
ことにより、基板全面へ照射される。図示してはいない
が、レーザ光はビームホモジナイザ等を用いて空間的な
強度が均一化されたものや、マスク等を用いて所望のビ
ームパターンを有するものであってもよい。
FIG. 3 schematically shows a liquid pattern forming apparatus. The substrate 310 on which the thin film pattern is to be formed is introduced into the transfer chamber 305 via the gate valve 306. A transfer robot (not shown) is used for the transfer. After the introduction of the substrate 310, the atmosphere in the transfer chamber 305 is replaced with a nitrogen atmosphere. After the replacement, the substrate 310 further moves to the second gate valve 30.
It is introduced into the process chamber 309 through 6. Process room 30
In 9, the substrate 310 is placed on the substrate stage 310. The process chamber 309 is connected to the exhaust device 312 via the third gate valve.
And is controlled simultaneously with the nitrogen introduction mechanism or the inert gas introduction mechanism (not shown), thereby purifying the atmosphere. A desired pattern is formed on the substrate by moving the ejection device 308 while maintaining an appropriate gap on the substrate. In addition, the process chamber has a laser
Having. By introducing a laser beam supplied from the laser oscillator 301 via the optical element 302 to the surface of the substrate 310, the patterned thin film is modified or crystallized.
The laser light is also applied to the entire surface of the substrate by providing the moving means 303 in the optical element group. Although not shown, the laser beam may have a uniform beam intensity using a beam homogenizer or the like, or may have a desired beam pattern using a mask or the like.

【0024】図4は、上記実施形態例の液体パターン形
成装置を他のプロセス装置と複合化した場合についてそ
の平面図を示す。ロード/アンロード室C1、プラズマCV
D室C2、基板加熱室C3、水素又は酸素プラズマ処理室C
4、レーザ照射/塗布室C5がそれぞれゲートバルブGV1〜G
V6を介して(GV6は予備)、基板搬送室C7に接続されて
いる。各プロセス室はガス導入装置gas1〜gas7、排気装
置vent1〜vent7を具備している。ロード/アンロード室
から導入された処理基板sub2、sub6は、基板搬送室に備
えられた搬送ロボットによって各プロセス室に搬送され
る。レーザ照射/塗布室C5においては、図示しない塗布
手段によって液体薄膜パターンが形成されたのち、加熱
固化される。次に第一のビームラインL1、第2のビーム
ラインL2のいずれか或いは両方を経て供給されるレーザ
光を、レーザ合成光学装置opt1、opt2により整形し、レ
ーザ導入窓w1を介して基板表面に照射する。
FIG. 4 is a plan view showing a case where the liquid pattern forming apparatus of the above embodiment is combined with another processing apparatus. Loading / unloading room C1, plasma CV
D chamber C2, substrate heating chamber C3, hydrogen or oxygen plasma processing chamber C
4.Laser irradiation / coating chamber C5 has gate valves GV1 ~ G respectively
Through V6 (GV6 is reserved), it is connected to the substrate transfer chamber C7. Each process chamber includes gas introduction devices gas1 to gas7 and exhaust devices vent1 to vent7. The processing substrates sub2 and sub6 introduced from the load / unload chamber are transferred to each process chamber by a transfer robot provided in the substrate transfer chamber. In the laser irradiation / coating chamber C5, after a liquid thin film pattern is formed by a coating means (not shown), the liquid thin film pattern is heated and solidified. Next, the laser beam supplied via one or both of the first beam line L1 and the second beam line L2 is shaped by the laser combining optical devices opt1 and opt2, and is formed on the substrate surface via the laser introduction window w1. Irradiate.

【0025】上記のような装置を用いることによって、
プラズマCVDSiO2膜との積層構造などを作製する際に、
基板の大気開放を防ぐことができるため、清浄な界面を
形成することができる。
By using the above-described device,
When producing a laminated structure with a plasma CVD SiO 2 film,
Since the substrate can be prevented from being opened to the atmosphere, a clean interface can be formed.

