JP2001158942A - Martensitic stainless steel capable of easily softening and producing method therefor - Google Patents
Martensitic stainless steel capable of easily softening and producing method thereforInfo
- Publication number
- JP2001158942A JP2001158942A JP34171299A JP34171299A JP2001158942A JP 2001158942 A JP2001158942 A JP 2001158942A JP 34171299 A JP34171299 A JP 34171299A JP 34171299 A JP34171299 A JP 34171299A JP 2001158942 A JP2001158942 A JP 2001158942A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- transformation
- stainless steel
- temperature
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、SUS410系の
マルテンサイト系ステンレス鋼において、軟化焼鈍が容
易でかつ加工後の硬化熱処理時には良好な焼入硬さを得
ることができる鋼材およびその製造法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SUS410 martensitic stainless steel which can be soft-annealed easily and can obtain good quench hardness during hardening heat treatment after processing and a method for producing the same. Things.
【0002】[0002]
【従来の技術】ステンレス鋼製のネジやピン等は、高強
度が要求されるためSUS410等のマルテンサイト系
が多く用いられており、線材や鋼線を素材として冷間鍛
造などにより加工されたのち、硬化熱処理が行われ製品
となる。加工を容易に行うべく、線材は熱間圧延後に軟
化焼鈍を行って製造され、鋼線は線材を冷間伸線加工し
たのち再び軟化焼鈍して製造される。すなわち同鋼は、
線材および鋼線として出荷される際にはなるべく軟質で
あり、最終加工後に硬化熱処理を施した後ではなるべく
硬質であるという、一見、二律背反的な特性が要求され
る。2. Description of the Related Art Since stainless steel screws and pins require high strength, martensitic stainless steels such as SUS410 are often used, and are processed by cold forging using wire or steel wire as a material. Thereafter, a hardening heat treatment is performed to obtain a product. In order to facilitate the working, the wire is manufactured by performing soft annealing after hot rolling, and the steel wire is manufactured by performing soft annealing on the wire and then soft annealing again. That is, the steel
At first glance, a seemingly reciprocal characteristic is required, which is as soft as possible when shipped as a wire or a steel wire, and as hard as possible after being subjected to a hardening heat treatment after final processing.
【0003】マルテンサイト系ステンレス鋼は、一般の
普通鋼と異なり、熱間圧延後の冷却過程が急冷でなくて
もマルテンサイト変態により硬化するため、冷間加工が
困難となる。したがって従来は、連続線材圧延ラインで
熱間圧延され巻取られたコイルをバッチ式の炉でAc3
点以上に高温加熱し、オーステナイト変態させた後、非
常に小さい冷却速度で徐冷してオーステナイト相(以下
γ相という)をフェライト相+炭化物(以下α+Cとい
う)に完全変態させる焼鈍、すなわちマルテンサイト変
態を阻止する軟化焼鈍を必須としていた。[0003] Unlike ordinary ordinary steel, martensitic stainless steel is hardened by martensitic transformation even if the cooling process after hot rolling is not rapid cooling, so that cold working becomes difficult. Therefore, conventionally, a coil rolled by hot rolling in a continuous wire rod rolling line is subjected to Ac 3 in a batch type furnace.
After heating to a high temperature above the temperature and transforming to austenite, the steel is gradually cooled at a very low cooling rate to completely transform the austenitic phase (hereinafter referred to as γ phase) into ferrite phase + carbide (hereinafter referred to as α + C), ie, martensite. Soft annealing to prevent transformation was required.
【0004】この軟化焼鈍には、通常10時間程度を要
し、従来は連続線材圧延ラインでのインライン熱処理が
できなかった。普通鋼、オーステナイト系ステンレス鋼
およびフェライト系ステンレス鋼では、インラインにて
数分で熱処理完了する技術が開発されているので、マル
テンサイト系ステンレス鋼は、これら鋼種に比べて熱処
理コストが大きいという問題があった。[0004] This softening annealing usually requires about 10 hours, and conventionally, in-line heat treatment in a continuous wire rolling line has not been possible. For ordinary steel, austenitic stainless steel, and ferritic stainless steel, a technology has been developed that completes heat treatment in a few minutes in-line.Therefore, the problem of the heat treatment cost of martensitic stainless steel is higher than these steel types. there were.
【0005】この問題に対して、特開平11−1525
15号公報では、マルテンサイト系ステンレス鋼の軟化
焼鈍を、連続線材圧延ラインにおけるインライン熱処理
で実現する技術を提案している。その内容は、0.06
〜0.40%のC、10〜16%のCrを含有するマル
テンサイト系ステンレス線材の熱間圧延において、75
0〜950℃で10秒以内に減面率65%以上の強加工
を施したのち強制冷却を行い、600℃以下に冷却する
ことなくインラインにて恒温変態熱処理を行うもので、
同熱処理は700〜800℃で10〜40分行うのが好
ましいとしている。この技術により、数十分以内でγ→
α+Cの完全変態を完了することができ、インライン熱
処理によるマルテンサイト系ステンレス線材の製造が可
能となった。To solve this problem, Japanese Patent Application Laid-Open No. 11-1525
No. 15 proposes a technique for realizing softening annealing of martensitic stainless steel by in-line heat treatment in a continuous wire rolling line. The content is 0.06
In hot rolling of a martensitic stainless steel wire containing 0.40% C and 10-16% Cr, 75%
After subjecting to strong processing with a surface reduction rate of 65% or more at 0 to 950 ° C within 10 seconds, forced cooling is performed, and constant temperature transformation heat treatment is performed in-line without cooling to 600 ° C or less.
The heat treatment is preferably performed at 700 to 800 ° C. for 10 to 40 minutes. With this technology, γ →
Complete transformation of α + C was completed, and the production of martensitic stainless steel wire by in-line heat treatment became possible.
【0006】[0006]
【発明が解決しようとする課題】上記特開平11−15
2515号公報で提案した技術は、熱間圧延において7
50〜950℃で10秒以内に減面率65%以上の強加
工を施すことを必須としている。一方、通常の連続線材
圧延ラインでは、鋼材の変形抵抗を下げて圧延しやすく
するため、および熱間加工割れ防止のため、1000℃
程度で圧延を行うことが多い。したがって上記公報の技
術では熱間圧延温度を通常より低下させる必要が生じ、
特別な冷却設備を必要とする上、冷却後に強加工を施す
ため圧延負荷が増大するという問題が生じた。SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 11-15 / 1999
The technology proposed in US Pat.
It is indispensable to carry out a strong working at a surface reduction rate of 65% or more at 50 to 950 ° C. within 10 seconds. On the other hand, in a normal continuous wire rod rolling line, 1000 ° C. is used in order to lower the deformation resistance of the steel material to facilitate rolling and prevent hot working cracks.
In many cases, rolling is performed at a degree. Therefore, in the technology of the above publication, it is necessary to lower the hot rolling temperature than usual,
In addition to requiring special cooling equipment, there is a problem that the rolling load increases due to the strong working after cooling.
【0007】そこで本発明が解決しようとする課題は、
ネジ、ピンなどに加工されるSUS410系のマルテン
サイト系ステンレス鋼において、軟化焼鈍が容易に行
え、かつ加工後の硬化熱処理時には十分な焼入硬さが得
られる成分系の鋼を提供すること、および該鋼の線材
を、連続熱間圧延ラインにおいて、仕上圧延で特別な冷
却設備を要さず、インライン熱処理により製造する方法
を提供することである。Therefore, the problem to be solved by the present invention is as follows:
In a SUS410 martensitic stainless steel processed into a screw, a pin, etc., it is possible to provide a component steel in which softening annealing can be easily performed and sufficient hardening hardness can be obtained at the time of hardening heat treatment after processing. Another object of the present invention is to provide a method for producing a steel wire by in-line heat treatment in a continuous hot rolling line, without requiring special cooling equipment in finish rolling.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
の本発明鋼は、重量%にて、 C :0.10〜0.12%、 Si:0.2%以下、 Mn:0.4%以下、 Ni:0.3%以下、 Cr:11〜13%、 N :0.025%以下 で、残部Feならびに不純物からなることを特徴とする
軟化焼鈍容易なマルテンサイト系ステンレス鋼である。Means for Solving the Problems The steel of the present invention for solving the above-mentioned problems is as follows: C: 0.10 to 0.12%, Si: 0.2% or less, Mn: 0.4% by weight. %, Ni: 0.3% or less, Cr: 11 to 13%, N: 0.025% or less, and is a martensitic stainless steel easy to soften and annealing, characterized by the balance of Fe and impurities.
【0009】また上記課題を解決するための本発明法
は、上記本発明のマルテンサイト系ステンレス鋼を、熱
間圧延において850〜980℃の温度範囲で10秒以
内に減面率65%以上の強加工を施した後、空冷以上の
冷却速度で冷却を行い、さらに700℃以上の温度域で
インライン熱処理を行いフェライトへの変態を完了させ
ることを特徴とするマルテンサイト系ステンレス鋼の製
造方法である。そして本発明法において、前記インライ
ン熱処理に際し、760〜800℃の温度域に達した時
点から720〜750℃の温度域まで、1分以上10分
以内に到達するよう徐冷した後、720〜750℃の温
度域で、徐冷開始時からの経過時間が15〜60分にな
るまで保持するのが好ましい。[0009] The method of the present invention for solving the above-mentioned problems is to provide the above-mentioned martensitic stainless steel of the present invention in hot rolling at a temperature range of 850 to 980 ° C within 10 seconds within a surface reduction rate of 65% or more. After performing strong working, cooling is performed at a cooling rate equal to or higher than air cooling, and further, inline heat treatment is performed in a temperature range of 700 ° C. or more to complete transformation to ferrite, thereby producing a martensitic stainless steel. is there. Then, in the method of the present invention, upon the in-line heat treatment, the temperature is gradually cooled from the time when the temperature reaches 760 to 800 ° C. to the temperature range of 720 to 750 ° C. within 1 minute or more and within 10 minutes. In the temperature range of ° C., it is preferable that the temperature is maintained until the elapsed time from the start of slow cooling becomes 15 to 60 minutes.
