JPH114040A - Surface light-emitting laser - Google Patents

Surface light-emitting laser

Info

Publication number
JPH114040A
JPH114040A JP15386397A JP15386397A JPH114040A JP H114040 A JPH114040 A JP H114040A JP 15386397 A JP15386397 A JP 15386397A JP 15386397 A JP15386397 A JP 15386397A JP H114040 A JPH114040 A JP H114040A
Authority
JP
Japan
Prior art keywords
layer
active layer
forming
emitting laser
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15386397A
Other languages
Japanese (ja)
Other versions
JP2917971B2 (en
Inventor
Takashi Yoshikawa
隆士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15386397A priority Critical patent/JP2917971B2/en
Publication of JPH114040A publication Critical patent/JPH114040A/en
Application granted granted Critical
Publication of JP2917971B2 publication Critical patent/JP2917971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface light-emitting semiconductor laser, capable of reducing a threshold value further, lowering power consumption and improving efficiency, and the manufacturing method of the surface light-emitting semiconductor laser with superior controllability for facilitating the manufacture. SOLUTION: In this surface light-emitting laser provided with an active layer 1 and a pair of distributed reflection layers (DBRs) 3 and 6 for holding the active layer 1 there between and forming a resonator on a substrate 7, an oxidized layer 5 for current constriction provided with an opening part is provided on a position near the active layer 1 between the active layer 1 and the distributed reflection layer 3 and the oxidized layer 4 for light constriction of a large film thickness and an opening wider than the oxidized layer 5 for the current constriction is provided on the position separated more than the oxidized layer 5 for the current constriction from the active layer 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は面発光型レーザに関
し、より詳しくは面発光型レーザの閾値電流の低減化お
よび低消費電力化が図れる面発光型レーザおよびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting laser, and more particularly, to a surface emitting laser capable of reducing a threshold current and reducing power consumption of the surface emitting laser and a method of manufacturing the same.

【0002】[0002]

【従来の技術】面発光型レーザは、基板に対して垂直な
方向に光を出射するレーザであり、光インタコネクショ
ン等の光源として用いられている。例えば特開平3−3
4754号公報には、GaAs/AlAsの積層構造の
半導体多層反射膜による共振器と、イオン注入により高
抵抗層を活性層の脇に形成した電流狭窄構造とを用いた
構造が記載されている。
2. Description of the Related Art A surface emitting laser is a laser that emits light in a direction perpendicular to a substrate, and is used as a light source for optical interconnection and the like. For example, JP-A-3-3
Japanese Patent No. 4754 describes a structure using a resonator formed of a semiconductor multilayer reflective film having a GaAs / AlAs laminated structure and a current confinement structure in which a high-resistance layer is formed beside an active layer by ion implantation.

【0003】これに対し、エレクトロニクスレターズ、
第30巻、2043頁には、構成材料中のAlAsまた
はAlGaAs膜の一部を酸化して、電流狭窄構造を形
成することで、低閾値、高効率の優れた特性を有するレ
ーザが得られることが記載されている。この製造方法で
は、高温での水蒸気によるAlGaAsの酸化が用いら
れている。Al組成比が0から1へ増えるに従い酸化の
速度が増していくことを利用して、活性層直近の1層の
Al組成比を大きくしておくことで、この1層のみを周
囲から酸化する方法である。
On the other hand, Electronics Letters,
Vol. 30, p. 2043 states that a laser having excellent characteristics of low threshold and high efficiency can be obtained by forming a current confinement structure by oxidizing a part of the AlAs or AlGaAs film in the constituent material. Is described. In this manufacturing method, oxidation of AlGaAs by steam at a high temperature is used. By making use of the fact that the oxidation rate increases as the Al composition ratio increases from 0 to 1, by increasing the Al composition ratio of one layer immediately adjacent to the active layer, only this one layer is oxidized from the surroundings. Is the way.

