JP2001164313A - Method for reforming slag in ladle refining furnace - Google Patents

Method for reforming slag in ladle refining furnace

Info

Publication number
JP2001164313A
JP2001164313A JP35007099A JP35007099A JP2001164313A JP 2001164313 A JP2001164313 A JP 2001164313A JP 35007099 A JP35007099 A JP 35007099A JP 35007099 A JP35007099 A JP 35007099A JP 2001164313 A JP2001164313 A JP 2001164313A
Authority
JP
Japan
Prior art keywords
slag
mgo
ladle refining
refining
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35007099A
Other languages
Japanese (ja)
Inventor
Koichi Takashima
浩一 高島
Yoshimichi Okita
義道 大喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoei Steel Ltd
Original Assignee
Kyoei Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoei Steel Ltd filed Critical Kyoei Steel Ltd
Priority to JP35007099A priority Critical patent/JP2001164313A/en
Publication of JP2001164313A publication Critical patent/JP2001164313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PROBLEM TO BE SOLVED: To provide a reforming method of slag, by which the powdering of reducing slag produced in a ladle refining furnace can be avoided. SOLUTION: A material containing >=25% MgO, in terms of the dry weight ratio is added into the slag in the ladle refining furnace and melted, and the ratio of MgO contained in the slag after completing the casting is made to 10-50 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、取鍋精錬炉のスラ
グの改質方法に関し、特に、取鍋精錬炉で発生するスラ
グ(還元スラグ)の粉化を防止するようにした取鍋精錬
炉のスラグの改質方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming slag in a ladle refining furnace, and more particularly to a ladle refining furnace for preventing slag (reduced slag) generated in a ladle refining furnace from being powdered. Slag reforming method.

【0002】[0002]

【従来の技術】製鋼における取鍋精錬技術(2次精錬技
術)が向上するにつれて、転炉又は電気炉で行われてき
た精錬の一部、すなわち、成分調整や脱炭、脱硫、温度
調整、不純物の除去、溶鋼の均質化等の機能を、取鍋精
錬炉が分担できるようになった。その結果、現在の製鋼
技術では、各方式を自在に組み合わせて精錬の効率化を
図ることができ、さらに、従来困難であった極低硫黄鋼
や極低炭素鋼の生産も容易に行うことが可能となってき
ている。
2. Description of the Related Art With the improvement of ladle refining technology (secondary refining technology) in steelmaking, part of refining performed in a converter or an electric furnace, namely, component adjustment, decarburization, desulfurization, temperature adjustment, Ladle refining furnaces can now take over the functions of removing impurities and homogenizing molten steel. As a result, with the current steelmaking technology, the efficiency of refining can be improved by freely combining each method, and the production of ultra-low sulfur steel and ultra-low carbon steel, which was difficult in the past, can be performed easily. It is becoming possible.

【0003】なかでも、高炉系の転炉精錬や特殊鋼用電
気炉精錬の場合は、脱硫、温度調整、溶鋼の均質化等、
従来は転炉や電気炉の精錬炉が負担していた機能を、徹
底して取鍋精錬炉に移管し、転炉や電気炉の精錬炉にお
いては、原材料の溶解と脱炭に専念し、作業の単純化や
迅速化を図るようにする等、精錬の内容そのものが変化
してきている。
[0003] In particular, in the case of blast furnace converter refining or electric furnace refining for special steel, desulfurization, temperature adjustment, homogenization of molten steel, etc.
In the past, the functions of the refining furnaces of converters and electric furnaces were completely transferred to ladle refining furnaces.In the converter and electric furnace refining furnaces, we focused on melting and decarburizing raw materials. The content of refining itself is changing, for example, by simplifying and speeding up operations.

【0004】同様に、取鍋精錬炉でも、脱ガス機能を設
置したり、純酸素を吹き付ける設備を設置したりするな
ど、多彩な構成を有するようになってきている。
[0004] Similarly, ladle refining furnaces have come to have various configurations, such as installing a degassing function and installing equipment for blowing pure oxygen.

【0005】ところで、この取鍋精錬炉では、その目的
に応じて多様の添加材を添加するようにしている。転炉
法、電気炉法のいずれの場合でも、精錬の主要反応は還
元雰囲気の下で行われ、また、主要添加物は生石灰で進
められる。このほかにも、操業の内容によっては、生石
灰の溶解促進のために螢石が添加され、熱補償やスラグ
改質のためにアルミドロスが添加される。さらに、スラ
グが塩基性になるので、取鍋精錬炉の塩基性耐火物の溶
損を軽減させる目的で、スラグ中のMgOを飽和させる
程度のMgOを含む材料、例えば、ドロマイト等が添加
される。
[0005] In the ladle refining furnace, various additives are added according to the purpose. In both the converter method and the electric furnace method, the main reaction of refining is performed under a reducing atmosphere, and the main additive is advanced with quicklime. In addition, depending on the contents of the operation, fluorite is added for accelerating the dissolution of quicklime, and aluminum dross is added for heat compensation and slag reforming. Further, since the slag becomes basic, a material containing MgO enough to saturate the MgO in the slag, such as dolomite, is added for the purpose of reducing the erosion of the basic refractory in the ladle refining furnace. .

【0006】精錬温度や、鋼種にもよるが、この場合の
MgOの含有量は、スラグの飽和濃度である8%程度を
目標とするのが一般的である。この状態で発生するの
が、取鍋精錬スラグ、いわゆる、還元スラグである。
[0006] Although it depends on the refining temperature and the type of steel, the content of MgO in this case is generally targeted at about 8%, which is the slag saturation concentration. What occurs in this state is ladle refining slag, so-called reduction slag.