【0026】図5(a)〜(d)を参照し第2の実施形態
例について説明する。基板101上に液滴102を飛翔・付着
させ(同図(a))、液体パターン503を形成する(同
図(b))。パターンサイズは、飛翔・付着される液滴
の単位量、数によって制御される。液滴吐出手段を基板
に対して相対的に移動させる、或いは、基板101を液滴
吐出手段に対して相対的に移動させることにより、基板
101表面に所望の液滴パターン504を形成する。このと
き、パターンサイズ及び膜厚の制御にあたり、液滴の粘
性、基板上での表面張力、作製する島状膜のサイズ等を
考慮して、十分にパラメータを設定する。ここで、所望
の膜厚よりも厚い膜が形成され、或いは、図5(b)に示す
ように、パターン504を固化する際の断面形状において
上面に凹凸が形成された場合には、その表面の平坦化工
程が行われる。平坦化処理は、図5(C)に示すように、
酸化膜505をその上部に形成し、次いで、化学的機械的
研磨法により酸化膜と同時に固化パターン504の表面を
研磨・除去することによって行う。さらに、必要に応じ
てレーザ105を基板全面或いはその一部に照射してもよ
い。平坦化手段としては、化学薬品によるエッチングや
機械的な研磨法、イオンミリング法等、材料に応じて選
択する。
The second embodiment will be described with reference to FIGS. 5 (a) to 5 (d). The droplet 102 is caused to fly and adhere to the substrate 101 (FIG. 7A), and a liquid pattern 503 is formed (FIG. 9B). The pattern size is controlled by the unit amount and the number of the droplets that fly and adhere. By moving the droplet discharging means relative to the substrate, or by moving the substrate 101 relative to the droplet discharging means,
A desired droplet pattern 504 is formed on the 101 surface. At this time, in controlling the pattern size and the film thickness, parameters are sufficiently set in consideration of the viscosity of the droplet, the surface tension on the substrate, the size of the island-shaped film to be formed, and the like. Here, when a film thicker than the desired film thickness is formed, or when unevenness is formed on the upper surface in the cross-sectional shape when the pattern 504 is solidified as shown in FIG. Is performed. The flattening process is performed as shown in FIG.
An oxide film 505 is formed on the upper portion, and then the surface of the solidified pattern 504 is polished and removed simultaneously with the oxide film by a chemical mechanical polishing method. Further, the entire surface of the substrate or a part thereof may be irradiated with the laser 105 as needed. The flattening means is selected according to the material, such as etching with a chemical, mechanical polishing, or ion milling.

【0027】次に図6及び図7を参照して本発明の第3の
実施形態例について説明する。図6(a)〜(d)は夫
々、薄膜トランジスタ作製工程の一部を示す。適切な基
板カバー膜を堆積した基板101上に、液体原料を島状に
塗布して薄膜パターン604を形成する(同図(a))。次
に、300℃での加熱・固化工程、レーザ再結晶化工程を
経て結晶性シリコン膜605を形成する(同図(b))。次い
で、液体原料であるトリシラン(Si3H8)膜606をスピン
塗布法で形成する(同図(c))。スピン条件は所望の膜
厚となるように設定する。塗布完了後に減圧酸素雰囲気
下で温度600℃でアニールする。こうすることにより、
トリシランが酸化され酸化膜607が形成される(同図
(d))。これによって、酸化膜607に被覆されたシリコン
膜パターン605が形成される。次に、ゲート電極の形
成、ソース・ドレイン領域への不純物注入、アニール、
配線金属の形成等を経て薄膜トランジスタを形成する。
Next, a third embodiment of the present invention will be described with reference to FIGS. 6A to 6D each show a part of a thin film transistor manufacturing process. On the substrate 101 on which an appropriate substrate cover film is deposited, a liquid material is applied in an island shape to form a thin film pattern 604 (FIG. 1A). Next, a crystalline silicon film 605 is formed through a heating / solidification step at 300 ° C. and a laser recrystallization step (FIG. 9B). Then, trisilane (Si3H 8) film 606 is a liquid material formed by spin coating method (FIG. (C)). The spin condition is set so as to have a desired film thickness. After the coating is completed, annealing is performed at a temperature of 600 ° C. in a reduced-pressure oxygen atmosphere. By doing this,
Trisilane is oxidized to form an oxide film 607.
(d)). As a result, a silicon film pattern 605 covered with the oxide film 607 is formed. Next, formation of the gate electrode, impurity implantation into the source / drain regions, annealing,
A thin film transistor is formed through formation of wiring metal and the like.