【0004】Al組成比の大きいAl(Ga)As層の
周囲を酸化してできたAl(Ga)As酸化層は高抵抗
であるので電流狭窄層として働く。また、同時にAl
(Ga)As酸化層は屈折率が中心部の元のAl(G
a)As層に比べて低いため、屈折率差に起因する光閉
じこめ層としての働きも持つ。そのためこの選択酸化を
用いた面発光レーザは非常に小さい領域だけに電流注入
をし、かつ光も閉じこめられるため数十μAという非常
に小さな閾値を持つ。
An Al (Ga) As oxide layer formed by oxidizing the periphery of an Al (Ga) As layer having a large Al composition ratio has a high resistance and thus functions as a current confinement layer. At the same time, Al
The (Ga) As oxide layer has a refractive index of the original Al (G
a) Since it is lower than that of the As layer, it also functions as a light confinement layer caused by a difference in refractive index. Therefore, a surface emitting laser using this selective oxidation has a very small threshold value of several tens of μA because current is injected only into a very small region and light is confined.

【0005】[0005]

【発明が解決しようとする課題】しかし、さらに閾値電
流を下げるために酸化による電流狭窄を進めていくと、
開口径が3μm以下では逆に閾値電流が増加してしまう
問題があった。アプライド フィジックス レターズ
第70巻823−825ページ(AppliedPhy
sics Letters,70(7),pp823−
825,1997)によれば、径が小さくなると酸化層
による屈折率差のために光が回折してしまうためである
と考えられる。
However, when the current confinement by oxidation is further advanced to further reduce the threshold current,
If the opening diameter is 3 μm or less, there is a problem that the threshold current increases. Applied Physics Letters
Vol. 70, pages 823-825 (AppliedPhy
sics Letters, 70 (7), pp823-
According to 825, 1997), it is considered that when the diameter is small, light is diffracted due to a difference in refractive index between the oxide layers.

【0006】本発明は閾値をさらに低減して、低消費電
力、高効率化が図れる面発光型半導体レーザと製造が容
易で制御性に優れた面発光型半導体レーザの製造方法を
提供することを目的とする。
It is an object of the present invention to provide a surface-emitting type semiconductor laser in which the threshold value is further reduced to achieve low power consumption and high efficiency, and a method of manufacturing a surface-emitting type semiconductor laser which is easy to manufacture and has excellent controllability. Aim.

【0007】[0007]

【課題を解決するための手段】本発明は、基板上に、活
性層と、この活性層を挟み共振器を形成する一組の分布
反射層とを有する面発光レーザにおいて、活性層と分布
反射層の間の活性層に近い位置に、開口部を有する電流
狭窄用酸化層を設け、この電流狭窄用酸化層より活性層
から離れた位置に、電流狭窄用酸化層より広い開口で、
膜厚が厚い光狭窄用酸化層を設けたことを特徴とする面
発光レーザに関する。
SUMMARY OF THE INVENTION The present invention relates to a surface emitting laser having an active layer on a substrate and a set of distributed reflection layers forming a resonator with the active layer interposed therebetween. A current confinement oxide layer having an opening is provided at a position near the active layer between the layers, and at a position farther from the active layer than the current confinement oxide layer, an opening wider than the current confinement oxide layer is provided.
The present invention relates to a surface-emitting laser provided with a thick optical confinement oxide layer.

【0008】また、本発明は基板上に、活性層と、この
活性層を挟み共振器を形成する一組の分布反射層とを有
する面発光レーザの製造方法において、基板上に一方の
分布反射層を成膜する工程と、活性層を成膜する工程
と、他の層よりAl組成比の高い第1の高Al半導体化
合物層を形成する工程と、第1の高Al半導体化合物層
よりAl組成比が低く、その他の層よりAl比の高い第
2の高Al半導体化合物層を形成する工程と、もう一方
の分布反射層を成膜する工程と、少なくとも第1および
第2の高Al半導体化合物層をメサ型に加工する工程
と、水蒸気を含む雰囲気中で第1および第2の高Al半
導体化合物層を周囲から酸化する工程とを有する面発光
レーザの製造方法に関する。
The present invention also relates to a method of manufacturing a surface emitting laser having an active layer on a substrate and a set of distributed reflection layers forming a resonator with the active layer interposed therebetween. Forming a layer, forming an active layer, forming a first high Al semiconductor compound layer having a higher Al composition ratio than other layers, and forming an Al layer from the first high Al semiconductor compound layer. A step of forming a second high Al semiconductor compound layer having a low composition ratio and a higher Al ratio than the other layers, a step of forming another distributed reflection layer, and at least a first and a second high Al semiconductor The present invention relates to a method for manufacturing a surface emitting laser, which includes a step of processing a compound layer into a mesa shape and a step of oxidizing first and second high Al semiconductor compound layers from the surroundings in an atmosphere containing water vapor.