【0007】ところで、添加材の添加量は目的によって
まちまちであるが、転炉操業の場合は対象鋼種の硫黄低
減目標が0.010%を切り、0.003%前後を狙う
例も頻繁にあるため、石灰の投入量が増加し、結果とし
てCaO濃度が50%を越え、単純塩基度(CaO)/
(SiO2)も4.0以上で操業を行う例が見られる。
[0007] Incidentally, the amount of the additive added varies depending on the purpose, but in the case of a converter operation, there are frequent cases in which the target of sulfur reduction of the target steel type is less than 0.010% and aims at around 0.003%. Therefore, the input amount of lime increases, and as a result, the CaO concentration exceeds 50%, and the simple basicity (CaO) /
In some cases, the operation is performed with (SiO 2 ) of 4.0 or more.

【0008】[0008]

【発明が解決しようとする課題】ところが、一般に、C
aO濃度が45%を越えたり、(CaO)/(Si
2)が2.0を越すような還元スラグは、凝固後の鉱
物組成として2CaO−SiO2や3CaO−SiO2
形成しやすく、これらの鉱物が還元スラグの粉化現象の
原因となっている。
However, in general, C
When the aO concentration exceeds 45% or (CaO) / (Si
O 2) is reduced slag as Kosu 2.0 is easily formed 2CaO-SiO 2 or 3CaO-SiO 2 as a mineral composition after solidification, these minerals causing the powdering phenomenon of the reducing slag I have.

【0009】取鍋精錬炉の還元スラグが、冷却過程又は
冷却後数日の間に粉化するのは、2CaO−SiO2
代表される鉱物が、高温時の結晶構造から低温時の構造
に変態する時に、構造的に膨脹するためであるといわれ
ている。また、CaOの多い3CaO−SiO2が粉化
する原因は、冷却時にCaOと2CaO、SiO2に分
離し、結果として、未反応CaOや晶出したCaO自身
も、水分を吸収して消石灰となるためであるといわれて
いる。
[0009] Reduction slag ladle refining furnace, to powdering during the cooling process or cooling after a few days, minerals typified by 2CaO-SiO 2 is, in the structure at the low temperature from the crystal structure at high temperature It is said to be due to the structural expansion during metamorphosis. Further, Cause 3CaO-SiO 2 with much CaO is powdering is, CaO and 2CaO upon cooling, is separated into SiO 2, as a result, CaO itself issued unreacted CaO and crystals also becomes hydrated lime to absorb moisture It is said that it is.

【0010】一方、例えば、FeOやMnO等の金属酸
化物が大量に存在する酸化スラグでは、これら金属酸化
物が結晶の核に入って粉化を阻害するか、金属酸化物自
体がCaO−SiO2と化合物を形成して別の鉱物組成
を構成するので、スラグの粉化の現象を抑えることがで
きる。
On the other hand, for example, in an oxide slag containing a large amount of metal oxides such as FeO and MnO, these metal oxides enter the crystal nuclei and hinder the powdering, or the metal oxides themselves become CaO-SiO2. Since it forms a different mineral composition by forming a compound with 2 , it is possible to suppress the phenomenon of slag powdering.

【0011】しかしながら、還元精錬を行う取鍋精錬炉
では、金属酸化物の比率が低下されているので、この反
応を期待することはできない。粉化の傾向は、CaOの
高い高炉系の操業ではごく普通の現象であるが、近年、
普通鋼電気炉系でも取鍋精錬炉が普及し始め、還元精錬
を行うことから、速度に大小の差はあるものの、粉化は
同様に発生している。
However, in a ladle refining furnace for reduction refining, this reaction cannot be expected because the ratio of metal oxides is low. The tendency of powdering is a very common phenomenon in the operation of a blast furnace system with high CaO, but in recent years,
Ladle smelting furnaces have also begun to spread in the ordinary steel electric furnace system, and since reduction smelting is performed, pulverization occurs similarly, although the speed varies depending on the size.

【0012】ところで、最近は、環境問題からスラグの
活用に大きな関心がもたれており、品質的に安定してい
る高炉スラグは100%再利用されている。
Recently, there has been a great interest in utilizing slag due to environmental problems, and blast furnace slag, which is stable in quality, is 100% reused.

【0013】一方、製鋼スラグは、一般には、社内再利
用を含めて、リサイクル等で80%前後になるといわれ
ている。このうち、転炉から排出される転炉スラグは、
残留生石灰の水酸化反応に伴う体積膨脹等の悪影響を防
ぐために、エージング等の処理を経て路盤材や埋め立て
用等の用途に用いられている。また、電気炉から排出さ
れる酸化スラグは、前処理なしで路盤材や埋め立て用等
の用途に用いられている。しかしながら、製鋼スラグの
利用率が高炉スラグより少ない理由は、粉化する還元ス
ラグにあるということができるが、これらの用途への利
用拡大は、スラグ自体が所定の形状状態を保持できるこ
とが条件となる。
On the other hand, steelmaking slag is generally said to be around 80% by recycling, including in-house reuse. Among them, the converter slag discharged from the converter is
In order to prevent adverse effects such as volume expansion associated with the hydroxylation reaction of residual quicklime, it is used for roadbed materials and landfills after aging treatment. The oxidized slag discharged from the electric furnace is used for roadbed materials and landfills without any pretreatment. However, it can be said that the reason why the utilization rate of steelmaking slag is lower than that of blast furnace slag is that reduced slag that powders is used.However, the expansion of use for these applications is based on the condition that the slag itself can maintain a predetermined shape state. Become.