【0028】図7は、酸化膜を積極的に形成するための
装置の概略断面図である。高周波電源RF1(13.56
MHz或いはそれ以上の高周波が適する)から高周波電
極RF2に電力が供給される。ガス供給穴付き電極RF3と高
周波電極との間にプラズマが形成され、反応形成された
ラジカルが、ガス供給穴付き電極を通り、基板が配置さ
れた領域に導かれる。原料ガスとして酸素を含むガスを
用いることにより、基板sub2表面上に酸素ラジカルが供
給される。このとき、平面型ガス導入装置RF4により、
プラズマに曝すことなく別のガスを導入してもよく、シ
ラン等を導入することによって酸化シリコン膜の形成も
可能である。すなわち、酸化膜形成装置は、同図に示す
ように、排気装置ven2、ガス導入装置gas2、酸素ライン
gas21、ヘリウムラインgas22、水素ラインgas23、シラ
ンラインgas24、ヘリウムラインgas25、アルゴンライン
gas26を備えている。基板ホルダーS2はヒータ等により
室温から500℃程度までの加熱が可能である。上記の
ような酸素ラジカル供給装置の形態としては上述のよう
な平行平板型のRFプラズマCVD装置ばかりでなく、
減圧CVDや常圧CVDといったプラズマを利用しない
方法や、マイクロ波やECR(Electron Cyclotron Reso
nance)効果を用いたプラズマCVD装置を用いることも
可能である。また、酸素の代わりに窒素を含む原料を用
いることで窒化膜の形成も可能である。
FIG. 7 is a schematic sectional view of an apparatus for actively forming an oxide film. RF power supply RF1 (13.56
Power is supplied to the high-frequency electrode RF2 from a high frequency of MHz or higher. Plasma is formed between the electrode with gas supply holes RF3 and the high-frequency electrode, and radicals formed by reaction pass through the electrodes with gas supply holes and are guided to the region where the substrate is arranged. By using a gas containing oxygen as a source gas, oxygen radicals are supplied on the surface of the substrate sub2. At this time, by the flat gas introduction device RF4,
Another gas may be introduced without exposure to plasma, and a silicon oxide film can be formed by introducing silane or the like. That is, as shown in the figure, the oxide film forming apparatus includes an exhaust device ven2, a gas introduction device gas2, an oxygen line
gas21, helium line gas22, hydrogen line gas23, silane line gas24, helium line gas25, argon line
It has gas26. The substrate holder S2 can be heated from room temperature to about 500 ° C. by a heater or the like. As the form of the oxygen radical supply apparatus as described above, not only the parallel plate type RF plasma CVD apparatus as described above,
Methods that do not use plasma, such as low-pressure CVD and normal-pressure CVD, and microwave and ECR (Electron Cyclotron Reso
It is also possible to use a plasma CVD apparatus using the (nance) effect. In addition, a nitride film can be formed by using a material containing nitrogen instead of oxygen.

【0029】また、上記のような手法は、高純度であ
り、1μm以上の厚い酸化膜の形成に適しているため、
以下のような応用も可能である。薄膜トランジスタを用
いたアクティブマトリックス液晶ディスプレイやイメー
ジセンサが形成されるガラス基板は、アルカリ金属等を
微量に含む。アニール工程やレーザ結晶化工程において
アルカリ金属等不純物が基板から活性層シリコンや絶縁
膜、その界面に拡散することを防ぐために、基板カバー
層が用いられており、そのカバー層用の酸化シリコン膜
の作製法として適している。従来のCVD法による堆積等
に比べプロセス時間を短縮できる。一方、半導体プロセ
スやアクティブマトリクスTFT−LCD等で用いられる層間
絶縁膜は、その上部の平坦性が求められることが多い。
そのような応用においても、液体材料の塗布により平坦
な表面が形成されるため、優れた代替手段となる。
Further, the above-described method is high in purity and suitable for forming a thick oxide film of 1 μm or more.
The following applications are also possible. A glass substrate on which an active matrix liquid crystal display or an image sensor using a thin film transistor is formed contains a trace amount of an alkali metal or the like. A substrate cover layer is used to prevent impurities such as alkali metals from diffusing from the substrate to the active layer silicon and the insulating film and the interface in the annealing step and the laser crystallization step. Suitable as a production method. The process time can be shortened as compared with the conventional CVD method. On the other hand, an interlayer insulating film used in a semiconductor process, an active matrix TFT-LCD, or the like is often required to have a flat upper portion.
Even in such applications, the application of the liquid material forms a flat surface, which is an excellent alternative.

