JP2001156395A - Surface emission semiconductor laser element - Google Patents

Surface emission semiconductor laser element

Info

Publication number
JP2001156395A
JP2001156395A JP2000089393A JP2000089393A JP2001156395A JP 2001156395 A JP2001156395 A JP 2001156395A JP 2000089393 A JP2000089393 A JP 2000089393A JP 2000089393 A JP2000089393 A JP 2000089393A JP 2001156395 A JP2001156395 A JP 2001156395A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
emitting semiconductor
laser device
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000089393A
Other languages
Japanese (ja)
Other versions
JP3566902B2 (en
Inventor
Noriyuki Yokouchi
則之 横内
Akihiko Kasukawa
秋彦 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000089393A priority Critical patent/JP3566902B2/en
Publication of JP2001156395A publication Critical patent/JP2001156395A/en
Application granted granted Critical
Publication of JP3566902B2 publication Critical patent/JP3566902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface emission semiconductor laser element in which oscillation transverse mode can be controlled. SOLUTION: A layer structure of a semiconductor material, where an emission layer 4 is sandwiched between upper and lower reflector layer structures 5, 2, is formed on a substrate 1. An opening located above the upper reflector layer structure 5 is coated with layers, e.g. dielectric films 8, 8A, transparent for the oscillation wavelength of laser light to form a laser light outgoing window 6A. Oscillation transverse mode of laser light can be controlled by varying the plan view of the outgoing window 6A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は面発光半導体レーザ
素子に関し、更に詳しくは、発振するレーザ光の横モー
ド制御が可能な面発光半導体レーザ素子に関する。
The present invention relates to a surface emitting semiconductor laser device, and more particularly, to a surface emitting semiconductor laser device capable of controlling a transverse mode of an oscillating laser beam.

【0002】[0002]

【従来の技術】近時、大容量光通信網の構築、または光
インターコネクションや光コンピューティングなどの光
データ通信システム構築の実現を目指す研究が進められ
ているが、それらの光源として、GaAs基板を用いて
製造した面発光半導体レーザ素子が注目を集めている。
2. Description of the Related Art Recently, researches have been conducted to realize a large-capacity optical communication network or an optical data communication system such as optical interconnection and optical computing. Surface emitting semiconductor laser devices manufactured by using GaN have attracted attention.

【0003】このような面発光レーザ素子の基本的な層
構造の1例Aを図11に示す。この素子Aでは、例えば
n型GaAsから成る基板1の上に、組成が異なる例え
ばn型のAlGaAsの薄層を交互に積層して成る下部
反射鏡層構造2が形成されている。そして、この下部反
射鏡層構造2の上には、例えばi型のAlGaAsから
成る下部クラッド層3a,GaAs/AlGaAsで形
成した量子井戸構造から成る発光層4,i型のAlGa
Asから成る上部クラッド層3bが順次積層され、更に
この上部クラッド層3bの上に、組成が異なる例えばp
型のAlGaAsの薄層を交互に積層して成る上部反射
鏡層構造5が形成されたのち、この上部反射鏡層構造5
の最上層の表面には、p型のGaAs層6が形成されて
全体の層構造を構成している。そして、上記層構造の少
なくとも下部反射鏡層構造2の上面に至るまでの部分が
エッチング除去されて、中央部には、柱状の層構造が形
成されている。
FIG. 11 shows an example A of a basic layer structure of such a surface emitting laser device. In this element A, a lower reflector layer structure 2 is formed by alternately stacking thin layers of, for example, n-type AlGaAs having different compositions on a substrate 1 made of, for example, n-type GaAs. On the lower reflecting mirror layer structure 2, a lower cladding layer 3a made of, for example, i-type AlGaAs, a light emitting layer 4 made of a quantum well structure made of GaAs / AlGaAs, and an i-type AlGa
An upper cladding layer 3b made of As is sequentially laminated, and further, on this upper cladding layer 3b, for example, p
After the upper reflector layer structure 5 formed by alternately stacking thin layers of the AlGaAs type is formed, the upper reflector layer structure 5 is formed.
A p-type GaAs layer 6 is formed on the surface of the uppermost layer to form the entire layer structure. Then, at least a portion of the layer structure up to the upper surface of the lower reflecting mirror layer structure 2 is etched away, and a columnar layer structure is formed at the center.

【0004】中央に位置する柱状の層構造におけるGa
As層6の上面の周縁部近傍には例えばAuZnから成
る円環形状の上部電極7aが形成され、また基板1の裏
面には例えばAuGeNi/Auから成る下部電極7b
が形成されている。そして、全体の表面のうち、柱状部
の側面、および、GaAs層6の表面のうち、上部電極
7aの外側に位置する周縁部が例えばSiNxから成る
誘電体膜8で被覆されることにより、GaAs層6の一
部表面6a、すなわち上部電極7aの内側の部分がレー
ザ光の出射窓として機能する円形の開口部6Cになって
おり、更に上部電極7aと誘電体膜8の表面を被覆して
例えばTi/Pt/Auから成る電極引き出し用パッド
7cが形成されている。
Ga in a columnar layer structure located at the center
An annular upper electrode 7a made of, for example, AuZn is formed near the periphery of the upper surface of the As layer 6, and a lower electrode 7b made of, for example, AuGeNi / Au is formed on the back surface of the substrate 1.
Are formed. By covering the side surface of the columnar portion of the entire surface and the peripheral portion of the surface of the GaAs layer 6 located outside the upper electrode 7a with the dielectric film 8 made of, for example, SiNx, the GaAs is formed. A partial surface 6a of the layer 6, that is, a portion inside the upper electrode 7a is a circular opening 6C that functions as an emission window for laser light, and further covers the surfaces of the upper electrode 7a and the dielectric film 8. For example, an electrode lead pad 7c made of Ti / Pt / Au is formed.

【0005】また、このレーザ素子Aにおいては、上部
反射鏡層構造5の最下層、すなわち発光層4に最も近い
場所に位置する層3cは例えばp型のAlAsで形成さ
れている。そして、このAlAs層3cのうち外側の周
縁部分は、平面視形状が円環形状をしていて、当該Al
As層のみを選択的に酸化することによって形成された
Al23を主体とする絶縁領域3dになっており、その
ことによって、発光層4に対する電流狭窄構造が形成さ
れている。
In the laser element A, the lowermost layer of the upper reflector layer structure 5, that is, the layer 3c located closest to the light emitting layer 4 is formed of, for example, p-type AlAs. The outer peripheral portion of the AlAs layer 3c has an annular shape in plan view.
The insulating region 3d mainly composed of Al 2 O 3 formed by selectively oxidizing only the As layer forms a current confinement structure for the light emitting layer 4.

【0006】このレーザ素子Aにおいては、上部電極7
aと下部電極7bを動作させることにより、発光層4に
おけるレーザ発振が起こり、そのレーザ光はGaAs層
6を通過してその表面部分6a(レーザ光の出射窓)か
ら矢印のように、すなわち基板1の垂直上方に発振して
いく。
In this laser element A, the upper electrode 7
By operating the lower electrode 7a and the lower electrode 7b, laser oscillation occurs in the light emitting layer 4, and the laser light passes through the GaAs layer 6 and passes through the surface portion 6a (the emission window of the laser light) as shown by an arrow, 1 oscillates vertically upward.