【0009】本発明では、活性層と分布反射層の間の活
性層に近い位置に、開口部の小さい電流狭窄用酸化層を
設けることで十分に電流狭窄を行うことができる。ま
た、層厚を光が屈折率変化を感じない程度に薄くしてお
くことで、屈折率の変化による光散乱、回折損失を最小
限にすることができる。
In the present invention, the current confinement can be sufficiently performed by providing the current confinement oxide layer having a small opening at a position between the active layer and the distributed reflection layer close to the active layer. Further, by making the layer thickness thin enough that light does not perceive a change in the refractive index, light scattering and diffraction loss due to the change in the refractive index can be minimized.

【0010】また、活性層の位置から見てこの電流狭窄
用酸化層よりさらに少し遠い位置に、層厚が厚く、開口
部の広い光狭窄用酸化層を設けることで光の閉じこめも
十分に行うことができる。即ち、本発明によれば、電流
狭窄機能を持つ酸化膜と光狭窄機能を持つ酸化膜を別途
設けることで、それぞれに最適の条件を設定できるた
め、従来より低い閾値電流でのレーザ発振を実現するこ
とができる。
Further, a light confinement oxide layer having a large thickness and a wide opening is provided at a position slightly further from the current confinement oxide layer as viewed from the position of the active layer, thereby sufficiently confining light. be able to. That is, according to the present invention, by separately providing an oxide film having a current confinement function and an oxide film having a light confinement function, optimal conditions can be set for each of them, thereby realizing laser oscillation with a lower threshold current than before. can do.

【0011】また、本発明の製造方法では、化合物半導
体の積層構造中の2層のAl組成比を高くしておくこと
で、その2層だけ酸化されるようなり、しかもこの2層
の間でもAl組成比を変えることで、周囲からの水蒸気
酸化の速度を調整する。その結果、異なった開口を持つ
酸化膜を、精度よく形成することができる。
Further, in the manufacturing method of the present invention, by increasing the Al composition ratio of the two layers in the compound semiconductor laminated structure, only the two layers are oxidized, and even between these two layers, By changing the Al composition ratio, the rate of steam oxidation from the surroundings is adjusted. As a result, oxide films having different openings can be formed accurately.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て図1を参照して詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to FIG.

【0013】半導体基板7上に、活性層1と、これを挟
む基板側の分布反射層DBR6(Distribute
d Brag Reflector)と上側DBR3か
らなる共振器を有する構造である。活性層1の上下に
は、共振器を構成するために中間層2を設け、中間層2
の直上に光が屈折率差を感じない程度に薄い電流狭窄用
酸化層5を設ける。この電流狭窄用酸化層5は、中央に
酸化されていない半導体の開口部B9を有する酸化膜で
ある。
On a semiconductor substrate 7, an active layer 1 and a distributed reflection layer DBR6 (Distribute) on the substrate side sandwiching the active layer 1 are provided.
d Bragg Reflector) and a resonator including the upper DBR 3. Above and below the active layer 1, an intermediate layer 2 is provided to constitute a resonator.
A thin oxide layer 5 for current confinement, which is thin enough that light does not sense a difference in refractive index, is provided immediately above the layer. The current confinement oxide layer 5 is an oxide film having a non-oxidized semiconductor opening B9 at the center.

【0014】例えば発振波長980nmである場合には
半導体の屈折率を3程度とすると半導体内の光の波長は
300nm程度となるので、通常のDBRの厚さは、
(波長)/4程度、即ち80nm程度の厚さである。電
流狭窄用酸化層の厚さは、目安としてこの1/4程度、
即ち20nm程度が適当である。しかし、通常、電流狭
窄用酸化層5の位置が活性層から離れるときには厚く、
近づくときには薄くし、また酸化層の屈折率変化が大き
いほど薄くすることが好ましい。また発光強度、開口部
B9の径にも依存するので、膜厚および活性層からの距
離は個々のレーザの目的等に合わせて適宜調整して最適
化する。ここでは、電流狭窄用酸化層の厚さを15nm
とした。
For example, when the oscillation wavelength is 980 nm, if the refractive index of the semiconductor is about 3, the wavelength of the light in the semiconductor becomes about 300 nm.
(Wavelength) / 4, that is, a thickness of about 80 nm. The thickness of the current confinement oxide layer is approximately 1/4 of this thickness,
That is, about 20 nm is appropriate. However, when the position of the current confinement oxide layer 5 is away from the active layer, the thickness is usually large.
It is preferable to reduce the thickness when approaching, and to decrease as the change in the refractive index of the oxide layer increases. In addition, the thickness and the distance from the active layer are appropriately adjusted and optimized in accordance with the purpose of each laser and the like, since it depends on the light emission intensity and the diameter of the opening B9. Here, the thickness of the current confinement oxide layer is set to 15 nm.
And

【0015】また開口部B9は径が小さいほど電流狭窄
が十分行われるので閾値電流が下がるが、抵抗の増加に
よる発熱で発光効率が下がること、ゲインが飽和するこ
とから最適値を有し、これも個々のレーザで最適化する
必要がある。ここでは2.5μm径とした。
The smaller the diameter of the opening B9 is, the more the current constriction is performed. Therefore, the threshold current is lowered. However, the light emission efficiency is lowered due to heat generation due to an increase in resistance and the gain is saturated. Also need to be optimized for individual lasers. Here, the diameter was 2.5 μm.

【0016】中間層2から(波長)/2程度離れた位置
には光狭窄用酸化層4を設ける。この厚さは光が十分屈
折率変化を感じる程度であり、電流狭窄用酸化層5より
厚い。目安として(波長)/4、即ち80nm程度で良
いが、光の回折や散乱による損失を避けるため、活性層
1との距離が小さい場合は薄くする必要がある。
An oxide layer 4 for light confinement is provided at a position (wavelength) / 2 away from the intermediate layer 2. This thickness is such that light can sufficiently change the refractive index, and is thicker than the current confinement oxide layer 5. As a guide, (wavelength) / 4, that is, about 80 nm may be used. However, in order to avoid loss due to light diffraction and scattering, when the distance from the active layer 1 is small, the thickness needs to be reduced.

【0017】開口部A8の径は光閉じこめ効果を維持し
つつ、回折、散乱損失が少ないよう個々のレーザで最適
化が必要であるが、本発明では5μmとした。
The diameter of the opening A8 needs to be optimized for each laser so that diffraction and scattering losses are small while maintaining the light confinement effect. In the present invention, the diameter is set to 5 μm.

【0018】薄い電流狭窄用酸化層5により光の回折散
乱損失を起こさずに十分狭い開口部B9まで電流を狭窄
し、かつ厚い光狭窄用酸化層4により光閉じこめを実現
することで、これまで1枚の酸化層では不可能であった
程度まで閾値を低減することができる。
By narrowing the current to the opening B9 which is sufficiently narrow without causing light scattering and scattering loss by the thin current confinement oxide layer 5, and achieving light confinement by the thick light confinement oxide layer 4, The threshold value can be reduced to the extent that one oxide layer could not.

【0019】次にこのレーザ構造の製造方法を以下に説
明する。成膜方法は、分子線エピタキシ法、または有機
金属気相エピタキシ法を用いることができる。
Next, a method of manufacturing the laser structure will be described below. As a film formation method, a molecular beam epitaxy method or a metal organic vapor phase epitaxy method can be used.

【0020】図2に示すように、GaAs基板7上に、
AlxGa1-xAs/GaAsの組(x=0.92)を2
2.5組(最下層と最上層がAlxGa1-xAs層)成膜
し、厚さ約2.9μmの基板側DBR6を形成した。
As shown in FIG. 2, on a GaAs substrate 7,
The set of Al x Ga 1 -x As / GaAs (x = 0.92) is 2
2.5 sets (the lowermost layer and the uppermost layer were Al x Ga 1 -x As layers) were formed to form a substrate-side DBR 6 having a thickness of about 2.9 μm.

【0021】この上に中間層をAlxGa1-xAs(x=
0.2)の組成で成膜し、その上に活性層をInxGa
1-xAs(x=0.2)の組成で量子井戸3層、厚さ1
0nmに成膜し、さらにその上に中間層をAlxGa1-x
As(x=0.2)の組成で成膜した。中間層の厚さ
は、活性層の上下の両方を合わせて光学長で一波長、約
0.3μmである。
On top of this, an intermediate layer is formed of Al x Ga 1 -x As (x =
0.2), and an active layer was formed thereon with In x Ga
1-x As (x = 0.2) composition, 3 quantum well layers, thickness 1
0 nm, and an intermediate layer is further formed thereon by Al x Ga 1-x
A film was formed with a composition of As (x = 0.2). The thickness of the intermediate layer is one wavelength, about 0.3 μm in optical length, including both the upper and lower portions of the active layer.

【0022】この上に、後の工程により電流狭窄用酸化
層を形成するAlxGa1-xAs(x=0.97)層15
を、厚さ15nmに成膜した。
On top of this, an Al x Ga 1 -x As (x = 0.97) layer 15 for forming a current confinement oxide layer in a later step
Was formed into a film having a thickness of 15 nm.

【0023】次に、この上にGaAs層を1/4波長、
約50nm厚に成膜した。
Next, a GaAs layer is formed thereon with a 波長 wavelength,
The film was formed to a thickness of about 50 nm.

【0024】この上に、後の工程により光狭窄用酸化層
を形成するAlxGa1-xAs(x=0.95)層14を
厚さ60nmに成膜した。
An Al x Ga 1 -x As (x = 0.95) layer 14 for forming an optical confinement oxide layer in a later step was formed thereon to a thickness of 60 nm.

【0025】さらにこの上に、AlxGa1-xAs/Ga
Asの組(x=0.92)を15.5組成膜し、厚さ約
2.0μmの上側DBR3を形成した。
Further, on top of this, Al x Ga 1 -x As / Ga
A set of As (x = 0.92) was formed into a 15.5 composition film to form an upper DBR 3 having a thickness of about 2.0 μm.

【0026】ここまでの工程により、図2のような積層
構造が得られる。この積層構造の上側DBRから基板側
DBRの一部までを、図3のように直径40μmのメサ
型に加工する。水蒸気を含んだ窒素雰囲気中、430℃
に、10分間保持した。
By the steps described above, a laminated structure as shown in FIG. 2 is obtained. From the upper DBR to a part of the substrate-side DBR of this laminated structure, a mesa having a diameter of 40 μm is processed as shown in FIG. 430 ° C in a nitrogen atmosphere containing water vapor
For 10 minutes.

【0027】その結果Al組成比の大きいAlxGa1-x
As(x=0.97)層15は、中の方まで酸化が進行
し、開口部の小さい電流狭窄用酸化層5が形成され、こ
れよりもAl組成比が小さいAlxGa1-xAs(x=
0.95)層14では、中の方まで酸化が進行したが、
電流狭窄用酸化層よりも開口の大きい光狭窄用酸化層4
が形成され、図1に示す面発光型レーザが得られた。
As a result, Al x Ga 1 -x having a large Al composition ratio
Oxidation of the As (x = 0.97) layer 15 progresses to the middle to form a current confinement oxide layer 5 having a small opening, and Al x Ga 1 -x As having a smaller Al composition ratio than this. (X =
0.95) In layer 14, oxidation progressed to the middle,
Light confinement oxide layer 4 having an opening larger than current confinement oxide layer 4
Was formed, and the surface emitting laser shown in FIG. 1 was obtained.

【0028】このように本発明の製造方法では、Al組
成比を変えて水蒸気酸化の速度を調整することができる
ので、異なった開口を持つ酸化膜を、精度よく形成する
ことができる。水蒸気酸化の温度、時間等の条件はプロ
セスに合わせて適宜調整することができる。
As described above, in the manufacturing method of the present invention, the rate of steam oxidation can be adjusted by changing the Al composition ratio, so that oxide films having different openings can be formed with high accuracy. Conditions such as the temperature and time of steam oxidation can be appropriately adjusted according to the process.