【0030】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の薄膜形成方法は、上記実施
形態例の構成にのみ限定されるものではなく、上記実施
形態例の構成から種々の修正及び変更を施した方法も、
本発明の範囲に含まれる。
Although the present invention has been described based on the preferred embodiment, the method of forming a thin film of the present invention is not limited to the configuration of the above-described embodiment, but rather the configuration of the above-described embodiment. The method of making various modifications and changes from
It is included in the scope of the present invention.

【0031】[0031]

【発明の効果】本発明の薄膜形成方法によると、流動性
を有する原材料を選択的に基板上に供給することにより
薄膜パターンが形成できるので、フォトリソグラフィ工
程及びエッチング工程の省略によって製造プロセスの工
程数が削減でき、また、使用する原材料の量の削減が実
現できる。さらに、シリコン系薄膜については、塗布膜
の酸化技術を本発明の薄膜形成方法で形成された絶縁性
薄膜に適用することにより、低コストで高性能な半導体
素子の形成が可能になる。
According to the method for forming a thin film of the present invention, a thin film pattern can be formed by selectively supplying a flowable raw material onto a substrate. The number can be reduced, and the amount of raw materials used can be reduced. Furthermore, for a silicon-based thin film, a low-cost, high-performance semiconductor element can be formed by applying the coating film oxidation technique to the insulating thin film formed by the thin film forming method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態例に係る薄膜形成方法
を順次に示す工程毎の断面図
FIG. 1 is a sectional view of each step sequentially showing a thin film forming method according to a first embodiment of the present invention.

【図2】(a)及び(b)は夫々、本発明方法で用いる
単体の吐出装置の構造を示す断面図、及び、アレイ状に
配置した吐出装置の構造を示す斜視図。
2A and 2B are a cross-sectional view showing the structure of a single discharge device used in the method of the present invention, and a perspective view showing the structure of discharge devices arranged in an array.

【図3】本発明方法で用いる液体パターン形成装置の模
式的平面図。
FIG. 3 is a schematic plan view of a liquid pattern forming apparatus used in the method of the present invention.

【図4】本発明方法で用いる液体パターン形成装置を含
む複合装置の平面図。
FIG. 4 is a plan view of a composite apparatus including a liquid pattern forming apparatus used in the method of the present invention.

【図5】本発明の第2の実施形態例に係る薄膜形成方法
を順次に示す断面図。
FIG. 5 is a sectional view sequentially showing a thin film forming method according to a second embodiment of the present invention.

【図6】本発明の第3の実施形態例に係る薄膜形成方法
を順次に示す断面図。
FIG. 6 is a sectional view sequentially showing a thin film forming method according to a third embodiment of the present invention.

【図7】第3の実施形態例で使用する酸素ラジカル供給
装置の模式的断面図。
FIG. 7 is a schematic sectional view of an oxygen radical supply device used in a third embodiment.

【符号の説明】[Explanation of symbols]