【0014】なお、粉化したスラグの用途は、含有され
るCaOやCaO−SiO2系の持つ水和反応による固
化現象を利用し、他のスラグと混合して、路盤材の締ま
り効果促進等の用途に利用される例や、セメント原料と
して使用される例、製鉄所内で溶銑処理材として使用さ
れる例等があるが、完全再利用にはまだ至らず、埋立地
等の廃棄物処分場に廃棄される場合が多いのが現状であ
る。
The powdered slag is used for the purpose of promoting the compaction effect of the roadbed material by mixing with other slag by utilizing the solidification phenomenon by the hydration reaction of the CaO or CaO-SiO 2 system contained therein. There are cases where it is used as a raw material for cement, as a raw material for cement, and as a material for treating hot metal in steelworks. At present, it is often discarded.

【0015】しかし、これらは環境問題等で多くの制約
を受けると同時に、路盤材の用途も、最近のリサイクル
法の強化に伴う建築廃材の活用が進むにつれて、製鋼ス
ラグ自体の利用量が縮小しつつあることを考えても、今
後、粉化したスラグを積極的に利用する分野は限られて
くる。
However, these are subject to many restrictions due to environmental problems and the like, and at the same time, the use of roadbed materials is also reduced as the use of construction waste materials is progressing due to the recent strengthening of the recycling law. Even in light of this trend, the field for actively using powdered slag will be limited in the future.

【0016】また、粉化したスラグのその他の用途とし
て、ヘドロ固化等の土質改良分野があるが、スラグ処理
作業や在庫の保存、さらに他の材料との混合等に手間が
かかることから、還元スラグを大量処理する分野として
将来の拡大は見込み難い。
Another application of the powdered slag is in the field of soil improvement such as sludge solidification. However, since the slag processing work, storage of stock, and mixing with other materials are troublesome, reduction is required. It is unlikely that the slag will be expanded in the future as a mass processing field.

【0017】本発明は、上記従来の還元スラグが有する
問題点に鑑み、取鍋精錬炉で発生する還元スラグの粉化
を防止するスラグの改質方法を提供することを目的とす
るものである。
The present invention has been made in view of the above-mentioned problems of the conventional reduced slag, and has as its object to provide a slag reforming method for preventing powdered reduced slag generated in a ladle refining furnace. .

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明の取鍋精錬炉のスラグの改質方法は、取鍋精
錬炉内のスラグに、MgOを乾重量比で25%以上含む
材料を添加して溶解させ、鋳込終了後のスラグ中に含ま
れるMgOの割合を重量比で10%〜50%とすること
を特徴とする。
In order to achieve the above object, a method for reforming slag in a ladle refining furnace according to the present invention comprises a slag in a ladle refining furnace containing 25% or more of MgO by dry weight ratio. The material is added and dissolved, and the ratio of MgO contained in the slag after completion of casting is set to 10% to 50% by weight.

【0019】本発明のスラグの改質方法は、取鍋等の耐
火物の溶損防止のために予め添加している8%程度のM
gOの割合をさらに増加させることにより、他の酸性成
分の配合増加で懸念される耐火物の損傷を防ぎつつ、岩
石成分として一般的なCaO−MgO−SiO2系のメ
ルヴィナイト3CaO−MgO−2SiO2、アケルマ
ナイト2CaO−MgO−2SiO2、モンテセライト
CaO−MgO−SiO2等の成分に還元スラグを近づ
けることである。また、MgOは、CaOと並ぶ主要な
塩基性成分であるが、これを脱硫反応を主とする精錬に
活用することで、CaOを代替しその比率を低下させる
ことができる。なお、スラグ中に含まれるMgOの割合
が、重量比で、10%未満では、スラグの粉化防止効果
はなく、50%を超えると、未反応のフリーのMgOが
晶出し、これがMgOの粉化現象を発生させたり、極端
に融点が高くなって操業に支障が出たりする。
According to the slag reforming method of the present invention, about 8% of M is added in advance to prevent erosion of refractories such as a ladle.
By further increasing the ratio of gO, CaO-MgO-SiO 2 -based melvinite 3CaO-MgO-2SiO, which is commonly used as a rock component, while preventing refractory damage, which is a concern due to an increase in the content of other acidic components. 2, Akerumanaito 2CaO-MgO-2SiO 2, is to close the reducing slag components such as Monte celite CaO-MgO-SiO 2. MgO is a major basic component along with CaO, but by using it for refining mainly of a desulfurization reaction, it can replace CaO and reduce its ratio. If the weight ratio of MgO contained in the slag is less than 10%, there is no effect of preventing slag powdering, and if it exceeds 50%, unreacted free MgO is crystallized, and this is the MgO powder. The melting point may be extremely high, or the melting point may be extremely high, which may hinder the operation.

【0020】[0020]

【発明の実施の形態】以下、本発明の取鍋精錬炉のスラ
グの改質方法の実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a slag reforming method for a ladle refining furnace according to the present invention will be described with reference to the drawings.

【0021】取鍋精錬炉(2次精錬炉)で発生する還元
スラグの粉化を軽減したり、防止するためには、スラグ
の組成を粉化しやすい鉱物から、粉化しにくい鉱物に溶
融状態で変質させる必要がある。その一方で、取鍋精錬
炉の目的である精錬機能を阻害しては、精錬そのものの
意味がなくなる。ここでは、この相反する機能を満足さ
せるため、スラグの改質に取鍋精錬炉内の溶融スラグ
に、MgOを多量に含む材料を添加するようにしてい
る。
In order to reduce or prevent the reduction slag from being powdered in the ladle refining furnace (secondary refining furnace), the composition of the slag is changed from an easily pulverized mineral to a hardly pulverized mineral. It needs to be transformed. On the other hand, if the refining function, which is the purpose of the ladle refining furnace, is inhibited, the refining itself becomes meaningless. Here, in order to satisfy this conflicting function, a material containing a large amount of MgO is added to the molten slag in the ladle refining furnace for slag reforming.

【0022】具体的には、取鍋精錬炉内で溶解している
スラグに、MgOを乾重量比で25%以上含む材料を、
単独か、SiO2やA123を含む材料と併用して添加
し、溶解させ、最終の鋳込終了後のスラグ中に含まれる
MgOの割合を重量比で10%〜50%とする。
Specifically, a material containing 25% or more of MgO by dry weight ratio is added to slag dissolved in a ladle refining furnace,
It is added alone or in combination with a material containing SiO 2 or Al 2 O 3 and dissolved, and the ratio of MgO contained in the slag after final casting is adjusted to 10% to 50% by weight.

【0023】この場合、取鍋精錬炉による精錬機能維持
の観点から、スラグ中に含まれるCaOを重量比で15
%以上、SiO2を重量比で15%以上、A123を重
量比で5%以上とすることが望ましい。
In this case, from the viewpoint of maintaining the refining function by the ladle refining furnace, CaO contained in the slag is added in a weight ratio of 15%.
%, 15% or more by weight of SiO 2 and 5% or more by weight of Al 2 O 3 .

【0024】これにより、最終の鋳込終了後のスラグの
代表的な成分は、図1に示すCaO−MgO−SiO2
系3元状態図上で、MgOを重量比10%〜50%、C
aOを重量比15%以上、SiO2を重量比15%以上
の範囲とする。
Thus, a typical component of the slag after the final casting is CaO—MgO—SiO 2 shown in FIG.
On the system ternary phase diagram, MgO is 10% to 50% by weight, C
aO a weight ratio of 15% or more, the range of SiO 2 weight ratio of 15% or more.

【0025】また、これと併せて、スラグ中の4成分、
すなわち、CaO、MgO、SiO 2、A123が、重
量比で、 (CaO+MgO)/(SiO2+A123)=1.0
〜2.5 の関係を満たす範囲(以下、「成分条件A」という。)
になるようにすることが望ましい。
Further, in addition to the above, four components in the slag,
That is, CaO, MgO, SiO Two, A1TwoOThreeBut heavy
In a quantitative ratio, (CaO + MgO) / (SiOTwo+ A1TwoOThree) = 1.0
-2.5 (hereinafter, referred to as “component condition A”)
It is desirable that

【0026】ところで、MgOを含む材料の添加方法と
して最も適切な方法は、取鍋精錬炉において精錬を行う
過程で、通電によって溶解される方法であるが、このほ
か、出鋼時に取鍋精錬炉に排出された製鋼スラグに混合
し、溶解させる方法や、通常の取鍋精錬を終了した後
に、取鍋精錬炉内のスラグ上にMgOを含む材料を投入
し、既存のスラグによる余熱又は一部を半溶融状態で鋳
込終了まで保持し、鋳込が終了してスラグの鍋返しを行
う際、流下エネルギを利用してノロ鍋内で混合溶融させ
る方法とがある。添加したMgOを含む材料は、必ずし
も完全に溶融する必要はなく、例えば、後述のMgO系
の煉瓦を投入した場合は、細粒子の融点が高いため、未
溶部分がスラグ組織の中に分散した状態になることがあ
るが、本発明は、このような状態となることを排除する
ものではない。
By the way, the most appropriate method for adding the material containing MgO is a method of melting by energization in the course of refining in a ladle refining furnace. After mixing and dissolving the steelmaking slag discharged into the slag in the ladle refining furnace after the method of dissolving and dissolving the normal ladle refining, the remaining heat or part of the existing slag by the slag Is held in a semi-molten state until the end of casting, and when the casting is finished and the slag is turned over, there is a method of mixing and melting in the noro pot using the falling energy. The added MgO-containing material does not necessarily need to be completely melted. For example, when a MgO-based brick described later is charged, the unmelted portion is dispersed in the slag structure because the melting point of the fine particles is high. Although a state may occur, the present invention does not exclude such a state.

【0027】MgOをスラグの改質のための主成分とし
た理由は、従来より取鍋精錬炉等の耐火物の溶損防止の
ために8%程度添加されているMgOの割合を、さらに
増加させることで、他の酸性成分の配合増加で懸念され
る耐火物の損傷を防ぎつつ、岩石成分として一般的なC
aO−MgO−SiO2系のメルヴィナイト3CaO−
MgO−2SiO2、アケルマナイト2CaO−MgO
−2SiO2、モンテセライトCaO−MgO−SiO2
の成分にスラグを近づけることにある。さらに、他の目
的としては、MgOは、CaOと並ぶ主要な塩基性成分
であるが、これを脱硫反応を主とする精錬に活用するこ
とで、CaOを代替しその比率を低下させることがあ
る。
The reason that MgO is used as a main component for reforming slag is that the ratio of MgO added to about 8% to prevent erosion of refractories such as a ladle refining furnace is further increased. By doing so, it is possible to prevent damage to the refractory, which is a concern due to an increase in the content of other acidic components, and to reduce the general C content as a rock component.
aO-MgO-SiO 2 Melvinite 3CaO-
MgO-2SiO 2, Akerumanaito 2CaO-MgO
-2SiO 2, Monte Celite CaO-MgO-SiO 2
Is to bring the slag closer to the component. Furthermore, for another purpose, MgO is a major basic component along with CaO, but by using it for refining mainly of desulfurization reaction, it may substitute for CaO and reduce its ratio. .

【0028】鋳込終了後のスラグ中に含まれるMgOの
割合は、重量比で10%〜50%、スラグの粉化防止の
観点で、より好ましくは、15%〜50%とする。この
MgOの割合は、MgOの割合が、重量比で、10%未
満では、スラグの粉化防止効果はなく、50%を超える
と、未反応のフリーのMgOが晶出し、これがMgOの
粉化現象を発生させたり、極端に融点が高くなって操業
に支障が出たりすること等から決まるものである。ま
た、CaOは、精錬の基本成分として塩基度確保の意味
から15%以上とし、上限は成分条件Aによる。また、
SiO2は、岩石成分を構成させる上で15%以上と
し、上限は成分条件Aによる。さらに、A123は、ス
ラグの溶融温度を引き下げる効果が高いので、5%以上
とし、上限は成分条件Aによる。
[0028] The ratio of MgO contained in the slag after completion of casting is 10% to 50% by weight, and more preferably 15% to 50% from the viewpoint of preventing slag from being powdered. If the ratio of MgO is less than 10% by weight, the effect of preventing slag powdering is not obtained, and if it exceeds 50%, unreacted free MgO is crystallized, which is the powdered MgO. It is determined by the occurrence of a phenomenon or an extremely high melting point that hinders the operation. In addition, CaO is 15% or more as a basic component of refining from the viewpoint of securing basicity, and the upper limit depends on component condition A. Also,
SiO 2 is set to 15% or more for constituting a rock component, and the upper limit depends on the component condition A. Further, since A1 2 O 3 has a high effect of lowering the melting temperature of slag, the content is set to 5% or more.

【0029】ところで、取鍋精錬の形態を大別すると、
高炉系の取鍋精錬と、普通鋼電炉系の取鍋精錬とに大別
できる。以下、それぞれについて説明する。
By the way, the form of ladle refining can be roughly classified as follows:
Ladle refining of blast furnace system and ladle refining of ordinary steel electric furnace system can be roughly classified. Hereinafter, each will be described.

【0030】高炉系の取鍋精錬の場合 高炉系の取鍋精錬は多彩である。しかし、精錬の基本
は、溶融スラグに対する溶鋼中の不純成分、特に、硫黄
と酸素の分配比率を、強攪拌や、スラグ塩基度の増加、
スラグボリュームの増加によって強制的に増加させるも
のであるので、精錬の初期からスラグ改質を図る試みを
すると精錬自体が成り立たない。よって、溶鋼成分が目
的とする値になった後に、精錬に関わった溶鋼の表面の
浮遊スラグを対象とし、MgOを含む材料を添加してス
ラグの改質を図ることが最も適切である。
Ladle Refining in Blast Furnace System Ladle refining in blast furnace system is various. However, the basics of refining are to adjust the distribution of impurities in molten steel to molten slag, especially the distribution ratio of sulfur and oxygen, by vigorous stirring and increasing the basicity of slag,
Since the slag volume is forcibly increased by increasing the slag volume, refining itself cannot be realized if an attempt is made to reform slag from the beginning of refining. Therefore, after the molten steel component reaches the target value, it is most appropriate to aim at the floating slag on the surface of the molten steel involved in refining and to add a material containing MgO to reform the slag.

【0031】この際、高級鋼の製造に当たって、不純元
素はスラグに移行捕捉されているが、塩基度が下がると
溶鋼に戻りやすい硫黄や酸素については、スラグと溶鋼
との接触を極力抑さえないと元に戻る現象が発生する。
このため、溶鋼攪拌ガスの減量やスラグの踊りを抑さえ
る目的で、通電量の調整等の配慮を必要とする。また、
溶鋼から浮遊分離させた脱酸生成物や非金属介在物など
も、スラグの組成の変化で捕捉されにくくなる場合があ
り、さらに、投入したMgOを含む材料が原因となっ
て、介在物が増加すること等にも留意する必要がある。
At this time, in the production of high-grade steel, the impurity elements are transferred and trapped in the slag, but the contact between the slag and the molten steel is not suppressed as much as possible with respect to sulfur and oxygen, which easily return to the molten steel when the basicity decreases. And the phenomenon that returns to the original occurs.
For this reason, in order to reduce the amount of the molten steel stirring gas and to suppress the slag dance, it is necessary to consider the adjustment of the amount of electricity to be supplied. Also,
Deoxidation products and nonmetallic inclusions suspended and separated from molten steel may be difficult to be trapped due to the change in slag composition.In addition, inclusions may increase due to the input MgO-containing material. It is necessary to pay attention to what is done.

【0032】このような状態で鋳込が終了した後の取鍋
精錬炉内のスラグは、溶鋼や既存のスラグと接触してい
た添加材の下部は溶融状態で、外気と触れる上部は、添
加材の一部が溶解するか、全体が赤熱された状態で存在
している。取鍋精錬炉内のスラグは、工場内の所定場所
に設置したスラグ受け用のスラグ鍋に排出されるが、こ
の際の鍋返し時のエネルギを活用し、スラグを強制攪拌
して、両者を混合反応させる。添加材は、既に十分予熱
されている状態なので、反応は迅速に進むことになる。
ただし、添加する材料の粒度や、成分構成、散布の方法
等は、製鋼工場の操業条件、すなわち、鋳込時間や取鍋
精錬炉の保温状態、鋼種等の特性によって変わり、その
比率も、粉体から粒子体までの任意の値と配合を取るこ
とになる。
The slag in the ladle refining furnace after the casting is completed in such a state, the lower part of the additive material in contact with the molten steel or the existing slag is in a molten state, and the upper part that comes into contact with the outside air is the additional material. Some of the material is dissolved or present in its entirety glowing. The slag in the ladle refining furnace is discharged to a slag pan for slag receiving set up at a predetermined location in the factory. Mix and react. Since the additive is already preheated sufficiently, the reaction proceeds quickly.
However, the particle size of the added material, the composition of the components, the method of spraying, etc. depend on the operating conditions of the steelmaking plant, that is, the casting time, the heat retention state of the ladle refining furnace, the characteristics of the steel type, etc. It will take any value and composition from body to particle body.

【0033】普通鋼電炉系の取鍋精錬の場合 鋼質の規制、特に、リンや硫黄等の成分が高炉系ほど厳
しくない普通鋼の場合は、高炉系の取鍋精錬とは異な
り、石灰の添加を少なくした精錬を行っている。しか
し、この状態でも、生成されたスラグには粉化する特性
があるので、高炉系の取鍋精錬の場合と同様にスラグの
改質は必要である。この際、投入する生石灰の絶対量を
少くし、単純に塩基度を下げる操業を行うと、スラグの
粉化そのものは防げるものの、CaOに依存する脱硫反
応はかなりの制約を受けるほか、適切なスラグ量があっ
て始めて安定化する取鍋精錬操業において、通電効率の
低下、湯面と電極間の位置制御の不安定化、昇熱速度の
低下等が発生し、操業全体が遅滞化する状態になる。
In the case of ladle refining of ordinary steel electric furnace system Unlike the blast furnace system ladle refining, in the case of ordinary steel in which the quality of the steel is regulated, in particular, in the case of ordinary steel in which components such as phosphorus and sulfur are not as strict as in the blast furnace system, Refining with less addition. However, even in this state, since the generated slag has a property of powdering, slag reforming is necessary as in the case of ladle refining in a blast furnace system. At this time, if the operation of reducing the absolute amount of the quick lime to be charged and simply lowering the basicity can prevent the slag from powdering itself, the desulfurization reaction depending on CaO is considerably restricted, and an appropriate slag In the ladle refining operation, which becomes stable only when there is a sufficient amount, the efficiency of the power supply decreases, the position control between the molten metal surface and the electrode becomes unstable, the heating rate decreases, etc., causing the entire operation to be delayed. Become.

【0034】ここで、スラグ量の確保と、塩基としての
特性を活用できるMgO系添加材が重要になる。高濃度
域のMgOの脱硫反応の能力は十分に把握されてはいな
いものの、従来実用化されているスラグ中の濃度域で
は、経験的には生石灰の60%前後とされている。本実
施例では、CaOを減らし、MgOの配合を、従来の操
業域を遥かに越えた成分域においているので、従来の操
業指針である単純塩基度(CaO/SiO 2)では、1
を切る操業例が常に発生する。このため、スラグの塩基
度は、MgOを積極的に増加配合することから、単純塩
基度による管理は適切ではなく、添加した材料から来る
各酸化物の要素を加味した、成分条件Aで管理すること
とし、石灰の代替効果をMgOに期待するようにしてい
る。この成分条件Aの比率の下限を1とするのは、1未
満ではスラグの絶対塩基性が維持されず、精錬反応に支
障を来すとともに、取鍋耐火物の溶損、特に、スラグラ
インの損傷が進み、取鍋精錬炉の寿命の低下を招くから
である。また、成分条件Aの比率の上限を2.5とする
のは、スラグの粉化現象を防ぐ目的からである。
Here, the amount of slag is secured, and
An MgO-based additive that can utilize its characteristics becomes important. High concentration
The capacity of the desulfurization reaction of MgO in the region is not fully understood.
However, in the concentration range of slag that has been practically used
Has been empirically determined to be around 60% of quicklime. Real truth
In the embodiment, the amount of CaO is reduced, and
Because it is in the component area far beyond the business area,
Simple basicity (CaO / SiO Two) Then 1
An operation that cuts off always occurs. Therefore, slag base
Because the degree of MgO is positively increased, simple salt
Management by basis is not appropriate and comes from added materials
Control with component condition A, taking into account each oxide element
And expects MgO to replace lime
You. The lower limit of the ratio of the component condition A is set to 1 because 1
At full load, the absolute basicity of the slag is not maintained,
In addition to disturbing the ladle refractory,
The damage of the iron will progress, which will shorten the life of the ladle refining furnace.
It is. The upper limit of the ratio of the component condition A is set to 2.5.
This is for the purpose of preventing the slag powdering phenomenon.

【0035】以下、さらに、普通鋼電炉系の取鍋精錬の
場合を例にして、操業の実施例を説明する。
The operation of the embodiment will be described below with reference to the case of ladle refining of a common steel electric furnace system.

【0036】[実施例1] (MgO系煉瓦屑の添加)電気炉から炉底出鋼を行った
後、鍋内のスラグに添加材として、MgO系の煉瓦屑を
粉砕したものを単独で添加し、通常と同じ取鍋精錬作業
を行って、発生スラグの粉化状態を観察した。
[Example 1] (Addition of MgO-based brick debris) After tapping the bottom of the furnace from an electric furnace, crushed MgO-based brick debris was separately added as an additive to slag in a pot. Then, the same ladle refining operation was performed as usual, and the powdered state of the generated slag was observed.

【0037】(観察結果)製品の硫黄の推移:出鋼時の
硫黄分は0.036重量%、精錬終了時の硫黄分は0.
033重量%で、MgOの効果で脱硫は進んでいる。粉
化:全く発生しない。通常の精錬スラグは、冷却中の8
00℃前後から粉化するが、MgO系の煉瓦屑を添加し
たスラグは全く粉化の現象がなかった。スラグの状態:
凝固したスラグの中に、未溶解のマグネシア粒が散見さ
れた。しかし、高純度MgO煉瓦屑の状態で存在してい
るので、粉化しやすい析出MgOとはならず、粉化する
現象はなかった。用途:冷却後のスラグは、比較的硬度
が高く、破砕後も形状安定性に優れており粉化しないの
で、コンクリート骨材に使用できることを確認した。
(Observation results) Changes in sulfur of the product: The sulfur content at the time of tapping is 0.036% by weight, and the sulfur content at the end of refining is 0.1%.
At 033% by weight, desulfurization is progressing due to the effect of MgO. Powdering: Does not occur at all. Normal smelting slag is 8
The powder was powdered at around 00 ° C., but the slag to which the MgO-based brick waste was added had no powdering phenomenon at all. Slug condition:
Undissolved magnesia grains were found in the solidified slag. However, since it exists in the state of high-purity MgO brick waste, it does not become precipitated MgO that is easily powdered, and there was no phenomenon of powdering. Use: After cooling, the slag has relatively high hardness, has excellent shape stability even after crushing, and does not powder, so it has been confirmed that it can be used for concrete aggregate.

【0038】[実施例2] (MgOを含有する非鉄精錬系スラグの添加)電気炉か
ら炉底出鋼を行った後、鍋内のスラグに添加材として、
MgOを含有する非鉄精錬系スラグとして、Ni合金鉄
の精錬時に発生するスラグ(SiO2:53重量%、M
gO:33重量%)を単独で添加し、通常と同じ取鍋精
錬作業を行って、発生スラグの粉化状態を観察した。
[Example 2] (Addition of nonferrous refining slag containing MgO) After steel bottom tapping was performed from an electric furnace, the slag in the pan was added as an additive.
As a non-ferrous refining slag containing MgO, slag (SiO 2 : 53% by weight, M
gO: 33% by weight) alone, and the same ladle refining operation as usual was performed to observe the powdered state of the generated slag.

【0039】(観察結果)製品の硫黄の推移:出鋼時の
硫黄分は0.033重量% 精錬終了時の硫黄分は0.
036重量%で、MgOの脱硫効果はない。このため、
脱硫効果を発揮させる必要がある場合には、Ni合金鉄
の精錬時に発生するスラグ(SiO2:53重量%、M
gO:33重量%)を単独で用いることは適当でなく、
他のMgO系添加材を併用することが必要となる。 粉化:全く発生しない。通常の精錬スラグは、冷却中の
800℃前後から粉化するが、MgO系スラグを添加し
たスラグは全く粉化の現象がなかった。また、成分的に
は、CaO−SiO2−MgO系3元状態図上でモンテ
セライトに近い岩石構成となっている。 用途:冷却後のスラグは、比較的硬度が高く、破砕後も
形状安定性に優れており粉化しないので、コンクリート
骨材に使用できることを確認した。
(Observation results) Changes in the sulfur content of the product: the sulfur content at the time of tapping is 0.033% by weight.
At 036% by weight, there is no desulfurization effect of MgO. For this reason,
If a desulfurization effect needs to be exerted, slag (SiO 2 : 53% by weight, M
gO: 33% by weight) alone is not appropriate,
It is necessary to use other MgO-based additives in combination. Powdering: Does not occur at all. Normal refining slag powders at around 800 ° C. during cooling, but slag to which MgO-based slag is added has no powdering phenomenon at all. Further, the compositional, and has a rock structure near Monte celite on the diagram states CaO-SiO 2 -MgO system ternary. Use: After cooling, the slag has relatively high hardness, has excellent shape stability even after crushing, and does not powder, so it has been confirmed that it can be used for concrete aggregate.

【0040】以上、本発明の実施例を説明したが、Mg
Oを乾重量比25%以上含む材料としては、上記のもの
以外に、蛇紋岩、橄攬岩、輝石、オリビンサンド等を利
用することができる。
The embodiments of the present invention have been described above.
As a material containing O at a dry weight ratio of 25% or more, serpentine, olivine rock, pyroxene, olivine sand and the like can be used in addition to the above.

【0041】[0041]

【発明の効果】本発明の取鍋精錬炉のスラグの改質方法
によれば、還元スラグ中のMgO成分を増加させること
により、他の酸性成分の配合増加で懸念される耐火物の
損傷を防ぎつつ、岩石成分として一般的なCaO−Mg
O−SiO2系のメルヴィナイト3CaO−MgO−2
SiO2、アケルマナイト2CaO−MgO−2Si
2、モンテセライトCaO−MgO−SiO2等の成分
に還元スラグを近づけることができ、これにより、還元
スラグの粉化を防止し、その形状特性を安定化させ、還
元スラグの有効利用の範囲を著しく拡大することができ
る。さらに、MgOを脱硫反応を主とする精錬に活用す
ることにより、CaOに代替しその比率を低下させるこ
とができる。
According to the slag reforming method of the ladle refining furnace of the present invention, by increasing the MgO component in the reduced slag, refractory damage which may be caused by an increase in the mixing of other acidic components is prevented. While preventing, general CaO-Mg as a rock component
O-SiO 2 Melvinite 3CaO-MgO-2
SiO 2 , Akermanite 2CaO-MgO-2Si
The reduced slag can be brought close to components such as O 2 and Montecellite CaO—MgO—SiO 2 , thereby preventing the reduced slag from being powdered, stabilizing its shape characteristics, and the effective use range of the reduced slag. Can be significantly increased. Furthermore, by utilizing MgO for refining mainly using a desulfurization reaction, it is possible to substitute for CaO and reduce its ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CaO−MgO−SiO2系3元状態図であ
る。
FIG. 1 is a ternary phase diagram of a CaO—MgO—SiO 2 system.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G012 JL03 JM04 4K001 AA10 DA05 EA04 GA18 KA07 4K012 AA01 4K013 CF01 FA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G012 JL03 JM04 4K001 AA10 DA05 EA04 GA18 KA07 4K012 AA01 4K013 CF01 FA05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 取鍋精錬炉内のスラグに、MgOを乾重
量比で25%以上含む材料を添加して溶解させ、鋳込終
了後のスラグ中に含まれるMgOの割合を重量比で10
%〜50%とすることを特徴とする取鍋精錬炉のスラグ
の改質方法。
A slag in a ladle refining furnace is added with a material containing MgO in a dry weight ratio of 25% or more and melted, and the ratio of MgO contained in the slag after casting is reduced to 10% by weight.
%. A method for reforming slag in a ladle refining furnace, wherein the slag is set to 50% to 50%.
JP35007099A 1999-12-09 1999-12-09 Method for reforming slag in ladle refining furnace Pending JP2001164313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35007099A JP2001164313A (en) 1999-12-09 1999-12-09 Method for reforming slag in ladle refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35007099A JP2001164313A (en) 1999-12-09 1999-12-09 Method for reforming slag in ladle refining furnace

Publications (1)

Publication Number Publication Date
JP2001164313A true JP2001164313A (en) 2001-06-19

Family

ID=18408033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35007099A Pending JP2001164313A (en) 1999-12-09 1999-12-09 Method for reforming slag in ladle refining furnace

Country Status (1)

Country Link
JP (1) JP2001164313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821363B1 (en) * 2016-12-12 2018-01-24 주식회사 포스코 Method for preventing the powdering phenomena of converter slag in stainless steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170215A (en) * 1983-03-17 1984-09-26 Daido Steel Co Ltd Slag refining method
JPH09157732A (en) * 1995-12-05 1997-06-17 Nippon Steel Corp Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
JPH10130714A (en) * 1996-10-31 1998-05-19 Nkk Corp Production of steel for wire rod excellent in wire drawability and cleanliness
JP2000017320A (en) * 1998-07-03 2000-01-18 Kawasaki Steel Corp Method for preventing erosion of lining brick in ladle
JP2001064714A (en) * 1999-08-27 2001-03-13 Kawasaki Steel Corp Method for reforming steelmaking slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170215A (en) * 1983-03-17 1984-09-26 Daido Steel Co Ltd Slag refining method
JPH09157732A (en) * 1995-12-05 1997-06-17 Nippon Steel Corp Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
JPH10130714A (en) * 1996-10-31 1998-05-19 Nkk Corp Production of steel for wire rod excellent in wire drawability and cleanliness
JP2000017320A (en) * 1998-07-03 2000-01-18 Kawasaki Steel Corp Method for preventing erosion of lining brick in ladle
JP2001064714A (en) * 1999-08-27 2001-03-13 Kawasaki Steel Corp Method for reforming steelmaking slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821363B1 (en) * 2016-12-12 2018-01-24 주식회사 포스코 Method for preventing the powdering phenomena of converter slag in stainless steel

Similar Documents

Publication Publication Date Title
CN104039987A (en) Steel slag reduction method
JPWO2002022891A1 (en) Refining agent and refining method
SK288758B6 (en) Fluxing agent for agglomeration, method for production thereof, agglomeration mixture for production of agglomerate and use of the slag coming from secondary metallurgy as fluxing agent for preparation of the agglomeration mixture
US4528035A (en) Composition and process to create foaming slag cover for molten steel
JP3437153B2 (en) Calcium aluminate desulfurizing agent
JP5170348B2 (en) Hot metal desiliconization and phosphorus removal methods
JP2008063645A (en) Steelmaking method
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
JP2003155516A (en) Method for desulfurizing molten steel with ladle- refining
JP2001164313A (en) Method for reforming slag in ladle refining furnace
WO2007100109A1 (en) Method of dephosphorization of molten iron
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
JP2002220615A (en) Converter steelmaking method
JP4210011B2 (en) Dephosphorization method of hot metal using converter
KR101084579B1 (en) Steel refinery flux using ferro vanadium slag
US4790872A (en) Additive for promoting slag formation in steel refining ladle
JP2017043808A (en) Lime-based dephosphorization agent
JPH10263768A (en) Method for reusing converter slag
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
RU2805114C1 (en) Steel melting method in electric arc furnace
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP5332769B2 (en) How to use electric furnace slag
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202