【0029】[0029]

【発明の効果】本発明によれば、従来の構造よりさらに
閾値を低減して、低消費電力、高効率化することが可能
である。また、本発明の製造方法によれば、製造が容易
で制御性に優れた面発光型半導体レーザの製造方法を提
供することができる。
According to the present invention, it is possible to further reduce the threshold value as compared with the conventional structure, thereby achieving low power consumption and high efficiency. Further, according to the manufacturing method of the present invention, it is possible to provide a method of manufacturing a surface emitting semiconductor laser which is easy to manufacture and has excellent controllability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の面発光レーザを示す図である。FIG. 1 is a diagram showing a surface emitting laser of the present invention.

【図2】本発明の面発光レーザの製造工程を示す図であ
る。
FIG. 2 is a diagram showing a manufacturing process of the surface emitting laser of the present invention.

【図3】図2に引き続き、本発明の面発光レーザの製造
工程を示す図である。
FIG. 3 is a view showing a manufacturing step of the surface emitting laser of the present invention, following FIG. 2;

【符号の説明】[Explanation of symbols]

1 活性層 2 中間層 3 上側DBR 4 光狭窄用酸化層 5 電流狭窄用酸化層 6 基板側DBR 7 基板 8 開口部A 9 開口部B 14 後の工程により光狭窄用酸化層となるAlx
1-xAs(x=0.95)層 15 後の工程により電流狭窄用酸化層となるAlx
Ga1-xAs(x=0.97)層
DESCRIPTION OF SYMBOLS 1 Active layer 2 Intermediate layer 3 Upper DBR 4 Light confinement oxide layer 5 Current confinement oxide layer 6 Substrate side DBR 7 Substrate 8 Opening A 9 Opening B 14 Al x G to be a light confinement oxide layer in a later step
a 1-x As (x = 0.95) layer 15 Al x to be a current confinement oxide layer in a later step
Ga 1-x As (x = 0.97) layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、活性層と、この活性層を挟み
共振器を形成する一組の分布反射層とを有する面発光レ
ーザにおいて、 活性層と分布反射層の間の活性層に近い位置に、開口部
を有する電流狭窄用酸化層を設け、 この電流狭窄用酸化層より活性層から離れた位置に、電
流狭窄用酸化層より広い開口で、膜厚が厚い光狭窄用酸
化層を設けたことを特徴とする面発光レーザ。
1. A surface emitting laser having an active layer on a substrate and a set of distributed reflection layers forming a resonator with the active layer interposed therebetween, wherein the surface emitting laser is close to the active layer between the active layer and the distributed reflection layer. A current confinement oxide layer having an opening is provided at a position, and a light confinement oxide layer having a larger opening and a larger film thickness than the current confinement oxide layer is provided at a position farther from the active layer than the current confinement oxide layer. A surface emitting laser provided.
【請求項2】 基板上に、活性層と、この活性層を挟み
共振器を形成する一組の分布反射層とを有する面発光レ
ーザの製造方法において、 基板上に一方の分布反射層を成膜する工程と、 活性層を成膜する工程と、 他の層よりAl組成比の高い第1の高Al半導体化合物
層を形成する工程と、第1の高Al半導体化合物層より
Al組成比が低く、その他の層よりAl比の高い第2の
高Al半導体化合物層を形成する工程と、 もう一方の分布反射層を成膜する工程と、 少なくとも第1および第2の高Al半導体化合物層をメ
サ型に加工する工程と、 水蒸気を含む雰囲気中で第1および第2の高Al半導体
化合物層を周囲から酸化する工程とを有する面発光レー
ザの製造方法。
2. A method of manufacturing a surface emitting laser having an active layer on a substrate and a pair of distributed reflection layers forming a resonator with the active layer interposed therebetween, comprising forming one distributed reflection layer on the substrate. Forming a film, forming an active layer, forming a first high Al semiconductor compound layer having a higher Al composition ratio than the other layers, and forming a first high Al semiconductor compound layer having a higher Al composition ratio than the other layers. Forming a second high Al semiconductor compound layer having a lower Al ratio than the other layers; forming another distributed reflection layer; and forming at least the first and second high Al semiconductor compound layers. A method for manufacturing a surface emitting laser, comprising: a step of processing into a mesa type; and a step of oxidizing a first and a second high Al semiconductor compound layer from the surroundings in an atmosphere containing water vapor.
JP15386397A 1997-06-11 1997-06-11 Surface emitting laser Expired - Fee Related JP2917971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15386397A JP2917971B2 (en) 1997-06-11 1997-06-11 Surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15386397A JP2917971B2 (en) 1997-06-11 1997-06-11 Surface emitting laser