101:基板 102:液滴 103:液体パターン 104:固化パターン 105:レーザ 106:結晶化膜 201:ノズル 202:ヒータ 203:吐出口 204:供給口 205:駆動回路基板 206:駆動回路 207:供給手段 208:制御手段 301:レーザ発振器 302:光学素子 303:移動手段 304:光路 305:搬送室 306:ゲートバルブ 307:レーザ導入窓 308:吐出装置 309:プロセス室 310:排気装置 311:基板ステージ 312:排気装置 504:薄膜パターン 604:液体パターン 605:薄膜パターン 606:トリシラン膜 607:酸化膜 101: substrate 102: liquid droplet 103: liquid pattern 104: solidification pattern 105: laser 106: crystallized film 201: nozzle 202: heater 203: discharge port 204: supply port 205: drive circuit board 206: drive circuit 207: supply means 208: Control means 301: Laser oscillator 302: Optical element 303: Moving means 304: Optical path 305: Transport chamber 306: Gate valve 307: Laser introduction window 308: Discharge device 309: Process chamber 310: Exhaust device 311: Substrate stage 312: Exhaust device 504: thin film pattern 604: liquid pattern 605: thin film pattern 606: trisilane film 607: oxide film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/316 H01L 21/316 C B Fターム(参考) 4D075 AA04 BB02Z BB72Z BB92Z CA47 DA06 DB13 DB14 DC22 EA45 5F045 AB03 AB32 AC01 AC11 BB01 BB08 BB16 CA15 EB02 EB20 HA16 HA17 HA24 5F053 DD01 FF01 GG02 HH01 LL10 PP20 RR05 RR13 5F058 BA20 BB04 BB07 BC02 BC08 BF23 BF46 BF73 BF74 BG01 BG02 BG04 BH03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/316 H01L 21/316 CB F term (Reference) 4D075 AA04 BB02Z BB72Z BB92Z CA47 DA06 DB13 DB14 DC22 EA45 5F045 AB03 AB32 AC01 AC11 BB01 BB08 BB16 CA15 EB02 EB20 HA16 HA17 HA24 5F053 DD01 FF01 GG02 HH01 LL10 PP20 RR05 RR13 5F058 BA20 BB04 BB07 BC02 BC08 BF23 BF46 BF73 BF74 BG01 BG02 BG04 BH03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 流動性原料を選択的に基板上に塗布して
所望のパターンを形成する工程と、該所望のパターンを
基板上に固化して固化パターンを形成する工程とを有す
ることを特徴とする薄膜形成方法。
1. A method for selectively coating a fluid material on a substrate to form a desired pattern, and solidifying the desired pattern on the substrate to form a solidified pattern. A thin film forming method.
【請求項2】 前記所望のパターンを形成する工程は、
液滴を吐出して飛翔させる工程を含む、請求項1に記載
の薄膜形成方法。
2. The step of forming a desired pattern,
The method for forming a thin film according to claim 1, comprising a step of ejecting and flying a droplet.
【請求項3】 前記固化パターン上を覆って酸化膜を全
面に形成する工程と、該酸化膜及び固化パターンを研磨
して所望の厚みの固化パターンを形成する工程とを更に
有する、請求項1又は2に記載の薄膜形成方法。
3. The method according to claim 1, further comprising: forming an oxide film over the solidified pattern over the entire surface; and polishing the oxide film and the solidified pattern to form a solidified pattern having a desired thickness. Or the thin film forming method according to 2.
【請求項4】 流動性原料を選択的に基板上に塗布して
所望のパターンを形成する工程と、該所望のパターンを
基板上で再結晶化又は非晶質化する工程とを有すること
を特徴とする薄膜形成方法。
4. A method for forming a desired pattern by selectively applying a fluid material on a substrate, and recrystallizing or amorphizing the desired pattern on the substrate. Characteristic thin film forming method.
【請求項5】 前記所望のパターンを形成する工程は、
液滴を吐出して飛翔させる工程を含む、請求項4に記載
の薄膜形成方法。
5. The step of forming the desired pattern,
The method of forming a thin film according to claim 4, comprising a step of ejecting and flying a droplet.
【請求項6】 液体原料を基板上に塗布して薄膜を形成
する工程と、該薄膜を酸化又は窒化する工程とを有する
ことを特徴とする薄膜形成方法。
6. A method for forming a thin film, comprising: applying a liquid material onto a substrate to form a thin film; and oxidizing or nitriding the thin film.
JP36754899A 1999-12-24 1999-12-24 Thin film pattern forming method Expired - Fee Related JP3926076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36754899A JP3926076B2 (en) 1999-12-24 1999-12-24 Thin film pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36754899A JP3926076B2 (en) 1999-12-24 1999-12-24 Thin film pattern forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007011302A Division JP2007142451A (en) 2007-01-22 2007-01-22 Insulating layer, insulating layer pattern, thin film transistor, liquid crystal display, and liquid pattern formation device

Publications (2)

Publication Number Publication Date
JP2001179167A true JP2001179167A (en) 2001-07-03
JP3926076B2 JP3926076B2 (en) 2007-06-06

Family

ID=18489590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36754899A Expired - Fee Related JP3926076B2 (en) 1999-12-24 1999-12-24 Thin film pattern forming method

Country Status (1)

Country Link
JP (1) JP3926076B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070810A1 (en) * 2003-02-05 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing display
JP2004241770A (en) * 2003-01-17 2004-08-26 Semiconductor Energy Lab Co Ltd Method of manufacturing conductive layer and method of manufacturing semiconductor device
WO2004097915A1 (en) * 2003-04-25 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Droplet discharging device, method for forming pattern and method for manufacturing semiconductor device
JP2005150710A (en) * 2003-10-21 2005-06-09 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
WO2005071756A1 (en) * 2004-01-26 2005-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, television set, and method for manufacturing the same
JP2005210083A (en) * 2003-12-02 2005-08-04 Semiconductor Energy Lab Co Ltd Thin film transistor, display, liquid crystal display, and method of manufacturing them
JP2005244203A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Semiconductor device, tv set, and manufacturing methods thereof
EP1592054A1 (en) * 2003-02-05 2005-11-02 Semiconductor Energy Laboratory Co., Ltd. Display manufacturing method
JP2006049810A (en) * 2004-07-09 2006-02-16 Seiko Epson Corp Manufacturing method of thin film transistor, electro-optical device, and electronic equipment
US7052980B2 (en) 2003-03-26 2006-05-30 Seiko Epson Corporation Transistor manufacturing method, electrooptical apparatus and electronic apparatus
JP2006310345A (en) * 2005-04-26 2006-11-09 Jsr Corp Method of forming laminated film
US7189654B2 (en) 2003-02-05 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for wiring
JP2007234294A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP2007265827A (en) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd Plasma generator and workpiece processing device using it
US7332432B2 (en) 2003-10-02 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7399704B2 (en) 2003-10-02 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of a semiconductor device using liquid repellent film
US7416977B2 (en) 2004-04-28 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device, liquid crystal television, and EL television
US7439086B2 (en) 2003-11-14 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
US7462514B2 (en) 2004-03-03 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
WO2009019762A1 (en) * 2007-08-07 2009-02-12 Shimadzu Corporation Process for manufacturing optical matrix device
US7494923B2 (en) 2004-06-14 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of wiring substrate and semiconductor device
US7510905B2 (en) 2004-01-29 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Forming method of contact hole, and manufacturing method of semiconductor device, liquid crystal display device and EL display device
US7517791B2 (en) 2004-11-30 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7531294B2 (en) 2004-03-25 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for forming film pattern, method for manufacturing semiconductor device, liquid crystal television, and EL television
JP2009147216A (en) * 2007-12-17 2009-07-02 Renesas Technology Corp Manufacturing device of semiconductor device and manufacturing method of semiconductor device
US7625493B2 (en) 2003-02-06 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US7687326B2 (en) 2004-12-17 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7696625B2 (en) 2004-11-30 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2010117088A1 (en) * 2009-04-10 2010-10-14 独立行政法人科学技術振興機構 Pattern formation method, pattern, and device
US7858453B2 (en) 2003-02-06 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device and display device utilizing solution ejector
US7922819B2 (en) 2003-02-06 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor manufacturing device
US7939888B2 (en) 2004-01-26 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and television device using the same
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2011515584A (en) * 2008-03-26 2011-05-19 メルク パテント ゲーエムベーハー Composition for producing SiO2 resist layer and method of use thereof
US7985677B2 (en) 2004-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8228453B2 (en) 2003-12-02 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device and liquid crystal display device and method for manufacturing the same
US8247965B2 (en) 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
CN104037060A (en) * 2014-05-14 2014-09-10 京东方科技集团股份有限公司 Preparation method for polycrystalline metal oxide pattern
US8900953B2 (en) 2008-09-01 2014-12-02 Hiroshima University Crystal manufacturing apparatus, semiconductor device manufactured using the same, and method of manufacturing semiconductor device using the same
CN112236843A (en) * 2018-06-06 2021-01-15 堺显示器制品株式会社 Laser annealing method, laser annealing apparatus, and method for manufacturing active matrix substrate

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241770A (en) * 2003-01-17 2004-08-26 Semiconductor Energy Lab Co Ltd Method of manufacturing conductive layer and method of manufacturing semiconductor device
US7736955B2 (en) 2003-02-05 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Manufacture method of display device by using droplet discharge method
US7176069B2 (en) 2003-02-05 2007-02-13 Semiconductor Energy Laboratory Co., Ltd. Manufacture method of display device
US8460857B2 (en) 2003-02-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for wiring
WO2004070810A1 (en) * 2003-02-05 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing display
EP1592054A4 (en) * 2003-02-05 2010-08-25 Semiconductor Energy Lab Display manufacturing method
US7510893B2 (en) 2003-02-05 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a display device using droplet emitting means
EP1592054A1 (en) * 2003-02-05 2005-11-02 Semiconductor Energy Laboratory Co., Ltd. Display manufacturing method
CN100459060C (en) * 2003-02-05 2009-02-04 株式会社半导体能源研究所 Manufacture method of display device
US7189654B2 (en) 2003-02-05 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for wiring
US8053174B2 (en) 2003-02-05 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for wiring
US8569119B2 (en) 2003-02-06 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device and display device
US7625493B2 (en) 2003-02-06 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US7858453B2 (en) 2003-02-06 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device and display device utilizing solution ejector
US7922819B2 (en) 2003-02-06 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor manufacturing device
US7052980B2 (en) 2003-03-26 2006-05-30 Seiko Epson Corporation Transistor manufacturing method, electrooptical apparatus and electronic apparatus
JPWO2004097915A1 (en) * 2003-04-25 2006-07-13 株式会社半導体エネルギー研究所 Droplet ejection apparatus, pattern forming method, and semiconductor device manufacturing method
CN100380596C (en) * 2003-04-25 2008-04-09 株式会社半导体能源研究所 Droplet discharging device, method for forming pattern and method for manufacturing semiconductor device
WO2004097915A1 (en) * 2003-04-25 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Droplet discharging device, method for forming pattern and method for manufacturing semiconductor device
JP4731913B2 (en) * 2003-04-25 2011-07-27 株式会社半導体エネルギー研究所 Pattern forming method and semiconductor device manufacturing method
US7585783B2 (en) 2003-04-25 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Drop discharge apparatus, method for forming pattern and method for manufacturing semiconductor device
KR101115291B1 (en) * 2003-04-25 2012-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Droplet discharging device, method for forming pattern and method for manufacturing semiconductor device
US7919411B2 (en) 2003-10-02 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7399704B2 (en) 2003-10-02 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of a semiconductor device using liquid repellent film
US8105945B2 (en) 2003-10-02 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7332432B2 (en) 2003-10-02 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7534724B2 (en) 2003-10-02 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
JP2005150710A (en) * 2003-10-21 2005-06-09 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US8247965B2 (en) 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
US7439086B2 (en) 2003-11-14 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
US8619219B2 (en) 2003-12-02 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device and liquid crystal display device and method for manufacturing the same
US8228453B2 (en) 2003-12-02 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device and liquid crystal display device and method for manufacturing the same
JP2005210083A (en) * 2003-12-02 2005-08-04 Semiconductor Energy Lab Co Ltd Thin film transistor, display, liquid crystal display, and method of manufacturing them
US7939888B2 (en) 2004-01-26 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and television device using the same
US7955907B2 (en) 2004-01-26 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, television set, and method for manufacturing the same
WO2005071756A1 (en) * 2004-01-26 2005-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, television set, and method for manufacturing the same
JP2005244203A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Semiconductor device, tv set, and manufacturing methods thereof
US7510905B2 (en) 2004-01-29 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Forming method of contact hole, and manufacturing method of semiconductor device, liquid crystal display device and EL display device
US7655499B2 (en) 2004-01-29 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Forming method of contact hole and manufacturing method of semiconductor device, liquid crystal display device and EL display device
US7812355B2 (en) 2004-03-03 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
US7462514B2 (en) 2004-03-03 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
US7531294B2 (en) 2004-03-25 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for forming film pattern, method for manufacturing semiconductor device, liquid crystal television, and EL television
US7416977B2 (en) 2004-04-28 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device, liquid crystal television, and EL television
US8102005B2 (en) 2004-06-14 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Wiring substrate, semiconductor device and manufacturing method thereof
US7494923B2 (en) 2004-06-14 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of wiring substrate and semiconductor device
JP2006049810A (en) * 2004-07-09 2006-02-16 Seiko Epson Corp Manufacturing method of thin film transistor, electro-optical device, and electronic equipment
US7696625B2 (en) 2004-11-30 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7985677B2 (en) 2004-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7517791B2 (en) 2004-11-30 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7935626B2 (en) 2004-11-30 2011-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7687326B2 (en) 2004-12-17 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2006310345A (en) * 2005-04-26 2006-11-09 Jsr Corp Method of forming laminated film
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2007234294A (en) * 2006-02-28 2007-09-13 Noritsu Koki Co Ltd Work processing device
JP4724572B2 (en) * 2006-02-28 2011-07-13 株式会社サイアン Work processing device
JP4619973B2 (en) * 2006-03-29 2011-01-26 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP2007265827A (en) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd Plasma generator and workpiece processing device using it
WO2009019762A1 (en) * 2007-08-07 2009-02-12 Shimadzu Corporation Process for manufacturing optical matrix device
JP2009147216A (en) * 2007-12-17 2009-07-02 Renesas Technology Corp Manufacturing device of semiconductor device and manufacturing method of semiconductor device
JP2011515584A (en) * 2008-03-26 2011-05-19 メルク パテント ゲーエムベーハー Composition for producing SiO2 resist layer and method of use thereof
US8900953B2 (en) 2008-09-01 2014-12-02 Hiroshima University Crystal manufacturing apparatus, semiconductor device manufactured using the same, and method of manufacturing semiconductor device using the same
WO2010117088A1 (en) * 2009-04-10 2010-10-14 独立行政法人科学技術振興機構 Pattern formation method, pattern, and device
JP2010263202A (en) * 2009-04-10 2010-11-18 Japan Science & Technology Agency Pattern formation method
KR101425706B1 (en) * 2009-04-10 2014-08-01 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Pattern formation method, pattern, and device
CN104037060A (en) * 2014-05-14 2014-09-10 京东方科技集团股份有限公司 Preparation method for polycrystalline metal oxide pattern
US9378953B2 (en) 2014-05-14 2016-06-28 Boe Technology Group Co., Ltd. Method for preparing polycrystalline metal oxide pattern
CN112236843A (en) * 2018-06-06 2021-01-15 堺显示器制品株式会社 Laser annealing method, laser annealing apparatus, and method for manufacturing active matrix substrate