【0007】[0007]

【発明が解決しようとする課題】ところで、面発光半導
体レーザ素子を光伝送システムの光源として組み込むた
めには、当該レーザ素子から発振するレーザ光の発振横
モードを制御することが必要である。例えばマルチモー
ド光ファイバを用いたデータリンクの場合には、高次横
モードで安定して発振するレーザ素子が光源として必要
となり、また空間伝搬を適用したボード間光伝送システ
ムの場合や、単一モード光ファイバを用いた高速光伝送
システムの場合には、基本横モード発振するレーザ素子
が光源として必要になる。
By the way, in order to incorporate a surface emitting semiconductor laser device as a light source in an optical transmission system, it is necessary to control an oscillation transverse mode of a laser beam oscillated from the laser device. For example, in the case of a data link using a multi-mode optical fiber, a laser element that stably oscillates in a higher-order transverse mode is required as a light source. In the case of a high-speed optical transmission system using a mode optical fiber, a laser device that oscillates in a fundamental transverse mode is required as a light source.

【0008】従来、上記した構造の面発光半導体レーザ
素子の発振横モードは、図11で示した電流狭窄構造の
サイズで制御されている。具体的には、円環形状をした
絶縁領域3dの円環の幅を変化させることにより、中心
部に位置する平面視形状が円形になっている電流注入経
路3eの大小で制御している。例えば、基本横モードで
発振するレーザ素子の場合、上記した電流注入経路3e
の直径は5μm以下程度にすることが必要とされてい
る。
Conventionally, the oscillation lateral mode of the surface emitting semiconductor laser device having the above structure is controlled by the size of the current confinement structure shown in FIG. Specifically, by changing the width of the ring of the ring-shaped insulating region 3d, the current injection path 3e located at the center and having a circular shape in plan view is controlled by the magnitude of the current injection path 3e. For example, in the case of a laser device that oscillates in the fundamental transverse mode, the above-described current injection path 3e
Is required to have a diameter of about 5 μm or less.

【0009】しかしながら、電流注入経路3eの直径を
上記したような小さい値にすると、結局、レーザ素子と
しての抵抗が高くなるため、その動作電圧が高くなると
いうような不都合が生じてくる。また、電流注入経路3
eの直径の大小をμmオーダで正確に制御するというこ
とは、絶縁領域3dの幅、すなわちAlAs層3cにお
ける酸化幅を正確に制御するということを意味する。し
かしながら、この酸化幅をμmオーダで制御することは
かなり困難である。そのため、製造したレーザ素子の特
性にばらつきが生じ、再現性の点で問題が生ずる。
However, if the diameter of the current injection path 3e is set to the above-mentioned small value, the resistance as a laser element eventually increases, which causes a problem that the operating voltage increases. In addition, the current injection path 3
Accurately controlling the diameter of e in the order of μm means that the width of the insulating region 3d, that is, the oxidation width of the AlAs layer 3c is accurately controlled. However, it is very difficult to control this oxidation width on the order of μm. As a result, the characteristics of the manufactured laser element vary, which causes a problem in reproducibility.

【0010】なお、マルチモードで発振するレーザ素子
の場合、電流注入経路の直径を大きくすると、電流注入
時に発振横モードがスイッチングするため雑音が発生
し、光伝送特性が劣化するという問題も生ずる。本発明
は、電流注入経路3eの大小で発振横モードを制御して
いる従来の面発光半導体レーザ素子における上記した問
題を解決することができる新規な発振横モード制御機構
を備え、また製造も従来に比べて容易な面発光半導体レ
ーザ素子の提供を目的とする。
In the case of a laser device that oscillates in a multi-mode, if the diameter of the current injection path is increased, the oscillation transverse mode switches at the time of the current injection, so that noise is generated and the optical transmission characteristics deteriorate. The present invention includes a novel oscillation lateral mode control mechanism capable of solving the above-described problem in the conventional surface emitting semiconductor laser device in which the oscillation lateral mode is controlled by the size of the current injection path 3e. It is another object of the present invention to provide a surface emitting semiconductor laser device which is easier than that of the prior art.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、上部反射鏡層構造と下部反
射鏡層構造との間に発光層を配置した半導体材料の層構
造が基板の上に形成され、前記上部反射鏡層構造の上方
には、平面視形状が円環形状をした上部電極が形成さ
れ、前記上部電極の内側が開口部になっている面発光半
導体レーザ素子において、前記開口部の一部表面を被覆
して、発振レーザ光に対して透明な層が形成されている
ことを特徴とする面発光半導体レーザ素子が提供され
る。
In order to achieve the above object, according to the present invention, a layer structure of a semiconductor material in which a light emitting layer is disposed between an upper reflecting mirror layer structure and a lower reflecting mirror layer structure is provided on a substrate. A surface emitting semiconductor laser device in which an upper electrode having a circular shape in plan view is formed above the upper reflecting mirror layer structure, and an inner side of the upper electrode is an opening. A surface emitting semiconductor laser device is provided, wherein a layer transparent to the oscillation laser light is formed by partially covering the surface of the opening.

【0012】好ましくは、前記透明な層が少なくとも1
層の誘電体膜から成り、また、前記発光層の近傍には電
流注入経路が形成され、前記開口部に形成されている前
記透明な層の形成位置は前記電流注入経路の平面視形状
の中に含まれている面発光半導体レーザ素子、また前記
透明な層の厚みが、レーザ光の発振波長の(2i+1)
/4n倍(ただし、nは透明な層の屈折率,iは整数を
表す)に相当する厚みになっている面発光半導体レーザ
素子や、その厚みがレーザ光の発振波長の2i/4n倍
(ただし、nは透明な層の屈折率,iは自然数を表す)
である透明な層の上に更に金属膜が成膜されている面発
光半導体レーザ素子が提供される。
Preferably, said transparent layer has at least one layer.
A current injection path is formed in the vicinity of the light emitting layer, and the position of the transparent layer formed in the opening is in the shape of the current injection path in plan view. The thickness of the transparent layer included in the surface emitting semiconductor laser element included in the laser light source is (2i + 1) of the oscillation wavelength of the laser light.
A surface emitting semiconductor laser device having a thickness corresponding to / 4n times (where n is the refractive index of the transparent layer and i represents an integer), or a thickness of 2i / 4n times the oscillation wavelength of the laser light ( Where n is the refractive index of the transparent layer and i is a natural number.
And a surface emitting semiconductor laser device in which a metal film is further formed on the transparent layer.

【0013】[0013]

【発明の実施の形態】本発明の面発光半導体レーザ素子
は、開口部が形成されている上部反射鏡層構造におい
て、レーザ発振を起こさせたくない部分の反射率を低下
させる(すなわち、多重反射させる)ことにより発振横
モード制御を行うという技術思想に立脚し、そのため
に、レーザ光の出射窓として機能する上記開口部の一部
表面に、発振するレーザ光の発振波長に対して透明な層
(以下、単に透明な層という)を設けるという手段を講
じたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The surface emitting semiconductor laser device of the present invention reduces the reflectance of a portion where laser oscillation is not desired to occur in an upper reflector layer structure in which an opening is formed (ie, multiple reflection). To control the oscillation transverse mode, thereby forming a layer transparent to the oscillation wavelength of the oscillating laser light on a part of the surface of the opening functioning as an emission window for the laser light. (Hereinafter simply referred to as a transparent layer).

【0014】ここで、上記した透明な層としては、レー
ザ光の発振波長との関係で各種の材料で構成されること
になるが、SiNx,SiOx,AlOx,TiOx,
MgO,MgFを代表例とする誘電体から成る誘電体膜
を好適例としてあげることができる。また、透明な層の
材料としては、ITO(インジウム−スズ酸化物)を用
いることもできる。透明な層をITOで形成した場合に
は、この透明な層を電極として機能させることもでき
る。なお、この誘電体膜の場合、それは1層であっても
よく、2層以上の積層構造になっていてもよい。
Here, the above-mentioned transparent layer is made of various materials in relation to the oscillation wavelength of the laser light, but is composed of SiNx, SiOx, AlOx, TiOx,
A preferable example is a dielectric film made of a dielectric material such as MgO or MgF. In addition, ITO (indium-tin oxide) can be used as a material for the transparent layer. When the transparent layer is formed of ITO, the transparent layer can function as an electrode. In the case of this dielectric film, it may be a single layer or a laminated structure of two or more layers.

【0015】以下、透明な層が誘電体膜である場合を例
にして、図面に則して本発明の面発光半導体レーザ素子
について説明する。図1は本発明のレーザ素子の1例B
1を示し、図2は別の例B2を示す。これらの素子B
1,B2の場合、いずれも、その層構造は図11で示し
た素子Aと同じである。しかしながら、素子Aで説明し
たレーザ光の出射窓6aとして機能する開口部6Cの表
面にも誘電体膜が形成されていることにより、レーザ光
の出射窓の平面視形状が図11の場合と異なっている。
Hereinafter, the surface emitting semiconductor laser device of the present invention will be described with reference to the drawings, taking as an example the case where the transparent layer is a dielectric film. FIG. 1 shows an example B of the laser device of the present invention.
1 and FIG. 2 shows another example B2. These elements B
In the case of 1 and B2, the layer structure is the same as that of the element A shown in FIG. However, since the dielectric film is also formed on the surface of the opening 6C functioning as the laser light exit window 6a described in the element A, the planar shape of the laser light exit window is different from that in FIG. ing.

【0016】素子B1は、上部電極7aの内側に位置す
る開口部に平面視形状が円環形状をしている誘電体膜8
Aが形成されていることにより、平面視形状が円形であ
る、より小径の新たな出射窓6Aが形成された構造にな
っている。そして素子B2は、開口部6Cから表出して
いるGaAs層6の中心部に平面視形状が円形である誘
電体膜8Bが形成されていることにより、平面視形状が
円環形状をしている新たな出射窓6Bが形成された構造
のものである。
The element B1 includes a dielectric film 8 having an annular shape in plan view at an opening located inside the upper electrode 7a.
By forming A, a new emission window 6A having a smaller diameter and a circular shape in plan view is formed. The element B2 has a circular shape in plan view because the dielectric film 8B having a circular shape in plan view is formed at the center of the GaAs layer 6 exposed from the opening 6C. This is a structure in which a new emission window 6B is formed.

【0017】ここで、上記した誘電体膜8A(8B)の
膜厚は、素子B1(B2)によるレーザ光の発振波長が
λであるとした場合、λ×(2i+1)/4n倍の値に
近似した厚みであることが好ましい。なお、上記した式
において、nは誘電体膜8A(8B)を構成する誘電体
の屈折率を表し、またiは0,1,2,……などの整数
を表している。
Here, the thickness of the dielectric film 8A (8B) is λ × (2i + 1) / 4n times when the oscillation wavelength of the laser beam by the element B1 (B2) is λ. It is preferable that the thickness is approximately the same. In the above formula, n represents the refractive index of the dielectric constituting the dielectric film 8A (8B), and i represents an integer such as 0, 1, 2,.

【0018】最上面に、このような平面視形状で、また
このような膜厚の誘電体膜8A(8B)が形成されてい
ると、この誘電体膜8A(8B)の直下に位置する上部
反射鏡層構造の実効的な反射率が低下する。そして結果
的に、誘電体膜8A(8B)の直下でのみレーザ発振が
起こることになり、発振横モードが制御されることにな
る。
If the dielectric film 8A (8B) having such a shape in a plan view and having such a thickness is formed on the uppermost surface, the upper portion located immediately below the dielectric film 8A (8B) is formed. The effective reflectance of the reflector layer structure decreases. As a result, laser oscillation occurs only immediately below the dielectric film 8A (8B), and the oscillation transverse mode is controlled.

【0019】この誘電体膜の平面視形状は、上に例示し
たタイプに限定されるものではなく、適宜な形状にする
ことができる。なお、これらの厚みλ×2i/4nの誘
電体膜の上にAu,Ti,Crのような金属膜を設ける
と、上記した反射率低下の効果が向上してレーザ光の発
振横モード制御がより有効に発揮されるので好適であ
る。
The shape of the dielectric film in plan view is not limited to the type exemplified above, but may be an appropriate shape. When a metal film such as Au, Ti, or Cr is provided on the dielectric film having a thickness of λ × 2i / 4n, the above-described effect of lowering the reflectivity is improved and the oscillation transverse mode control of laser light is performed. It is preferable because it is more effectively exhibited.

【0020】このように、開口部6Cに形成した誘電体
膜(透明な層)は上記したような作用効果を発揮するの
で、その形成位置は、それを下方に投影したとき、発光
層4におけるレーザ発振を規制する電流注入経路3eの
平面視形状の中に含まれていることが好ましい。電流注
入経路3eを経由して発振してくるレーザ光に対して、
誘電体膜の直下に位置する上部反射鏡層構造の実効的な
反射率を確実に低下せしめ、もって発振横モードの制御
に関する確実性が向上するからである。
As described above, since the dielectric film (transparent layer) formed in the opening 6C exhibits the above-described operation and effect, when the dielectric film (transparent layer) is projected downward, the position of the light emitting layer 4 It is preferable that the current injection path 3e that regulates laser oscillation is included in the plan view shape. For laser light oscillating via the current injection path 3e,
This is because the effective reflectivity of the upper reflecting mirror layer structure located immediately below the dielectric film is surely reduced, so that the reliability of controlling the oscillation transverse mode is improved.

【0021】[0021]

【実施例】(1)レーザ素子の構造 図1で示したレーザ素子を次のようにして製造した。こ
のレーザ素子の発振波長は850nmとなるように設計さ
れている。n型GaAs基板1の上に、MOCVD法で
厚み40nmのn型Al0.2Ga0.8Asと厚み50nmのn
型Al0.9Ga0.1Asとの薄層をヘテロ界面に厚み20
nmの組成傾斜層を介在させながら交互に積層して30.
5ペアの多層膜から成る下部反射鏡層構造2を形成し
た。ついで、この上に、ノンドープAl0.3Ga0.7As
から成る下部クラッド層3a(厚み97nm),3層のG
aAs量子井戸(各層の厚み7nm)と4層のAl0.2
0.8As障壁層(各層の厚み8nm)で構成された量子
井戸構造の発光層4,ノンドープAl0.3Ga0.7Asか
ら成る上部クラッド層3b(厚み97nm)を順次積層し
たのち、更にその上に、厚み40nmのp型Al0.2Ga
0.8Asと厚み50nmのp型Al0.8Ga0.2Asとの薄
膜をヘテロ界面に厚み20nmの組成傾斜層を介在させな
がら交互に積層して25ペアの多層膜から成る上部反射
鏡層構造5を形成した。
EXAMPLES (1) Structure of Laser Element The laser element shown in FIG. 1 was manufactured as follows. The oscillation wavelength of this laser device is designed to be 850 nm. On an n-type GaAs substrate 1, a 40 nm-thick n-type Al 0.2 Ga 0.8 As and a 50 nm-thick n are formed by MOCVD.
A thin layer of Al 0.9 Ga 0.1 As at the hetero interface with a thickness of 20
Alternately laminating with a composition gradient layer of 30 nm.
A lower reflector layer structure 2 composed of five pairs of multilayer films was formed. Next, a non-doped Al 0.3 Ga 0.7 As
Lower clad layer 3a (97 nm thick) composed of
aAs quantum well (thickness of each layer is 7 nm) and four layers of Al 0.2 G
A light emitting layer 4 having a quantum well structure composed of a 0.8 As barrier layers (thickness of each layer is 8 nm), and an upper cladding layer 3b (97 nm thick) made of non-doped Al 0.3 Ga 0.7 As are sequentially laminated. 40 nm thick p-type Al 0.2 Ga
Thin films of 0.8 As and 50 nm thick p-type Al 0.8 Ga 0.2 As are alternately laminated with a 20 nm thick composition gradient layer interposed at the heterointerface to form an upper reflector layer structure 5 composed of 25 pairs of multilayer films. did.

【0022】そして、この上部反射鏡層構造5における
最上層であるp型Al0.2Ga0.8As層の上にp型Ga
As層6を積層した。なお、上記した上部反射鏡層構造
の最下層3cは、厚み50nmのp型AlAsで構成し
た。次に、これら層構造におけるp型GaAs層6の表
面にプラズマCVD法でSiNx膜8aを成膜したの
ち、その上に通常のフォトレジストを用いたフォトリソ
グラフィーで直径約45μmの円形レジストマスク9を
形成した(図3)。
[0022] Then, p-type Ga on the p-type Al 0.2 Ga 0.8 As layer as the uppermost layer in the upper reflector layer structure 5
As layer 6 was laminated. The lowermost layer 3c of the above-mentioned upper reflector layer structure was made of p-type AlAs having a thickness of 50 nm. Next, after a SiNx film 8a is formed on the surface of the p-type GaAs layer 6 in these layer structures by a plasma CVD method, a circular resist mask 9 having a diameter of about 45 μm is formed thereon by photolithography using a normal photoresist. Formed (FIG. 3).

【0023】ついで、CF4を用いたRIEで上記レジ
ストマスク9直下のSiNx膜以外のSiNx膜8aを
エッチング除去したのちレジストマスク9を全て除去し
て、平面視形状が円環形状であるGaAs層6の表面を
表出させた。そして、SiNx膜8aをマスクにし、リ
ン酸と過酸化水素と水の混合液から成るエッチャントを
用いて下部反射鏡層構造2に至るまでのエッチング処理
を行って柱状構造を形成した(図4)。
Next, after removing the SiNx film 8a other than the SiNx film immediately below the resist mask 9 by RIE using CF 4 , the resist mask 9 is entirely removed, and the GaAs layer having a ring shape in plan view is formed. The surface of No. 6 was exposed. Then, using the SiNx film 8a as a mask, an etching treatment up to the lower reflector layer structure 2 was performed using an etchant composed of a mixture of phosphoric acid, hydrogen peroxide and water to form a columnar structure (FIG. 4). .

【0024】そして、この層構造を水蒸気雰囲気中にお
いて温度400℃で約25分間加熱した。p型AlAs
層3cの外側周縁部のみが円環状に選択的に酸化され、
その中心部には直径が約15μmの電流注入経路3eが
形成された(図5)。ついで、RIEによってSiNx
膜8aを完全に除去したのち、全体の表面をプラズマC
VD法によりSiNx膜8で被覆し、続いて、直径約3
5μmのGaAs層6の上面に形成されているSiNz
膜8を外径25μm,内径15μmの円環形状に除去し
てGaAs層6の表面を表出させ、そこにAuZnを蒸
着して円環形状をした上部電極7aを形成し、更に上部
電極7aの外側の表面のみをSiNx膜8で被覆し、更
にその上に電極引き出し用のパッド7cをTi/Pt/
Auで形成した(図6)。
Then, this layer structure was heated in a steam atmosphere at a temperature of 400 ° C. for about 25 minutes. p-type AlAs
Only the outer peripheral portion of the layer 3c is selectively oxidized in an annular shape,
A current injection path 3e having a diameter of about 15 μm was formed at the center thereof (FIG. 5). Then, by RIE, SiNx
After the film 8a is completely removed, the entire surface is
Coating with a SiNx film 8 by the VD method,
SiNz formed on the upper surface of the 5 μm GaAs layer 6
The surface of the GaAs layer 6 is exposed by removing the film 8 into an annular shape having an outer diameter of 25 μm and an inner diameter of 15 μm, and AuZn is deposited thereon to form an annular upper electrode 7a. Is covered only with a SiNx film 8, and a pad 7c for extracting an electrode is further provided thereon with Ti / Pt /
It was formed of Au (FIG. 6).

【0025】なお、このときのSiNx膜8の膜厚は、
SiNxの屈折率が1.75であり、素子の発振波長が
850nmであるため、前記した式:(2i+1)/4n
においてi=0にしたときの値、すなわち121nmに設
定した。ついで、上部電極7aの内側に位置しているS
iNx膜に対してフォトリソグラフィーとRIEを適用
することにより、その中心部に直径6μmの円形の小孔
を穿設し他のSiNx膜8Aは残してGaAs層6の表
面を表出して出射窓6Aを形成し、図1で示した素子B
1を製造した。これを実施例1とする。
The thickness of the SiNx film 8 at this time is
Since the refractive index of SiNx is 1.75 and the oscillation wavelength of the device is 850 nm, the above equation: (2i + 1) / 4n
Was set to the value when i = 0, that is, 121 nm. Then, S located inside the upper electrode 7a
By applying photolithography and RIE to the iNx film, a circular small hole having a diameter of 6 μm is formed in the center of the iNx film, and the surface of the GaAs layer 6 is exposed while leaving the other SiNx film 8A, and the emission window 6A is formed. To form the element B shown in FIG.
1 was produced. This is referred to as Example 1.

【0026】また、小孔の孔径を10μmにして出射窓
6Aを形成した。これを実施例2とする。また、上部電
極7aの内側に位置しているSiNx膜に対し、中心部
に直径6μmの部分8Bを残し、他の部分は全て除去す
ることにより、外径15μm,内径6μmの円環形状を
した出射窓6Bを形成し、図2で示した素子B2を製造
した。これを実施例3とする。
The exit window 6A was formed with a small hole diameter of 10 μm. This is Example 2. Further, the SiNx film located inside the upper electrode 7a was left in a circular shape having an outer diameter of 15 μm and an inner diameter of 6 μm by leaving a portion 8B having a diameter of 6 μm at the center and removing all other portions. The emission window 6B was formed, and the device B2 shown in FIG. 2 was manufactured. This is referred to as a third embodiment.

【0027】いずれの実施例素子の場合も、基板1の裏
面を研磨して全体の厚みを約100μmとしたのち、そ
の研磨面にAuGeNi/Auを蒸着して下部電極7b
が形成されている。なお比較のために、前記したAlA
s層3cの酸化時間を約30分とすることにより当該A
lAs層3cの酸化幅を大きくして電流注入経路3cの
直径を約5μmにし、かつ、GaAs層6の上に直径1
5μmの開口部6Cを形成し、これを出射窓6aとする
図11で示した素子Aを製造した。これを比較例1とす
る。また、実施例1の素子において、上部電極7aの内
側に位置するSiNx膜を全て除去して直径15μmの
開口部とし、これを出射窓6aとする素子Aを製造し
た。これを比較例2とする。以上、5種類の素子におけ
る電流注入経路,出射窓の寸法形状を一括して表1に示
す。
In any of the elements of the embodiment, after polishing the back surface of the substrate 1 to a total thickness of about 100 μm, AuGeNi / Au is vapor-deposited on the polished surface to form the lower electrode 7b.
Are formed. For comparison, the above-mentioned AlA
By setting the oxidation time of the s layer 3c to about 30 minutes,
The oxidation width of the lAs layer 3c is increased to make the diameter of the current injection path 3c about 5 μm, and the diameter of the current injection path 3c is about 1 μm on the GaAs layer 6.
An element A shown in FIG. 11 was manufactured by forming an opening 6C of 5 μm and using the opening 6C as an exit window 6a. This is referred to as Comparative Example 1. In the device of Example 1, a device A was manufactured in which the SiNx film located inside the upper electrode 7a was entirely removed to form an opening having a diameter of 15 μm, and this was used as the emission window 6a. This is referred to as Comparative Example 2. Table 1 collectively shows the dimensions of the current injection path and the exit window in the five types of elements.

【0028】[0028]

【表1】 [Table 1]

【0029】(2)レーザ素子の特性評価 1)まず、実施例1と比較例1における電流−電圧特性
と電流−光出力特性を図7に示す。図中、実線は電流−
電圧特性、破線は電流−光出力特性をそれぞれ表してい
る。なお、実施例1,比較例1のいずれにおいても発振
モードは基本横モードであった。
(2) Evaluation of Characteristics of Laser Element 1) First, current-voltage characteristics and current-light output characteristics in Example 1 and Comparative Example 1 are shown in FIG. In the figure, the solid line is the current-
A voltage characteristic and a broken line represent current-light output characteristics, respectively. In each of Example 1 and Comparative Example 1, the oscillation mode was the basic transverse mode.

【0030】図7から明らかなように、実施例1は比較
例1に対比して動作電圧が低く、例えば5mAでの動作電
圧は約1.8Vであり、比較例1の2.4Vに比べてかな
り低い。これは、実施例1の電流注入経路の直径は15
μmであり、電流注入経路の直径が5μmである比較例
1に比べてその箇所での抵抗が低くなっているからであ
る。また、電流−光出力特性において、実施例1の場合
はしきい値電流が比較例1に比べて若干高いとはいえ、
電流が10mA程度になるまで光出力は飽和することなく
増加している。これは、電流注入経路近傍における抵抗
が低いので発熱が抑制されることに基づく効果であると
考えられる。
As is apparent from FIG. 7, the operating voltage of the first embodiment is lower than that of the first comparative example. For example, the operating voltage at 5 mA is about 1.8 V, which is smaller than the 2.4 V of the first comparative example. And quite low. This is because the diameter of the current injection path of the first embodiment is 15
This is because the resistance at that point is lower than that in Comparative Example 1 in which the diameter of the current injection path is 5 μm. Further, in the current-light output characteristics, although the threshold current is slightly higher in Example 1 than in Comparative Example 1,
The light output increases without saturation until the current reaches about 10 mA. This is considered to be an effect based on suppression of heat generation because the resistance near the current injection path is low.

【0031】2)次に実施例2,3と比較例2における
電流−電圧特性と電流−光出力特性を図8にそれぞれ表
す。図中、実線は電流−電圧特性、破線は電流−光出力
特性をそれぞれ表している。図8から明らかなように、
実施例2,3と比較例2との間では上記両特性に顕著な
差異は認められない。そこで、実施例2,3,比較例2
の各素子につき、発光近視野像を観察してみた。動作電
流7mAの場合の結果を図9に、動作電流15mAの場合の
結果を図10にそれぞれ示した。
2) Next, the current-voltage characteristics and the current-light output characteristics in Examples 2 and 3 and Comparative Example 2 are shown in FIG. 8, respectively. In the figure, the solid line represents current-voltage characteristics, and the broken line represents current-light output characteristics. As is clear from FIG.
There is no remarkable difference between the above-mentioned characteristics between Examples 2 and 3 and Comparative Example 2. Therefore, Examples 2, 3 and Comparative Example 2
For each of the devices, an emission near-field image was observed. FIG. 9 shows the result when the operating current is 7 mA, and FIG. 10 shows the result when the operating current is 15 mA.

【0032】なお、図9、図10において、像aは実施
例2,像bは実施例3,像cは比較例2の場合をそれぞ
れ示す。図9,図10から明らかなように、比較例2の
場合の像cでは外周部に多数の発光スポットが認めら
れ、それが電流注入によってスイッチングしている。実
施例2の像aの場合は発光スポットが少なく、しかもそ
れらは中心部に集中している。そして、電流注入を大き
くしてもスイッチング挙動を起こすことはなかった。
9 and 10, the image a shows the case of Example 2, the image b shows the case of Example 3, and the image c shows the case of Comparative Example 2, respectively. As is clear from FIGS. 9 and 10, in the image c in the case of the comparative example 2, a large number of light emitting spots are recognized in the outer peripheral portion, and they are switched by current injection. In the case of the image a of the second embodiment, the number of light emission spots is small, and they are concentrated at the center. The switching behavior did not occur even if the current injection was increased.

【0033】また実施例3の像bの場合は、実施例2に
比べると発光スポットの数が増加し、しかも全体として
拡散している。しかしながら、実施例3の場合も、電流
注入を大きくしてもスイッチング挙動を起こすことはな
かった。
In the case of the image b of the third embodiment, the number of light-emitting spots is larger than that of the second embodiment, and the light spots are diffused as a whole. However, also in the case of Example 3, no switching behavior occurred even if the current injection was increased.

【0034】[0034]

【発明の効果】以上の説明で明らかなように、本発明の
レーザ素子は発振横モード制御が可能な面発光半導体レ
ーザ素子であり、例えば低動作電圧で基本横モード発振
するレーザ素子である。また、高次横モードで安定して
発振する素子では、モードスイッチングによる雑音も低
減する。したがって、この面発光半導体レーザ素子は並
列データ伝送用の光源として使用可能であり、もって高
速光データ通信システムの構築に貢献する。
As is clear from the above description, the laser device of the present invention is a surface emitting semiconductor laser device capable of controlling the transverse oscillation mode, for example, a laser device which oscillates in the fundamental transverse mode at a low operating voltage. In an element that oscillates stably in a higher-order transverse mode, noise due to mode switching is also reduced. Therefore, this surface emitting semiconductor laser device can be used as a light source for parallel data transmission, thereby contributing to the construction of a high-speed optical data communication system.

【0035】また、本発明のレーザ素子における発振横
モードの制御は、従来のように、電流狭窄構造の大小で
制御するのではなく、全体の上面に形成する誘電体膜
(透明な層)の平面視形状で制御するので、その設計自
由度は高く、製造も容易であり、その製造コストも低減
する。
The control of the oscillation transverse mode in the laser device of the present invention is not performed by controlling the size of the current confinement structure as in the prior art, but by controlling the dielectric film (transparent layer) formed on the entire upper surface. Since the control is performed in a plan view shape, the degree of design freedom is high, the manufacturing is easy, and the manufacturing cost is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の面発光半導体レーザ素子の1例B1の
層構造を示す断面図である。
FIG. 1 is a sectional view showing a layer structure of an example B1 of a surface emitting semiconductor laser device of the present invention.

【図2】本発明の面発光半導体レーザ素子の別の例B2
の層構造を示す断面図である。
FIG. 2 shows another example B2 of the surface emitting semiconductor laser device of the present invention.
FIG. 3 is a cross-sectional view showing a layer structure of FIG.

【図3】基板の上に形成された層構造にSiNx膜とレ
ジストマスクを形成した状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which a SiNx film and a resist mask are formed on a layer structure formed on a substrate.

【図4】基板上に円柱構造を形成した状態を示す断面図
である。
FIG. 4 is a cross-sectional view showing a state where a columnar structure is formed on a substrate.

【図5】図4の円柱構造に酸化処理を施したのちの状態
を示す断面図である。
FIG. 5 is a cross-sectional view showing a state after an oxidation process is performed on the columnar structure of FIG. 4;

【図6】図5の構造体に、上部電極と誘電体膜を形成し
た状態を示す断面図である。
6 is a cross-sectional view showing a state in which an upper electrode and a dielectric film are formed on the structure of FIG.

【図7】実施例1と比較例1における電流−電圧特性と
電流−光出力特性を示すグラフである。
FIG. 7 is a graph showing current-voltage characteristics and current-light output characteristics in Example 1 and Comparative Example 1.

【図8】実施例2,3および比較例2における電流−電
圧特性と電流−光出力特性を示すグラフである。
FIG. 8 is a graph showing current-voltage characteristics and current-light output characteristics in Examples 2 and 3 and Comparative Example 2.

【図9】動作電流が7mAのときの実施例2,3および比
較例2の発光近視野像である。
FIG. 9 is a luminescence near-field image of Examples 2 and 3 and Comparative Example 2 when the operating current is 7 mA.

【図10】動作電流が15mAのときの実施例2,3およ
び比較例2の発光近視野像である。
FIG. 10 is a luminescence near-field image of Examples 2 and 3 and Comparative Example 2 when the operating current is 15 mA.

【図11】従来の面発光半導体レーザ素子の1例Aを示
す断面図である。
FIG. 11 is a sectional view showing an example A of a conventional surface emitting semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 基板 2 下部反射鏡層構造 3a 下部クラッド層 3b 上部クラッド層 3c AlAs層 3d 絶縁領域 3e 電流注入経路 4 発光層 5 下部反射鏡層構造 6 GaAs層 6a,6A,6B レーザ光の出射窓 6C 開口部 7a 上部電極 7b 下部電極 7c 電極引き出し用パッド 8,8a,8A,8B 誘電体膜(レーザ光の発振波に
対して透明な層) 9 レジストマスク
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower reflecting mirror layer structure 3a Lower cladding layer 3b Upper cladding layer 3c AlAs layer 3d Insulating region 3e Current injection path 4 Light emitting layer 5 Lower reflecting mirror layer structure 6 GaAs layers 6a, 6A, 6B Laser light emission window 6C opening Part 7a Upper electrode 7b Lower electrode 7c Electrode leading pad 8, 8a, 8A, 8B Dielectric film (layer transparent to laser light oscillation wave) 9 Resist mask

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 上部反射鏡層構造と下部反射鏡層構造と
の間に発光層を配置した半導体材料の層構造が基板の上
に形成され、前記上部反射鏡層構造の上方には、平面視
形状が円環形状をした上部電極が形成され、前記上部電
極の内側が開口部になっている面発光半導体レーザ素子
において、 前記開口部の一部表面を被覆して、発振レーザ光の発振
波長に対して透明な層が形成されていることを特徴とす
る面発光半導体レーザ素子。
1. A layer structure of a semiconductor material having a light-emitting layer disposed between an upper mirror layer structure and a lower mirror layer structure is formed on a substrate, and a flat surface is formed above the upper mirror layer structure. In a surface emitting semiconductor laser device in which an upper electrode having a ring shape as viewed is formed and an inner side of the upper electrode is an opening, a part of a surface of the opening is covered to oscillate an oscillation laser beam. A surface emitting semiconductor laser device, wherein a layer transparent to a wavelength is formed.
【請求項2】 前記透明な層の平面視形状を変化させる
ことにより、発振レーザ光の出射窓の平面視形状を変化
させてレーザ光の発振横モードが制御される請求項1の
面発光半導体レーザ素子。
2. The surface-emitting semiconductor according to claim 1, wherein by changing the shape of the transparent layer in a plan view, the shape of the emission window of the oscillation laser light in a plan view is changed to control the oscillation transverse mode of the laser light. Laser element.
【請求項3】 前記発光層の近傍には電流注入経路が形
成され、前記開口部に形成されている前記透明な層の形
成位置は前記電流注入経路の平面視形状の中に含まれて
いる請求項1または2の面発光半導体レーザ素子。
3. A current injection path is formed in the vicinity of the light emitting layer, and a formation position of the transparent layer formed in the opening is included in a plan view shape of the current injection path. The surface emitting semiconductor laser device according to claim 1.
【請求項4】 前記透明な層が、少なくとも1層の誘電
体膜から成る請求項1〜3のいずれかの面発光半導体レ
ーザ素子。
4. The surface emitting semiconductor laser device according to claim 1, wherein said transparent layer comprises at least one dielectric film.
【請求項5】 前記誘電体膜が、SiNx,SiOx,
AlOx,TiOx,MgO,MgFのいずれかである
請求項4の面発光半導体レーザ素子。
5. The method according to claim 1, wherein the dielectric film is made of SiNx, SiOx,
5. The surface emitting semiconductor laser device according to claim 4, wherein the device is any one of AlOx, TiOx, MgO, and MgF.
【請求項6】 前記透明な層の厚みが、発振レーザ光の
発振波長の(2i+1)/4n倍(ただし、nは透明な
層の屈折率,iは整数を表す)に相当する厚みになって
いる請求項1〜5のいずれかの面発光半導体レーザ素
子。
6. The thickness of the transparent layer is a thickness corresponding to (2i + 1) / 4n times the oscillation wavelength of the oscillating laser light (where n is the refractive index of the transparent layer and i is an integer). The surface emitting semiconductor laser device according to claim 1, wherein:
【請求項7】 前記透明な層の厚みが、発振レーザ光の
発振波長の2i/4n倍(ただし、nは透明な層の屈折
率,iは自然数を表す)に相当する厚みになっており、
かつ、前記透明な層の上に金属膜が成膜されている請求
項1〜5のいずれかの面発光半導体レーザ素子。
7. The thickness of the transparent layer is equivalent to 2i / 4n times the oscillation wavelength of the oscillating laser light (where n is the refractive index of the transparent layer and i is a natural number). ,
6. The surface emitting semiconductor laser device according to claim 1, wherein a metal film is formed on the transparent layer.
JP2000089393A 1999-09-13 2000-03-28 Surface emitting semiconductor laser device Expired - Lifetime JP3566902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089393A JP3566902B2 (en) 1999-09-13 2000-03-28 Surface emitting semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-259067 1999-09-13
JP25906799 1999-09-13
JP2000089393A JP3566902B2 (en) 1999-09-13 2000-03-28 Surface emitting semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2001156395A true JP2001156395A (en) 2001-06-08
JP3566902B2 JP3566902B2 (en) 2004-09-15

Family

ID=26543945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089393A Expired - Lifetime JP3566902B2 (en) 1999-09-13 2000-03-28 Surface emitting semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3566902B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051644A (en) * 2001-08-02 2003-02-21 Furukawa Electric Co Ltd:The Semiconductor device, semiconductor light-receiving device, semiconductor light-emitting device, semiconductor laser and surface-emitting semiconductor laser
JP2003069150A (en) * 2001-08-30 2003-03-07 Furukawa Electric Co Ltd:The Face light-emitting type semiconductor laser device
KR100447745B1 (en) * 2002-04-04 2004-09-08 주식회사 옵토웰 Single mode vertical-cavity surface-emitting laser diode and fabrication method thereof
JP2004288674A (en) * 2003-03-19 2004-10-14 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and optical communication system using it
JP2006100858A (en) * 2005-12-12 2006-04-13 Sony Corp Surface-emission semiconductor laser element
JP2006245615A (en) * 2006-06-07 2006-09-14 Sony Corp Surface emission semiconductor laser device and method for manufacturing thereof
US7126977B2 (en) 2002-09-25 2006-10-24 Seiko Epson Corporation Surface emitting semiconductor laser and manufacturing method thereof, light module, light transmission device
JP2007059672A (en) * 2005-08-25 2007-03-08 Fuji Xerox Co Ltd Vertical cavity surface-emitting semiconductor laser array
JP2007251174A (en) * 2006-03-14 2007-09-27 Emcore Corp Vcsel semiconductor device accompanying modal control
JP2008034797A (en) * 2006-06-27 2008-02-14 Seiko Epson Corp Surface-emitting semiconductor laser
JP2010050496A (en) * 2006-06-27 2010-03-04 Seiko Epson Corp Surface-emitting type semiconductor laser
US7684453B2 (en) 2003-05-19 2010-03-23 Sony Corporation Surface light emitting semiconductor laser element
WO2010137389A1 (en) * 2009-05-28 2010-12-02 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2011060993A (en) * 2009-09-10 2011-03-24 Canon Inc Surface emitting laser and surface emitting laser array
EP2325957A2 (en) 2009-11-18 2011-05-25 Ricoh Company Ltd. Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
EP2328244A1 (en) 2009-11-27 2011-06-01 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
EP2330698A1 (en) 2009-11-26 2011-06-08 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2011119370A (en) * 2009-12-02 2011-06-16 Ricoh Co Ltd Optical device, optical scanning apparatus, and image forming device
WO2011078196A1 (en) 2009-12-21 2011-06-30 Ricoh Company, Ltd. Optical device capable of minimizing output variation due to feedback light, optical scanning apparatus, and image forming apparatus
JP2011134746A (en) * 2009-12-22 2011-07-07 Fuji Xerox Co Ltd Surafce emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing apparatus
EP2343785A2 (en) 2010-01-08 2011-07-13 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
EP2381544A2 (en) 2010-04-22 2011-10-26 Ricoh Company, Limited Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
WO2011148957A1 (en) 2010-05-25 2011-12-01 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
US8077752B2 (en) * 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
US8295318B2 (en) 2010-06-29 2012-10-23 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical-cavity-surface-emitting-laser device, optical transmission apparatus, and information processing apparatus
EP2366549A3 (en) * 2010-03-18 2012-11-28 Ricoh Company, Ltd. Surface-emitting laser module, optical scanner device, and image forming apparatus
US8368972B2 (en) 2011-01-05 2013-02-05 Fuji Xerox Co., Ltd. Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
US8465993B2 (en) 2009-12-09 2013-06-18 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
US8731012B2 (en) 2012-01-24 2014-05-20 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and its manufacturing method, surface emitting semiconductor laser device, optical transmitter, and information processor
US8842709B2 (en) 2012-08-07 2014-09-23 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, manufacturing method for surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2014199897A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
JP2014199900A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
US10156728B2 (en) 2015-04-24 2018-12-18 Ricoh Company, Ltd. Information provision device, information provision method, and recording medium
USRE48577E1 (en) * 2008-01-10 2021-06-01 Sony Corporation Vertical cavity surface emitting laser
US11901701B2 (en) 2019-11-22 2024-02-13 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser, surface emitting laser device, light source device, and detection apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261754B2 (en) 2008-11-27 2013-08-14 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP5850075B2 (en) * 2009-05-28 2016-02-03 株式会社リコー Manufacturing method of surface emitting laser element
JP5636686B2 (en) 2009-06-04 2014-12-10 株式会社リコー Surface emitting laser array, optical scanning device, image forming apparatus, and method of manufacturing surface emitting laser array
JP5510899B2 (en) 2009-09-18 2014-06-04 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP5532321B2 (en) 2009-11-17 2014-06-25 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP5601014B2 (en) 2010-04-23 2014-10-08 株式会社リコー Optical device, optical scanning apparatus, and image forming apparatus
JP2013051398A (en) 2011-08-01 2013-03-14 Ricoh Co Ltd Surface emitting laser element, optical scanner, and image forming apparatus
JP2016213412A (en) 2015-05-13 2016-12-15 株式会社リコー Optical device and light irradiation device