【0010】[0010]
【発明の実施の形態】まず本発明鋼の成分限定理由につ
いて説明する。本発明者らは、通常のSUS410の成
分を変化させて検討したところ、MnおよびNを従来材
よりも低減することによりγ→α+C変態が促進され、
その他成分の効果と相俟って、冷間加工性が十分に良好
で、かつ冷間加工後の硬化熱処理に際しても良好な硬さ
の得られる線材を、熱間圧延における強加工と圧延後の
冷却過程におけるインライン熱処理により製造できるこ
とを明らかにした。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the components of the steel of the present invention will be described. The present inventors have studied by changing the components of ordinary SUS410. By reducing Mn and N compared to conventional materials, the γ → α + C transformation is promoted,
Combined with the effects of other components, the wire rod is sufficiently good in cold workability, and a wire with good hardness can be obtained even during hardening heat treatment after cold working, after strong working in hot rolling and after rolling. It was clarified that it can be manufactured by in-line heat treatment in the cooling process.
【0011】本発明鋼からなる線材は、インライン熱処
理設備を有する従来の連続熱間圧延ラインで製造するこ
とができる。線材圧延設備において、上記本発明ステン
レス鋼のビレットを熱間圧延する際、仕上圧延機で強加
工を施したのち強制冷却を行い、レーイングヘッドによ
りコンベア上に非同心リング状に展開し、搬送しつつイ
ンライン熱処理し集束機にてコイルとする。The wire made of the steel of the present invention can be produced by a conventional continuous hot rolling line having an in-line heat treatment facility. In the wire rod rolling equipment, when hot rolling the above stainless steel billet of the present invention, it is subjected to forcible cooling after being subjected to strong working with a finishing mill, and is developed in a non-concentric ring shape on a conveyor by a laying head, and transported. While in-line heat treatment is performed to form a coil using a concentrator.
【0012】各元素について、含有量の限定理由は次の
とおりである。Cは、焼入硬さを確保するのに必要な元
素であり、0.10%以上を必要とする。一方、C量が
増加すると軟化焼鈍後の引張り強さが高くなるうえ靭性
が低下し、冷間加工時に割れを生じる危険性があるの
で、上限を0.12%とした。Siは、固溶強化により
α+C変態後の引張強さを大きく高める元素であるた
め、その含有量を極力低下させる必要があり、上限を
0.2%とした。The reasons for limiting the content of each element are as follows. C is an element necessary for securing quenching hardness, and requires 0.10% or more. On the other hand, if the C content increases, the tensile strength after softening annealing increases, the toughness decreases, and there is a risk of cracking during cold working. Therefore, the upper limit was set to 0.12%. Since Si is an element that greatly increases the tensile strength after α + C transformation by solid solution strengthening, its content must be reduced as much as possible, and the upper limit is made 0.2%.
【0013】Mnは、γ→α+C変態を非常に遅延させ
る元素であり、0.4%を超えると本発明の狙いである
軟化熱処理の促進がなされなくなるため、上限を0.4
%とした。Crは、ステンレス鋼としての耐食性を付与
するための基本元素であり、この効果を得るために下限
を11%とした。一方、Crはフェライト生成元素であ
り、圧延中にデルタフェライトを生じて熱間加工性を悪
化させるうえ、焼入性が悪化するため上限を13%とし
た。Mn is an element that greatly delays the transformation of γ → α + C. If the Mn content exceeds 0.4%, promotion of the softening heat treatment, which is the object of the present invention, cannot be performed.
%. Cr is a basic element for imparting corrosion resistance as stainless steel, and the lower limit is set to 11% in order to obtain this effect. On the other hand, Cr is a ferrite-forming element and generates delta ferrite during rolling to deteriorate hot workability and hardenability. Therefore, the upper limit is set to 13%.
【0014】Niは、Mnと同様にγ→α+C変態を非
常に遅延させる元素であるため、その含有量を極力低下
させる必要があり、上限を0.3%とした。Nは、焼入
性をある程度向上させる元素である反面、γ→α+C変
態を遅延させる元素である。したがって上限を0.02
5%とした。Ni, like Mn, is an element that greatly delays the γ → α + C transformation, so its content must be reduced as much as possible, and the upper limit is made 0.3%. N is an element that improves the hardenability to some extent, but is an element that delays the γ → α + C transformation. Therefore, the upper limit is 0.02
5%.
【0015】上記成分系の本発明マルテンサイト系ステ
ンレス鋼は、後述のインライン熱処理によって軟化焼鈍
を完了できるだけでなく、伸線後の鋼線を軟化焼鈍する
場合のようにバッチ式焼鈍炉を用いた場合にも軟化焼鈍
が容易に行えるというメリットを有する。その効果は、
熱間圧延時にバッチ焼鈍を省略できるような大きなもの
ではないが、オーステナイト変態後の徐冷においてその
冷却速度を数倍程度に高め、ひいては熱処理に要する時
間を低減することができる。[0015] The martensitic stainless steel of the present invention having the above-mentioned composition system can not only complete softening annealing by in-line heat treatment described below, but also uses a batch annealing furnace as in the case of softening annealing a drawn steel wire. Also in this case, there is an advantage that soft annealing can be easily performed. The effect is
Although not so large that batch annealing can be omitted during hot rolling, the cooling rate can be increased to about several times in slow cooling after austenite transformation, and the time required for heat treatment can be reduced.
【0016】次に本発明法について述べる。特開平11
−152515号公報に示しているのと同じく、本発明
法は仕上圧延で強加工を行うことにより歪みを蓄積さ
せ、γ→α+Cの恒温変態を促進させることによりイン
ライン熱処理を実現している。一方、本発明は鋼の成分
を変態促進成分系とすることにより、特開平11−15
2515号公報によるよりもマイルドな歪みの付加でも
短時間で変態が完了するように、仕上圧延温度を高めて
いる。Next, the method of the present invention will be described. JP 11
As described in JP-A-152515, the method of the present invention realizes in-line heat treatment by accumulating strain by performing strong working in finish rolling and promoting isothermal transformation of γ → α + C. On the other hand, the present invention relates to a method disclosed in
The finish rolling temperature is increased so that the transformation can be completed in a short time even when milder strain is applied than in JP-A-2515.
【0017】熱間圧延では、850〜980℃の温度範
囲で10秒以内に減面率65%以上の強加工を施せばよ
く、特別な冷却設備を付加することは必要はない。また
圧延負荷が特に増大するという問題も生じない。強加工
は仕上圧延機で行うが、圧延機や圧延材の状況などによ
り、強加工を施す圧延温度は特に940℃超〜980℃
とするのが好ましく、950℃〜980℃とするのがよ
り好ましい。圧延後は、仕上圧延機出側のクーリングト
ラフなどで空冷以上の冷却速度で強制冷却を行うことに
より、圧延材に十分な歪みが蓄積され、引続き行うイン
ライン熱処理によりγ→α+C変態が促進される。In hot rolling, it is only necessary to perform a strong working at a temperature reduction of 65% or more within 10 seconds in a temperature range of 850 to 980 ° C., and it is not necessary to add a special cooling facility. Further, there is no problem that the rolling load is particularly increased. The strong working is performed by a finish rolling mill, but the rolling temperature at which the strong working is performed is particularly higher than 940 ° C. to 980 ° C. depending on the condition of the rolling mill and the rolled material.
950 ° C. to 980 ° C., more preferably. After rolling, sufficient strain is accumulated in the rolled material by performing forced cooling at a cooling rate higher than air cooling in the cooling trough on the exit side of the finishing mill, and γ → α + C transformation is promoted by the subsequent in-line heat treatment. .
【0018】仕上圧延後、強制冷却した後はレーイング
ヘッドによりコンベア上に非同心リング状に展開し、搬
送しつつ保定炉あるいは加熱炉を通過させ、インライン
熱処理を行う。インライン熱処理では、700℃以上の
温度域でγ→α+C変態を完了させ、マルテンサイト相
の生成を阻止する。その後は集束機に落とし込んでコイ
ルにし、室温まで放冷あるいは水冷などにより冷却すれ
ばよい。After the finish rolling, the steel sheet is forcibly cooled and then developed by a laying head in a non-concentric ring shape on a conveyor, passed through a holding furnace or a heating furnace while being conveyed, and subjected to in-line heat treatment. In the in-line heat treatment, the γ → α + C transformation is completed in a temperature range of 700 ° C. or more, and the formation of a martensite phase is prevented. Thereafter, it may be dropped into a concentrator to form a coil, and then cooled to room temperature by cooling or water cooling.
【0019】本発明法におけるインライン熱処理に際
し、760〜800℃の温度域に達した時点から720
〜750℃の温度域まで、1分以上10分以内に到達す
るよう徐冷した後、720〜750℃の温度域で、徐冷
開始時からの経過時間が15〜60分になるまで保持す
ることが好ましい。この好ましい条件は、本発明鋼につ
いて短時間でγ→α+C変態を完了させ、かつ変態後の
組織が十分軟化するのに有効である。In the in-line heat treatment in the method of the present invention, 720 hours after reaching a temperature range of 760 to 800 ° C.
After slowly cooling to reach a temperature range of 7750 ° C. within 1 minute or more and within 10 minutes, the temperature is maintained in a temperature range of 720 ° C. to 750 ° C. until the time elapsed from the start of slow cooling becomes 15 to 60 minutes. Is preferred. These preferred conditions are effective for completing the γ → α + C transformation of the steel of the present invention in a short time and sufficiently softening the structure after the transformation.