Publications (2)

Publication Number Publication Date
JPH114040A true JPH114040A (en) 1999-01-06
JP2917971B2 JP2917971B2 (en) 1999-07-12

Family

ID=15571758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15386397A Expired - Fee Related JP2917971B2 (en) 1997-06-11 1997-06-11 Surface emitting laser

Country Status (1)

Country Link
JP (1) JP2917971B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449300B1 (en) * 1999-03-05 2002-09-10 Tokyo Institute Of Technology Surface-emitting laser
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2007221023A (en) * 2006-02-20 2007-08-30 Ricoh Co Ltd Surface-emitting laser element, optical transmission module including the element, and optical transmission system including the module
JP2008530774A (en) * 2005-02-07 2008-08-07 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Planar oxidation method for forming local buried insulators
US7924899B2 (en) 2008-11-05 2011-04-12 Fuji Xerox Co., Ltd. Vertical-cavity surface-emitting laser diode (VCSEL), method for fabricating VCSEL, and optical transmission apparatus
JP2013201222A (en) * 2012-03-23 2013-10-03 Furukawa Electric Co Ltd:The Surface-emitting laser element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449300B1 (en) * 1999-03-05 2002-09-10 Tokyo Institute Of Technology Surface-emitting laser
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7022539B2 (en) 2000-09-21 2006-04-04 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7260137B2 (en) 2000-09-21 2007-08-21 Ricoh Company, Ltd. Vertical-cavity surface-emission type laser diode and fabrication process thereof
US7519095B2 (en) 2000-09-21 2009-04-14 Ricoh Company, Ltd Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7940827B2 (en) 2000-09-21 2011-05-10 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2008530774A (en) * 2005-02-07 2008-08-07 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Planar oxidation method for forming local buried insulators
JP2007221023A (en) * 2006-02-20 2007-08-30 Ricoh Co Ltd Surface-emitting laser element, optical transmission module including the element, and optical transmission system including the module
US7924899B2 (en) 2008-11-05 2011-04-12 Fuji Xerox Co., Ltd. Vertical-cavity surface-emitting laser diode (VCSEL), method for fabricating VCSEL, and optical transmission apparatus
JP2013201222A (en) * 2012-03-23 2013-10-03 Furukawa Electric Co Ltd:The Surface-emitting laser element

Also Published As

Publication number Publication date
JP2917971B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP4062983B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US6014400A (en) Surface-emitting laser and a fabrication method thereof
JP3783411B2 (en) Surface emitting semiconductor laser
US7098059B2 (en) Surface emitting semiconductor laser and process for producing the same including forming an insulating layer on the lower reflector
US5373520A (en) Surface emitting laser and method of manufacturing the same
JP3713956B2 (en) Manufacturing method of surface emitting semiconductor laser device
JP2002359432A (en) Surface emission type semiconductor laser and method for manufacturing the same
JP5029254B2 (en) Surface emitting laser
JP3188658B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2010080571A (en) Surface-emitting laser and manufacturing method thereof
JP3876918B2 (en) Surface emitting semiconductor laser device
US7672347B2 (en) Semiconductor light emitting device
JP2917971B2 (en) Surface emitting laser
JPWO2007135772A1 (en) Light emitting element
JP4381017B2 (en) Surface emitting semiconductor laser device
JP4876428B2 (en) Semiconductor light emitting device
JP2000277853A (en) Method for forming current constriction layer, and current constriction type surface emitting laser
JPWO2005074080A1 (en) Surface emitting laser and manufacturing method thereof
JP3876886B2 (en) Manufacturing method of surface emitting semiconductor laser device
JP2002158406A (en) Surface light-emitting semiconductor laser
JPH06188518A (en) Variable wavelength surface emission laser
JPH05235473A (en) Surface light emitting device and fabrication thereof
JP4443674B2 (en) InP-based semiconductor laser device and manufacturing method thereof
JP2002217492A (en) Surface-emitting semiconductor laser and its manufacturing method
JPH11220206A (en) Manufacture of multiple-wavelength surface light-emitting semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees