JP2001176438A - Electron microscope and remote operation system thereof - Google Patents

Electron microscope and remote operation system thereof

Info

Publication number
JP2001176438A
JP2001176438A JP35697999A JP35697999A JP2001176438A JP 2001176438 A JP2001176438 A JP 2001176438A JP 35697999 A JP35697999 A JP 35697999A JP 35697999 A JP35697999 A JP 35697999A JP 2001176438 A JP2001176438 A JP 2001176438A
Authority
JP
Japan
Prior art keywords
remote
electron microscope
sample
console
remote operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35697999A
Other languages
Japanese (ja)
Inventor
Soichiro Hayashi
聰一郎 林
Kenichi Myochin
健一 明珍
Hiroaki Shigegaki
宏明 茂垣
Toshio Kouchi
俊男 小内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP35697999A priority Critical patent/JP2001176438A/en
Publication of JP2001176438A publication Critical patent/JP2001176438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Selective Calling Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system that can easily execute support of its operation, at remote operation of an electron microscope or the like from the side of its instrument, when there occurs a state which can hardly be solved with the remote operation unit. SOLUTION: Operation support is made possible by adopting a system constitution that can operate from both the body and remote operation consoles. Consequently, smooth and effective remote operation becomes possible, when a situation requiring the support of operation from the instrument proper takes place at remote operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透過型電子顕微鏡
等、本体装置が置かれた場所から離れた場所において本
体装置を遠隔操作する操作装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating device such as a transmission electron microscope for remotely operating a main body device at a place away from a place where the main body device is placed.

【0002】[0002]

【従来の技術】従来の遠隔操作は極めて単純な操作であ
ったので本体装置側からの操作支援は不要だった。
2. Description of the Related Art Conventional remote operation is an extremely simple operation, so that operation support from a main unit is unnecessary.

【0003】[0003]

【発明が解決しようとする課題】透過型電子顕微鏡の例
で言うと、遠隔地からの操作支援は通常電子ビームの調
整や観察試料の視野選択である。前者は非常に微妙な操
作で、例え遠隔装置に調整機能を備えても操作は極めて
高度な技術が必要とされるため遠隔装置では実行が困難
であり、また後者は操作信号と観察像との遅れ時間が大
きいこと、遠隔操作卓の試料送りツマミが装置の小型化
を要求されるために本体操作卓と同様な操作性が期待で
きないこと等で、遠隔操作時には本体側での操作支援は
必須の作業である。その操作支援を可能にする技術とし
て、本体操作卓信号と遠隔操作卓信号の双方から本体装
置の動作を可能にするシステムとハード構成を採用する
ことである。
In the case of a transmission electron microscope, operation support from a remote place is usually adjustment of an electron beam or selection of a visual field of an observation sample. The former is a very delicate operation, and even if the remote device is provided with an adjustment function, the operation requires extremely advanced technology, so it is difficult to execute the operation with the remote device. Operational support on the main unit is required during remote operation because the delay time is long and the sample feeding knob of the remote control console requires the downsizing of the device, so that the same operability as the main console cannot be expected. Work. As a technique for enabling the operation support, a system and a hardware configuration that enable the operation of the main unit from both the main console signal and the remote console signal are employed.

【0004】[0004]

【課題を解決するための手段】本体装置の操作卓信号を
検出し制御する総合制御装置に通信回線から受信する遠
隔装置の操作卓信号を合成する回路を設け、双方からの
操作信号で装置制御を可能にする。
A circuit for synthesizing a console signal of a remote device received from a communication line is provided in a general control device for detecting and controlling a console signal of a main unit, and the device is controlled by operation signals from both. Enable.

【0005】[0005]

【発明の実施の形態】電子顕微鏡の例として、図4に透
過形電子顕微鏡の基本構成を示した。電子銃41から出
た電子ビーム42は、高電圧電源56の電圧を印可した
加速管43で電子ビーム42を加速し、コンデンサレン
ズ44で適正な明るさとスポット径にし、試料ステージ
46に載せた試料45に照射する。試料45を透過した
電子ビーム42は試料45の情報を含み第1中間レンズ
48、第2中間レンズ49、投影レンズ50で拡大して
蛍光板51に投影され、蛍光体の発光で電子顕微鏡像と
して観察できる。この像は通常観察窓52を通して図中
A位置から観察し、対物レンズ47で焦点合わせがで
き、倍率調整や焦点調整も本体操作卓1で総合制御装置
2を通して実行できる。観察する試料45は総合制御装
置2に接続するステージドライバ57により、XY軸方
向にそれぞれ独立に制御し移動することが可能で、ステ
ージドライバ57の制御信号は図示していないが本体操
作卓1に配置した試料操作ツマミで操作することができ
る。
FIG. 4 shows the basic structure of a transmission electron microscope as an example of an electron microscope. The electron beam 42 emitted from the electron gun 41 is accelerated by an acceleration tube 43 to which a voltage of a high-voltage power supply 56 is applied, and is adjusted to an appropriate brightness and spot diameter by a condenser lens 44. Irradiate 45. The electron beam 42 transmitted through the sample 45 contains the information of the sample 45 and is magnified by the first intermediate lens 48, the second intermediate lens 49, and the projection lens 50 and projected on the fluorescent plate 51, and is observed as an electron microscope image by the emission of the fluorescent material. it can. This image is usually observed from the position A in the figure through the observation window 52, can be focused by the objective lens 47, and magnification adjustment and focus adjustment can be executed by the main console 1 through the general control device 2. The sample 45 to be observed can be independently controlled and moved in the X and Y axis directions by a stage driver 57 connected to the integrated control device 2, and the control signal of the stage driver 57 is not shown but is transmitted to the console 1 of the main body. It can be operated with the arranged sample operation knob.

【0006】また、電子顕微鏡像の写真撮影は蛍光板5
1を光軸から外し、電子ビーム42をフィルム露光室5
3の中央に設定したフィルム54に照射し露光すること
ができる。フィルム54の設定操作はフィルム制御装置
55で制御するが、その指示操作は本体操作卓1の操作
スイッチで実施できる。さらにTVカメラ9で像観察す
るには、蛍光板51に塗布した蛍光体が電子ビームの4
2の照射で発光し、蛍光板51を透過した光学的情報を
電子顕微鏡の像としてTVカメラ9で撮影し映像モニタ
10に表示する。もちろんこの時図示していないが、フ
ィルム54が電子ビーム42の通路に存在しないことは
言うまでもない。電子光学系における倍率調整や焦点合
わせ等のレンズ制御は、本体操作卓1のツマミ操作で総
合制御装置2を通しレンズ電源58で制御する。
[0006] The photographing of the electron microscope image is performed by using a fluorescent screen 5.
1 is removed from the optical axis, and the electron beam 42 is applied to the film exposure chamber 5.
The film 54 set at the center of No. 3 can be irradiated and exposed. The setting operation of the film 54 is controlled by the film controller 55, and the instruction operation can be performed by the operation switch of the console 1 of the main body. Further, in order to observe an image with the TV camera 9, the fluorescent substance applied to the fluorescent plate 51 may be an electron beam.
The optical information emitted by the irradiation of No. 2 and transmitted through the fluorescent plate 51 is captured by the TV camera 9 as an image of the electron microscope and displayed on the video monitor 10. Of course, although not shown at this time, it goes without saying that the film 54 does not exist in the path of the electron beam 42. Lens control such as magnification adjustment and focusing in the electron optical system is controlled by a lens power supply 58 through the general control device 2 by operating knobs on the main console 1.

【0007】試料ステージ46に載せられた観察試料4
5を移動する機構関連の概略図の一例を図5に示した。
本体操作卓1から移動指令が総合制御装置2を経由して
与えられると、ステージドライバ57の各X軸モータド
ライバ57−1とY軸モータドライバ57−2は、X軸
駆動モータ59−1とY軸駆動モータ59−2で試料ス
テージ46を駆動する。本体操作卓1からの移動指令は
図6に試料移動操作ツマミ、(X軸)試料移動ツマミ2
1と(Y軸)試料移動ツマミ22を示したが、当該移動
ツマミを観察窓52や映像モニタ10を観察しながらツ
マミを操作することで移動信号が発生し総合制御装置2
に送られ制御できる。通常電子顕微鏡の試料移動ツマミ
にはロータリエンコーダが直結され、エンコーダ信号φ
AφBはステージドライバ57で試料ステージ46を送
り駆動することができる。φAφBの信号は一対でどち
らの信号が先行するかで回転方向を知ることができる。
図7に操作卓の試料移動ツマミを操作した時のロータリ
ーエンコーダから発生する信号の状態を示した。試料移
動ツマミ21(または22)を順方向(時計方向の操
作)操作時に発生するロータリーエンコーダの信号φA
とφBの関係を(a)に、逆方向(反時計方向の操作)
時の関係を(b)に示した。順方向時には信号φAがφ
Bに先行して発生し、逆方向時には逆に信号φBがφA
に先行して発生することで、試料移動ツマミの操作変化
を検知することができ、φAとφBをステージドライバ
57に送信することで試料送りが実行できる。
[0007] Observation sample 4 placed on sample stage 46
FIG. 5 shows an example of a schematic diagram relating to a mechanism for moving the reference numeral 5.
When a movement command is given from the console 1 via the integrated control device 2, each of the X-axis motor driver 57-1 and the Y-axis motor driver 57-2 of the stage driver 57 is connected to the X-axis drive motor 59-1. The sample stage 46 is driven by the Y-axis drive motor 59-2. The movement command from the console 1 is shown in FIG. 6 by a sample movement control knob, (X axis) sample movement knob 2
1 and the (Y-axis) sample movement knob 22 are shown. By operating the knob while observing the observation window 52 and the video monitor 10, a movement signal is generated, and the integrated control device 2
Can be sent to control. Usually, a rotary encoder is directly connected to the sample movement knob of the electron microscope, and the encoder signal φ
AφB can drive the sample stage 46 by the stage driver 57. The rotation direction can be known by determining which of the signals φAφB is a pair.
FIG. 7 shows a state of a signal generated from the rotary encoder when the sample moving knob of the console is operated. A rotary encoder signal φA generated when the sample moving knob 21 (or 22) is operated in the forward direction (clockwise operation).
The relationship between φB and φB in the opposite direction (counterclockwise operation)
The relationship of time is shown in (b). In the forward direction, the signal φA is φ
B, and in the reverse direction, the signal φB
, The operation change of the sample moving knob can be detected, and the sample feed can be executed by transmitting φA and φB to the stage driver 57.

【0008】さらに図6の本体操作卓1には図示したよ
うに速度スイッチ23と24がある。このスイッチは試
料ステージ46の移動速度を指示しするスイッチでステ
ージドライバ57に送られて制御される。速度スイッチ
24を操作すると試料ステージ46は高速度移動に、速
度スイッチ24は低速度移動に設定できるが、この試料
移動速度等の制御に関しては本発明に直接関係がないの
で詳細な説明は省略する。
Further, as shown in FIG. 6, the main console 1 has speed switches 23 and 24. This switch is a switch for instructing the moving speed of the sample stage 46 and sent to the stage driver 57 to be controlled. When the speed switch 24 is operated, the sample stage 46 can be set to move at a high speed, and the speed switch 24 can be set to move at a low speed. However, since the control of the sample moving speed and the like are not directly related to the present invention, a detailed description is omitted. .

【0009】図3に本体電子顕微鏡と遠隔操作装置の基
本構成の例を示した。本体装置3は図4の各種レンズ等
を含むカラム全体であるが、それ等は総合制御装置2で
制御され本体操作卓1で各種操作を実行し、図4の蛍光
板51をTVカメラ9で撮影し映像モニタ10で観察で
きる。また遠隔操作時には遠隔操作卓6の操作ツマミで
発生した信号が遠隔操作制御装置7で検出され、遠隔操
作パソコン8で通信回線対応の信号に変換し、通信信号
処理装置15と通信端末装置14で通信回線13を経由
し、本体装置側の通信端末装置12と通信信号処理装置
11を経て本体パソコン4に送られ、総合制御装置2の
制御で本体装置3を動作させる。この結果遠隔操作卓6
での操作が総合制御装置2で本体装置3を動作させ、電
子顕微鏡の像はTVカメラ9で撮影され、通信信号処理
装置11から制御信号と逆のルートで遠隔操作装置に送
られ遠隔映像モニタ16で観察できる。
FIG. 3 shows an example of the basic configuration of the main unit electron microscope and the remote control device. The main unit 3 is an entire column including various lenses and the like in FIG. 4. These are controlled by the general control unit 2 to execute various operations on the main console 1, and photograph the fluorescent screen 51 in FIG. And can be observed on the video monitor 10. At the time of remote operation, a signal generated by the operation knob of the remote operation console 6 is detected by the remote operation control device 7, converted into a signal corresponding to a communication line by the remote operation personal computer 8, and transmitted by the communication signal processing device 15 and the communication terminal device 14. The information is sent to the main computer 4 via the communication terminal device 12 and the communication signal processing device 11 via the communication line 13, and the main device 3 is operated under the control of the general control device 2. As a result, the remote control console 6
Is operated by the integrated controller 2 to operate the main unit 3, the image of the electron microscope is photographed by the TV camera 9, sent from the communication signal processor 11 to the remote controller via a route reverse to the control signal, and transmitted to the remote controller. 16 can be observed.

【0010】図1は本発明を実施する上での制御ブロッ
ク線図である。通常遠隔操作を開始するには本体装置や
遠隔装置の装置状態や条件等の設定が必要であるが、本
発明を実施する上で特に必要がないので説明を省略す
る。本体装置と遠隔操作装置の双方が遠隔操作可能状態
であれば、各種操作を遠隔操作卓6から実行することが
できる。ところが本体装置の遠隔操作時には遠隔装置の
みでは対処できない各種の問題が発生する。例えば、遠
隔操作の実行中に電子ビームの調整や試料の視野選択等
で本体装置側での操作支援が必要になる場合がしばしば
起こり得る。この様な場合には本体装置側で操作の支援
が必要であることは言うまでもない。説明を簡単にする
ために遠隔操作の本体側における操作支援を試料ステー
ジの操作のみに限り(他にも各種の操作支援があるが、
遠隔操作システムとしての制御は同様な手段で可能なの
で)記述する。
FIG. 1 is a control block diagram for implementing the present invention. Normally, to start the remote operation, it is necessary to set the device state and conditions of the main unit and the remote unit. However, since the present invention is not particularly required, the description is omitted. If both the main unit and the remote control device can be remotely controlled, various operations can be executed from the remote control console 6. However, at the time of remote control of the main unit, various problems occur that cannot be dealt with only by the remote device. For example, it is often the case that operation support on the main unit side is required for adjustment of an electron beam, selection of a visual field of a sample, and the like during execution of a remote operation. In such a case, it is needless to say that operation support is required on the main unit side. In order to simplify the explanation, the operation support on the main body side of the remote operation is limited only to the operation of the sample stage.
Since the control as a remote control system is possible by similar means), it is described.

【0011】試料ステージの操作支援を可能にするに
は、本体操作卓1でも遠隔操作卓6でも双方の操作卓か
ら試料移動が可能でなければならない。この機能を可能
にするため、図1において本体操作卓1の試料移動ツマ
ミ21(22)からの操作パルス25は直接ステージド
ライバ57に、遠隔操作卓6からの操作パルスは通信回
線13を経由して総合制御装置2で受信し、遠隔操作信
号をステージドライバ57等に送信するための信号変換
装置であるステージ制御装置5で、遠隔操作パルスを含
む制御信号28をステージドライバ57に送信する。通
常ステージドライバ57に利用する制御装置には、直接
的にドライバ信号を入力する手段とRS−232C等で
入力する通信ポート等を持つ。
In order to support the operation of the sample stage, it is necessary that both the console 1 and the remote console 6 can move the sample from both consoles. In order to enable this function, the operation pulse 25 from the sample moving knob 21 (22) of the main console 1 is directly transmitted to the stage driver 57 and the operation pulse from the remote console 6 is transmitted via the communication line 13 in FIG. The control signal 28 including a remote control pulse is transmitted to the stage driver 57 by the stage control device 5 which is a signal converter for receiving the remote control signal and transmitting the remote control signal to the stage driver 57 and the like. The control device normally used for the stage driver 57 has a means for directly inputting a driver signal and a communication port for inputting with an RS-232C or the like.

【0012】この2つの手段を利用し上記した操作パル
ス25と遠隔操作パルスを含む制御信号28の双方の操
作パルスを制御することができる。図6に示した試料移
動速度の設定は本体操作卓1からは当該操作信号26を
総合制御装置2に送信し、ステージ制御装置5から上記
したRS−232C等でステージドライバ57に送信し
て制御する。同時に遠隔操作卓6からの移動速度信号は
通信回線13を経由し総合制御装置2で受信した後に、
本体操作卓1からの操作信号24と同様にステージドラ
イバ57で制御する。
By using these two means, it is possible to control both operation pulses of the operation pulse 25 and the control signal 28 including the remote operation pulse. The setting of the sample moving speed shown in FIG. 6 is controlled by transmitting the operation signal 26 from the main console 1 to the general control device 2 and transmitting the operation signal 26 from the stage control device 5 to the stage driver 57 by the above-mentioned RS-232C or the like. I do. At the same time, after the moving speed signal from the remote console 6 is received by the general control device 2 via the communication line 13,
It is controlled by the stage driver 57 in the same manner as the operation signal 24 from the main console 1.

【0013】図2は本発明を実施するもう一つの例であ
る。図2の(a)は図1の操作パルス25の処理に信号
合成回路29を設け、当該回路で本体操作卓1からの操
作パルス25と通信回線13を経由し総合制御装置2と
ステージ制御装置9で通信信号から変換した遠隔操作パ
ルス27とを合成し、ステージドライバ57に双方のパ
ルスを供給することで双方からの操作信号で試料移動が
可能になる。図2(b)は信号合成回路29の具体的な
回路の例である。本体操作卓1からの操作パルス25と
ステージ制御装置9からの遠隔操作パルス27の各々の
φAφBを、オープンコレクタタイプの半導体素子(I
C)を使用したWIRED−OR回路例として示した。
FIG. 2 shows another embodiment of the present invention. FIG. 2A shows a case where a signal synthesizing circuit 29 is provided for processing the operation pulse 25 shown in FIG. 1, and the integrated control device 2 and the stage control device are connected to the operation pulse 25 from the main console 1 via the communication line 13. By combining the remote operation pulse 27 converted from the communication signal in step 9 and supplying both pulses to the stage driver 57, the sample can be moved by the operation signal from both sides. FIG. 2B shows an example of a specific circuit of the signal synthesis circuit 29. Each of φAφB of the operation pulse 25 from the main console 1 and the remote control pulse 27 from the stage controller 9 is converted into an open collector type semiconductor device (I
C) is shown as an example of a WIRED-OR circuit using C).

【0014】上記した回路構成は遠隔操作時において、
双方の操作卓で同時操作すると双方のそれぞれの信号で
駆動制御してしまう欠点がある。しかしながら本発明は
具体的な遠隔操作のシステム構成や回路手段を提供する
ことではなく、遠隔操作時における遠隔操作支援の本質
的な問題である遠隔操作を有効かつ効果的に実施できる
手段の必要性を主張するところにある。上記した欠点は
システム構築でまた回路構成で容易に避けられる技術で
ある。本発明が主張する技術は操作支援が遠隔地から要
請された時に迅速な支援ができるシステムを提供するこ
とにあり、遠隔操作支援を可能にするシステム構成を備
えることにある。本発明は本体装置側から操作支援を確
実に実施できる遠隔操作システム構成を可能にする一例
を示したのみであり、操作支援システムの具体的手段は
多数有り得ることは言うまでもない。
The above-described circuit configuration is used for remote operation.
If both consoles are operated at the same time, there is a drawback that drive control is performed by both signals. However, the present invention does not provide a specific remote control system configuration or circuit means, but a need for means capable of effectively and effectively performing remote control, which is an essential problem of remote control support during remote control. Is to insist. The above disadvantages are techniques that can be easily avoided in system construction and circuit configuration. The technology claimed by the present invention is to provide a system that can provide prompt support when operation support is requested from a remote place, and to provide a system configuration that enables remote support. The present invention merely shows an example of enabling a remote operation system configuration capable of reliably executing operation support from the main device, and it goes without saying that there can be many specific means of the operation support system.

【0015】[0015]

【発明の効果】本発明により、遠隔操作時において本体
装置からの操作支援が必要な状態が発生した場合にスム
ーズな遠隔操作支援が可能になる。
According to the present invention, smooth remote operation support is possible when a state requiring operation support from the main unit occurs during remote operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遠隔操作時における操作支援を可能にする制御
システムの構成例として試料移動における例を示す図。
FIG. 1 is a diagram illustrating an example of moving a sample as a configuration example of a control system that enables operation support during remote operation.

【図2】遠隔操作時における操作支援を可能にする制御
システムの構成例として試料移動における例を示す図。
FIG. 2 is a diagram showing an example of moving a sample as a configuration example of a control system that enables operation support during remote operation.

【図3】遠隔操作システムの構成例を示す図。FIG. 3 is a diagram showing a configuration example of a remote operation system.

【図4】電子顕微鏡の基本構成例を示す図。FIG. 4 is a diagram showing a basic configuration example of an electron microscope.

【図5】試料ステージの構成例を示す図。FIG. 5 is a diagram showing a configuration example of a sample stage.

【図6】本体操作卓における試料移動操作ツマミ等の例
を示す図。
FIG. 6 is a diagram illustrating an example of a sample moving operation knob and the like on a main console.

【図7】試料送りロータリーエンコーダ信号のタイミン
グチャート。
FIG. 7 is a timing chart of a sample feed rotary encoder signal.

【符号の説明】[Explanation of symbols]

1…本体操作卓、2…総合制御装置、3…本体装置、4
…本体パソコン、5…ステージ制御装置、6…遠隔操作
卓、7…遠隔操作制御装置、8…遠隔操作パソコン、9
…TVカメラ、10…映像モニタ、11…通信信号処理
装置、12…通信端末装置、13…通信回線、14…通
信端末装置、15…通信信号処理装置、16…遠隔映像
モニタ、21…試料移動ツマミ、22…試料移動ツマミ
Y、23…速度スイッチH、24…速度スイッチL、2
5…操作パルス、26…操作信号、27…遠隔操作パル
ス、28…制御信号、29…信号合成回路、31…試料
移動ツマミ、32…試料移動ツマミ、33…速度スイッ
チH、34…速度スイッチL、41…電子銃、42…電
子ビーム、43…加速管、44…コンデンサレンズ、4
5…試料、46…試料ステージ、47…対物レンズ、4
8…第1中間レンズ、49…第2中間レンズ、50…投
影レンズ、51…蛍光板、52…観察窓、53…フィル
ム露光室、54…フィルム、55…フィルム制御装置、
56…高圧電源、57…ステージドライバ、57−1…
X軸モータドライバ、57−2…Y軸モータドライバ、
58…レンズ電源、59−1…X軸駆動モータ、59−
2…Y軸駆動モータ。
DESCRIPTION OF SYMBOLS 1 ... Main console, 2 ... General control device, 3 ... Main device, 4
... Main body personal computer, 5 ... Stage control device, 6 ... Remote control console, 7 ... Remote control device, 8 ... Remote control personal computer, 9
... TV camera, 10 video monitor, 11 communication signal processing device, 12 communication terminal device, 13 communication line, 14 communication terminal device, 15 communication signal processing device, 16 remote video monitor, 21 sample movement Knob, 22: Sample moving knob Y, 23: Speed switch H, 24: Speed switch L, 2
5 operation pulse, 26 operation signal, 27 remote operation pulse, 28 control signal, 29 signal synthesis circuit, 31 sample moving knob, 32 sample moving knob, 33 speed switch H, 34 speed switch L 41, an electron gun, 42, an electron beam, 43, an acceleration tube, 44, a condenser lens, 4
5 sample, 46 sample stage, 47 objective lens, 4
Reference numeral 8: first intermediate lens, 49: second intermediate lens, 50: projection lens, 51: fluorescent plate, 52: observation window, 53: film exposure room, 54: film, 55: film controller,
56 ... High voltage power supply, 57 ... Stage driver, 57-1 ...
X-axis motor driver, 57-2 ... Y-axis motor driver,
58: Lens power supply, 59-1: X-axis drive motor, 59-
2. Y-axis drive motor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 明珍 健一 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 (72)発明者 茂垣 宏明 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 小内 俊男 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 Fターム(参考) 5K048 AA08 BA21 DC04 EB02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenichi Mechinin 882, Omo, Oaza, Hitachinaka-shi, Ibaraki Prefecture Within the Hitachi Measuring Instruments Group (72) Inventor Hiroaki Mogaki 1040, Omo-shi, Oaza, Hitachinaka, Ibaraki, Inc Hitachi Science Systems Co., Ltd. (72) Inventor Toshio Kouchi 882, Ichimo, Oita, Hitachinaka-shi, Ibaraki F-term within the Hitachi Measuring Instruments Group (reference) 5K048 AA08 BA21 DC04 EB02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ローカルエリアネットワーク等の通信回
線を介して本体電子顕微鏡と物理的に離れた場所に設置
した遠隔操作装置から遠隔操作可能な電子顕微鏡のシス
テムにおいて、本体電子顕微鏡の本体操作卓信号と遠隔
操作装置の操作卓信号を制御装置や制御システムで合成
し、双方から本体電子顕微鏡を同時に操作できることを
可能にし、本体電子顕微鏡の遠隔操作時に本体装置の操
作卓で遠隔操作の支援を容易にしたことを特徴とする電
子顕微鏡および遠隔操作装置。
An electronic microscope system which can be remotely controlled from a remote operation device installed physically away from the main unit electron microscope via a communication line such as a local area network. And the control console signal of the remote control unit are synthesized by the control unit and control system, enabling the main unit electron microscope to be operated simultaneously from both sides, making it easy to support remote operation using the console of the main unit during remote control of the main unit electron microscope An electron microscope and a remote control device, characterized in that:
JP35697999A 1999-12-16 1999-12-16 Electron microscope and remote operation system thereof Pending JP2001176438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35697999A JP2001176438A (en) 1999-12-16 1999-12-16 Electron microscope and remote operation system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35697999A JP2001176438A (en) 1999-12-16 1999-12-16 Electron microscope and remote operation system thereof

Publications (1)

Publication Number Publication Date
JP2001176438A true JP2001176438A (en) 2001-06-29

Family

ID=18451750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35697999A Pending JP2001176438A (en) 1999-12-16 1999-12-16 Electron microscope and remote operation system thereof

Country Status (1)

Country Link
JP (1) JP2001176438A (en)

Similar Documents

Publication Publication Date Title
JP2001176438A (en) Electron microscope and remote operation system thereof
JP3865013B2 (en) Microscope and microscope remote control system
JPH0871085A (en) Microscope for operation
JP3112527B2 (en) electronic microscope
JPH10186238A (en) Remote control microscope system
JPS5858779B2 (en) Field of view moving device for electron microscopes, etc.
JPH10227738A (en) Light radiating device for cleavage of caged reagent
JP2000340157A (en) Remote operating device for electron microscope
JPH0243092Y2 (en)
JPH0683661B2 (en) Sample processing apparatus and its operating method
JP4050948B2 (en) electronic microscope
JP2000340156A (en) Remote operating device for electron microscope
JPH0343742B2 (en)
JPH08212960A (en) Electron microscope
JPH03109878A (en) Zoom lens driving device for television camera
JPS59123149A (en) Sample-moving device in electron ray system
JPH05285100A (en) Endoscope system
JP3131265B2 (en) Focus adjustment method for electron microscope
JPH0460298B2 (en)
JPS59201354A (en) Electron microscope
JPH10125270A (en) Transmission electron microscope
JPH0425803Y2 (en)
JPH036616B2 (en)
JP2509528Y2 (en) Video projector equipment
JPH09127426A (en) Driving commander for macroobservation apparatus