【0020】本発明者らはγ→α+C変態における保定
温度の影響について鋭意検討したところ、次のような結
論に達した。すなわち、SUS410系ではγ→α+C
変態時にはまずγ相から炭化物が析出し、その炭化物が
変態核となりα+C変態が開始して完全変態に至る。こ
の変態は変態ノーズ温度すなわち700℃より若干高温
の温度で保定すると最も短時間で完了する。一方、保定
温度を下げ、ノーズ温度に近づけるにしたがって過冷度
が大きくなるため変態核が多数生成し、変態後の組織が
微細粒となっていき、変態後のα+C組織が比較的硬質
となる。この細粒組織は、析出した炭化物のピンニング
効果のため、Ac1 点以上の高温熱処理により炭化物を
γ相に再固溶させない限り粒成長せず細粒のままであ
る。The present inventors have conducted intensive studies on the effect of the retention temperature on the γ → α + C transformation, and have reached the following conclusion. That is, in the SUS410 system, γ → α + C
At the time of transformation, carbide is first precipitated from the γ phase, and the carbide becomes a transformation nucleus, and α + C transformation starts to reach complete transformation. This transformation is completed in the shortest time if it is maintained at a transformation nose temperature, that is, a temperature slightly higher than 700 ° C. On the other hand, the subcooling degree increases as the retention temperature is lowered and approaches the nose temperature, so that many transformation nuclei are generated, and the transformed structure becomes fine grains, and the transformed α + C structure becomes relatively hard. . Due to the pinning effect of the precipitated carbide, this fine grain structure does not grow and remains fine unless the carbide is re-dissolved in the γ phase by a high-temperature heat treatment at one or more Ac points.
【0021】この二律背反を解決するための方策とし
て、保定開始時にα+C変態域のなるべく高温域で保定
を行い、その後、変態ノーズ域で保定する2段階熱処理
パターンを採用するのが好ましいことを本発明者らは明
らかにした。保定開始時に760〜800℃の高温域に
保定することにより、析出変態核の数を抑制し粗粒α組
織を得ることができる。一方、その後720〜750℃
の温度域で保定することにより変態ノーズ域で保定する
こととなり、γ→α+C変態が促進される。As a measure for solving this trade-off, the present invention preferably employs a two-step heat treatment pattern in which, at the start of the stabilization, the stabilization is performed in the α + C transformation region as high as possible, and thereafter, the stabilization is performed in the transformation nose region. They revealed. By maintaining the temperature in a high temperature range of 760 to 800 ° C. at the start of the retention, the number of precipitated transformation nuclei can be suppressed and a coarse α-structure can be obtained. On the other hand, after that, 720-750 ° C
By maintaining the temperature in the range of, the temperature is maintained in the transformation nose region, and the γ → α + C transformation is promoted.
【0022】以下、好ましい熱処理条件の設定理由につ
いて述べる。前述の2段階熱処理を達成するには、熱処
理開始温度はα+C変態域でなければならないため、8
00℃以下とした。一方、低温側では析出変態核が多数
生成し細粒組織となるために760℃以上とした。次
に、熱処理終了温度は変態ノーズ付近になければならな
いので、本発明鋼を前述の仕上温度で熱延し、歪みを蓄
積した場合の変態ノーズ前後の720〜750℃とし
た。Hereinafter, the reasons for setting the preferable heat treatment conditions will be described. To achieve the two-step heat treatment described above, the heat treatment start temperature must be in the α + C transformation region,
The temperature was set to 00 ° C. or less. On the other hand, on the low temperature side, the temperature was set to 760 ° C. or higher because a large number of precipitation transformation nuclei were generated to form a fine grain structure. Next, since the heat treatment end temperature must be in the vicinity of the transformation nose, the steel of the present invention was hot-rolled at the above-mentioned finishing temperature, and was set to 720 to 750 ° C. before and after the transformation nose when the strain was accumulated.
【0023】上記高温域から低温域までの到達時間につ
いては、変態核が析出するまでの時間は高温域になけれ
ばならないので、1分以上とした。また10分超では変
態完了時間をより遅延させることとなるので、10分以
内とした。低温域に到達した後は、上記と同じ720〜
750℃の温度域で、徐冷開始時からの経過時間が15
〜60分になるまで保持することにより、特別な設備を
設けることなく、通常のコンベア上で保定可能なレベル
の時間で軟化焼鈍を完了することができる。The time from the high-temperature region to the low-temperature region is set to 1 minute or more because the time until the transformation nucleus precipitates must be in the high-temperature region. If the time exceeds 10 minutes, the transformation completion time will be further delayed. After reaching the low temperature range,
In the temperature range of 750 ° C, the elapsed time from the start of slow cooling is 15
By holding for up to 60 minutes, the soft annealing can be completed in a time at a level that can be maintained on a normal conveyor without providing special equipment.
【0024】この処理は、コンベア上で非同心リング状
に展開されて搬送中の線材を、760〜800℃の温度
域で保定炉あるいは加熱炉に装入し、720〜750℃
の温度域まで上記時間で徐冷し、最終温度で上記時間保
定熱処理することにより行うことができる。本発明法に
より得られたマルテンサイト系ステンレス鋼線材は、冷
間鍛造などによりネジやピンなどの製品に加工する際、
従来のバッチ焼鈍材と同等以上の良好な加工性を有する
と共に、加工後の硬化処理においては十分良好な硬さを
得ることができる。In this process, the wire material which is developed in a non-concentric ring shape on the conveyor and is being conveyed is charged into a holding furnace or a heating furnace at a temperature range of 760 to 800 ° C., and is heated at 720 to 750 ° C.
, And gradually heat-treated at the final temperature for the above-mentioned time. When the martensitic stainless steel wire obtained by the method of the present invention is processed into products such as screws and pins by cold forging,
It has good workability equal to or higher than that of a conventional batch-annealed material, and can obtain sufficiently good hardness in a hardening treatment after working.
