JP2001155845A - Electromagnetic induction heat emitter - Google Patents

Electromagnetic induction heat emitter

Info

Publication number
JP2001155845A
JP2001155845A JP33989399A JP33989399A JP2001155845A JP 2001155845 A JP2001155845 A JP 2001155845A JP 33989399 A JP33989399 A JP 33989399A JP 33989399 A JP33989399 A JP 33989399A JP 2001155845 A JP2001155845 A JP 2001155845A
Authority
JP
Japan
Prior art keywords
heating element
electromagnetic induction
alloy
temperature
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33989399A
Other languages
Japanese (ja)
Inventor
Riyouhei Nanba
瞭平 難波
Taizo Kawamura
泰三 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Seta Giken KK
Original Assignee
Kogi Corp
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp, Seta Giken KK filed Critical Kogi Corp
Priority to JP33989399A priority Critical patent/JP2001155845A/en
Publication of JP2001155845A publication Critical patent/JP2001155845A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic induction heat emitter that can rise more than 1000 deg.C. SOLUTION: The heat emitter itself is heated by an electromagnetic induction, and electromagnetic induction heat emitter is formed from Ni, Cr alloy by powder metallurgy or Fe, Cr alloy by powder metallurgy. Therefore, the electromagnetic induction heat emitter can raise temperature more than 1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、渦電流を交番させ
て発熱させた発熱体に流体を接触させて加熱する電磁誘
導加熱用発熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element for electromagnetic induction heating which heats a heating element which is heated by alternately generating an eddy current.

【0002】[0002]

【従来の技術】流体を昇温する技術としては、電磁誘導
加熱装置が知られている。この電磁誘導加熱装置は、流
体が通る通路部材の中に発熱体を設置し、通路部材の外
周に巻かれたコイルに電流を流して発熱体を発熱させる
ことで流体を昇温する装置である。この電磁誘導加熱装
置は、燃料の燃焼度を直接利用するものに比べて、小型
の装置となり、急速加熱が可能であり、電力使用である
からクリーンである点で好ましいものである。
2. Description of the Related Art As a technique for raising the temperature of a fluid, an electromagnetic induction heating device is known. This electromagnetic induction heating device is a device in which a heating element is installed in a passage member through which a fluid passes, and a current is applied to a coil wound around the outer periphery of the passage member to cause the heating element to generate heat, thereby raising the temperature of the fluid. . This electromagnetic induction heating device is preferable in that it is small in size, capable of rapid heating, and clean because it uses electric power, as compared with a device that directly uses the burnup of fuel.

【0003】上記の発熱体は、電力が入りやすくなる程
度の透磁率を有し、流体に対する熱交換がしやすく、流
体に対する耐蝕性を兼ね備えたものが好ましい。このよ
うな材料としては、SUS447J1の如きCr、Fe
を主成分とするマルテンサイト系ステンレス鋼が従来か
ら用いられる。このマルテンサイト系ステンレス鋼で形
成された発熱体の温度が高温になると、発熱体を構成す
る磁性体が磁気変態温度に達する。
[0003] The above-mentioned heating element preferably has a magnetic permeability enough to easily supply electric power, easily exchanges heat with a fluid, and has corrosion resistance to the fluid. Such materials include Cr, Fe such as SUS447J1.
Conventionally, martensitic stainless steels having as a main component are used. When the temperature of the heating element formed of the martensitic stainless steel becomes high, the magnetic material constituting the heating element reaches the magnetic transformation temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、発熱体
が磁気変態を起こす温度になると、発熱体の磁性が急変
し、コイルが短絡状態になり発熱体の温度制御が不能に
なる。このため、発熱体は、マルテンサイト系ステンレ
ス鋼の磁気変態(キューリ点)で決まる温度(600〜
700℃程度)までしか昇温させることができず、流体
を1000℃以上に加熱することができないという問題
点がある。
However, when the heating element reaches a temperature at which magnetic transformation occurs, the magnetism of the heating element changes suddenly, the coil is short-circuited, and the temperature control of the heating element becomes impossible. For this reason, the heating element has a temperature (600 to 600) determined by magnetic transformation (Curie point) of martensitic stainless steel.
However, there is a problem in that the temperature can be raised only up to about 700 ° C., and the fluid cannot be heated to 1000 ° C. or more.

【0005】本発明は、上記問題に鑑みてなされたもの
であって、その目的とするところは、1000℃以上に
昇温することができる電磁誘導加熱用発熱体を提供する
ことである。
[0005] The present invention has been made in view of the above problems, and an object of the present invention is to provide a heating element for electromagnetic induction heating that can raise the temperature to 1000 ° C or more.

【0006】[0006]

【課題を解決するための手段】上記課題に基づいて、発
明者は鋭意検討の結果、以下の知見を得た。即ち、発熱
体が粉末冶金法によるNi、Cr系合金で形成された場
合は、当該発熱体は、磁気変態が存在しないので、10
00℃以上に昇温してもコイルが短絡状態になることが
無い。また、発熱体が粉末冶金法によるFe、Cr系合
金で形成された場合は、磁気変態を有するが、当該発熱
体は、磁気変態(キューリ点)を起こす温度以上に昇温
しても、コイルが短絡状態にならず発熱体の温度制御が
可能であった。以上より、磁気変態が存在しないNi、
Cr系合金及び磁気変態を有するFe、Cr系合金で形
成された発熱体は、共に1000℃以上に昇温しても発
熱体の温度制御が可能であるという知見を得たため、こ
の知見に基づいて以下の発明を完成した。
Means for Solving the Problems Based on the above-mentioned problems, the inventor has earnestly studied and obtained the following knowledge. That is, when the heating element is formed of a Ni or Cr based alloy by powder metallurgy, the heating element has no magnetic transformation, so
Even if the temperature is raised to 00 ° C. or more, the coil will not be short-circuited. When the heating element is formed of an Fe or Cr alloy by powder metallurgy, the heating element has a magnetic transformation. Was not short-circuited, and the temperature of the heating element could be controlled. From the above, Ni without magnetic transformation,
Based on the knowledge that the heating element formed of the Cr-based alloy and the Fe and Cr-based alloys having magnetic transformation can control the temperature of the heating element even when the temperature is raised to 1000 ° C. or more. The following invention was completed.

【0007】請求項1記載の発明は、電磁誘導により自
体が加熱される発熱体であって、前記発熱体が粉末冶金
法によるNi、Cr系合金で形成されている電磁誘導加
熱用発熱体である。また、前記電磁誘導加熱用発熱体が
600℃以上に昇温される。さらに、前記電磁誘導加熱
用発熱体は、円筒形に形成され、被加熱流体の通る複数
の貫通孔が軸方向に設けられている。
According to the first aspect of the present invention, there is provided a heating element which is itself heated by electromagnetic induction, wherein the heating element is made of a Ni or Cr alloy by powder metallurgy. is there. Further, the temperature of the heating element for electromagnetic induction heating is raised to 600 ° C. or higher. Further, the heating element for electromagnetic induction heating is formed in a cylindrical shape, and a plurality of through holes through which the fluid to be heated passes are provided in the axial direction.

【0008】粉末冶金法は、高エネルギーのボールミル
等を用いて原料の金属粉中に各種の金属微粉を機械的に
分散させるメカニカルアロイング法で複合粉末をつく
り、これを焼結する方法である。粉末冶金法によるN
i、Cr系合金の化学成分は、Cの配分が0.02〜
0.08%、Crの配分が15〜35%、Feの配分が
0.5〜1.5%、Tiの配分が0.3〜0.9%、A
lの配分が0.1〜0.4%、Y203の配分が0.3〜
0.9%、Niの配分がBal(残り)の合金である。
The powder metallurgy method is a method in which a composite powder is produced by a mechanical alloying method in which various metal fine powders are mechanically dispersed in a raw metal powder using a high-energy ball mill or the like, and the composite powder is sintered. . N by powder metallurgy
i, the distribution of C is 0.02-
0.08%, Cr distribution is 15-35%, Fe distribution is 0.5-1.5%, Ti distribution is 0.3-0.9%, A
l allocation is from 0.1 to 0.4%, allocation 0.3 of Y 2 0 3
The alloy is 0.9%, and the distribution of Ni is Bal (remaining).

【0009】上記成分の粉末冶金法によるNi、Cr系
合金で形成された当該発熱体は、Ni、Cr系合金の融
点が1300℃以上であるため、1300℃付近まで昇
温することができる。また、表面に保護膜が形成される
ため、耐酸化性に優れる。さらに、磁気変態(キューリ
点)が存在しないので、コイルが短絡状態にならず温度
制御が可能である。また、融点直下まで高いクリープ強
度を保つことができる。上記成分の粉末冶金法によるN
i、Cr系合金は、以上の特性を備えるので、流体加熱
を行う発熱体の材料に適している。
The heating element formed of a Ni-Cr alloy by the powder metallurgy method of the above components can raise the temperature to around 1300 ° C because the melting point of the Ni-Cr alloy is 1300 ° C or more. In addition, since a protective film is formed on the surface, it has excellent oxidation resistance. Furthermore, since there is no magnetic transformation (Curie point), the coil is not short-circuited and the temperature can be controlled. Further, high creep strength can be maintained just below the melting point. N by powder metallurgy of the above components
The i, Cr-based alloy has the above characteristics, and is therefore suitable for a material of a heating element for performing fluid heating.

【0010】請求項2記載の発明は、電磁誘導により自
体が加熱される発熱体であって、前記発熱体が粉末冶金
法によるFe、Cr系合金で形成されている電磁誘導加
熱用発熱体である。
According to a second aspect of the present invention, there is provided a heating element which is itself heated by electromagnetic induction, wherein the heating element is made of an Fe or Cr alloy by powder metallurgy. is there.

【0011】粉末冶金法によるFe、Cr系合金の化学
成分は、Cの配分が0.02〜0.08%、Crの配分
が10〜30%、Tiの配分が0.2〜0.8%、Al
の配分が1.5〜6.0%、Y203の配分が0.2〜0.
8%、Feの配分がBal(残り)の合金である。
The chemical composition of the Fe-based or Cr-based alloy by powder metallurgy is as follows: distribution of C is 0.02-0.08%, distribution of Cr is 10-30%, and distribution of Ti is 0.2-0.8. %, Al
Allocation from 1.5 to 6.0% of the distribution of Y 2 0 3 is from 0.2 to 0.
8%, Fe is an alloy having a distribution of Bal (remaining).

【0012】上記成分の粉末冶金法によるFe、Cr系
合金で形成された当該発熱体は、Fe、Cr系合金の融
点が1400℃以上であるため、1400℃付近まで昇
温することができる。また、表面に保護膜が形成される
ため、耐酸化性に優れる。さらに、磁気変態(キューリ
点)が存在するが、磁気変態を境にして透磁率が緩やか
に変化するので、磁気変態を越えても温度制御が可能で
ある。また、融点直下まで高いクリープ強度を保つこと
ができる。上記成分の粉末冶金法によるFe、Cr系合
金は、以上の特性を備えるので、流体加熱を行う発熱体
の材料に適している。
The heating element formed of an Fe / Cr-based alloy by the powder metallurgy method of the above components can raise the temperature to around 1400 ° C because the melting point of the Fe / Cr-based alloy is 1400 ° C or more. In addition, since a protective film is formed on the surface, it has excellent oxidation resistance. Further, there is a magnetic transformation (Curie point), but since the magnetic permeability changes gradually at the boundary of the magnetic transformation, the temperature can be controlled even beyond the magnetic transformation. Further, high creep strength can be maintained just below the melting point. The Fe and Cr based alloys based on the powder metallurgy method of the above components have the above characteristics, and are suitable for the material of the heating element that performs fluid heating.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、電磁誘導加熱用発熱体であ
る。電磁誘導加熱用発熱体1は、円柱状に形成され、軸
方向に被加熱流体が通る複数の貫通孔が形成されてい
る。この電磁誘導加熱用発熱体は、上記成分の粉末冶金
法によるNi、Cr系合金又は上記成分の粉末冶金法に
よるFe、Cr系合金で形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a heating element for electromagnetic induction heating. The heating element 1 for electromagnetic induction heating is formed in a columnar shape, and has a plurality of through-holes through which a fluid to be heated passes in the axial direction. The heating element for electromagnetic induction heating is made of a Ni or Cr alloy by the powder metallurgy method of the above component or an Fe or Cr alloy by a powder metallurgy method of the above component.

【0014】図2は、本発明に係る発熱体1を用いた電
磁誘導加熱装置2の一例を示すものである。図2に示す
ように、電磁誘導加熱装置2は、発熱体1、流体の通路
部材3、コイル4、高周波電源5等で構成されている。
通路部材3は、非磁性の絶縁体で耐熱性に優れたセラミ
ックス製のパイプで、その内孔が流体の通路となる。こ
の通路部材3は、例えば、窒化珪素で形成されている。
コイル4は、通路部材3の外周に巻かれている。
FIG. 2 shows an example of an electromagnetic induction heating device 2 using a heating element 1 according to the present invention. As shown in FIG. 2, the electromagnetic induction heating device 2 includes a heating element 1, a fluid passage member 3, a coil 4, a high frequency power supply 5, and the like.
The passage member 3 is a ceramic pipe made of a nonmagnetic insulator and excellent in heat resistance, and its inner hole serves as a fluid passage. The passage member 3 is formed of, for example, silicon nitride.
The coil 4 is wound around the outer periphery of the passage member 3.

【0015】尚、発熱体1は、円柱状に限られず、四角
柱状でもよく、また、複数の貫通孔に限られず、一つの
貫通孔でもよい。また、発熱体1は、柱状のものに限ら
れず、流体が通過するための流路が形成されたパイプ状
のものでもよい。この場合、流体が通過するパイプ状の
発熱体を直接加熱するため、非磁性のセラミックス製の
パイプ3は不要となる。尚、コイルを保護するためにパ
イプ状の発熱体とコイルとの間に断熱材を設けることが
必要である。
The heating element 1 is not limited to a columnar shape, may be a square columnar shape, and is not limited to a plurality of through holes, but may be a single through hole. Further, the heating element 1 is not limited to a columnar one, and may be a pipe-like one in which a flow path through which a fluid passes is formed. In this case, since the pipe-shaped heating element through which the fluid passes is directly heated, the nonmagnetic ceramic pipe 3 becomes unnecessary. It is necessary to provide a heat insulating material between the coil and the pipe-shaped heating element to protect the coil.

【0016】次に、上記構成に基づいて、電磁誘導加熱
装置2の動作を説明する。高周波電源5からコイル4に
電力が供給されると、発熱体1に磁束が発生し渦電流が
流れるため、発熱体1は1000℃以上に昇温される。
そして、被加熱流体が発熱体1の貫通孔を通過すると、
1000℃以上に加熱される。
Next, the operation of the electromagnetic induction heating device 2 based on the above configuration will be described. When power is supplied from the high frequency power supply 5 to the coil 4, a magnetic flux is generated in the heating element 1 and an eddy current flows, so that the temperature of the heating element 1 is increased to 1000 ° C. or more.
Then, when the fluid to be heated passes through the through hole of the heating element 1,
Heated above 1000 ° C.

【0017】[0017]

【実施例】実施例1は、上記成分の粉末冶金法によるN
i、Cr系合金の例としてMAのA合金で電磁誘導加熱
用発熱体を形成した場合を説明する。MAのA合金の化
学成分は、表1に示す通りである。
EXAMPLE 1 In Example 1, N was measured by powder metallurgy of the above components.
The case where the heating element for electromagnetic induction heating is formed of an A alloy of MA as an example of i, Cr-based alloy will be described. The chemical composition of the A alloy of MA is as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の化学成分のMAのA合金を以下のよ
うに加工して電磁誘導加熱用発熱体を形成した。外径φ
51×110mmのMAのA合金から、図1に示すよう
に、外径φ49×100mmの発熱体1を形成し、8か所
にキリ穴加工を施した。MAのA合金の外径加工には、
材質KW−10(京セラ製)のチップを用いて発熱体1
を形成し、キリ穴加工には、ラジアルボール盤にて材質
M42(日立ツール製)の強力型ロングドリル(5.0
×150×100mm)を用いて貫通加工を施した。
The alloy A of MA having the chemical composition shown in Table 1 was processed as follows to form a heating element for electromagnetic induction heating. Outer diameter φ
As shown in FIG. 1, a heating element 1 having an outer diameter of φ49 × 100 mm was formed from a 51 × 110 mm MA A alloy, and eight holes were drilled. For outer diameter machining of MA A alloy,
Heating element 1 using chip of material KW-10 (manufactured by Kyocera)
For drilling holes, use a radial drilling machine to make a powerful long drill (5.0
× 150 × 100 mm).

【0020】次に、この発熱体の発熱傾向について説明
する。周波数1kHzの高周波炉を用いて誘導加熱を行っ
た。温度測定は、図1の中央と端の穴の中央部にそれぞ
れ熱電対を設定して行い1000℃までの発熱傾向を調
べた。図3に示すように、キューリ点は表れず、緩やか
な昇温曲線を描き14分で20℃から1000℃に上昇
した。この発熱体により空気を加熱すると、空気を10
00℃以上に昇温できた。
Next, the tendency of the heating element to generate heat will be described. Induction heating was performed using a high-frequency furnace having a frequency of 1 kHz. The temperature was measured by setting a thermocouple at each of the center of the center and the center of the hole at the end of FIG. As shown in FIG. 3, the Curie point did not appear, and a gradual heating curve was drawn, and the temperature rose from 20 ° C. to 1000 ° C. in 14 minutes. When air is heated by this heating element,
The temperature could be raised to 00 ° C. or higher.

【0021】実施例2は、上記成分の粉末冶金法による
Fe、Cr系合金の例としてMAのB合金で電磁誘導加
熱用発熱体を形成した場合を説明する。MAのB合金の
化学成分は、表1に示す通りである。
Embodiment 2 describes a case where a heating element for electromagnetic induction heating is formed of a B alloy of MA as an example of an Fe / Cr alloy by the powder metallurgy method of the above components. The chemical components of the MA B alloy are as shown in Table 1.

【0022】表1の化学成分のMAのB合金を以下のよ
うに加工して電磁誘導加熱用発熱体を形成した。外径φ
51×110mmのMAのB合金から、図1に示すよう
に、外径がφ49×100mmの発熱体1を形成し、8か
所にキリ穴加工を施した。MAのB合金の外径加工に
は、材質KW−10(京セラ製)のチップを用いて発熱
体を形成し、キリ穴加工には、卓上ボール盤にて材質M
42(日立ツール製)の強力型ロングドリル(5.0×
150×100mm)を用いて貫通加工を施した。
A B alloy of MA having a chemical composition shown in Table 1 was processed as follows to form a heating element for electromagnetic induction heating. Outer diameter φ
As shown in FIG. 1, a heating element 1 having an outer diameter of 49 × 100 mm was formed from a 51 × 110 mm MA B alloy and drilled at eight locations. For the outer diameter machining of the MA B alloy, a heating element is formed using a tip made of material KW-10 (manufactured by Kyocera).
42 (Hitachi Tool) long drill (5.0 ×
(150 × 100 mm).

【0023】次に、この発熱体の発熱傾向について説明
する。MAのA合金と同様の条件で誘導加熱を行った。
図4に示すように、約640℃のキューリ点が表れるま
で、急速に立ち上がるが、その後緩やかな昇温曲線を描
き11分30秒で20℃から1000℃に上昇した。キ
ューリ点を境に電力値が10kwから6kwに低下し
た。この発熱体により空気を加熱すると、空気を100
0℃以上に昇温できた。
Next, the tendency of the heating element to generate heat will be described. Induction heating was performed under the same conditions as for the A alloy of MA.
As shown in FIG. 4, the temperature rises rapidly until a Curie point of about 640 ° C. appears, and then a gentle temperature rise curve is drawn and the temperature rises from 20 ° C. to 1000 ° C. in 11 minutes and 30 seconds. The power value dropped from 10 kW to 6 kW at the boundary of the Curie point. When air is heated by this heating element, air
The temperature could be raised to 0 ° C. or higher.

【0024】[0024]

【発明の効果】請求項1乃至請求項4記載の発明は、1
000℃以上に昇温することができるという効果を奏す
る。また、表面に保護膜が形成されるため耐酸化性に優
れると共に、耐熱温度が高く融点直下まで高いクリープ
強度を保つことができるという効果を奏する。
According to the first to fourth aspects of the present invention,
This has the effect that the temperature can be raised to 000 ° C. or higher. In addition, since a protective film is formed on the surface, it is excellent in oxidation resistance, and has an effect that the heat resistance temperature is high and a high creep strength can be maintained just below the melting point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る電磁誘導加熱用発熱体を説明
する図である。
FIG. 1 is a diagram illustrating a heating element for electromagnetic induction heating according to an embodiment.

【図2】電磁誘導加熱装置を説明する図である。FIG. 2 is a diagram illustrating an electromagnetic induction heating device.

【図3】MAのA合金の昇温曲線を表すグラフである。FIG. 3 is a graph showing a temperature rise curve of an alloy A of MA.

【図4】MAのB合金の昇温曲線を表すグラフである。FIG. 4 is a graph showing a temperature rise curve of a B alloy of MA.

【符号の説明】[Explanation of symbols]

1 発熱体 2 電磁誘導加熱装置 3 通路部材 4 コイル 5 高周波電源 16 発熱体 REFERENCE SIGNS LIST 1 heating element 2 electromagnetic induction heating device 3 passage member 4 coil 5 high frequency power supply 16 heating element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 泰三 大阪府茨木市美沢町19番21号 株式会社瀬 田技研内 Fターム(参考) 3K059 AB04 AB19 AB23 AB27 AC09 AC33 AD38 CD44  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Taizo Kawamura 19-21 Misawa-cho, Ibaraki-shi, Osaka F-term (reference) 3K059 AB04 AB19 AB23 AB27 AC09 AC33 AD38 CD44

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電磁誘導により自体が加熱される発熱体
であって、 前記発熱体が粉末冶金法によるNi、Cr系合金で形成
されている電磁誘導加熱用発熱体。
1. A heating element which is itself heated by electromagnetic induction, wherein the heating element is made of a Ni-Cr alloy by powder metallurgy.
【請求項2】 電磁誘導により自体が加熱される発熱体
であって、 前記発熱体が粉末冶金法によるFe、Cr系合金で形成
されている電磁誘導加熱用発熱体。
2. A heating element which is itself heated by electromagnetic induction, wherein the heating element is made of an Fe / Cr alloy by powder metallurgy.
【請求項3】 前記電磁誘導加熱用発熱体が600℃以
上に昇温される請求項1又は請求項2記載の電磁誘導加
熱用発熱体。
3. The heating element for electromagnetic induction heating according to claim 1, wherein the heating element for electromagnetic induction heating is heated to 600 ° C. or higher.
【請求項4】 前記電磁誘導加熱用発熱体は、円筒形に
形成され、被加熱流体の通る複数の貫通孔が軸方向に設
けられている請求項1又は請求項2記載の電磁誘導加熱
用発熱体。
4. The electromagnetic induction heating element according to claim 1, wherein the electromagnetic induction heating element is formed in a cylindrical shape, and a plurality of through holes through which a fluid to be heated passes are provided in an axial direction. Heating element.
JP33989399A 1999-11-30 1999-11-30 Electromagnetic induction heat emitter Pending JP2001155845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33989399A JP2001155845A (en) 1999-11-30 1999-11-30 Electromagnetic induction heat emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33989399A JP2001155845A (en) 1999-11-30 1999-11-30 Electromagnetic induction heat emitter

Publications (1)

Publication Number Publication Date
JP2001155845A true JP2001155845A (en) 2001-06-08

Family

ID=18331809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33989399A Pending JP2001155845A (en) 1999-11-30 1999-11-30 Electromagnetic induction heat emitter

Country Status (1)

Country Link
JP (1) JP2001155845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210260A (en) * 2006-02-13 2007-08-23 Tokuden Co Ltd Fluid heating equipment
JP5877920B1 (en) * 2015-04-28 2016-03-08 株式会社ワイエイシイデンコー Rapid heating / cooling heat treatment furnace
WO2018096718A1 (en) 2016-11-24 2018-05-31 株式会社ブリヂストン Electromagnetic induction-heating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210260A (en) * 2006-02-13 2007-08-23 Tokuden Co Ltd Fluid heating equipment
JP5877920B1 (en) * 2015-04-28 2016-03-08 株式会社ワイエイシイデンコー Rapid heating / cooling heat treatment furnace
WO2018096718A1 (en) 2016-11-24 2018-05-31 株式会社ブリヂストン Electromagnetic induction-heating device
JP2018085226A (en) * 2016-11-24 2018-05-31 株式会社ブリヂストン Electromagnetic induction heating device
CN110024481A (en) * 2016-11-24 2019-07-16 株式会社普利司通 Electromagnetic induction heater
US11304268B2 (en) 2016-11-24 2022-04-12 Bridgestone Corporation Electromagnetic induction heating apparatus
CN110024481B (en) * 2016-11-24 2022-05-06 株式会社普利司通 Electromagnetic induction heating device

Similar Documents

Publication Publication Date Title
AU2014330053B2 (en) Smart susceptor for a shape memory alloy (SMA) actuator inductive heating system
EP2441849A2 (en) Selective case depth thermo-magnetic processing and apparatus
JP6514752B2 (en) Fe-based amorphous soft magnetic bulk alloy, method for producing the same, and use thereof
JP2000326036A (en) Manufacture of cold formed coil spring
JP2001155845A (en) Electromagnetic induction heat emitter
JP2006244763A (en) Magnetic heating apparatus
Rudnev An objective assessment of magnetic flux concentrators
JP2001150178A (en) Method and device for reducing residual welding stress
JP2002305074A (en) Induction heating equipment
Pham et al. Reduction in hysteresis loss of binder jet printed iron silicon with boron
JPH0726125B2 (en) Method of manufacturing bimetal for plain bearing
SE520528C2 (en) Stator for a rotating electric machine and process for making it
JP4094583B2 (en) Composite material having non-magnetic part and method for producing the same
JP5231109B2 (en) High frequency induction heating and tempering apparatus and high frequency induction heating and tempering method
JP6222498B2 (en) Metastable austenitic stainless steel strip or steel plate
CN110678944B (en) Proportional solenoid, method for manufacturing the same, and method for controlling characteristics of proportional solenoid
CN112126748A (en) Metal vacuum magnetization heat treatment device and power generation method for metal heat treatment
Sabeeh et al. Design and Implementation of Induction Coil for Case Hardening of a Carbon Steel Gear
JP6434900B2 (en) Iron core member for electromagnetic control component and manufacturing method thereof
JP4236108B2 (en) Inductor for heating inner surface of bottomed hole
JP2021025079A (en) Electromagnetic induction heating device
CN214088567U (en) Metal vacuum magnetization heat treatment device
JP6725209B2 (en) High strength member for motor and method of manufacturing high strength member for motor
US11462344B2 (en) Method of heat-treating additively-manufactured ferromagnetic components
JP2003213329A (en) Method for induction-heating work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302