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051644A (en) * 2001-08-02 2003-02-21 Furukawa Electric Co Ltd:The Semiconductor device, semiconductor light-receiving device, semiconductor light-emitting device, semiconductor laser and surface-emitting semiconductor laser
JP2003069150A (en) * 2001-08-30 2003-03-07 Furukawa Electric Co Ltd:The Face light-emitting type semiconductor laser device
KR100447745B1 (en) * 2002-04-04 2004-09-08 주식회사 옵토웰 Single mode vertical-cavity surface-emitting laser diode and fabrication method thereof
US7126977B2 (en) 2002-09-25 2006-10-24 Seiko Epson Corporation Surface emitting semiconductor laser and manufacturing method thereof, light module, light transmission device
JP2004288674A (en) * 2003-03-19 2004-10-14 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and optical communication system using it
US7251262B2 (en) 2003-03-19 2007-07-31 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and communication system using the same
US7352782B2 (en) 2003-03-19 2008-04-01 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and communication system using the same
US10025051B2 (en) 2003-05-19 2018-07-17 Sony Corporation Surface light emitting semiconductor laser element
US10578819B2 (en) 2003-05-19 2020-03-03 Sony Corporation Surface light emitting semiconductor laser element
US7684453B2 (en) 2003-05-19 2010-03-23 Sony Corporation Surface light emitting semiconductor laser element
US9983375B2 (en) 2003-05-19 2018-05-29 Sony Corporation Surface light emitting semiconductor laser element
JP2007059672A (en) * 2005-08-25 2007-03-08 Fuji Xerox Co Ltd Vertical cavity surface-emitting semiconductor laser array
JP2006100858A (en) * 2005-12-12 2006-04-13 Sony Corp Surface-emission semiconductor laser element
JP2007251174A (en) * 2006-03-14 2007-09-27 Emcore Corp Vcsel semiconductor device accompanying modal control
JP2006245615A (en) * 2006-06-07 2006-09-14 Sony Corp Surface emission semiconductor laser device and method for manufacturing thereof
JP2008034797A (en) * 2006-06-27 2008-02-14 Seiko Epson Corp Surface-emitting semiconductor laser
JP2010050496A (en) * 2006-06-27 2010-03-04 Seiko Epson Corp Surface-emitting type semiconductor laser
US8363687B2 (en) 2008-01-10 2013-01-29 Sony Corporation Vertical cavity surface emitting laser
US8077752B2 (en) * 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
USRE48577E1 (en) * 2008-01-10 2021-06-01 Sony Corporation Vertical cavity surface emitting laser
WO2010137389A1 (en) * 2009-05-28 2010-12-02 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
US8809089B2 (en) 2009-05-28 2014-08-19 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device and image forming apparatus
KR101347963B1 (en) 2009-05-28 2014-01-07 가부시키가이샤 리코 Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
US8609447B2 (en) 2009-05-28 2013-12-17 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device and image forming apparatus
JP2011009693A (en) * 2009-05-28 2011-01-13 Ricoh Co Ltd Method of manufacturing surface emitting laser element, surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
CN102439806A (en) * 2009-05-28 2012-05-02 株式会社理光 Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2011060993A (en) * 2009-09-10 2011-03-24 Canon Inc Surface emitting laser and surface emitting laser array
JP2011129869A (en) * 2009-11-18 2011-06-30 Ricoh Co Ltd Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
EP2325957A2 (en) 2009-11-18 2011-05-25 Ricoh Company Ltd. Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
US8711891B2 (en) 2009-11-18 2014-04-29 Ricoh Company, Ltd. Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
US8275014B2 (en) 2009-11-26 2012-09-25 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
EP2330698A1 (en) 2009-11-26 2011-06-08 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2011135031A (en) * 2009-11-26 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner, and image formation apparatus
EP2328244A1 (en) 2009-11-27 2011-06-01 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
US8855159B2 (en) 2009-11-27 2014-10-07 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
JP2011119370A (en) * 2009-12-02 2011-06-16 Ricoh Co Ltd Optical device, optical scanning apparatus, and image forming device
US8465993B2 (en) 2009-12-09 2013-06-18 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
US8803936B2 (en) 2009-12-21 2014-08-12 Ricoh Company, Ltd. Optical device capable of minimizing output variation due to feedback light, optical scanning apparatus, and image forming apparatus
WO2011078196A1 (en) 2009-12-21 2011-06-30 Ricoh Company, Ltd. Optical device capable of minimizing output variation due to feedback light, optical scanning apparatus, and image forming apparatus
JP2011134746A (en) * 2009-12-22 2011-07-07 Fuji Xerox Co Ltd Surafce emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing apparatus
EP2343785A2 (en) 2010-01-08 2011-07-13 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
US8675271B2 (en) 2010-01-08 2014-03-18 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
US9276377B2 (en) 2010-03-18 2016-03-01 Ricoh Company, Ltd. Surface-emitting laser module, optical scanner device, and image forming apparatus
US9831633B2 (en) 2010-03-18 2017-11-28 Ricoh Company, Ltd. Surface-emitting laser module, optical scanner device, and image forming apparatus
EP2366549A3 (en) * 2010-03-18 2012-11-28 Ricoh Company, Ltd. Surface-emitting laser module, optical scanner device, and image forming apparatus
US8916418B2 (en) 2010-03-18 2014-12-23 Ricoh Company, Ltd. Surface-emitting laser module, optical scanner device, and image forming apparatus
EP2381544A2 (en) 2010-04-22 2011-10-26 Ricoh Company, Limited Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
US8498319B2 (en) 2010-04-22 2013-07-30 Ricoh Company, Ltd. Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
US8989231B2 (en) 2010-04-22 2015-03-24 Hiroyoshi Shouji Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
WO2011148957A1 (en) 2010-05-25 2011-12-01 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
US8736652B2 (en) 2010-05-25 2014-05-27 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, image forming apparatus, and method for manufacturing surface-emitting laser device
US9176417B2 (en) 2010-05-25 2015-11-03 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, image forming apparatus, and method for manufacturing surface-emitting laser device
US8295318B2 (en) 2010-06-29 2012-10-23 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical-cavity-surface-emitting-laser device, optical transmission apparatus, and information processing apparatus
US8368972B2 (en) 2011-01-05 2013-02-05 Fuji Xerox Co., Ltd. Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
US8731012B2 (en) 2012-01-24 2014-05-20 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and its manufacturing method, surface emitting semiconductor laser device, optical transmitter, and information processor
US8842709B2 (en) 2012-08-07 2014-09-23 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, manufacturing method for surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2014199900A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
JP2014199897A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
US10156728B2 (en) 2015-04-24 2018-12-18 Ricoh Company, Ltd. Information provision device, information provision method, and recording medium
US11901701B2 (en) 2019-11-22 2024-02-13 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser, surface emitting laser device, light source device, and detection apparatus

Also Published As

Publication number Publication date
JP3566902B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3566902B2 (en) Surface emitting semiconductor laser device
JP4066654B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP2002009393A (en) Vertical resonator type surface emitting semiconductor laser and manufacturing method thereof
EP1130720B1 (en) Surface-emission semiconductor laser
JPH11340565A (en) Surface light-emitting semiconductor laser element and its manufacture
JP2001210908A (en) Surface-emitting semiconductor laser device
US20020110169A1 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
JP2003069151A (en) Face light-emitting type semiconductor laser device
JP3876918B2 (en) Surface emitting semiconductor laser device
JP2003347670A (en) Surface-emission semiconductor laser element and laser array
JP4599865B2 (en) Surface emitting semiconductor laser device
JP2001332812A (en) Surface emitting semiconductor laser element
JP4381017B2 (en) Surface emitting semiconductor laser device
JP2010045249A (en) Semiconductor light emitting device and method of manufacturing the same
JP2007165501A (en) Surface-emitting semiconductor laser and its manufacturing method
JP2004031863A (en) Surface light emission type semiconductor laser element
WO2001037386A1 (en) Surface-emitting semiconductor laser device
JP2006073823A (en) Surface-emitting semiconductor laser element and its manufacturing method
JPH06188518A (en) Variable wavelength surface emission laser
JP5261201B2 (en) Surface emitting laser, surface emitting laser array and manufacturing method thereof
WO2007102600A1 (en) Surface emitting semiconductor laser element
JPH114040A (en) Surface light-emitting laser
WO2020170675A1 (en) Vertical cavity light-emitting element
JP2003258379A (en) Surface-emitting laser and method of manufacturing the same
JP4494704B2 (en) Manufacturing method of surface emitting laser element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

R151 Written notification of patent or utility model registration

Ref document number: 3566902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term