【0025】[0025]
【実施例】表1に示す成分のマルテンサイト系ステンレ
ス鋼ビレットを、連続線材圧延ラインにて熱間圧延し、
インライン熱処理を行って線材を製造した。仕上圧延機
において強加工を行い、コンベア上で非同心リング状に
展開して搬送中、保定炉に装入してインライン熱処理を
行い、集束機に落とし込んでコイル製品とした。表2に
仕上圧延条件およびインライン熱処理条件を示す。表1
中の*印は本発明鋼の成分範囲を外れたものである。表
2中の*印は本発明法の条件を外れたものであり、#印
は本発明法における好ましい条件を外れたものである。EXAMPLES A martensitic stainless steel billet having the components shown in Table 1 was hot-rolled in a continuous wire rod rolling line.
A wire was manufactured by performing in-line heat treatment. In the finishing mill, strong processing was carried out, the concentric ring was developed on the conveyor, and during transportation, the product was charged into a holding furnace and subjected to in-line heat treatment, and dropped into a concentrator to form a coil product. Table 2 shows finish rolling conditions and in-line heat treatment conditions. Table 1
The symbol * in the figure is outside the range of the components of the steel of the present invention. The asterisks in Table 2 deviate from the conditions of the method of the present invention, and the # marks deviate from the preferable conditions in the method of the present invention.
【0026】また熱間圧延後に即集束し、コイル形状で
バッチ焼鈍を行った。表3に仕上圧延条件およびバッチ
熱処理条件を示す。得られた線材の材質調査結果を表4
に示す。焼入は真空中で1050℃×10分保定後急冷
により行った。After hot rolling, the bundle was immediately converged, and batch annealing was performed in a coil shape. Table 3 shows finish rolling conditions and batch heat treatment conditions. Table 4 shows the results of the material survey of the obtained wires.
Shown in Quenching was performed by quenching after holding at 1050 ° C. for 10 minutes in a vacuum.
【0027】表4の本発明例No.1〜No.4は、表
1の本発明鋼A〜Dを、表2に示す本発明法の好ましい
条件aで処理した例であり、いずれも冷間加工性、焼入
性ともに良好であった。比較例No.5〜No.11
は、表1の比較鋼E〜Kを、同じく表2の本発明条件a
で処理した例である。No.5はC量が不足しているた
め焼入硬さ不良であった。No.6はC量が過剰なため
靭性が不良でかつ熱処理後の引張強さが高すぎ、冷間加
工性に問題があった。No.7はSi量が過剰なため、
引張り強さが高すぎ冷間加工性に問題があった。In Table 4, the present invention example No. 1 to No. No. 4 is an example in which the inventive steels A to D in Table 1 were treated under the preferred conditions a of the inventive method shown in Table 2, and all were good in both cold workability and hardenability. Comparative Example No. 5-No. 11
Is a comparison of the comparative steels E to K in Table 1 with the present invention conditions a in Table 2.
This is an example in which processing is performed. No. Sample No. 5 was poor in quenching hardness due to insufficient C content. No. In No. 6, the C content was excessive, so that the toughness was poor and the tensile strength after the heat treatment was too high, and there was a problem in cold workability. No. 7 has an excessive amount of Si,
The tensile strength was too high and there was a problem in cold workability.
【0028】No.8はMn量が過剰なためγ→α+C
変態が未了で冷間加工性に問題があった。No.9はC
r量が過剰なため焼入後の硬さが不良であった。No.
10はNi量が過剰なため、No.11はN量が過剰な
ため、いずれもγ→α+C変態が完了せず、引張り強さ
が高すぎて冷間加工性に問題があった。従来例No.1
2は、表1の従来鋼Lを、同じく表2の本発明条件aで
処理した例であり、Si量およびMn量が過剰なため、
γ→α+C変態が完了せず、引張り強さが高すぎて冷間
加工性に問題があった。No. 8 is γ → α + C due to an excessive amount of Mn.
The transformation was not completed and there was a problem in cold workability. No. 9 is C
The hardness after quenching was poor due to the excessive amount of r. No.
No. 10 has an excessive amount of Ni. In No. 11, since the N content was excessive, the transformation of γ → α + C was not completed in any case, and the tensile strength was too high to cause a problem in cold workability. Conventional example No. 1
2 is an example in which the conventional steel L in Table 1 was treated under the conditions a of the present invention in Table 2 as well. Since the amounts of Si and Mn are excessive,
The transformation of γ → α + C was not completed, and the tensile strength was too high to cause a problem in cold workability.
【0029】次に表1の本発明鋼Cについて、熱延条件
およびインライン熱処理条件を変えた場合の結果を表4
のNo.13〜No.24に示す。条件は表2のb〜n
である。本発明例のNo.13およびNo.14は、N
o.3と同様、表2における本発明法の好ましい条件で
処理した例であり、いずれも20分で軟化焼鈍が完了
し、冷間加工性、焼入性ともに良好であった。比較例の
No.15は仕上圧延温度が高すぎ、No.16は減面
率が低すぎ、No.17は圧延に要する時間が長すぎ、
いずれも歪みの蓄積が不足のため、20分保定熱処理を
行っても変態が完了せず、引張強さが高すぎた。Next, for steel C of the present invention shown in Table 1, the results obtained when the hot rolling conditions and the in-line heat treatment conditions were changed are shown in Table 4.
No. 13-No. 24. Conditions are b to n in Table 2.
It is. No. of the present invention example. 13 and No. 14 is N
o. As in the case of No. 3, it was an example of treatment under the preferred conditions of the method of the present invention in Table 2. In each case, softening annealing was completed in 20 minutes, and both cold workability and hardenability were good. No. of the comparative example. In No. 15, the finish rolling temperature was too high. In No. 16, the area reduction rate was too low. No. 17 takes too long to roll,
In each case, the accumulation of strain was insufficient, so that the transformation was not completed even after the holding heat treatment for 20 minutes, and the tensile strength was too high.
【0030】本発明例のNo.18は、本発明法の条件
内ではあるが、好ましい条件を外れて到達温度が高いた
め、20分で変態は完了するものの、軟化が十分でなく
若干硬質な組織となった。しかし用途によっては十分に
冷間加工可能である。比較例のNo.19は、No.1
8より仕上圧延温度が高く若干歪み蓄積が不足したた
め、970℃で仕上圧延を行っても20分では変態が完
了せず、より長い熱処理時間を必要とした。No.20
は徐冷開始温度が高すぎ、20分では変態が完了しなか
った。In the example of the present invention, Sample No. 18 was within the conditions of the method of the present invention, but deviated from the preferable conditions and the temperature reached was high. Therefore, although transformation was completed in 20 minutes, softening was insufficient and a slightly hard structure was obtained. However, depending on the application, it can be sufficiently cold worked. No. of the comparative example. No. 19 is No. 1
Since the finish rolling temperature was higher than 8 and the strain accumulation was slightly insufficient, the transformation was not completed in 20 minutes even if the finish rolling was performed at 970 ° C., and a longer heat treatment time was required. No. 20
The cooling start temperature was too high, and the transformation was not completed in 20 minutes.
【0031】本発明例のNo.21は、本発明法の条件
内ではあるが、好ましい条件を外れて徐冷開始温度が低
いため、変態は早期に完了するが変態後のα組織が細粒
で若干硬質な組織となった。しかし用途によっては十分
に冷間加工可能である。比較例のNo.22は到達温度
が低すぎ、No.23は熱処理時間が短すぎ、No.2
4は本発明法の条件を外れる700℃未満で熱処理した
ため、いずれも変態が完了しなかった。In Example No. of the present invention, 21 was within the conditions of the method of the present invention, but deviated from the preferred conditions and the slow cooling start temperature was low. Therefore, the transformation was completed early, but the α structure after the transformation became a fine grained and slightly hard structure. However, depending on the application, it can be sufficiently cold worked. No. of the comparative example. In No. 22, the ultimate temperature was too low. In No. 23, the heat treatment time was too short. 2
Sample No. 4 was subjected to a heat treatment at a temperature of less than 700 ° C., which is outside the conditions of the method of the present invention.
【0032】次にバッチ焼鈍の場合における結果をN
o.25〜27に示す。No.25は表1の本発明鋼C
を表3のp条件で処理した例であり、徐冷速度180℃
/hrで変態が完了し軟質化した。一方、従来鋼Lを表3
の条件rで処理したNo.26は、徐冷速度180℃/
hrでは変態が完了しなかった。また条件sで処理したN
o.27は、変態が完了するのに90℃/hrまで徐冷速
度を遅くする必要があった。Next, the result in the case of batch annealing is expressed as N
o. 25 to 27. No. 25 shows the steel C of the present invention in Table 1.
Is an example of processing under the p conditions in Table 3, and the slow cooling rate is 180 ° C.
At / hr, the transformation was completed and softened. On the other hand, Table 3
No. processed under the condition r of No. 26 is a slow cooling rate of 180 ° C. /
The transformation was not completed in hr. Also, N processed under the condition s
o. No. 27 required a slow cooling rate of 90 ° C./hr to complete the transformation.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】[0036]
【表4】 [Table 4]
【0037】[0037]
【発明の効果】本発明のマルテンサイト系ステンレス鋼
は、冷間鍛造などによりネジやピンなどの製品を加工す
る際の加工性を得るための軟化焼鈍を、従来材より能率
よく行うことができる一方、加工後の硬化処理において
も良好な硬さを得ることができる。また本発明法によれ
ば、連続線材圧延ラインにおいて、仕上圧延機で特別な
冷却設備を設けることなく強加工を行って圧延材に歪み
を蓄積し、引続き行うインライン熱処理によりγ→α+
C変態を完了させることで、従来のオフライン熱処理材
と同等以上の良好な加工性を有する線材が得られ、得ら
れた線材をネジやピンなどに加工した後は、焼入等の硬
化熱処理により良好な硬さが得られる。As described above, the martensitic stainless steel of the present invention can more efficiently perform softening annealing for obtaining workability in processing products such as screws and pins by cold forging or the like than conventional materials. On the other hand, good hardness can be obtained even in a hardening treatment after processing. Further, according to the method of the present invention, in a continuous wire rod rolling line, a strong rolling is performed without providing a special cooling facility in a finishing rolling mill to accumulate strain in the rolled material, and γ → α +
By completing the C transformation, a wire having good workability equivalent to or higher than that of the conventional off-line heat-treated material is obtained. After the obtained wire is processed into screws or pins, it is hardened by hardening heat treatment such as quenching. Good hardness is obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 吉孝 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 吉澤 明展 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 Fターム(参考) 4K032 BA02 CB02 CD05 CF02 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshitaka Nakamura 3434 Shimada, Hikari-shi, Nippon Steel Corporation Inside the Hikari Works (72) Inventor Akiyoshi Yoshizawa 3434 Shimada, Hikari-shi, Hikari-shi Nippon Steel Corporation F term in the Hikari Works (reference) 4K032 BA02 CB02 CD05 CF02
Claims (3)
軟化焼鈍容易なマルテンサイト系ステンレス鋼。1. In weight%, C: 0.10 to 0.12%, Si: 0.2% or less, Mn: 0.4% or less, Ni: 0.3% or less, Cr: 11 to 13 %, N: 0.025% or less, martensitic stainless steel easy to soften and annealing, characterized by being composed of the balance of Fe and impurities.
レス鋼を、熱間圧延において850〜980℃の温度範
囲で10秒以内に減面率65%以上の強加工を施した
後、空冷以上の冷却速度で冷却を行い、さらに700℃
以上の温度域でインライン熱処理を行いフェライトへの
変態を完了させることを特徴とするマルテンサイト系ス
テンレス鋼の製造方法。2. After subjecting the martensitic stainless steel according to claim 1 to hot rolling at a temperature range of 850 to 980 ° C. within 10 seconds and subjecting it to strong working with a surface reduction rate of 65% or more, the steel is cooled by air or more. Cool at the cooling rate, and then 700 ° C
A method for producing a martensitic stainless steel, comprising performing inline heat treatment in the above temperature range to complete transformation to ferrite.
ライン熱処理に際し、760〜800℃の温度域に達し
た時点から720〜750℃の温度域まで、1分以上1
0分以内に到達するよう徐冷した後、720〜750℃
の温度域で、徐冷開始時からの経過時間が15〜60分
になるまで保持することを特徴とするマルテンサイト系
ステンレス鋼の製造方法。3. The method according to claim 2, wherein said in-line heat treatment is performed for at least one minute from a time when a temperature range of 760 to 800 ° C. is reached to a temperature range of 720 to 750 ° C.
After slowly cooling to reach 0 minutes or less, 720-750 ° C
A method for producing martensitic stainless steel, wherein the temperature is maintained until the elapsed time from the start of slow cooling becomes 15 to 60 minutes in the above temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34171299A JP2001158942A (en) | 1999-12-01 | 1999-12-01 | Martensitic stainless steel capable of easily softening and producing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34171299A JP2001158942A (en) | 1999-12-01 | 1999-12-01 | Martensitic stainless steel capable of easily softening and producing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001158942A true JP2001158942A (en) | 2001-06-12 |
Family
ID=18348204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34171299A Withdrawn JP2001158942A (en) | 1999-12-01 | 1999-12-01 | Martensitic stainless steel capable of easily softening and producing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001158942A (en) |
-
1999
- 1999-12-01 JP JP34171299A patent/JP2001158942A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018905B2 (en) | Hot rolled wire rod and bar for machine structure and manufacturing method thereof | |
US4619714A (en) | Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes | |
JP3506033B2 (en) | Method of manufacturing hot-rolled steel bars or wires | |
JP2001240913A (en) | Method for producing high strength seamless steel pipe having excellent toughness | |
JP3598868B2 (en) | Manufacturing method of hot rolled wire rod | |
JPH03240919A (en) | Production of steel wire for wiredrawing | |
JPH09170046A (en) | Martensitic non-heat treated steel with high strength and high toughness and its production | |
JP2003183733A (en) | Method for manufacturing wire rod | |
JP2756534B2 (en) | Manufacturing method for high ductility steel bars | |
JPH09170047A (en) | Bainitic non-heat treated steel with high strength and high toughness and its production | |
JP2001158942A (en) | Martensitic stainless steel capable of easily softening and producing method therefor | |
JPH059588A (en) | Production of high carbon steel sheet excellent in formability | |
JPH0217608B2 (en) | ||
JPH0213004B2 (en) | ||
JP2756533B2 (en) | Manufacturing method of high strength, high toughness steel bars | |
JPH1088237A (en) | Production of cold rolled high carbon steel strip | |
JP2815028B2 (en) | Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness | |
JPS591631A (en) | Manufacture of steel material | |
JPS6056017A (en) | Production of thick steel plate having excellent low- temperature toughness | |
JP2957717B2 (en) | Manufacturing method of high strength seamless steel pipe with low yield ratio | |
JP2005320596A (en) | Material | |
JP2816595B2 (en) | Manufacturing method of original sheet for soft surface treatment by continuous annealing | |
JPH04198421A (en) | Manufacture of austenitic stainless stell strip | |
JPH04263014A (en) | High hardness forming die steel and its production | |
JPH01255623A (en) | Heat treatment for directly softening high carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050225 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050225 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070206 |