JPH09170047A - Bainitic non-heat treated steel with high strength and high toughness and its production - Google Patents

Bainitic non-heat treated steel with high strength and high toughness and its production

Info

Publication number
JPH09170047A
JPH09170047A JP34794995A JP34794995A JPH09170047A JP H09170047 A JPH09170047 A JP H09170047A JP 34794995 A JP34794995 A JP 34794995A JP 34794995 A JP34794995 A JP 34794995A JP H09170047 A JPH09170047 A JP H09170047A
Authority
JP
Japan
Prior art keywords
heat treated
treated steel
steel
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34794995A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
広明 吉田
Masamichi Kono
正道 河野
Yukihiro Isogawa
幸宏 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP34794995A priority Critical patent/JPH09170047A/en
Publication of JPH09170047A publication Critical patent/JPH09170047A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bainitic non-heat treated steel, having properties equal to or higher than those of the conventional quenched-and-tempered material and also reduced in manufacturing costs, and its production. SOLUTION: A steel, having a composition in which 0.04-0.25%, by weight, C, 0.08-1.0% Si, and <=0.03% N are contained and the hardenability index H, represented by H=Cr+Mn+Ni+Mo+5(Cu+W+Zr-+V+Ti)+XB+20Nb+0.5 Si-5Al, is regulated to >=3.5 (where Mn<=3.0%, Cr<=3.0%, Ni<=4.0%, Cu<=1.0%, Mo<=2.0%, W<=0.5%, Zr<=0.5%, B<=0.01%, V<=0.3%, Nb<=0.08%, Al<=0.2%, and Ti<=0.06% are satisfied) and the balance is composed essentially of Fe, is used as a stock. At the time of production, the stock is heated to >=830 deg.C to undergo austenitization and then forged while lowering the temp. to a value in the metastable austenite region, followed by bainitic transformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、フランジコンパ
ニオン,コンロッド,スピンドル等の自動車用部品とし
て好適に使用可能な高強度−高靱性ベイナイト型非調質
鋼及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength-high toughness bainite type non-heat treated steel suitable for use as automobile parts such as flange companions, connecting rods and spindles, and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
フランジコンパニオン,コンロッド,スピンドル等の部
品はJIS−S45C,SCR420,SCM420等
を熱間鍛造した後に所定の強度と靱性を確保するため、
焼入れ−焼戻し処理を行い製造していた。しかしながら
この場合、強度と靱性は確保できるもののリードタイム
が長くなるといった問題があった。
2. Description of the Related Art
Parts such as flange companion, connecting rod, spindle, etc. are to ensure predetermined strength and toughness after hot forging JIS-S45C, SCR420, SCM420, etc.
It was manufactured by quenching and tempering. However, in this case, although the strength and toughness can be secured, there is a problem that the lead time becomes long.

【0003】一方、現在積極的に展開されている非調質
鋼を用いた場合、リードタイムの点では優れているが十
分な強度と靱性が得られない問題がある。
On the other hand, when a non-heat treated steel, which is being actively developed at present, is used, there is a problem in that sufficient strength and toughness cannot be obtained although it is excellent in terms of lead time.

【0004】これらの問題を解決するために、近年、制
御圧延技術に代表される加工熱処理技術の一つとしてオ
ースフォーミングという手法が検討されているが、一般
構造用鋼に対してこれを適用する場合、加工時にフェラ
イト変態が極端に促進され、得られる組織が不完全にな
ってしまう。このため従来の成分系の構造用鋼では十分
な強度と靱性が得られなかった。
In order to solve these problems, in recent years, a technique called ausforming has been studied as one of the thermomechanical treatment techniques represented by the controlled rolling technique, and it is applied to general structural steel. In this case, ferrite transformation is extremely promoted during processing, resulting in an incomplete microstructure. For this reason, sufficient strength and toughness have not been obtained with conventional structural steels.

【0005】しかも構造用鋼に対してオースフォーミン
グを適用した場合、鍛造加工時に変形抵抗が増加してし
まうため、鍛造加工時に不都合が発生する等オースフォ
ーミングを適用できる構造用鋼はほとんどないのが実情
である。
Further, when ausforming is applied to structural steel, deformation resistance increases during forging, so that there are few structural steels to which ausforming can be applied, such as inconvenience occurring during forging. It's a reality.

【0006】一方上記部品を温間鍛造にて製造する場
合、変形抵抗を下げるために焼鈍し等の軟化熱処理を行
う必要があり、材料コストを上昇させてしまう問題があ
る。
On the other hand, when the above-mentioned parts are manufactured by warm forging, it is necessary to perform softening heat treatment such as annealing in order to reduce the deformation resistance, which causes a problem of increasing the material cost.

【0007】[0007]

【課題を解決するための手段】本願の発明の非調質鋼は
このような課題を解決するために開発されたものであ
る。而して本願の発明の非調質鋼は、重量%で、0.0
4≦C≦0.25%,0.08≦Si≦1.0%,N≦
0.03%であって下記式で表される焼入れ性指数H
が、H=Cr+Mn+Ni+Mo+5(Cu+W+Zr
+V+Ti)+XB+20Nb+0.5Si−5Al≧
3.0(但しMn≦3.0%,Cr≦3.0%,Ni≦
4.0%,Cu≦1.0%,Mo≦2.0%,W≦0.
5%,Zr≦0.5%,B≦0.01%,V≦0.4
%,Nb≦0.08%,Al≦0.2%,Ti≦0.0
6%とし、またBが0.0008以上0.005以下含
まれる場合にはXB=0.5とする)であり、且つ残部
実質的にFeから成ることを特徴とする(請求項1)。
The non-heat treated steel of the invention of the present application was developed to solve such problems. Therefore, the non-heat treated steel of the present invention is 0.0% by weight.
4 ≦ C ≦ 0.25%, 0.08 ≦ Si ≦ 1.0%, N ≦
Hardenability index H of 0.03% represented by the following formula
However, H = Cr + Mn + Ni + Mo + 5 (Cu + W + Zr
+ V + Ti) + XB + 20Nb + 0.5Si-5Al ≧
3.0 (However, Mn ≦ 3.0%, Cr ≦ 3.0%, Ni ≦
4.0%, Cu ≦ 1.0%, Mo ≦ 2.0%, W ≦ 0.
5%, Zr ≦ 0.5%, B ≦ 0.01%, V ≦ 0.4
%, Nb ≦ 0.08%, Al ≦ 0.2%, Ti ≦ 0.0
6%, and when B is 0.0008 or more and 0.005 or less, XB = 0.5), and the balance substantially consists of Fe (claim 1).

【0008】また請求項2の非調質鋼は、請求項1にお
いて、更に快削成分としてS,Ca,Pb,Te,Bi
の一種若しくは二種以上を、S≦0.2%,Ca≦0.
05%,Pb≦0.3%,Te≦0.1%,Bi≦0.
15%で含有することを特徴とする。
The non-heat treated steel of claim 2 is the same as that of claim 1, further containing S, Ca, Pb, Te and Bi as free-cutting components.
One or two or more of S ≦ 0.2%, Ca ≦ 0.
05%, Pb ≦ 0.3%, Te ≦ 0.1%, Bi ≦ 0.
It is characterized by containing at 15%.

【0009】次に請求項3は、請求項1又は2の高強度
−高靱性ベイナイト型非調質鋼の製造方法に係るもので
あって、素材を830℃以上に加熱してオーステナイト
化させた後、30℃/分以上の平均冷却速度で550〜
900℃の範囲まで冷却した上で鍛造加工し、しかる後
20℃/分以上の平均冷却速度でBs点である300℃
以下に冷却し、その後室温まで冷却するか又はBs点を
Bf点との間となる300〜500℃の間で恒温保持し
てベイナイト変態させることを特徴とする。
Next, claim 3 relates to a method for manufacturing the high strength-high toughness bainite type non-heat treated steel according to claim 1 or 2, wherein the material is heated to 830 ° C or higher to be austenitized. Then, at an average cooling rate of 30 ° C./min or more, 550 to 550
After forging after cooling to the range of 900 ° C, the Bs point is 300 ° C at an average cooling rate of 20 ° C / min or more.
It is characterized in that it is cooled below and then cooled to room temperature, or is subjected to bainite transformation while being kept at a constant temperature between 300 and 500 ° C. which is between the Bs point and the Bf point.

【0010】更に請求項4の製造方法は、請求項3にお
いて、前記ベイナイト変態後に600℃以下の範囲で再
加熱処理を行うことを特徴とする。
Further, the manufacturing method of claim 4 is characterized in that, in claim 3, the reheating treatment is performed within a range of 600 ° C. or lower after the bainite transformation.

【0011】[0011]

【作用及び発明の効果】上記請求項1の発明は、オース
フォーミング手法を安定的に適用可能な鋼種に係るもの
である。このオースフォーミングを適用するためには鋼
の焼入れ性を高くする必要がある。そこで本発明者らは
そのための研究を行う中で、鋼の組成を上記組成とし且
つ焼入れ性を示す指数としてH=Cr+Mn+Ni+M
o+5(Cu+W+Zr+V+Ti)+XB+20Nb
+0.5Si−5Alを導き出し、そしてその指数Hが
3.0以上であれば上記オースフォーミングを安定的に
適用でき、最終的に強度,靱性に優れたベイナイト型非
調質鋼が得られることを知得した。
The invention of claim 1 relates to a steel type to which the ausforming method can be stably applied. In order to apply this ausforming, it is necessary to enhance the hardenability of steel. Therefore, the inventors of the present invention carried out research for that purpose, and H = Cr + Mn + Ni + M was used as an index showing the composition of the steel and the hardenability.
o + 5 (Cu + W + Zr + V + Ti) + XB + 20Nb
If + 0.5Si-5Al is derived and the index H thereof is 3.0 or more, the ausforming can be stably applied, and finally, a bainite type non-heat treated steel excellent in strength and toughness can be obtained. I got it.

【0012】本発明によれば、従来のJIS鋼種の焼入
れ−焼戻し材と同等以上のハイレベルの強度と靱性が得
られ、従ってこれを自動車等の部品に適用した場合、従
来の部品よりも小型化することができ、従ってまたその
軽量化を図ることができる。
According to the present invention, a high level of strength and toughness equal to or higher than that of the conventional quench-tempered material of JIS steel can be obtained. Therefore, when this is applied to parts such as automobiles, it is smaller than the conventional parts. Therefore, the weight can be reduced.

【0013】尚、本発明においては必要に応じてS,C
a,Pb,Te,Bi等の快削成分の一種若しくは二種
以上を添加することができ、この場合には材料の切削性
が高まって、製品の製造性が高まる利点が得られる(請
求項2)。
In the present invention, if necessary, S, C
One or more free-cutting components such as a, Pb, Te, and Bi can be added, and in this case, the machinability of the material is enhanced and the manufacturability of the product is enhanced. 2).

【0014】本発明の鋼は基本的に非調質鋼であって、
焼入れ,焼戻し処理をしない状態で十分な強度と靱性と
が得られ、従って従来のJIS鋼種の焼入れ−焼戻し材
に比べてリードタイムを短縮化でき、コストを低減する
ことができる。
The steel of the present invention is basically a non-heat treated steel,
Sufficient strength and toughness can be obtained without quenching and tempering treatments. Therefore, the lead time can be shortened and the cost can be reduced as compared with the conventional quench-tempered material of JIS steel type.

【0015】次に請求項3は上記鋼の製造方法に係るも
ので、この方法では先ず素材を830℃以上に加熱して
オーステナイト化し、その後30℃/分以上の平均冷却
速度で550〜900℃の範囲まで、即ち準安定オース
テナイト領域まで冷却してそこで鍛造加工を施し、その
後これを冷却して組織をベイナイト化する。
Next, claim 3 relates to a method for producing the above steel, in which the material is first heated to 830 ° C. or more to austenite, and then 550 to 900 ° C. at an average cooling rate of 30 ° C./min or more. To the range of metastable austenite, and then forged there, and then cooled to bainite the structure.

【0016】尚、上記素材として圧延,鍛造にてビレッ
ト,丸棒或いはコイル等にされたものを用いることがで
き、而してその過程での加工温度は900℃以下とする
必要はない。本発明はその後において製品形状に鍛造加
工する際に、上記オースフォーミング手法を適用するこ
とを特徴とする。
As the above-mentioned material, a billet, a round bar, a coil or the like which has been rolled or forged can be used, and the processing temperature in that process need not be 900 ° C. or lower. The present invention is characterized by applying the above-mentioned ausforming method when forging into a product shape thereafter.

【0017】本発明の製造方法によれば、材料をオース
テナイト状態、即ち軟らかい状態で鍛造加工するため
に、鍛造加工に先立って変形抵抗を少なくするために予
め軟化熱処理を施す必要がなく、加工を容易に行うこと
ができる。また焼ならし材や熱処理を省略した圧延まま
の材料を使用する場合、本方法に従えば鍛造時の変形抵
抗を低減できる。
According to the manufacturing method of the present invention, since the material is forged in the austenite state, that is, in the soft state, it is not necessary to perform the softening heat treatment in advance to reduce the deformation resistance prior to the forging, and the processing is performed. It can be done easily. When a normalizing material or an as-rolled material without heat treatment is used, the deformation resistance at the time of forging can be reduced according to this method.

【0018】本発明の製造方法においては、冷却により
ベイナイト化した後において、これを600℃以下の温
度に再加熱処理することができ、この場合には材料の靱
性を一層高めることができる。これにより強度と靱性の
バランスを最適化でき、適用する部品の要求特性に見合
った部品製造が可能となる。
In the production method of the present invention, after the bainite is formed by cooling, it can be reheated to a temperature of 600 ° C. or lower, and in this case, the toughness of the material can be further enhanced. As a result, the balance between strength and toughness can be optimized, and it becomes possible to manufacture parts that meet the required characteristics of the applied parts.

【0019】次に本発明における各化学成分の限定理由
を詳述する。C:0.04〜0.25%非調質鋼である
ため焼入れ強度が構造用鋼として最大となる1500M
Pa以下とするため及び変形抵抗を低減させるために、
上限を0.25%とした。また下限値の0.04%は高
強度材であるための引張強度の下限値として800MP
a以上得られるための最低量として規定した。
Next, the reasons for limiting each chemical component in the present invention will be described in detail. C: 0.04 to 0.25% 1500 M, which is the maximum structural strength of structural steel because it is a non-heat treated steel.
In order to keep Pa or less and to reduce the deformation resistance,
The upper limit was 0.25%. The lower limit of 0.04% is 800MP as the lower limit of the tensile strength because it is a high strength material.
It is defined as the minimum amount for obtaining a or more.

【0020】Si:0.08〜1.0% Siは焼入れ性を高める作用があるが、加工性を害する
ため上限を1.0%とした。
Si: 0.08 to 1.0% Si has the effect of enhancing hardenability, but impairs workability, so the upper limit was made 1.0%.

【0021】N:0.03%以下 NはCと同様変形抵抗を抑えるため、上限を0.03%
とした。
N: 0.03% or less N, like C, suppresses the deformation resistance, so the upper limit is 0.03%.
And

【0022】Mn:3.0以下 Mnは焼入れ性を高める元素であるが、溶解時に炉壁を
痛めるため上限を3.0%とした。
Mn: 3.0 or less Mn is an element that enhances hardenability, but the upper limit was made 3.0% because it damages the furnace wall during melting.

【0023】Cr:3.0%以下 Mo:2.0%以下 W :0.5%以下 Zr:0.5%以下 V :0.4%以下 Nb:0.08%以下 これら成分は強力な炭化物を生成させるとともに焼入れ
性を高める元素であるが、多量に入れ過ぎると未固溶炭
化物により鍛造性が悪化するため、それぞれの上限を上
記値に規定した。
Cr: 3.0% or less Mo: 2.0% or less W: 0.5% or less Zr: 0.5% or less V: 0.4% or less Nb: 0.08% or less These components are strong. Although it is an element that generates carbides and enhances hardenability, if too much is added, the forgeability deteriorates due to undissolved carbides, so the respective upper limits were set to the above values.

【0024】B :0.01%以下 Bは焼入れ性向上のため添加する。0.01%でその効
果は飽和する。0.001%以上で焼入れ性効果は現れ
る。
B: 0.01% or less B is added to improve hardenability. The effect is saturated at 0.01%. A hardenability effect appears at 0.001% or more.

【0025】Ti:0.06%以下 Tiは、BがBNを形成すると焼入れ性効果が減少する
ため、NをTiNとして固定するため添加する。0.0
6%を超えると鋼の清浄度を害する。
Ti: 0.06% or less Ti is added to fix N as TiN because the hardenability effect decreases when B forms BN. 0.0
If it exceeds 6%, the cleanliness of steel is impaired.

【0026】Ni:4.0%以下 Cu:1.0%以下 Ni,Cuはオーステナイト安定化元素であり、焼入れ
性を向上させる作用があるが、Cuを入れ過ぎると熱間
加工性が悪化するため上限を1.0%とした。またNi
は多量に入れた場合、焼入れ性の向上効果が収束してし
まうことから上限を4.0%とした。
Ni: 4.0% or less Cu: 1.0% or less Ni and Cu are austenite stabilizing elements and have the function of improving hardenability, but if Cu is added too much, hot workability deteriorates. Therefore, the upper limit was set to 1.0%. Also Ni
When a large amount was added, the effect of improving the hardenability converges, so the upper limit was made 4.0%.

【0027】Al:0.2%以下 Alは焼入れ性を阻害する元素であり、焼入れ性指数の
計算式においてマイナス要素となるため上限を0.2%
に限定した。
Al: 0.2% or less Al is an element that inhibits the hardenability and is a negative factor in the formula for calculating the hardenability index, so the upper limit is 0.2%.
Limited to.

【0028】S:0.2%以下,Ca:0.05%以
下,Pb:0.3%以下,Te:0.1%以下,Bi:
0.15%以下 これら成分は材料の被削性を高める成分であって、それ
ぞれ上記範囲内で含有させることにより、材料の被削性
が高まり部品製造の際の製造性が高まる。
S: 0.2% or less, Ca: 0.05% or less, Pb: 0.3% or less, Te: 0.1% or less, Bi:
0.15% or less These components are components that enhance the machinability of the material, and when contained within the above ranges, the machinability of the material is enhanced and the manufacturability in the production of parts is enhanced.

【0029】H=Cr+Mn+Ni+Mo+5(Cu+
W+Zr+V+Ti)+XB+20Nb+0.5Si−
5Al≧3.0 このHは焼入れ性を表す指数であって、Hを3.0以上
とすることにより安定してオースフォーミング手法を適
用可能となり、その後の冷却において組織をベイナイト
化することができる。
H = Cr + Mn + Ni + Mo + 5 (Cu +
W + Zr + V + Ti) + XB + 20Nb + 0.5Si-
5Al ≧ 3.0 This H is an index representing hardenability, and by setting H to 3.0 or more, the ausforming method can be stably applied, and the structure can be bainite in the subsequent cooling. .

【0030】830℃以上の加熱によるオーステナイト
化及び550〜900℃での鍛造加工 本発明の製造方法は素材を830℃以上に加熱し、その
後550〜900℃に冷却し、準安定オーステナイト状
態で鍛造加工を施すもので、この温度範囲で加工を行う
ことによりベイナイト変態まで存続できる転位と加工誘
起析出炭化物を生成させることができ、これにより非常
に緻密な組織が得られ、その結果高強度化と高靱性化が
同時に達成できる。而して加工後の組織はベイナイトを
主体としたものとなる。
Austenitizing by heating at 830 ° C. or higher and forging at 550 to 900 ° C. In the manufacturing method of the present invention, the material is heated to 830 ° C. or higher, then cooled to 550 to 900 ° C., and forged in a metastable austenite state. By performing working within this temperature range, it is possible to generate dislocations and work-induced precipitation carbides that can survive bainite transformation, which results in a very dense structure, resulting in high strength and High toughness can be achieved at the same time. Thus, the processed structure is mainly composed of bainite.

【0031】尚、この手法において十分な焼入れ性,鍛
造性が必要となるため、焼入れ性を表す指数Hが3.0
以上及びC量を0.25%以下に抑えた材料を使用しな
ければならない。何故なら低温オーステナイト領域での
鍛造は拡散的に変態−析出するフェライトの生成を著し
く促進させてしまうため、所定の強度と靱性が得られな
くなってしまい、またCは低温オーステナイト時の変形
抵抗を増加させる主因であることから極力これを抑えな
ければならないからである。
Since this method requires sufficient hardenability and forgeability, the hardenability index H is 3.0.
Materials having the above content and C content of 0.25% or less must be used. Because forging in the low temperature austenite region significantly promotes the formation of diffusionally transformed and precipitated ferrite, the desired strength and toughness cannot be obtained, and C increases the deformation resistance during low temperature austenite. This is because it is the main factor that causes it to be suppressed as much as possible.

【0032】次に本発明の実施例を以下に詳述する。表
1に示す各種組成の鋼種について、それぞれを各オース
テナイト化(γ化)温度(830℃以上)で加熱した後
これを冷却して鍛造温度750℃,減面率60%の条件
下で鍛造加工し、その後空冷を行って組織をベイナイト
化し、その硬さを測定して焼入れ性を示す指数Hと硬さ
との関係を求めた。結果が図1に示してある。
Next, examples of the present invention will be described in detail below. For the steel types with various compositions shown in Table 1, each is heated at each austenitizing (γ-forming) temperature (830 ° C. or higher) and then cooled to be forged under the conditions of a forging temperature of 750 ° C. and a surface reduction rate of 60%. Then, the structure was bainite by performing air cooling after that, the hardness was measured, and the relationship between the index H indicating the hardenability and the hardness was obtained. The results are shown in Figure 1.

【0033】[0033]

【表1】 [Table 1]

【0034】この図1より、オーステナイト化加熱温度
が830℃以上,焼入れ性指数Hが3.0以上である場
合において所定の硬さ(280HV)を確保でき、本発
明のオースフォーミング手法が適用できることが分か
る。
From FIG. 1, it is possible to secure a predetermined hardness (280 HV) when the austenitizing heating temperature is 830 ° C. or higher and the hardenability index H is 3.0 or higher, and the ausforming method of the present invention can be applied. I understand.

【0035】一方、JIS鋼種であるSCR420,S
CM420等は焼入れ性指数Hが1.8〜2.0であ
り、またSNCM420では3.1程度であって安定し
て加工熱処理(オースフォーミング)が適用できるレベ
ルにはない。
On the other hand, JIS steel types SCR420, S
The hardenability index H of CM420 and the like is 1.8 to 2.0, and that of SNCM420 is about 3.1, which is not at a level at which stable heat treatment (ausforming) can be applied.

【0036】これらの現象の理由は次の通りである。低
温オーステナイト領域で塑性加工を加えると、加工によ
り導入された転位が完全に消滅できず、拡散変態となる
フェライト変態或いはパーライト変態を著しく促進して
しまう。その結果焼入れ性指数の小さい(焼入れ性の低
い)材料ではいくら鍛造後に急冷を施しても相当な割合
でアシキュラーフェライトと呼ばれる組織や上部ベイナ
イト,等軸フェライト,パーライト等を生成させてしま
い、硬さを大幅に下げてしまう。
The reasons for these phenomena are as follows. When plastic working is applied in the low temperature austenite region, dislocations introduced by working cannot be completely eliminated, and ferrite transformation or pearlite transformation, which is diffusion transformation, is significantly accelerated. As a result, a material with a low hardenability index (low hardenability) will produce a structure called acicular ferrite, upper bainite, equiaxed ferrite, pearlite, etc. in a considerable proportion no matter how much quenching is performed after forging. Will be greatly reduced.

【0037】次に図2に表1の鋼種Oについてオーステ
ナイト化加熱温度1000℃における鍛造−空冷後の鍛
造温度と硬さ及びシャルピー衝撃値の関係を示した。こ
の図より、ベイナイトが主体となる場合、鍛造温度が5
50〜900℃の範囲で明確な効果が確認できる。
Next, FIG. 2 shows the relationship between the forging temperature after forging-air cooling at austenitizing heating temperature of 1000 ° C., hardness and Charpy impact value for the steel type O in Table 1. From this figure, when bainite is mainly used, the forging temperature is 5
A clear effect can be confirmed in the range of 50 to 900 ° C.

【0038】次に鋼種Oについて、図3に示すプロセス
Aに従って材料を1000℃に1分間加熱した後700
〜800℃に冷却し、端面拘束試験法による変形抵抗を
測定した。また比較のためにJIS−SCM420につ
いて図3のプロセスBに従って700〜800℃に1分
間加熱保持後、端面拘束試験法による変形抵抗を測定し
た。結果が図4に示してある。
Next, for steel type O, the material was heated to 1000 ° C. for 1 minute according to the process A shown in FIG.
It cooled to -800 degreeC and measured the deformation resistance by the end surface restraint test method. For comparison, JIS-SCM420 was heated and held at 700 to 800 ° C. for 1 minute according to the process B of FIG. 3, and then the deformation resistance was measured by the end face restraint test method. Results are shown in FIG.

【0039】この試験は熱間圧延ままの組織のものを試
験したものである。この結果から、両鋼種とも多量のベ
イナイトを含んだ状態であるため、通常の温間鍛造であ
るプロセスBでは変形抵抗が非常に高くなっている。
In this test, the as-hot-rolled structure was tested. From these results, since both steel types contain a large amount of bainite, the deformation resistance is extremely high in the process B which is a normal warm forging.

【0040】一方加工熱処理であるプロセスAに従った
場合、熱間圧延後に生成するベイナイト組織等はオース
テナイト化加熱時に全て消滅し、鍛造時にはC量の少な
い変形能に富んだ軟らかいオーステナイト単相となるた
め、加工性は良くなっている。
On the other hand, when the process A, which is a thermomechanical treatment, is followed, the bainite structure and the like formed after hot rolling all disappear during austenitizing and heating, and during forging a soft austenite single phase with a small amount of C and high deformability is formed. Therefore, the workability is improved.

【0041】従って本発明鋼を本発明の製造プロセスに
従って鍛造加工した場合、供給される材料が加工性の悪
い圧延ままの組織を有するものであっても十分な加工性
を確保できることが確認できる。
Therefore, when the steel of the present invention is forged according to the manufacturing process of the present invention, it can be confirmed that sufficient workability can be ensured even if the material supplied has a structure as rolled that has poor workability.

【0042】次に図5は現状の非調質鋼とJIS−構造
用鋼の焼入れ−焼戻し材及び本発明例材(ベイナイト型
非調質鋼)の強度−靱性バランスを示した図である。
Next, FIG. 5 is a diagram showing the strength-toughness balance of the present non-heat treated steel and JIS-quenched / tempered structural steel and the example material of the present invention (bainite type non-heat treated steel).

【0043】この図から、本発明例鋼が通常のベイナイ
ト型非調質鋼をしのぐ特性を有し、しかもJIS−構造
用鋼の焼入れ−焼戻し材と同等の強度−靱性バランスを
有していることを明らかに見てとることができる。
From this figure, the steel of the present invention outperforms the ordinary bainite type non-heat treated steel, and has the strength-toughness balance equivalent to JIS-Quenched structural steel-Tempered material. You can clearly see that.

【0044】次に快削成分を含有させた表2に示す化学
組成の鋼種Yについて鍛造温度と硬さ及び衝撃値との関
係を求めた。結果が図6に示してある。図から分かるよ
うに快削成分のない場合と比較して靱性は若干低下する
ものの、550〜900℃の鍛造−引き続く焼入れによ
り靱性の向上がはっきりと確認できる。尚、製造条件は
加熱温度:1000℃,鍛造温度までの冷却方法:空冷
(30℃/分以上),加工度:45%,鍛造後の冷却方
法:空冷(20℃/分以上)とした。
Next, the relationship between the forging temperature and the hardness and the impact value was determined for the steel type Y having the chemical composition shown in Table 2 containing the free-cutting component. Results are shown in FIG. As can be seen from the figure, although the toughness is slightly reduced as compared with the case where there is no free-cutting component, improvement in toughness can be clearly confirmed by forging at 550 to 900 ° C. and subsequent quenching. The manufacturing conditions were heating temperature: 1000 ° C., cooling method up to forging temperature: air cooling (30 ° C./min or more), workability: 45%, cooling method after forging: air cooling (20 ° C./min or more).

【0045】[0045]

【表2】 [Table 2]

【0046】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において、種々変更を加えた態様で実施可能である。
The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention can be implemented in variously modified modes without departing from the spirit of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において得られた焼入れ性指数
と硬さとの関係を表す図である。
FIG. 1 is a diagram showing a relationship between a hardenability index and hardness obtained in an example of the present invention.

【図2】本発明の実施例において得られた鍛造温度と硬
さと衝撃値との関係を表す図である。
FIG. 2 is a diagram showing the relationship between forging temperature, hardness, and impact value obtained in the example of the present invention.

【図3】本発明の製造プロセスを従来の製造プロセスと
の比較においてパターン化して表す図である。
FIG. 3 is a diagram showing a patterning of the manufacturing process of the present invention in comparison with a conventional manufacturing process.

【図4】本発明例材を図3に示すパターンに従って処理
した場合の鍛造加工時の変形抵抗を表す図である。
FIG. 4 is a diagram showing deformation resistance during forging when the example material of the present invention is processed according to the pattern shown in FIG. 3.

【図5】本発明例材の引張強さと衝撃値とのバランスを
従来材との比較において表す図である。
FIG. 5 is a diagram showing the balance between the tensile strength and the impact value of the material of the present invention in comparison with the conventional material.

【図6】快削成分を含有させた本発明例材において得ら
れた鍛造温度と硬さと衝撃値との関係を表す図である。
FIG. 6 is a diagram showing the relationship between forging temperature, hardness, and impact value obtained in the example material of the present invention containing a free-cutting component.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、0.04≦C≦0.25%,
0.08≦Si≦1.0%,N≦0.03%であって下
記式で表される焼入れ性指数HがH=Cr+Mn+Ni
+Mo+5(Cu+W+Zr+V+Ti)+XB+20
Nb+0.5Si−5Al≧3.0(但しMn≦3.0
%,Cr≦3.0%,Ni≦4.0%,Cu≦1.0
%,Mo≦2.0%,W≦0.5%,Zr≦0.5%,
B≦0.01%,V≦0.4%,Nb≦0.08%,A
l≦0.2%,Ti≦0.06%とし、またBが0.0
008以上0.005以下含まれる場合にはXB=0.
5とする)であり、且つ残部実質的にFeから成る高強
度−高靱性ベイナイト型非調質鋼。
1. In weight%, 0.04 ≦ C ≦ 0.25%,
0.08 ≦ Si ≦ 1.0%, N ≦ 0.03%, and the hardenability index H represented by the following formula is H = Cr + Mn + Ni
+ Mo + 5 (Cu + W + Zr + V + Ti) + XB + 20
Nb + 0.5Si-5Al ≧ 3.0 (Mn ≦ 3.0
%, Cr ≦ 3.0%, Ni ≦ 4.0%, Cu ≦ 1.0
%, Mo ≦ 2.0%, W ≦ 0.5%, Zr ≦ 0.5%,
B ≦ 0.01%, V ≦ 0.4%, Nb ≦ 0.08%, A
1 ≦ 0.2%, Ti ≦ 0.06%, and B is 0.0
When it is included in the range of 008 to 0.005, XB = 0.
5), and the balance is a high strength-high toughness bainite type non-heat treated steel consisting essentially of Fe.
【請求項2】 請求項1において、更に快削成分として
S,Ca,Pb,Te,Biの一種若しくは二種以上を
S≦0.2%,Ca≦0.05%,Pb≦0.3%,T
e≦0.1%,Bi≦0.15%で含有することを特徴
とする高強度−高靱性ベイナイト型非調質鋼。
2. The method according to claim 1, further comprising one or more of S, Ca, Pb, Te and Bi as free-cutting components, S ≦ 0.2%, Ca ≦ 0.05%, Pb ≦ 0.3. %, T
A high strength-high toughness bainite type non-heat treated steel characterized by containing e ≦ 0.1% and Bi ≦ 0.15%.
【請求項3】 請求項1又は2の高強度−高靱性ベイナ
イト型非調質鋼の製造方法であって、素材を830℃以
上に加熱してオーステナイト化させた後、30℃/分以
上の平均冷却速度で550〜900℃の範囲まで冷却し
た上で鍛造加工し、しかる後20℃/分以上の平均冷却
速度でBs点である500℃以下に冷却し、その後室温
まで冷却するか又はBs点とBf点との間となる300
〜500℃の間で恒温保持してベイナイト変態させるこ
とを特徴とする高強度−高靱性ベイナイト型非調質鋼の
製造方法。
3. The method for producing a high strength-high toughness bainite type non-heat treated steel according to claim 1 or 2, wherein the material is heated to 830 ° C. or higher to be austenitized and then heated to 30 ° C./min or higher. After forging after cooling to the range of 550 to 900 ° C. at the average cooling rate, it is then cooled to the Bs point of 500 ° C. or less at the average cooling rate of 20 ° C./min or more, and then cooled to room temperature or Bs. 300 between the point and the Bf point
A method for producing a high-strength, high-toughness bainite type non-heat treated steel, which is characterized by carrying out a bainite transformation while maintaining a constant temperature between 500 ° C and 500 ° C.
【請求項4】 請求項3において、前記ベイナイト変態
後に600℃以下の範囲で再加熱処理を行うことを特徴
とする高強度−高靱性ベイナイト型非調質鋼の製造方
法。
4. The method for producing a high strength-high toughness bainite type non-heat treated steel according to claim 3, wherein reheat treatment is performed in a range of 600 ° C. or lower after the bainite transformation.
JP34794995A 1995-12-16 1995-12-16 Bainitic non-heat treated steel with high strength and high toughness and its production Pending JPH09170047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34794995A JPH09170047A (en) 1995-12-16 1995-12-16 Bainitic non-heat treated steel with high strength and high toughness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34794995A JPH09170047A (en) 1995-12-16 1995-12-16 Bainitic non-heat treated steel with high strength and high toughness and its production

Publications (1)

Publication Number Publication Date
JPH09170047A true JPH09170047A (en) 1997-06-30

Family

ID=18393703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34794995A Pending JPH09170047A (en) 1995-12-16 1995-12-16 Bainitic non-heat treated steel with high strength and high toughness and its production

Country Status (1)

Country Link
JP (1) JPH09170047A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071050A1 (en) * 2000-03-24 2001-09-27 Kawasaki Steel Corporation Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
DE102007057421A1 (en) * 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Steel for the production of massively formed machine components
CN102989952A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of wire support clamp
JP2016180165A (en) * 2015-03-25 2016-10-13 株式会社神戸製鋼所 Molding component for fracture separation type connecting rod and fracture separation type connecting rod, and manufacturing method therefor
KR20180102166A (en) * 2016-01-18 2018-09-14 가부시키가이샤 고베 세이코쇼 Forged steel and forged steel
RU2669665C2 (en) * 2012-12-20 2018-10-12 Сандвик Интеллекчуал Проперти Аб Bainitic steel for rock drilling components
CN114645222A (en) * 2022-03-23 2022-06-21 常州大学 Nb-V microalloyed hydrogen-embrittlement-resistant high-strength and high-toughness 40CrNiMo steel and preparation method thereof
WO2023185506A1 (en) * 2022-03-29 2023-10-05 宝山钢铁股份有限公司 Bainite seamless steel tube and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071050A1 (en) * 2000-03-24 2001-09-27 Kawasaki Steel Corporation Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
US6454881B1 (en) 2000-03-24 2002-09-24 Kawasaki Steel Corporation Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
KR100740414B1 (en) * 2000-03-24 2007-07-16 제이에프이 스틸 가부시키가이샤 Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
DE102007057421A1 (en) * 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Steel for the production of massively formed machine components
CN102989952A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of wire support clamp
RU2669665C2 (en) * 2012-12-20 2018-10-12 Сандвик Интеллекчуал Проперти Аб Bainitic steel for rock drilling components
JP2016180165A (en) * 2015-03-25 2016-10-13 株式会社神戸製鋼所 Molding component for fracture separation type connecting rod and fracture separation type connecting rod, and manufacturing method therefor
KR20180102166A (en) * 2016-01-18 2018-09-14 가부시키가이샤 고베 세이코쇼 Forged steel and forged steel
CN114645222A (en) * 2022-03-23 2022-06-21 常州大学 Nb-V microalloyed hydrogen-embrittlement-resistant high-strength and high-toughness 40CrNiMo steel and preparation method thereof
WO2023185506A1 (en) * 2022-03-29 2023-10-05 宝山钢铁股份有限公司 Bainite seamless steel tube and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3215891B2 (en) Manufacturing method of steel rod for cold working
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JP2001062639A (en) High strength bolt excellent in delayed fracture resistance and manufacture thereof
JPH0156124B2 (en)
JP3514018B2 (en) Method for producing high-strength and high-toughness martensitic non-heat treated steel
JP3034543B2 (en) Manufacturing method of tough high-strength steel
JPH09170047A (en) Bainitic non-heat treated steel with high strength and high toughness and its production
JPH05320749A (en) Production of ultrahigh strength steel
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
US3502514A (en) Method of processing steel
JPH08199310A (en) Production of high strength martensitic stainless steel member
JPS6045250B2 (en) Manufacturing method for non-thermal forged parts
JPH02213416A (en) Production of steel bar with high ductility
JPS6137333B2 (en)
JP3089424B2 (en) Manufacturing method of tough non-heat treated steel
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH09170018A (en) Production of washer with high strength and high toughness
JP3214731B2 (en) Method for producing non-heat treated steel bar with excellent low temperature toughness
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility
JPH1192860A (en) Steel having ultrafine ferritic structure
JP2625572B2 (en) Heat treatment method for cast steel products
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JPH1171633A (en) Induction hardened parts excellent in strength and fatigue resistance and production thereof
JPH02213415A (en) Production of bar steel having high strength and high toughness