Also Published As

Publication number Publication date
JP3926076B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3926076B2 (en) Thin film pattern forming method
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
EP1014452B1 (en) Method of detaching thin-film device
KR100383419B1 (en) Method for forming semiconductor films at desired positions on a substrate
US5956581A (en) Method of manufacturing a semiconductor device
KR100534501B1 (en) Method for processing thin film and apparatus for processing thin film
US7098087B2 (en) Manufacturing method of semiconductor device
KR101169058B1 (en) Thin film transistor and fabrication method of the same
JP3393469B2 (en) Thin film semiconductor device manufacturing method and thin film semiconductor forming apparatus
JP2001185503A (en) Semiconductor thin film modifying device
US20060183036A1 (en) Method of forming film pattern, method of manufacturing device, electro-optical device, and electronic apparatus
JP4322373B2 (en) Film body part reforming apparatus and film body part reforming method
JP2522470B2 (en) Method of manufacturing thin film integrated circuit
JP2007142451A (en) Insulating layer, insulating layer pattern, thin film transistor, liquid crystal display, and liquid pattern formation device
JP3951792B2 (en) Film pattern forming method, film pattern forming apparatus, conductive film wiring, electro-optical device, electronic apparatus, and non-contact card medium
KR100305255B1 (en) Method for manufacturing a poly-crystal silicon thin film
US8598017B2 (en) Fiber SOI substrate, semiconductor device using this, and manufacturing method thereof
JP4900128B2 (en) Semiconductor thin film modification method
JPH04180624A (en) Formation of pattern
JPH09232584A (en) Method of manufacturing semiconductor device
JP3496678B1 (en) Semiconductor thin film
JPH09246182A (en) Semiconductor device and manufacture thereof
JP2624223B2 (en) Thin film integrated circuit
JPH05343545A (en) Method for improving film quality
JPH09213966A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3926076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees