JP2001158927A - Copper alloy excellent in hot workability - Google Patents

Copper alloy excellent in hot workability

Info

Publication number
JP2001158927A
JP2001158927A JP34057499A JP34057499A JP2001158927A JP 2001158927 A JP2001158927 A JP 2001158927A JP 34057499 A JP34057499 A JP 34057499A JP 34057499 A JP34057499 A JP 34057499A JP 2001158927 A JP2001158927 A JP 2001158927A
Authority
JP
Japan
Prior art keywords
weight
copper alloy
hot
hot workability
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34057499A
Other languages
Japanese (ja)
Other versions
JP3941308B2 (en
Inventor
慶平 ▲冬▼
Kiyouhei Fuyu
Hajime Sasaki
元 佐々木
Koichi Furutoku
浩一 古徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP34057499A priority Critical patent/JP3941308B2/en
Publication of JP2001158927A publication Critical patent/JP2001158927A/en
Application granted granted Critical
Publication of JP3941308B2 publication Critical patent/JP3941308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a copper alloy free from the generation of casting cracks and cracks at hot working and moreover excellent in mechanical properties and heat resistance. SOLUTION: This copper alloy contains, by weight, 1.8 to 2.3% Fe, 0.01 to 0.1% P, 0.05 to 1.0% Zn, 0.05 to 0.3% Sn, 4 to 100 ppm C, and the balance Cu.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間加工性に優れ
た銅合金に関し、特に、熱間加工時に割れを発生させる
ことのないCu−Fe系銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having excellent hot workability, and more particularly to a Cu--Fe based copper alloy which does not crack during hot working.

【0002】[0002]

【従来の技術】従来、半導体装置のリードフレーム等の
電子部品、あるいは端子、コネクター等の電気部品に使
用される銅合金として、Feを1.5〜3重量%含有
し、さらに、0.01〜0.1重量%のPと0.03〜
1重量%のZnを含有し、残りがCuおよび不可避的不
純物から成る合金組成を有し、優れた強度と導電性を兼
ね備えた銅合金が知られている。
2. Description of the Related Art Conventionally, as a copper alloy used for electronic parts such as lead frames of semiconductor devices or electric parts such as terminals and connectors, Fe is contained in an amount of 1.5 to 3% by weight, and 0.01% by weight. 0.1% by weight of P and 0.03%
There is known a copper alloy containing 1% by weight of Zn, the balance being an alloy composition composed of Cu and unavoidable impurities, and having both excellent strength and conductivity.

【0003】このCu−Fe系合金においては、Feの
含有量が1.5〜3重量%のときに優れた強度と導電性
が得られるとされているが、実際には、2.3重量%を
超えてFeが存在するとFe系晶出物が巨大化しやすく
なる性質を有しており、従って、一般には、Feの量を
1.5〜2.3重量%に設定するのが普通である。
[0003] In this Cu-Fe-based alloy, it is said that excellent strength and conductivity can be obtained when the content of Fe is 1.5 to 3% by weight. %, The Fe-based crystallites tend to become large when Fe is present in excess of 0.1%. Therefore, it is common practice to set the amount of Fe to 1.5 to 2.3% by weight. is there.

【0004】通常、この銅合金からリードフレーム等を
製造するには、次の手順を経る。まず、前記成分組成と
なるように素材を溶解して銅合金の溶湯を調整し、これ
を連続あるいは半連続的に鋳造して鋳塊を製造し、次い
で、この鋳塊を800〜1050℃の高温で熱間圧延す
ることによって熱延板を製作する。
[0004] Usually, the following procedure is performed to manufacture a lead frame or the like from this copper alloy. First, a raw material is melted so as to have the above-mentioned composition, a molten metal of a copper alloy is adjusted, and this is cast continuously or semi-continuously to produce an ingot. A hot rolled sheet is manufactured by hot rolling at a high temperature.

【0005】次に、製作された熱延板を水冷して面削加
工した後、冷間圧延、時効熱処理および表面研磨加工を
繰り返し行い、最終圧延加工と歪み取り焼鈍処理を施す
ことにより銅合金条を製造し、その後、この銅合金条に
プレス加工、打ち抜き加工、曲げ加工等の金属加工を加
え、メッキ処理を施すことによって所定のリードフレー
ムあるいは端子、コネクタ等とする。
[0005] Next, after the produced hot-rolled sheet is water-cooled and face-milled, cold rolling, aging heat treatment and surface polishing are repeatedly performed, and the final rolling and strain relief annealing are performed to obtain a copper alloy. The strip is manufactured, and thereafter, the copper alloy strip is subjected to metal working such as pressing, punching, bending, or the like, and is subjected to plating to obtain a predetermined lead frame, terminal, connector, or the like.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来のこの種
の銅合金によると、鋳造割れや、熱間圧延の際に熱延材
のエッジ部に耳割れを発生させやすい問題を有してい
る。一旦、耳割れを発生させた熱延材は、銅合金条に加
工した後にその耳割れ部を除去したとしても、熱間加工
中の粒界割れを原因とした欠陥部を内蔵させていること
が多く、このため、このような銅合金条を使用してリー
ドフレームを製造すると、打ち抜き加工や曲げ加工時に
おけるリードの折損、あるいは熱処理段階での割れやメ
ッキ膨れなどを多発させる恐れがある。
However, according to the conventional copper alloy of this kind, there is a problem that a crack is easily generated at an edge portion of a hot-rolled material during casting or hot rolling. . Once a hot-rolled material that has cracked ears has a built-in defect caused by grain boundary cracking during hot working, even if the cracked edge is removed after processing into a copper alloy strip For this reason, when a lead frame is manufactured using such a copper alloy strip, there is a possibility that breakage of the lead during punching or bending, or cracking or plating swelling during the heat treatment stage may occur frequently.

【0007】従って、本発明の目的は、鋳造割れや熱間
加工時の耳割れを防ぐことのできる熱間加工性に優れた
銅合金を提供することにある。また、本発明の他の目的
は、従来のCu−Fe系合金よりも機械的特性および耐
熱性を向上させた熱間加工性に優れる銅合金を提供する
ことにある。
Accordingly, an object of the present invention is to provide a copper alloy excellent in hot workability which can prevent casting cracks and edge cracks during hot working. Another object of the present invention is to provide a copper alloy having improved mechanical properties and heat resistance and excellent hot workability as compared with a conventional Cu-Fe alloy.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、Feを1.8〜2.3重量%、Pを0.
01〜0.1重量%、Znを0.05〜1.0重量%、
Snを0.05〜0.3重量%、およびCを4〜100
重量ppm含有し、残りがCuの合金から成ることを特
徴とする熱間加工性に優れた銅合金を提供するものであ
る。
According to the present invention, 1.8 to 2.3% by weight of Fe and 0.
01-0.1% by weight, Zn is 0.05-1.0% by weight,
0.05 to 0.3% by weight of Sn and 4 to 100% of C
An object of the present invention is to provide a copper alloy excellent in hot workability, characterized in that it contains ppm by weight and the balance consists of a Cu alloy.

【0009】一般に、銅合金等の連続あるいは半連続鋳
造においては、鋳塊表層の数mmを除いた内部は、徐々
に冷却される形で凝固する。このため、凝固後の冷却過
程では、限界を超えて固溶した合金元素が、結晶粒界お
よび結晶粒内に析出するようになる。
Generally, in continuous or semi-continuous casting of a copper alloy or the like, the inside of the ingot except for a few mm is solidified in a gradually cooled form. For this reason, in the cooling process after solidification, the alloy element exceeding the limit and solid-solubilized is precipitated in the crystal grain boundaries and crystal grains.

【0010】一方、Cu−Fe系合金の常温でのCu中
へのFeの固溶は、0.3%以下であり、従って、たと
えば、Cu−2.3%Fe−0.03%P−0.12%
Znの銅合金の場合には、2%以下のFeが結晶粒界お
よび結晶粒内に析出することになるが、結晶粒界にFe
が多量に析出すると、高温下での粒界のすべりが起きに
くくなり、このため、粒界の高温強度が悪化して熱間加
工時に割れが発生するようになる。
On the other hand, the solid solution of Fe in Cu of a Cu-Fe alloy at room temperature is 0.3% or less, and therefore, for example, Cu-2.3% Fe-0.03% P- 0.12%
In the case of a copper alloy of Zn, not more than 2% of Fe precipitates in the crystal grain boundaries and in the crystal grains.
When a large amount of is precipitated, it is difficult for the grain boundary to slip at a high temperature, so that the high temperature strength of the grain boundary is deteriorated and cracks occur during hot working.

【0011】本発明は、特定の合金元素を特定の量のも
とに添加することにより鋳造組織の結晶粒を微細化する
とともに、結晶粒界へのFeの析出を抑制し、これによ
って粒界の中高温強度と中高温脆性を改善して熱間加工
性を向上させ、さらに、機械的特性および耐熱性の面で
も特性の向上を図るもので、以下、各元素の添加理由
と、その添加量設定の根拠を述べる。
According to the present invention, by adding a specific alloying element in a specific amount, a crystal grain of a cast structure is refined, and precipitation of Fe at a crystal grain boundary is suppressed. It improves the hot workability by improving the medium and high temperature strength and the medium to high temperature brittleness, and also improves the properties in terms of mechanical properties and heat resistance. State the basis for setting the amount.

【0012】Feには、Cu中に固溶および析出して強
度および耐熱性を向上させる作用があり、この作用に充
分なものを得るためには、少なくとも1.8重量%が必
要となる。また、添加量が2.3重量%を超過すると、
鋳造中に晶出あるいは析出するFeの粒子が巨大化し、
プレス加工等の金属加工性の悪化、あるいは得られるリ
ードフレーム等の半田付け時の劣化やメッキの膨れ等の
不具合を招くようになる。従って、Feの添加量は、
1.8〜2.3重量%に制限される。より好ましい添加
量としては、1.9〜2.2重量%に設定することがで
きる。
[0012] Fe has a function of improving the strength and heat resistance by dissolving and precipitating in Cu, and at least 1.8% by weight is required to obtain a material sufficient for this function. Also, if the amount exceeds 2.3% by weight,
The Fe particles that crystallize or precipitate during casting become huge,
This leads to problems such as deterioration of metal workability such as press working, deterioration of the obtained lead frame at the time of soldering, and swelling of plating. Therefore, the amount of Fe added is
It is limited to 1.8 to 2.3% by weight. A more preferable addition amount can be set to 1.9 to 2.2% by weight.

【0013】Pは、銅合金を溶解させて鋳造するときの
脱酸のために混入される。その添加量は、下限において
は充分な脱酸作用を得るため、そして、上限において
は、脱酸効果が飽和するようになることと導電率および
加工性を維持する目的から、0.01〜0.1重量%の
範囲に設定される。より好ましい添加量は、0.02〜
0.05重量%である。
[0013] P is mixed in for deoxidation when the copper alloy is melted and cast. The addition amount is 0.01 to 0 in order to obtain a sufficient deoxidizing effect at the lower limit and to maintain the deoxidizing effect at the upper limit and to maintain conductivity and workability at the upper limit. .1% by weight. A more preferable addition amount is 0.02 to
0.05% by weight.

【0014】Znには、脱酸および脱ガス作用と、Cu
のマイグレーション形成を抑えて漏洩電流を抑制する作
用があり、これらの作用を得るためには、少なくとも
0.05重量%が必要となる。また、その上限値として
は、1.0重量%に設定する必要があり、これを超える
と、導電性が低下するので避ける必要がある。より好ま
し範囲としては、0.08〜0.2重量%に設定するこ
とができる。
Zn has a deoxidizing and degassing effect, Cu
Has the effect of suppressing migration due to the formation of migration, and in order to obtain these effects, at least 0.05% by weight is required. Further, the upper limit value must be set to 1.0% by weight, and if it exceeds this value, the conductivity is reduced, so that it is necessary to avoid it. A more preferable range can be set to 0.08 to 0.2% by weight.

【0015】Snは、Cu中に固溶しての強度および耐
熱性の向上と、鋳造中におけるFe粒子晶出の分散化の
ために混入される。これらの目的のためには、少なくと
も0.05重量%が必要であり、一方、添加量が0.3
重量%を超過すると、混入効果が飽和するとともに導電
率を低下させるようになる。より好ましいSnの含有量
は、0.1〜0.2重量%である。
[0015] Sn is incorporated for improving strength and heat resistance as a solid solution in Cu and dispersing crystallization of Fe particles during casting. For these purposes, at least 0.05% by weight is required, while the addition amount is 0.3%.
If the content exceeds the weight percentage, the mixing effect is saturated and the conductivity is reduced. A more preferable Sn content is 0.1 to 0.2% by weight.

【0016】Cには、溶湯中のFeと反応して結晶核と
なるFe−C粒子を形成し、これにより鋳造組織を微細
化する作用があり、この作用に適度なものを得るために
は、含有量を4〜100重量ppmに設定する必要があ
る。C量が4重量ppmを下廻ると、上記の作用に充分
なものが得られず、逆に、100重量ppmを超過する
ときには、0.01mm以上の粗大なFe−C粒子を形
成するようになる。より好ましいC量としては、5〜5
0重量ppmの範囲に設定することができる。
C has the effect of reacting with Fe in the molten metal to form Fe—C particles that serve as crystal nuclei, thereby reducing the size of the cast structure. , The content must be set to 4 to 100 ppm by weight. When the amount of C is less than 4 ppm by weight, the above-mentioned effect cannot be obtained. On the contrary, when the amount of C exceeds 100 ppm by weight, coarse Fe-C particles of 0.01 mm or more are formed. Become. More preferable C amount is 5 to 5
It can be set in the range of 0 ppm by weight.

【0017】なお、本発明による銅合金の中には、不可
避的に混入する不純物は当然含まれ、また、発明の目的
を阻害しないかぎり、他の成分の添加が可能である。
The copper alloy according to the present invention naturally contains impurities which are inevitably mixed, and other components can be added as long as the object of the present invention is not impaired.

【0018】[0018]

【発明の実施の形態】次に、本発明による熱間加工性に
優れた銅合金の実施の形態を説明する。電気銅をカーボ
ン粉末で被覆することにより大気から遮断し、低周波誘
導溶解炉で溶解した後、表1に示されるC以外の元素を
添加することによって成分調整を行い、次いで、カーボ
ン粉末で被覆された合金溶湯中に低周波誘導撹拌を利用
して表1の量のCを含有させた。
Next, an embodiment of a copper alloy excellent in hot workability according to the present invention will be described. Electrocopper is shielded from the atmosphere by coating with carbon powder, melted in a low-frequency induction melting furnace, and then subjected to component adjustment by adding elements other than C shown in Table 1, and then coated with carbon powder. The amount of C shown in Table 1 was contained in the melted alloy using low frequency induction stirring.

【0019】[0019]

【表1】 [Table 1]

【0020】次に、これらの溶湯を、カーボン粉末で被
覆した鋳造樋を介して鋳型にそれぞれ鋳造し、厚さが1
50mm、幅が450mm、および長さが3500mm
の銅合金鋳塊を製造した後、これらを950℃の温度下
で熱間圧延することにより、厚さが11mmの熱延板を
製造した。熱間圧延作業は、1パス毎の圧下率を約18
%に設定し、圧延最終温度が650℃以下となるように
条件を設定して行った。
Next, each of these melts is cast into a mold through a casting gutter coated with carbon powder, and the thickness thereof is set to 1 mm.
50mm, width 450mm, and length 3500mm
After producing these copper alloy ingots, they were hot-rolled at a temperature of 950 ° C. to produce a hot-rolled sheet having a thickness of 11 mm. The hot rolling operation requires a rolling reduction of about 18 per pass.
%, And conditions were set such that the final rolling temperature was 650 ° C. or lower.

【0021】次いで、このようにして得られた熱延板の
上下面を面削することによって厚さが10mmの板と
し、さらに、これを冷間圧延することによって2mmの
厚さまで圧延し、600℃で1時間の時効熱処理を施し
た。次に、熱処理した板の表面から酸化膜を除去し、2
次冷間圧延を行って厚さが0.8mmのシート材とした
後、圧下率75%で最終圧延を行い、厚さが0.2mm
のCu−Fe系合金条を得た。
Next, the upper and lower surfaces of the hot-rolled sheet thus obtained are chamfered into a sheet having a thickness of 10 mm, and the sheet is cold-rolled to be rolled to a thickness of 2 mm. An aging heat treatment at 1 ° C. for 1 hour was performed. Next, the oxide film is removed from the surface of the heat-treated plate,
Next, cold rolling is performed to obtain a sheet material having a thickness of 0.8 mm, and then final rolling is performed at a reduction ratio of 75% to obtain a sheet material having a thickness of 0.2 mm.
Was obtained.

【0022】表1に、実施例と比較例の熱間圧延時にお
ける割れの発生状況、結晶組織、および完成合金条の特
性を示す。なお、割れの観察は圧延パス毎に行い、何回
目のパスのときに割れが発生したかを表示した。表中の
平均結晶粒径および最大Fe晶出寸法は、銅合金鋳塊の
横断面における表面近傍3点と、同横断面における中央
部3点の計6点(各例とも同じ)について、1点当たり
の観察面積を20mm×20mmに設定して結晶組織を
観察し、測定した結果を示したものである。また、軟化
温度は、サンプルを所定の試験温度で5時間加熱したと
き、加熱後のビッカース硬さが加熱前のビッカース硬さ
の90%になる試験温度とした。
Table 1 shows the state of occurrence of cracks, the crystal structure, and the characteristics of the finished alloy strip during hot rolling in the examples and comparative examples. The observation of cracks was performed for each rolling pass, and the number of passes in which the cracks occurred was displayed. The average crystal grain size and the maximum Fe crystallization size in the table are 1 point for 3 points near the surface in the cross section of the copper alloy ingot and 3 points at the center in the cross section (same in each example). The observation area per point was set to 20 mm × 20 mm, and the crystal structure was observed and the result of measurement was shown. The softening temperature was a test temperature at which the Vickers hardness after heating was 90% of the Vickers hardness before heating when the sample was heated at a predetermined test temperature for 5 hours.

【0023】表1によれば、実施例1〜4がいずれも熱
間圧延時に割れを発生させていないのに比べ、SnとC
を含有しない比較例1の場合には、3回目のパスで熱延
板のエッジに割れが発生しており、また、Snを含有し
ない比較例2の場合にも2回目のパスで割れが発生して
いる。さらに、Cの含有量が本発明で限定する範囲より
も少ない比較例3とCを含有しない比較例4の場合に
は、いずれも1回目と3回目のパスでエッジ割れと表面
割れが発生しているとともに、それぞれ5回目と4回目
のパスで崩壊に至っている。
According to Table 1, it is clear that in Examples 1 to 4, Sn and C
In Comparative Example 1 containing no Sn, cracks occurred at the edge of the hot-rolled sheet in the third pass, and in Comparative Example 2 containing no Sn, cracks occurred in the second pass. are doing. Furthermore, in the case of Comparative Example 3 in which the content of C is less than the range limited by the present invention and Comparative Example 4 not containing C, edge cracks and surface cracks occurred in the first and third passes. And collapsed on the fifth and fourth passes, respectively.

【0024】これらの熱間加工性の差は、結晶組織によ
るものであり、熱間加工性に優れる実施例1〜4が、い
ずれも3mm以下の小さな平均結晶粒径と0.01mm
以下の微細なFe晶出寸法を有しているのに比べ、比較
例1〜4の場合には、格段に大きな数値を示しており、
この結晶組織の違いが熱間加工性の差となって現れたも
のである。また、実施例1〜4と比較例1、2の間に
は、引張強さと伸びの機械的特性において大きな差が認
められ、さらに、耐熱性を示す軟化温度においても顕著
な差が認められる。
The difference in the hot workability is due to the crystal structure, and Examples 1 to 4 having excellent hot workability were found to have a small average crystal grain size of 3 mm or less and 0.01 mm
Compared to having the following fine Fe crystallization dimensions, Comparative Examples 1 to 4 show significantly larger values,
This difference in crystal structure appears as a difference in hot workability. In addition, between Examples 1 to 4 and Comparative Examples 1 and 2, a large difference is observed in mechanical properties of tensile strength and elongation, and a remarkable difference is also observed in a softening temperature indicating heat resistance.

【0025】SnとCを、それぞれ本発明が限定する数
量を超えて含有する比較例5および6の場合には、いず
れも良好な熱間加工性を示している。しかし、これらと
実施例1〜4を比較すると、比較例5は、引張強さ、伸
びおよび導電率において大きく劣り、一方、比較例6
は、Fe晶出寸法において極端に粗大であるとともに、
引張強さと伸びの機械的特性においても大きく劣り、特
に、伸び特性は格段に低い。
In the case of Comparative Examples 5 and 6, in which Sn and C are contained in amounts exceeding the limits specified by the present invention, both show good hot workability. However, when these are compared with Examples 1 to 4, Comparative Example 5 is significantly inferior in tensile strength, elongation and electrical conductivity, while Comparative Example 6
Is extremely coarse in Fe crystallization size,
The mechanical properties of tensile strength and elongation are also inferior, and especially the elongation properties are remarkably low.

【0026】Fe、P、Zn、SnおよびCを同時に含
み、それぞれの含有量を特定の範囲に設定することによ
って成立する本発明の銅合金は、表1に示されるよう
に、3mm以下の平均結晶粒径と0.01mm以下のF
e晶出寸法を有する微細な鋳造組織とすることによって
熱間加工時における熱延板の割れを防止するとともに、
熱間加工および冷間加工を経て得られる合金条に、53
0N/mm2 以上の引張強さ、4.5%以上の伸び、6
6%IACS以上の導電率、および430℃以上の軟化
温度特性を与えるものであり、リードフレーム等の原材
料として最適な特質を有している。
As shown in Table 1, the copper alloy of the present invention, which contains Fe, P, Zn, Sn and C at the same time and is established by setting the respective contents within a specific range, has an average of 3 mm or less. Grain size and F of 0.01mm or less
e Prevent cracking of the hot-rolled sheet at the time of hot working by making it a fine cast structure having a crystallized dimension,
In the alloy strip obtained through hot working and cold working, 53
0 N / mm2 or more tensile strength, 4.5% or more elongation, 6
It provides electrical conductivity of 6% IACS or more and softening temperature characteristics of 430 ° C. or more, and has characteristics that are optimal as raw materials for lead frames and the like.

【0027】[0027]

【発明の効果】以上説明したように、本発明による銅合
金によれば、1.8〜2.3重量%のFeと、0.01
〜0.1重量%のPと、0.05〜1.0重量%のZn
と、0.05〜0.3重量%のSnと、4〜100重量
ppmのCと、残部Cuから成る合金組成とすることに
より、熱間加工性、機械的特性および耐熱性に優れた銅
合金を提供するものであり、トランジスタや集積回路の
リード機のような電子部品用コネクタ、端子のような電
気部品用としてその有用性は大である。
As described above, according to the copper alloy of the present invention, 1.8 to 2.3% by weight of Fe and 0.01% by weight
0.1% by weight of P and 0.05% to 1.0% by weight of Zn
And 0.05 to 0.3% by weight of Sn, 4 to 100% by weight of C, and a balance of Cu, whereby copper having excellent hot workability, mechanical properties and heat resistance is obtained. It provides an alloy, and is very useful for electrical components such as connectors and terminals for electronic components such as transistors and lead machines for integrated circuits.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Feを1.8〜2.3重量%、Pを0.0
1〜0.1重量%、Znを0.05〜1.0重量%、S
nを0.05〜0.3重量% 、およびCを4〜100
重量ppm含有し、残りがCuおよび不可避不純物から
成る組成を有することを特徴とする熱間加工性に優れた
銅合金。
(1) 1.8 to 2.3% by weight of Fe and 0.0% of P
1 to 0.1% by weight, 0.05 to 1.0% by weight of Zn, S
n is 0.05 to 0.3% by weight, and C is 4 to 100%.
A copper alloy excellent in hot workability, characterized in that it contains ppm by weight and has a composition consisting of Cu and inevitable impurities.
【請求項2】前記組成を有する鋳造物は、3mm以下の
平均結晶粒径を有し、0.01mm以下のFe晶出寸法
を有することを特徴とする請求項1項記載の熱間加工性
に優れた銅合金。
2. The hot workability according to claim 1, wherein the casting having the composition has an average crystal grain size of 3 mm or less and a Fe crystallization size of 0.01 mm or less. Excellent copper alloy.
【請求項3】前記組成を有する銅合金条は、530N/
mm2 以上の引張強さ、4.5%以上の伸び、66%I
ACS以上の導電率、および430℃以上の軟化温度を
有することを特徴とする請求項1項記載の熱間加工性に
優れた銅合金。
3. The copper alloy strip having the above-mentioned composition is 530 N /
mm2 tensile strength, 4.5% elongation, 66% I
The copper alloy excellent in hot workability according to claim 1, wherein the copper alloy has a conductivity of ACS or higher and a softening temperature of 430 ° C or higher.
JP34057499A 1999-11-30 1999-11-30 Copper alloy with excellent hot workability Expired - Lifetime JP3941308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34057499A JP3941308B2 (en) 1999-11-30 1999-11-30 Copper alloy with excellent hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34057499A JP3941308B2 (en) 1999-11-30 1999-11-30 Copper alloy with excellent hot workability

Publications (2)

Publication Number Publication Date
JP2001158927A true JP2001158927A (en) 2001-06-12
JP3941308B2 JP3941308B2 (en) 2007-07-04

Family

ID=18338310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34057499A Expired - Lifetime JP3941308B2 (en) 1999-11-30 1999-11-30 Copper alloy with excellent hot workability

Country Status (1)

Country Link
JP (1) JP3941308B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914701A (en) * 2010-08-26 2010-12-15 中铝华中铜业有限公司 Lead frame material and method for processing strip made of same
JP2013071155A (en) * 2011-09-28 2013-04-22 Hitachi Cable Ltd Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
WO2015020189A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
WO2015020187A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914701A (en) * 2010-08-26 2010-12-15 中铝华中铜业有限公司 Lead frame material and method for processing strip made of same
JP2013071155A (en) * 2011-09-28 2013-04-22 Hitachi Cable Ltd Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
WO2015020189A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
WO2015020187A1 (en) * 2013-08-09 2015-02-12 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
JP2015057512A (en) * 2013-08-09 2015-03-26 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and method for producing copper alloy
JP2015057511A (en) * 2013-08-09 2015-03-26 三菱マテリアル株式会社 Copper alloy, copper alloy thin sheet and method for producing copper alloy
CN105452501A (en) * 2013-08-09 2016-03-30 三菱综合材料株式会社 Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
EP3031936A4 (en) * 2013-08-09 2017-06-28 Mitsubishi Materials Corporation Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
EP3031937A4 (en) * 2013-08-09 2017-07-05 Mitsubishi Materials Corporation Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
CN105452501B (en) * 2013-08-09 2018-03-06 三菱综合材料株式会社 The manufacture method of copper alloy, copper alloy thin plate and copper alloy

Also Published As

Publication number Publication date
JP3941308B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5461711B2 (en) Copper alloy having high strength and high conductivity and method for producing the same
JPWO2008123433A1 (en) Cu-Ni-Si alloy for electronic materials
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
KR20030097656A (en) Copper alloy having excellent bendability and manufacturing method therefor
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP3941308B2 (en) Copper alloy with excellent hot workability
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JP4175920B2 (en) High strength copper alloy
KR100878165B1 (en) Copper-nickel-silicon based copper alloy for electronic material, wrought copper and copper alloy using thereof and electronic device part using therof
JP2011017073A (en) Copper alloy material
JP3932759B2 (en) Copper alloy with excellent hot workability
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
CN113166850B (en) Copper alloy sheet and method for producing same
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2000017354A (en) High-tensile copper alloy excellent in hot workability
JP2021088738A (en) Copper alloy for electronic material, electronic component and manufacturing method for copper alloy for electronic material
KR100994651B1 (en) High strength and electric conductivity copper alloy excellent in hot workability
JP2013117060A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term